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The density-matrix renormalization-group method is applied to the one-dimensional Kondo-lattice model
with the Coulomb interaction between the conduction electrons. The spin and charge gaps are calculated as a
function of the exchange constantJ and the Coulomb interactionUc . It is shown that both the spin and charge
gaps increase with increasingJ andUc . The spin gap vanishes in the limit ofJ→0 for anyUc with an
exponential form,Ds}exp@21/a(Uc)Jr#. The exponent,a(Uc), is determined as a function ofUc . The
charge gap is generally much larger than the spin gap. In the limit ofJ→0, the charge gap vanishes as
Dc5

1
2J for Uc50 but for a finiteUc it tends to a finite value, which is the charge gap of the Hubbard model.

Recently the insulating phase of the Kondo-lattice model
~KLM ! has been extensively studied in relation to the Kondo
insulators.1 In contrast to the strong-coupling limit where
various properties are easily understood from the local bases,
the weak-coupling limit has not yet been fully understood.
Since the KLM with weak exchange coupling is an effective
model of the symmetric periodic Anderson model with
strong Coulomb interaction, the weak-coupling region of the
KLM is important to understanding the strongly correlated
insulating phase. For the one-dimensional case it has been
established that both spin and charge gaps exist for any ex-
change coupling. The excitation gaps vanish in the limit of
vanishing exchange coupling.2,3 Since the gaps are tiny in the
weak-coupling regime, it is no longer justified to neglect
Coulomb interaction between the conduction electrons.

In this article we determine the spin and charge gaps in
the entire region of the exchange constant taking account of
the Coulomb interaction between the conduction electrons
Uc . The excitation gaps are obtained precisely by employing
the density-matrix renormalization-group~DMRG! method.
Among other things, we find thatUc actually stabilizes the
Kondo spin liquid phase, resulting in monotonic increase of
both the spin and charge gaps as a function ofUc .

The model we consider in this article is the following
one-dimensional KLM with Coulomb interaction~KLMC !:
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where cis
† (cis) is the creation~annihilation! operator of

a conduction electron at thei th site, and s i
m

5(1/2)(ss8cis
† tss8

m cis8 with the Pauli matrices tss8
m

(m5x,y,z) are the spin-density operators of the conduction
electrons. In the second termSi

m represents a localized
f -spin operator withS51/2. Concerning the kinetic energy
of the conduction electrons we consider only the hopping
processes between the nearest-neighbor sites,t. This model
was considered by Yanagisawa and Harigaya in connection
with the ferromagnetic ground state in the strong-coupling
limit of the one-dimensional KLM away from half filling.4

Here we are interested in the half-filling case where the total
number of conduction electrons is equal to the number of
lattice site:N[( iscis

† cis5L. It is needless to say that this
Hamiltonian is reduced to the Hubbard model in the limit of
vanishing exchange interaction,J→0, and to the usual KLM
for Uc50.

For the case ofUc50 extensive studies on the spin and
charge gaps have already been done. First Tsunetsuguet al.
showed numerically that the ground state is singlet and the
spin gap always exists for any finite exchange by using exact
diagonalization combined with finite-size scaling.2 They
have concluded that theJ dependence of the spin gap has a
similar form as the Kondo temperature of the single impurity
Kondo model but the exponent is larger than that of single
impurity case, the lattice enhancement effect. Subsequently,
semiclassical analysis based on the nonlinears model ob-
tained by mapping from the one-dimensional KLM was car-
ried out by Tsvelik.3 He showed that the spin gap exists for
any J in consistent with the above results with some loga-
rithmic correction in the exponent. For the charge gap, on the
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other hand, aJ-linear behavior is suggested by Nishino and
Ueda. By using exact diagonalization of the one-dimensional
periodic Anderson model up to eight sites, they observed that
the charge gap is proportional to 1/U in the region of strong
Coulomb interaction which meansJ-linear dependence
in the corresponding weak-coupling region of the KLM
(J58V2/U).5 It follows that the ratio between the charge
and spin gapsDc /Ds diverges in the limit of vanishing ex-
change constant. Yu and White applied the DMRG method to
the KLM.6 Their results for larger clusters have confirmed
the diverging behavior ofDc /Ds in the region of weak ex-
change coupling. For an asymmetric case, however it is also
pointed out the ratio remains finite.7

In spite of these progresses, the results in the region of
weak exchange coupling are still not accurate enough to de-
termine precisely the functional form of the gaps due to the
smallness of clusters used in these numerical studies. For
example, the exponent of the spin gap has not yet been de-
termined with sufficient accuracy and the linearJ depen-
dence of the charge gap remains to be a plausible scenario. In
order to determine functional forms of these gaps it is essen-
tial to treat large clusters systematically so that we can ex-
trapolate the gap energies to the bulk limit. For this purpose
the DMRG method developed by White8 is efficient because
the number of the states used to construct the wave function
does not increase with increasing the system size. Naturally
the truncation of the states introduces numerical errors, but
the errors may be estimated by the eigenvalues of the density
matrix which are truncated off. Thus it is possible to increase
the system size within a given accuracy.

In the previous DMRG calculation by Yu and White,6 the
number of states kept for each block is 180 and the number
of the maximum system size is 24. However the lattice sizes
are too small to fix theJ dependence of the spin and charge
gaps. For this purpose we use the finite system algorithm of
the DMRG method with open boundary conditions keeping
up to 300 states for each block and increase the system size
up to 80.

In contrast to the infinite system algorithm, the finite sys-
tem algorithm gives more accurate results, but the extrapo-
lation to the infinite system is necessary. The extrapolation to
the infinite may be done in the following way. Since the
lowest excited state generally corresponds to the bottom of
an excitation spectrum which can be expanded in terms of
k2, we expect finite-size scaling is of the form ofL22 for
large systems. It means the gap energy of the large systems
behaves as

D~L !5D~`!1bL221O~L24!. ~2!

We determine the gap energy of the bulk system by using
this scaling when data for available system sizes already fol-
lows the scaling form. When a gap is tiny, for example, the
spin gap ofJ50.6t andUc50, the scaling form is not yet
clear for the system size available. In such a case the upper
and lower bounds are estimated byL22 and L21 scaling,
respectively, because the size dependence of the gap for
smaller systems is close toL21 rather thanL22.

First we discuss the spin gap. It is obtained from the dif-
ference of the ground-state energies in the subspace of total
Sz being zero and one with the same total electron number

L, Eg(S
z51,N5L)2Eg(S

z50,N5L). TheSU~2! symme-
try in the spin space guarantees the energy difference is the
same as the spin gap in the subspace of totalSz being zero.

Before proceeding to the analysis of the results it is worth
reminding the Kondo impurity model. In the Kondo impurity
model all physical quantities are scaled by single energy
scaleTK;D exp(21/rJ) which is known as the Kondo tem-
perature. Herer51/2pt is the density of states of the con-
duction band at the Fermi level. The simplest extension to
the lattice problem is to include an enhancement of the ex-
ponent owing to intersite correlations. Then the spin gap is
expected to behave as

Ds}expS 2
1

arJD , ~3!

where thea is the enhancement factor. The Gutzwiller ap-
proximation predicts an enhancement factor of 2.9 As a mat-
ter of fact, Tsunetsuguet al.have estimated that the enhance-
ment factora is in the range of 1<a<5/4 by using a finite-
size scaling based on exact diagonalizations for the systems
up toL510.

The first task of the present study is to determine this
enhancement factor more precisely. For this purpose we plot
logarithm of the spin gaps as a function of 1/J. Figure 1
shows the results extrapolated to the bulk limit using data of
L56,8,12,18,24,40. From this figure we obtain the exponent
a51.4(1) for the case ofUc50. There are some ambigu-
ities in the extrapolation to the bulk limit for a tiny gap.
However within the present accuracy we do not observe any
logarithmic correction to the exponent which is predicted by
the semiclassical approach.3

Now we proceed to the effect of the Coulomb interaction
between conduction electrons. As is well known, one of the
most important effect of the Coulomb interaction for low-
energy properties is the mass enhancement, which may be

FIG. 1. Spin gap of the one-dimensional Kondo lattice model
with Coulomb interaction. The thick curve represents the result of
the perturbation theory in terms oft/J for Uc510t. Typical trun-
cation error in the DMRG calculation is 1026 for J51. Error bars
are estimated fromL21 andL22 scaling. Gap energies, exchange
constantJ, and Coulomb interactionUc are in units oft.
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represented by an effective density of states at the Fermi
energy,r* . Thus in the weak-coupling region it is natural to
extend the form of Eq.~3! to finite Uc by allowingUc de-
pendence of the exponent,a(Uc). In Fig. 1 it is seen that the
numerical data are nicely fitted by this form. The exponent
a is determined for variousUc . As shown in Fig. 2 the
exponenta increases with increasingUc and the asymptotic
behavior is linear inUc .

In the limit of strong Coulomb interaction (Uc /t→`) the
KLMC is mapped to the Heisenberg chain coupled with lo-
calized f spins. Since the effective coupling of the Heisen-
berg chain is given byJeff54t2/Uc , we can compare the
present spin gap with that of the spin system. From Fig. 2 we
find the asymptotic behavior of the exponent is
a50.78Uc /t10.7. It means that the spin gap of the above
spin system behaves asDs;exp(22Jeff /J). In order to
check this form we have analyzed the numerical data for the
spin system obtained by Igarashiet al.10 and found good
agreement. Thus we conclude that the spin gap of the KLMC
always vanishes exponentially in the limit of weak exchange
coupling for any Coulomb interaction,Uc , and the exponent
a increases monotonically with increasingUc .

In the strong-coupling region ofJ, we may use the per-
turbation theory with respect tot/J also in the presence of
finite Coulomb interactionUc . After straightforward calcu-
lation we get the following result for the spin gap:

Ds5J2
4t2

1
2J1Uc

1
2t2

3
2J1Uc

. ~4!

The solid curve in Fig. 1 represents this result forUc510t
which shows that our numerical data for the spin gap is well
reproduced by the perturbation result down toJ;t. From
Eq. ~4! one can see that the derivative of the spin gap with
respect toUc is always positive,]/(]Uc)Ds.0, for any
positive Uc and J. From these observations in both the
strong- and weak-coupling regions we can conclude that the
spin gap increases with increasing Coulomb interaction for
any antiferromagnetic exchangeJ.

The charge gap is obtained byEg(S
z50,N5L12)

2Eg(S
z50,N5L). Owing to the hiddenSU~2! symmetry in

the charge space, the energy difference is the same as the
charge excitation gap in the subspace of total electron num-
ber fixed toL.5

Before discussing the charge gap we first notice the rela-
tion between the charge gapDc and the quasiparticle gap
Dqp which is defined by Eg(S

z561/2,N5L61)
2Eg(S

z50,N5L). In the strong-coupling limit,J/t→`, it
is evident that the charge gap is twice the quasiparticle gap
because the energy required to create the lowest charge ex-
cited state is the same as the energy cost to add two addi-
tional electrons owing to theSU~2! symmetry in the charge
space. In the second order perturbation int/J, one can show
that the interaction between the two additional electrons is
repulsive, leading to only a phase shift. Therefore, the charge
gap is given by the sum of two quasiparticle gapDqp in the
bulk limit:

Dc52Dqp. ~5!

A similar argument is also valid for the periodic Anderson
model.5 Validity of this relation is checked by the present
DMRG calculation and we have confirmed this relation in
the entire region of the exchange constantJ. On the other
hand the spin gap is determined by the lowest bound state of
a quasielectron and a quasihole.

Let us start from the case ofJ50 where exact results are
known. In this limit the KLMC is reduced to the Hubbard
model which is exactly solved by Lieb and Wu for the one-
dimensional case.11 The asymptotic form of the charge gap is
Dc}AUct exp(21/rUc) for smallUc , andDc}Uc24t for
largeUc . Figure 3 shows the charge gap extrapolated to the
infinite system from the data forL56,8,12,18,24,40. These

FIG. 2. Uc dependence of the exponent of the spin gap. Cou-
lomb interactionUc is in units of t.

FIG. 3. Charge gap of the one-dimensional Kondo lattice model
with Coulomb interaction. Results on the vertical axis are obtained
from the exact solution of Lieb-Wu. Typical truncation error in the
DMRG calculation is 1026 for J51 and 1024 for J50.2, which is
a dominant source of numerical errors since the finite-size scaling,
Eq. ~2!, is well obeyed. Gap energies, exchange constantJ, and
Coulomb interactionUc are in units oft.
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results for finiteJ are consistent with the exact results which
are denoted by crosses on the vertical axis.

For Uc50, the charge gap of the Hubbard model van-
ishes. In this case an important question is how the charge
gap opens for finiteJ. As is shown in the previous work by
Nishinoet al. the charge gap is much larger than the spin gap
in the weak-coupling regime.5 It implies that the correlation
length for the spin degrees of freedom is much longer than
the charge correlation length. Therefore, for the discussion of
the charge gap it is justified to assume that the spin-spin
correlation length is infinitely long. Under the assumption of
the infinite spin correlation length, one can get the charge
gap which is linear inJ with its coefficient 1/2

Dc5
J

2
. ~6!

This linear dependence inJ is actually seen in the present
DMRG calculations shown in Fig. 3. For the case of
J50.2t andUc50 we have additionally calculated a larger
system ofL580 and we get the charge gap of 0.1t from the
extrapolation. We may take this fact as a numerical confir-
mation of the coefficient of 1/2. It should be stressed again

that this type of mean-field theory is not justified for the
discussion of the spin gap.

From Fig. 3 we also find that the charge gap increases
with increasing Coulomb interactionUc . In the strong-
coupling regime, we get the following result for the charge
excitation gap within the second order perturbation:

Dc5
3

2
J1Uc22t1

5t2

3
2 J1Uc

2
3t2

J
. ~7!

From the result it is clear that the charge gap is a increasing
function of Uc for large J. Thus it is concluded that the
charge gap increases with increasing Coulomb interaction
Uc for any exchange constantJ similarly as the spin gap.
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