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Abstract
Snow accumulation has potential climatological, hydrological and ecological im-
pacts at a global scale. Satellite passive microwave radiometers have the po-
tential to provide snow accumulation data with a historical record of over 30
years, however, current data products contain unknown uncertainty and error.
Snowpack stratigraphy is the spatial variation in snowpack properties caused
by the layered nature of the snowpack. Snowpack stratigraphy influences the
accuracy and increases uncertainty in simulations of microwave emission from
snow which in turn increases uncertainty in satellite derived estimates of snow
water equivalent using microwave radiometers.

Two methods were developed to help better quantify snowpack stratigraphy. An
improved technique for characterising snowpack stratigraphy within a snow trench
was developed. Secondly a new method was developed to quantify the density of
ice layers that form in snowpacks with known error and uncertainty.

Snowpack stratigraphy was characterised using the improved technique across
the Trail Valley Creek watershed in the Canadian Northwest Territories. Two
50 m trenches and eleven 5 m trenches were dug across the range of landcover
types found in the watershed. This dataset allowed layer boundary roughness
to be characterised and the properties of snow layers to be mapped with an
unprecedented level of accuracy.

Ice lens density was measured 60 times at three locations in the Arctic and mid-
latitudes at locations with coincident ground based radiometer measurements.
The impact that accurate parameterisation of density has on modelled estimates
of brightness temperature was quantified.

Simulations of microwave brightness temperatures were conducted using snow
emission models at all locations. The output of these simulations, and comparison
to ground based observations where available, allowed for the characterisation of
variability in brightness temperature simulations caused by stratigraphic hetero-
geneity. The findings presented in this thesis will inform research aiming to better
characterise the satellite error budget. Improvements in this area helps improve
global snow mass and snow accumulation estimates.
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Chapter 1

Introduction

1.1 Snow at a global scale

A warming climate affects, either directly or indirectly, all aspects of the earth’s

land surface (Turner and Overland, 2009). Positive ice and snow related feed-

backs, such as the surface temperature feedback (as the surface warms, less energy

is radiated back into space in the Arctic compared to low latitudes (Pithan and

Mauritsen, 2014; Holland and Bitz, 2003)), and the snow/ice albedo feedback

(warming causes less ice and snow cover which increases albedo and leads to

further warming (Screen and Simmonds, 2010; Holland and Bitz, 2003)), change

the local radiation balance at the poles. Ecological systems are also affected by

changes in snow cover as part of a network of complex feedback loops, as shown

in Figure 1.1 (Chapin et al., 2005). These feedbacks cause less outgoing radiation

1



Chapter 1. Introduction

from the earth (Moritz et al., 2002) and lead to a net increase in radiation which

amplifies the effects of global warming at the poles (Crook et al., 2011). The

effect this has on certain aspects of arctic environment is well established (Jeffries

et al., 2014); sea ice shows a steady decline in extent (Serreze et al., 2007),

permafrost extent is shrinking (Zhang, 2005), land based glaciers are retreating

(Marzeion et al., 2014), the Greenland ice sheet is experiencing unprecedented

melt (Nghiem et al., 2012) and spring snow extent is decreasing (Derksen and

Brown, 2012). However, one crucial aspect is not well quantified; the impact that

climate warming has had and will continue to have on the snow water equivalent

(SWE) and the spatial distribution of seasonal snow (Robinson et al., 1993; Foster

et al., 2005; Chang et al., 1997).

Seasonal snow is of particular importance to the 1
6 of the worlds population who

rely on snow melt for drinking water, agriculture, industry, manufacturing and

recreation, as shown in Figure 1.2 (Barnett et al., 2005). Reliable estimates of

snow water equivalent are required so we can better understand snow’s role in

the global earth surface system (Hancock et al., 2013), and improve inputs to

hydrological models used to inform local authorities and resource management

industries enabling them to plan usage and storage of water supplies (Stewart,

2009). The increased frequency in unpredicted droughts and extreme runoff events

as shown in Figure 1.3 (Diffenbaugh et al., 2013) demonstrates the importance

of being able to predict such events. Snow depth also plays an important role in

global climatic feedbacks. Decreased snow depth causes less shrubs to be buried

2
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Figure 1.1: Diagram of feedback loops that couple climatic processes in arctic
Alaska. Arrows linking processes indicate a positive effect of one process on
another unless otherwise indicated (by minus signs) (Taken from Chapin et al.

(2005)).

in the winter leading to decreased albedo and further warming, a process termed

arctic greening (Loranty et al., 2014; Tape et al., 2006; Sturm et al., 2005; Jia

et al., 2006).
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Figure 1.2: Accumulated annual snowfall divided by annual runoff over the
global land regions. The value of this dimensionless ratio lies between 0 and
1 and is given by the colour scale, R. The red lines indicate the regions where
streamflow is snowmelt-dominated, and where there is not adequate reservoir
storage capacity to buffer shifts in the seasonal hydrograph. The black lines
indicate additional areas where water availability is predominantly influenced
by snowmelt generated upstream (but runoff generated within these areas is

not snowmelt-dominated) (Taken from Barnett et al. (2005)).

Figure 1.3: Occurrence of extreme runoff events in the Northern Hemisphere
(adapted from Diffenbaugh et al. (2013)), for December, January, February

(DJF), March, April May (MAM) and June, July August (JJA)

4
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1.2 Measuring Snow Water Equivalent

Snow water equivalent is a function of snow depth and density (Gray and Male,

1981). In situ point measurements of SWE are usually taken using a snow tube.

A snow tube extracts a vertical column of snow from the snowpack which is then

weighed to calculate the SWE of the the snowpack at the given location. The

snow tube allows the key information of depth and density to be recorded more

quickly and in a less destructive manner than a snowpit (Church, 1933; Goodison

et al., 1987; Woo, 1997) and when used as part of a transect provides information

on the spatial variability of SWE.

While a global network of snow weather stations reporting snow depth exists,

station locations are heavily weighted towards populated urban areas (Rees et

al., 2013) and, as a result, are sparse in high latitudes (Brown et al., 2007).

The large size, sparse population and inaccessibility of the Arctic means that

alternative methods need to be used in this region. Model derived hemispheric

estimates of SWE have made significant progress by using reanalysis data to drive

snow and hydrological models and to determine snow accumulation (Troy et al.,

2012; Liston and Hiemstra, 2011). Satellite remote sensing is the most practical

mechanism with which to measure SWE on a hemispheric scale (Vander Jagt et

al., 2013). Near infrared (NIR) and other visible band sensors can be employed to

determine snow extent and other snowpack parameters such a grain size (Painter

et al., 2009). However, visible band measurements have significant drawbacks as
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they are not able to determine SWE directly and suffer from weaknesses such as

requiring cloud free days and solar illumination, both of which are limitations to

use in the Arctic. Passive microwave remote sensing (Staelin et al., 1977) which,

although it has a course resolution of approximately 25 km (Kelly et al., 2003),

does not require solar illumination, penetrates cloud cover and has a historical

record of > 30 years (Dupont et al., 2012). The 19 - 37 GHz section of the

spectrum is of particular interest for snow remote sensing. At these wavelengths

a snowpack acts to attenuate the microwave emission upwelling from the ground

and the level of attenuation is related to the depth and properties of the snowpack

(Boyarskii and Tikhonov, 2000). The brightness temperature observed by the

satellite radiometer is related to the emission from the earth (which is largely

dependent on its physical temperature) and the attenuation of this emission by

the snowpack (Ulaby et al., 1981).

Extensive work has been carried out to establish theoretical (Grody, 2008; Tse

et al., 2007; Stogryn, 1986) and empirical (Chang et al., 1982; Foster, 1997; Kelly

and Chang, 2003) links between attenuation in the snowpack, observed microwave

brightness temperature and SWE. The classic, empirical approach (Chang et al.,

1982) uses the simple retrieval algorithm

SD = 1.59× (T18H − T37H)cm (1.1)
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to derive snow depth from brightness temperature, although this has proved to

be unreliable over the Arctic and produced SWE products with large degrees of

uncertainty (Koenig and Forster, 2004; Clifford, 2010).

The majority of the error and uncertainty in SWE products was attributed to

factors such as the forest or lake fraction of the footprint, which are known to

cause variation at the satellite scale (Derksen et al., 2003; Green et al., 2012).

Work focused on quantifying the effect of these factors to improve SWE products,

however, while forest and lake fraction can be observed relatively easily using

existing satellite data products (Derksen, 2008), even when accounting for these

factors uncertainty and error exists in the SWE data products (Foster et al., 2005).

It has been hypothesised (Mätzler, 1994; Boyarskii and Tikhonov, 2000; Durand

et al., 2008; Derksen et al., 2012a) that variation in the properties of the snowpack

and/or our inability to correctly parameterise the variation in snowpack properties

that occur within a satellite footprint using a simple retrieval algorithm, are the

causes of the uncertainty. This has led to an increased interest in both, the

physical properties of the snowpack, and how these properties physically attenuate

the earth’s microwave emission. Sophisticated data assimilation algorithms have

been developed and implemented. Data assimilation organises the useful and

less useful observations into physically consistent estimates of SWE. Ultimately

data assimilation aims to produce the optimal combination of the measurements

where the output (in this case SWE) lies within the error bars of all estimates,

the assimilation estimates will be closer to the more accurate estimates. An

7
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example of such an assimilation scheme which uses satellite observations, a land

surface model and a radiative transfer model is shown in Figure 1.4 (Durand and

Margulis, 2007). The approach of Takala et al. (2011) uses in situ measurements

of snow depth in addition to satellite data and an iterative approach to estimate

grain size using a snow emission model to produce a hemispheric product for SWE.

Another approach which has demonstrated improvements in SWE retrievals is to

use a snow model to estimate density and grain size in a coupled snow emission

model (Langlois et al., 2012).

Figure 1.4: This schematic illustrates how the prior information, models,
and synthetic measurements are merged using a data assimilation scheme as

described in Durand and Margulis (2007)
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1.3 Snowpack variability and stratigraphy

Snowpack stratigraphy describes the layered or stratified nature of snowpacks.

Each layer in a snowpack is composed of snow with different properties to the

layers above and below. The variation between snow layers is caused by the suc-

cessive build up of a snowpack by depositional events, and the subsequent impact

of in situ snow metamorphosis, melt, rain-on-snow events or wind compaction

(Colbeck, 1991). Understanding variation in snowpack stratigraphy is crucial for

understanding the microwave emission and radiative transfer properties of snow

(Durand et al., 2008). Snowpack stratigraphy is highly variable at small spatial

scales, although at large spatial scales major stratigraphic units are continuous

(Sturm and Benson, 2004).

Changes in the properties of the snowpack are a key factor in the reflection

and transmission of radiation in the snowpack (Ulaby et al., 1981). Variation

in snowpack stratigraphy is one of the key drivers of variation in modelled and

observed microwave brightness temperatures (Derksen et al., 2012a; Durand et al.,

2008), at scales ranging from the footprint of a ground based radiometer (plot

scale) (Rutter et al., 2014) to the resolution of a satellite derived data product

(Derksen et al., 2012a). Current passive microwave derived SWE products do

not account for spatial variations in snowpack stratigraphy as the ability of

the products to account for snowpack stratigraphy is limited by a lack of field
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observations. Existing studies that have tried to characterise sub-footprint vari-

ability have focused on either, snow pits taken at a variety of locations within a

satellite footprint (Derksen and Brown, 2012; Elder et al., 2009), or long transects

(Sturm and Benson, 2004). Despite the fact that it is known that variation in

stratigraphy at the sub-footprint to 1 km scale introduces error into estimates of

SWE from brightness temperature measurements (Rutter et al., 2014; Derksen

et al., 2014), it is known that this error does not completely mask the signal

relating brightness temperature to SWE (Vander Jagt et al., 2013; Li et al., 2012;

Derksen et al., 2014). By focusing on the impact of simplifying the stratigraphy

of a given snowpack, it has been found that, at a point, simplification from five

to one layers reduces computational requirements and does not increase error in

simulated brightness temperatures (Huang et al., 2012). However when applied

to field variability, results are more mixed (Rutter et al., 2014; Derksen et al.,

2012a). In addition to this, relatively little has been published looking at small

scale variation in stratigraphy (Rutter et al., 2014; Tape et al., 2010; Derksen,

2008; Pielmeier and Schneebeli, 2003; Sturm and Benson, 2004) and ultimately

the question of whether the variation exhibited at the plot scale can influence

brightness temperatures at the satellite scale is as yet unanswered.
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1.4 Quantifying variation in snowpack

stratigraphy

Quantifying vertical variation in stratigraphy in a snow pit gives the observer

one profile for that snowpack. Past work has focused on distributing multiple

snow pits around different snow cover types to try to quantify lateral variability

within a satellite footprint (Derksen and Brown, 2012; Derksen et al., 2014).

Other work has utilised a snow trench to quantify stratigraphic variation at cm

resolution over short distances of around 5 m (Rutter et al., 2014; Tape et al.,

2010). The technological development that has enabled this scale of work to

be conducted in situ in a timely manner, is the availability of compact or SLR

cameras adapted to take photos in the near infra-red (NIR) (850 nm) part of the

electromagnetic spectrum. At this wavelength the camera is sensitive to changes

in the microstructure of the snow, and it is possible to use the images to quantify

variability in snowpack stratigraphy over the distance of an excavated snow trench

(Tape et al., 2010; Rutter et al., 2014).

1.5 Aims

The overall goal of this thesis is to improve knowledge of how snowpack stratig-

raphy influences the precision and accuracy of snow microwave emission models

in Arctic tundra environments. This will be achieved by addressing two key
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weaknesses in our current implementation and parameterisation of snowpack

stratigraphy in snow emission models:

1. The presence of ice lenses and layers in a snowpack substantially increases

bias in horizontally polarised simulated brightness temperatures (Rees et al.,

2010; Durand et al., 2008; Derksen et al., 2012a).

2. The influence of spatial variation of snowpack stratigraphy on brightness

temperature signatures is not well characterised(Derksen et al., 2014).

To help address these weaknesses three aims and associated objectives have been

created

Aim 1: To develop a method that will enable accurate quantification of spatial

variability in snowpack stratigraphy over increased spatial scales on tundra

landcover. To achieve this aim three objectives were identified:

(a) To increase efficiency with which NIR photography of snowpack stratig-

raphy can be collected in the field, and optimise the post-processing

digitisation

(b) to improve accuracy of digitised snow stratigraphy to a consistent 1

cm accuracy across a 5 m snow trench for use in all environments

(c) To Quantify internal snow layer boundary roughness
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Aim 2: To improve the parameterisation of ice layers in snow emission models

by measuring and analysing the influence of their structural properties

(such as density and bubble size) on the accuracy of simulated brightness

temperatures

(a) To develop a new field method for measuring the density of ice layers

(b) To compare simulated and observed brightness temperatures using

measured ice layer densities to test the sensitivity of the Microwave

Emission Model for Layered Snowpacks (MEMLS) and Multi-layer

Dense Media Radiative Transfer (DMRT-ML) snow emission models

to changes in ice layer parameterisation

(c) To examine the impact that any sensitivity could have on ice layer

detection algorithms

Aim 3: To quantify the variation in stratigraphy within an Arctic watershed, fully

capturing variation in the position of layers and the layer properties.

(a) To quantify layer thickness and boundary roughness variability

(b) To quantify the impact of spatial variability of stratigraphy on Snow

Microwave Emission Models

(c) To determine the minimum subset size in each trench location required

to achieve the mean brightness temperature for that trench

13
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1.6 Thesis structure

This thesis will be structured in six chapters, this, the first chapter, serves as the

main introduction, to outline the main motivations, and questions addressed in

this thesis. The second chapter will provide the background to the thesis in more

detail, and provide the context on where this work sits in the current state of

science.

Following these there are three main results and method chapters:

• Chapter 3 introduces the main method of quantifying snowpack stratigraphy

using NIR photography. This method is then used to investigate plot scale,

layer boundary roughness, and intra-layer heterogeneity for two sites in the

sub arctic.

• Chapter 4 will address the parameterisation of ice layers, and introduce a

specific method which was implemented to carry out this work.

• Chapter 5 will use the methods outlined in chapter 3, but on a larger

scale, to investigate variation in snowpack stratigraphy and simulations from

emission models over different landcover types in an Arctic drainage basin.

The final chapter, chapter 6, acts as a synopsis to summarise and discuss the

overall findings of the thesis and outline future work.
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Chapter 2

Origins of microwave signatures in

tundra snowpacks

2.1 In situ quantification methods of natural snow

cover

Snow pack stratigraphy provides important information about the properties,

processes and dynamics of a snowpack, it has numerous uses in snow hydrology,

avalanche prediction and, as explored in more detail in this Chapter, snow remote

sensing. In situ measurements of snowpack stratigraphy are typically made by

opening up a snow pit face and recording information as a profile down the wall

of the pit, although as will be discussed in section 2.1.3 some newer technologies

provide alternatives.
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2.1.1 Snow pit measurements

The first measurement made in a snow pit is the overall depth of the snowpack

and then its layered structure, typically a vertical resolution of 1 cm is used to

achieve this. Textural information about the snowpack is recorded, including

its hardness. This one dimensional method of recording snow pack stratigraphy

makes the assumption of discrete boundaries between layers, and that snow layers

are parallel (Pielmeier and Schneebeli, 2003). Snow temperature is typically

recorded at set intervals through the snowpack.

Snow density is the bulk snow mass per unit volume. Classically it is measured

by weighing a snow sample of known volume. A snow sample of known volume

is extracted from the snow pit face using a wedge or square snow density cutter.

Measurements are made either as a continuous profile down the pit face, at set

intervals or using one sample per identified layer. It is also possible to measure

density using the snow’s dielectric properties (Mätzler, 1996).

Snow grain type changes as the snow is metamorphosed on the ground. Grain

shape is classified in Fierz et al. (2009). The type (or types) of crystals in a

layer are identified in the field using a magnifying glass or field microscope and

a crystal card. Grain size is measured in the same manner, grain size is the

most common metric used to quantify snow microstructure although newer less

subjective methods are emerging, as discussed in Section 2.1.3.
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2.1.2 Measuring spatial variability

Snow variability has historically been recorded using a snow course (Gray and

Male, 1981). A snow course consists of a well defined path or track that is

routinely sampled along over a period of time. The snow course aims to cover as

many different land cover and topography types as possible within the practical

limitations of a single survey. Snow pits and dug, and bulk density measurements

and snow depth measurements are taken along the snow course. Snow courses

allow spatial (and with repeat sampling, temporal) snowpack variability to be

measured although they do not provide continuous snow stratigraphy information

as some emerging technologies can (Section 2.1.3).

2.1.3 Emerging Methods

Emerging methods and technologies are providing new methods with which to

measure snow pack stratigraphy at a single profile, these improve methods of

measuring the specific surface area (SSA) of snow. SSA is physically important

as it directly relates the the way in which snow interacts with optical radiation

and is therefore a good way to quantify snow microstructure. Several methods

exist for measuring SSA including using the reflectance from a 1310 nm laser

(Gallet et al., 2009) and near infra-red photography (described in more detail in

section 2.1.4). Additionally it is also possible to measure the microstructure of

snow directly by utilising a microCT scanner (Heggli et al., 2009).
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2.1.4 NIR Photography

The NIR part of the spectrum is sensitive to changes in the SSA of snow (Matzl

and Schneebeli, 2006). Using this physical property NIR photography has been

utilised to capture the structure of a snowpack in the field. Tape et al. (2010)

developed a method to identify and quantify snowpack stratigraphy using near

infra-red (NIR) photography. A Fuji S9100 digital camera was adapted to be

sensitive to light with mid-point wavelength of 850nm and by photographing

the side of a snow trench at 50cm horizontal intervals, the stratigraphy of the

snowpack became more apparent and could be quantified digitally from the pho-

tographs (Matzl and Schneebeli, 2006). It is possible to use the images to quantify

variability in snowpack stratigraphy over the length of the trench (Rutter et al.,

2014).

Using NIR photography along a trench provides considerable advantages and

speed increases over recording stratigraphy with manual inspection in the field

(Tape et al., 2010). However, there are two major weaknesses with this technique.

Firstly, the processing time required to extract digitised stratigraphy from the

images can be extensive. Using previous methodologies and protocols one 5 m

trench could take up to a day. Secondly, variation in the focal length of the

camera causes changes in scale along the trench which introduces error. In Tape

et al. (2010) trenches were excavated on a frozen lake, this helped minimise

uncertainty in this area allowing for the method to be developed in a somewhat
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idealised environment with very little topographic variation. When the method is

applied to environments with more varied subnivean topography the uncertainty

between the digitised snow layers and geo-referenced trench position increases,

and a more rigorous method for translating a point location is required. This

makes assigning measurements taken in the field to a specific snow layer difficult.

Past work has approached the problem by utilising a strict protocol to, while

not eliminate, hopefully constrain uncertainty (Rutter et al., 2014). In this work,

overall average values were applied to each layer in the snowpack, so any variation

in snow properties that occurred within a layer, in the scale of the trench, was

not accounted for, characterised or quantified.

NIR photography of a snow trench provides high resolution surface and layer

boundary roughness (the roughness between the snow layers within a snowpack)

information. Surface roughness is a control on the transfer of wind energy, and

affects snow transport, redistribution and latent and sensible heat exchanges

(Fassnacht et al., 2009b). Information at a resolution high enough to constrain

layer boundary roughness cannot be obtained from in situ field measurements

alone, as the time required is too great. In the past, surface roughness has

been characterised over small distances and over larger scales (Fassnacht et al.,

2009a) although roughness between snow layers has never to my knowledge been

measured or characterised. Theoretically layer boundary roughness has a large

impact on radar backscatter (Marshall and Koh, 2008), although it has never

been quantified at the plot scale.
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2.2 General Principles of Passive microwave

remote sensing

Kirchhoff’s law of thermal radiation (1860) states that when an object is at

thermal equilibrium (neither warming nor cooling) then the power radiated by

the object must be equal to the power absorbed. An object that absorbs and

reradiates 100% of the radiation incident upon it is described as a blackbody, an

object that absorbs (and therefore reradiates) less than 100% is described as a

grey body. The spectral radiance of a blackbody (B) at a particular frequency (v)

is dependent only on the blackbody’s physical temperature, and can be calculated

using the Plank Radiation Law as shown in Equation 2.1 and Figure 2.1 where

kB is the Boltzmann constant, h is the Plank constant, and c is the speed of light.

B(v, T ) =
2hv3

c2
1

e
hv
kBT − 1

(2.1)

Emissivity, ϵ, is a measure of the efficiency with which a surface emits thermal

energy. It is the brightness of a grey body relative to a black body of the same

temperature (for a blackbody ϵ = 1) (Ulaby et al., 1981). Brightness temperature

is the quantity measured by a radiometer and describes the intensity of radiation

emitted by an object or area under observation. Brightness temperature depends
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Figure 2.1: Plank’s law describes how spectral reflectance varies with physical
temperature and frequency

on the temperature and emissivity of the object (Ulaby et al., 1981), it is related

to emissivity using

ϵ =
Tb

T
. (2.2)

Radiometers can be mounted onto satellites to measure the brightness temper-

ature of the earth’s surface and atmosphere, and they are most commonly used

for meteorological or oceanographic remote-sensing. Radiometers that operate
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at frequencies suitable for snow remote sensing and are currently in orbit (both

working and non-working) are listed in Table 2.1.

Table 2.1: Passive Microwave satellite radiometer missions suitable for snow
remote sensing

Instrument Mission Availability
SMMR Nimbus 1978-1987
SSM/I DMSP 1987-
SSMIS DMSP 2003-
AMSR ADEOS-II 2002-
AMSR-E EOS Aqua 2002-2011
AMSR2 GCOM-W 2012-
PRIRODA MIR 1996-2001

2.3 Snow emission modelling

The ability to simulate snow microwave emission is useful both for use in data

assimilation and SWE retrieval schemes, and to better enable us to understand the

radiative properties and processes of snow and ice. The simulation of microwave

brightness temperatures of a snowpack is approached in two parts. Firstly the

electromagetic properties (effective dielectric constant, scattering and absorption

coefficients) that characterise the interaction between the wave and snow are

calculated from the microstructural properties of the snow. Secondly the emission

and propagation through the snowpack are calculated by accounting for the inter-

actions within the snow as well as the refraction, reflection and transmission that

occur at interfaces between snow layers or between the snow and the air/ground.
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Several models exist to solve these problems. In this thesis, n-HUT (Lemmetyinen

et al., 2010), MEMLS (Wiesmann and Mätzler, 1999) and DMRT-ML (Picard

et al., 2013) are used. Tedesco and Kim (2006) compared simulations from a large

number of snowtypes and demonstrated that no particular model systematically

reproduces all of the experimental data. They were unable to attribute their

discrepancies to any root cause, so it is not known if problems are attributable

to the fundamental electromagnetic theory, specific details of the models, or if

there was uncertainty in the evaluation data, and the methods used to represent

snow grain size. Snow emission models are currently not able to accurately

and consistently reproduce observed Tb values without using additional scaling

factors and coefficients to tune model output (Derksen et al., 2012a; Langlois

et al., 2012; Rutter et al., 2014). Three areas have been identified as the primary

source of bias in simulations: the quantification and parameterisation of observed

snow microstructure in model input (Langlois et al., 2010); uncertainty in the

simulation of emission from the ground and soil under the snowpack (Roy et al.,

2013); and the inability of models to take full account of snowpack stratigraphy

including the presence of ice layers (Durand et al., 2011).
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2.4 Passive microwave remote sensing of snow

2.4.1 Principle

For a snow covered land surface, the brightness temperature observed by a space

borne radiometer is affected by:

1. Soil

• Physical temperature

• Soil dielectric profile

• Surface roughness

• Textural composition

• Volume scattering within the soil

2. Vegetation

• Absorption and emission determined by physical temperature, mois-

ture and physical characteristics of the plants

• Volume scattering within the vegetation, and surface scattering at

vegetation interfaces, determined by physical structure of plants

3. Atmosphere

• Weather conditions effect the scattering and absorption in the atmo-

sphere
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• Cosmic microwave background emission

4. Snowcover

• Scattering properties of snow cover, determined by snow microstruc-

ture

• Absorption and emission of snow, determined by snow density, tem-

perature and wetness of the snowpack

• Total mass of snow in the propagation path of microwaves, given by

the snow water equivalent

There is a theoretical relationship between the SWE of a snowpack and its

observed brightness temperature. Defining this relationship is complicated by

the fact that the emission from and attenuation by the snowpack depend on

many factors in addition to SWE

2.4.2 Retrieval Algorithms

Passive microwave data is of particular use for the creation of global snow products

as it has a large spatial extent, frequent revisit times (up to twice daily) and

relatively long term temporal continually (Tait, 1998). For this reason, a great

deal of research has focused on developing and improving methods of retrieving

SWE from passive microwave brightness temperatures (Chang et al., 1981; Foster

et al., 1980; Goodison and Walker, 1995; Pulliainen and Hallikainen, 2001; Tait,

25



Chapter 2. Origins of microwave signatures in tundra snowpacks

1998; Hallikainen and Jolma, 1992; Grody and Basist, 1996). The following

sections will describe the different types of algorithm and approach that have

been taken to solve this problem, starting from simple empirical algorithms, to

modified, landscape-specific empirical algorithms, and then finally model based

approaches.

2.4.2.1 Empirical

The classic approach for the calculating SWE using passive microwave brightness

temperature compares the brightness temperature of a frequency expected to be

readily scattered and absorbed by the snow cover and the brightness temperature

of a frequency that will not experience so much scattering. An empirical rela-

tionship can be established between the differences in brightness temperature

of the two frequencies and the SWE of the snowpack. Foster et al. (1980)

identified 37 GHz as a frequency which is sensitive to the snowpack and 19

GHz as having a wavelength long enough to not be affected by the snow cover

but rather the underlying soil. Figure 2.2 shows the effect of grain size on 37

GHz (vertically polarised) brightness temperature. As grain size approaches the

wavelength of a specific frequency, scattering at that frequency will increase.

Brightness temperatures for 37 GHz are therefore affected by snow microstructure

and grainsize in addition to snow water equivalent.

The first hemispheric algorithm to describe such a relationship was the Chang

algorithm (Chang et al., 1987), shown in Equation 2.3 where SD is snow depth.

26



Chapter 2. Origins of microwave signatures in tundra snowpacks

Figure 2.2: Effect of Grain Size on 37 GHz, vertical polarisation brightness
temperature (Adapted from Rees (2006) redrawn from data presented in

Armstrong et al. (1993) and Chang et al. (1981)

By assuming a snow density of 300 kg m−3 this algorithm was used to calculate

SWE at a hemispheric scale.

SD = 1.59× (T18H − T37H)cm (2.3)

2.4.2.2 Modified Empirical

At a global scale problems arise where, within one satellite footprint, multiple

landcover types need to be integrated across in order to provide continuous and

standardised spatial coverage. In order to address these problems, successive
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retrieval algorithms have worked to subset landcover types and incorporate addi-

tional parameters specific to them. The Meteorological Service of Canada (MSC)

(now part of Environment Canada (EC)) developed algorithms for a wide range

of Canadian landcover types, all based around the form

SD = a− b× (T37V − T18V ) (2.4)

where SWE is snow water equivalent in mm and a and b are empirical parameters.

For example Walker and Silis (2002) assign a = −20.7, b = 2.59 for use in the

lake scattered tundra of the Mackenzie River basin. These and other similar

algorithms have been used operationally since 1988 and have been shown to be

accurate to ±10 − 20 mm SWE (Derksen et al., 2002; Goodison and Walker,

1995). A similar approach has been used on SMMR data which has allowed for

a longer time series to be created (Derksen et al., 2003).

When a snowpack reaches a certain depth, the saturation of microwave radiation

occurs (Sturm et al., 1993), this is when all of the emission from the earth

is absorbed by the snowpack (Kelly et al., 2003). The depth of snow where

saturation occurs is different for every frequency (Durand and Margulis, 2006).

The depth that radiation is able to penetrate into the snowpack is called the

penetration depth. The penetration depth changes with frequency and grainsize

as is shown in Figure 2.3. The shorter penetration depth of higher frequencies
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has the potential to be useful as it allows information to be gained about specific

parts of the snowpack, for instance, 37 GHz has a penetration of around 35 cm,

this provides a penetration depth similar to the depth of a tundra snowpack

and so, changes in shallow snowpacks are particularly detectable at 37 GHz.

For a frequency around 89 GHz only the surface of the snow at the snow-air

interface impacts the signal, so changes in this part are of particular importance

to brightness temperature changes at this frequency.

Figure 2.3: Variation in penetration depth between different frequencies
(Adapted from Ulaby et al. (1986))

in addition to the MSC, Tait (1998) produced a SWE product by dividing the

northern hemisphere into different vegetation and open landcover types, however,

confidence in the results were low, with depth hoar development (discussed more

in 2.5.3), high wind distribution (discussed in section 2.5.4) and boreal forest

proved problematic for the algorithms.

29



Chapter 2. Origins of microwave signatures in tundra snowpacks

2.4.2.3 Model based

While using different algorithms for different land cover types goes some way

towards addressing the issue of spatial heterogeneity between landcover types,

it does not begin to address issue of to how the snowpack changes temporally.

More recently work has looked to develop algorithms based on those of Chang

et al. (1987) that also account for seasonal evolution (Kelly and Chang, 2003),

snow metamorphism (see also section 2.5.3) (Josberger and Mognard, 2002) and

topography (Kelly et al., 2003).

The HUT model inversion method used by Pulliainen and Hallikainen (2001)

iterates the HUT snow microwave emission model to minimise the difference

between modelled and observed brightness temperatures. This is achieved by

optimising the values for SWE and grain size. The algorithm also accounts for

forest fraction in a satellite footprint.

As there are inherent weaknesses with all remote sensing, modelled and observed

SWE data products, current work is highly focused on using a combination of

multiple methods for deriving SWE in a data assimilation scheme (Takala et al.,

2011; Durand et al., 2011). A data assimilation algorithm takes the estimated

values from several sources, and by combining them, and accounting for their

errors (assuming error and uncertainty are known) a more accurate value can be

calculated. There are many different methods which can be utilised within the

field of data assimilation involving the implementation of a variety of different cost
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functions and algorithms. Generally a mixture of remote sensing and modelled

data is used in order to provide the full scope of possible values (Reichle, 2008).

For SWE data assimilation schemes snow emission models are a key component,

as they provide a modelled value for remotely sensing brightness temperatures

and can be iterated in certain schemes to calculate parameters which are required

in other models or data products.

2.5 Challenges in the application of retrieval

algorithms

Despite the wide range of research which has been carried out into the use of

conventional retrieval algorithms to derive SWE, it is widely accepted that no

consistently accurate SWE or snow depth product has resulted. In tundra snow-

packs, conventional retrieval algorithms result in a consistent underestimation of

SWE compared to in situ ground measurements (Grippa et al., 2004; Armstrong

and Brodzik, 2002). The reason for the uncertainty can be attributed to an

inability of these algorithms to account for heterogeneity in the snowpack and

snowpack properties within a satellite footprint (Derksen et al., 2012a). This

section will now review the causes of the heterogeneity and the impact that has

been attributed to each aspect.
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2.5.1 Layering

In the Arctic, seasonal snow layers form within the snowpack. Sturm et al. (1995)

stated that a typical tundra snowpack consists of 6 layers, the least of any snow

cover class with the exception of very thin ephemeral and prairie snow cover.

A typical Arctic or sub-arctic snowpack is composed of a depth hoar layer at

the base of the snowpack. Over that are several high density wind slab layers

and then a top layer of freshly deposited (either by wind or precipitation) snow

(Derksen et al., 2014). The structure of the snowpack has been identified as an

important component in determining the brightness temperature of a snowpack.

Snowpack structure has been recognised as being particularly difficult to interpret

and quantify in the spectral signature of snow cover (Bernier, 1987).

When characterising stratigraphy a tundra snowpack can generally be simplified

into three main snow types (Sturm et al., 1993). The bottom of the snowpack is

composed of large grained depth hoar, the volume of depth hoar is of particular

importance for passive microwave remote sensing (Foster et al., 1999; Foster et al.,

2000). The second type is composed of higher density smaller grain size wind slab

layers. These layers, formed by the successive wind re-distribution and overlaying

of precipitated snow (Derksen et al., 2014) can also include indurated depth

hoar (Sturm et al., 1993), where depth hoar faceting has developed within the

wind slab. The hardnesses will vary between layers, however, due to the similar

wind based method of compaction the grain diameter is often similar and small.
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The top layer is composed of fresh, recently precipitated snow and generally

comparatively thin compared to the other two layers. This layer is thin because

of the wind redistribution of snow in tundra environments, in forest or shrub

dominated landscapes, where wind speed is lower, this top layer is likely to be

thicker.

2.5.2 Variability in Stratigraphy

Our ability to quantify variability in snowpack stratigraphy is limited by a lack

of field measurement. The reasoning for this is that measuring and recording

snowpack stratigraphy information requires specific skills and can be laborious

and time consuming (Sturm and Benson, 2004). A snow pit provides only one

snow profile at one location and so generating statistically significant distributions

of snowpack variability is challenging. The majority of existing studies focus on

either snow pits taken at a variety of locations within a satellite footprint (Derksen

and Brown, 2012; Elder et al., 2009) or along transects at scales ranging from

hundreds of metres to thousands of km (Sturm and Benson, 2004) in order to

try to capture the variability within one, or multiple landcover types. Despite

the fact that variation in snowpack stratigraphy at the plot scale introduces error

into estimates of SWE from brightness temperature measurements (Rutter et al.,

2014), at larger scales there is still a significant relationship between brightness

temperature to SWE and (Vander Jagt et al., 2013; Li et al., 2012). Work has

focused on the impact of simplifying the stratigraphy of a given snowpack, and
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has found that some simplification reduces computational requirements and does

not increase error in simulated brightness temperatures (Huang et al., 2012).

However, these studies have only been based on a small number of profiles of

snowpack stratigraphy distributed over a surface. While they exhibit a large and

concerted effort to cover different land cover and terrain types, there are still

questions over whether a network of snow pits can capture the range of snowpack

stratigraphy, and there is a gap in the literature examining whether a single

snowpack profile obtained from a snow pit can characterise the snowcover for one

landcover type.

Snow layers vary in thickness at different scales (Sturm and Benson, 2004) but

additionally, smaller scale roughness between the boundaries of the snow layers

can be characterised using roughness metrics (Fassnacht et al., 2009b; Anttila

et al., 2014), although these have previously only been applied to snow surface and

ground roughness. Currently, snow emission models simulate brightness tempera-

ture in one dimension. However, as the science progresses so that two dimensions

are used, a roughness will need to be applied to the layer boundaries. Currently,

the internal roughness of layer boundaries is not known. An additional use of this

layer boundary roughness information is its application in nadir FMCW sensors,

where the layer boundary roughness contributes greatly to the attenuation of the

snowpack (Marshall and Koh, 2008).
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2.5.3 Depth Hoar

Volume scattering within the snowpack is directly influenced by the grain size of

the snow crystals in the snowpack. It is therefore an extremely important and

sensitive parameter in passive microwave snow remote sensing (Hall et al., 1986).

When depth hoar is present in the snowpack the grain size can approach or exceed

the wavelength being measured, this causes the lower than expected brightness

temperature values(Hall et al., 1986). The effect of this increased scattering is

so pronounced that, once a depth of just 30cm of depth hoar is reached, all of

the radiation emitted by the earth at 37 GHz is scattered and the brightness

temperature is composed of the emission from the mass of the snowpack alone

(Sturm et al., 1993). In addition to the grain size, the shape of the crystals also has

an impact (Foster et al., 2000; Foster et al., 1999). As the depth hoar grows in the

snowpack brightness temperatures will drop due to increased scatter. However,

SWE may well remain the same. Accounting for this is a key consideration in

the use of retrieval algorithms for tundra snow. However, work by Koenig and

Forster (2004) showed that it is possible to achieve consistently accurate SWE

estimates in depth hoar dominated snow as long as the data is temporally and

spatially averaged over multiple footprints.
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2.5.4 Wind re-distribution

Snow cover is precipitated and then redistributed by the action of wind transport.

Large scale wind transport does occur and is controlled mainly by large climatic

and geographic features such as lake effects, mountain ranges etc. (Pomeroy

and Gray, 1995). While this is important for global and hemispheric modelling

applications it is not necessary to account for this in passive microwave remote

sensing as it occurs at a much larger scale than the spatial resolution of the

satellite sensors.

The aspect of wind distribution which is most important when addressing weak-

nesses in passive microwave remote sensing is the redistribution effects that occur

at a spatial scale within one land cover - specifically within one satellite pixel

( < 25 km). It is not currently known exactly what impact small scale changes in

snowpack stratigraphy (the most immediate impact of wind re-distributed snow)

has on satellite scale brightness temperatures. This question can be considered

a sub-question of the larger pressing question of the impact of snowpack hetero-

geneity within a satellite footprint, one which is starting to be addressed (Derksen

et al., 2012a).

2.5.5 Melt and rain-on-snow events

Ice structures form in snowpacks during melt or rain-on-snow events (Colbeck,

1991), when rain either freezes on contact with the surface of the snowpack or
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water refreezes within the snowpack to form ice layers, ice columns, or basal

ice layers (Gray and Male, 1981). Strong intercrystalline bonds, created from

refreezing of liquid water, lead to the formation of cohesive ice structures (Fierz

et al., 2009). The presence of ice layers changes the thermal and vapour transport

properties of the snowpack (Putkonen and Roe, 2003). Permeability of ice layers

to liquid water and gas is vastly reduced compared to snow(Albert and Perron

Jr, 2000; Colbeck and Anderson, 1982; Keegan et al., 2014). Impermeable layers

are identifiable because pores do not connect within the ice formation and the

granular snowpack structure is missing (Fierz et al., 2009). Ice layers differ from

ice crusts and lenses; ice crusts are always permeable and have a coarse grained

granular snow-like structure (Colbeck and Anderson, 1982). Ice lenses are similar

to ice layers in that they can be impermeable and do not have a granular structure,

but ice lenses are discontinuous ice bodies that cover much smaller spatial scales

than ice layers (Fierz et al., 2009).

Ice layers (the focus of Chapter 4) introduce uncertainty into the performance of

microwave snow emission models when simulating horizontal polarisations (Rees

et al., 2010). Snow emission models are an important component of satellite

derived snow water equivalent (SWE) retrieval algorithms, and existing algo-

rithms favour using vertically polarised brightness temperatures over horizontal

primarily to avoid the issues with ice layers (Takala et al., 2011). The radiometric

influence of thin ice layers poses a significant challenge for physical and semi-

empirical emission models, which have either focused on modelling ice crusts as
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coarse grained snow (Matzler and Wiesmann, 1999) or as planar (flat, smooth

and solid) ice layers (Lemmetyinen et al., 2010). The structure and properties

of ice layers remain poorly quantified with field observations (Montpetit et al.,

2012), which further hinders model development and evaluation. Improving snow

emission models to include more realistic simulations of ice layers by accounting

for ice layer density should improve model estimates of brightness temperatures

(Durand et al., 2008; Montpetit et al., 2012; Rutter et al., 2014).

Field measurements of ice lens, crust and layer densities exist, however, they vary

drastically and a quantitative assessment of the error in measurement techniques

is absent. Ice crust density measurements taken in the Canadian Arctic by

submerging pieces of ice crust into oil resulted in a range of densities from 630

to 950 kg m−3 (Marsh, 1984) and ice layer densities of 400 to 800 kg m−3 were

measured in seasonal snow on the Greenland ice sheet (Pfeffer and Humphrey,

1996). Durand et al. (2008) carried out sensitivity studies and simulations of

mountain snowpack brightness temperature with MEMLS (Wiesmann and Mät-

zler, 1999). The uncertainties attributed to not knowing the density of ice

layers were 32.2 K and 15.3 K, for horizontally polarised (H-pol) 18.7 GHz and

36.5 GHz frequencies respectively. This was a greater uncertainty than any other

parameter investigated (Durand et al., 2008). An increase in the number of mid-

season melt and rain-on-snow events in a warming climate is likely to increase the

occurrence of ice layers and the importance of accurate ice layer representation

in snow emission models (Derksen et al., 2012a).
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Digitising Snowpack Stratigraphy

with Improved Accuracy

3.1 Research aims and objectives

Based on the gaps in the literature described in Chapter 1, four problems have

been identified. The problems will be solved by achieving their associated research

aim and objectives as outlined below:

• Problem 1:

Using NIR photography to digitise stratigraphy is too time consuming to

be useful at a large spatial or temporal scale
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• Aim:

To increase efficiency with which NIR photography can be collected in the

field and optimise post-processing digitisation procedure

– Objective 1: To find alternatives to, or negate the need for, the more

time consuming aspects of field methods

– Objective 2: To automate aspects of the post processing procedure to

reduce time required for digitisation

• Problem 2:

It is not possible to assign in situ snowpack measurements to digitised layer

positions on uneven terrain without subjective human input

• Aim:

To improve accuracy of digitised snow stratigraphy across a 5 m snow trench

for use in all environments

– Objective 1: To adapt existing field method to better record informa-

tion of scale

– Objective 2: To account for the variation in scale within the trench in

post processing

– Objective 3: To develop an automated approach for assigning snow

properties to snow layers based on the location of the measurement in

the trench, and the location of the digitised snow layer
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• Problem 3:

The impact of variability within snow layers on brightness temperature

simulations from snow emission models at the plot scale is unknown

• Aim:

To characterise variability within snow layers along a 5 m trench, and de-

termine the impact of this variability on simulated brightness temperatures

from the n-layer Helsinki University of Technology snow emission model

(n-HUT)

– Objective 1: To use automated technique from Aim 2 to assign snow

properties to layers and characterise variability in snow layer properties

across the snowpack

– Objective 2: To run n-HUT snow emission model at all points along

5 m trenches

• Problem 4:

Roughness of snow layers within the snowpack is unknown, yet is theoreti-

cally a very sensitive parameter for snow emission models

• Aim:

To quantify internal snow layer boundary roughness

– Objective 1: To use the more accurate digitised snowpack stratigraphy

from Aim 2 to calculate roughness metrics for snow layer boundary

roughness

41



Chapter 3. Digitising Snowpack Stratigraphy

– Objective 2: To characterise and quantify variation in snow layer

boundary roughness within and between different snowpacks

3.2 Development of stratigraphy digitisation

method

Tape et al. (2010) developed a method to identify and quantify snowpack stratig-

raphy using near infra-red (NIR) photography. By adapting a Fuji S9100 digital

camera to be sensitive to light with mid-point wavelength of 850nm and pho-

tographing the side of a snow trench at 50 cm horizontal intervals, the stratigraphy

of the snowpack became more apparent and could be quantified digitally from

the photographs (Matzl and Schneebeli, 2006). In the field, snowpack properties

were recorded for each snow layer along the trench. This section presents a

series of optimisations and improvements which have been made to the initial

methodology from Tape et al. (2010). They both, improve the ease with which

snow stratigraphy data can be collected from the NIR photography, and offer

improvements in the accuracy and precision of that data addressing Aims 1 and

2 in the previous section.
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3.2.1 Preparing the NIR images

The techniques described here can be applied to any NIR images which are

obtained using a field methodology similar to that described in Tape et al. (2010).

All the examples are taken from fieldwork carried out at Churchill MB, Canada

in the winter of 2010/2011 (described in Section 3.3). The trench images contain

horizontal and vertical points of reference, a horizontal measuring staff which

covers the entire length of the trench and a vertical metre rule or additional

measuring staff which is positioned on the trench for each photo (Figure 3.1).

Each trench is 5 m long and covered by 10 individual images, taken at 50 cm

intervals.

Figure 3.1: An example of NIR snow trench photography

The images were stitched into one large image covering the entire trench, however,

before this, they needed to be corrected for lens barrel distortion. In past work the

commercial software PTgui has been used to carry out this correction (Tape et al.,
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2010). Here the open source alternative Hugin (Hugin 2011) is used as it offered

better scripting capabilities for processing a high volume of images. Figure 3.2

shows the final stitched NIR image from this process that is now suitable for layer

identification and digitisation. The example trench is the first trench collected

on an open tundra site at Churchill MB in 2012, this is described in section 3.3.

Figure 3.2: NIR images stitched together to show stratigraphy across trench

3.2.2 Extracting snow stratigraphy information from NIR

snow trench photography

Previously the pixel locations of the layers in the snowpack were recorded one by

one to record the snowpack stratigraphy. This was a time consuming and labo-

rious process, which made editing the location of the snow layers and correcting

any mistakes difficult and time consuming.

Snowpack digitisation was made more efficient by recording the location of the

snow layers in the snowpack using Adobe Illustrator image processing software.

Two layers were used in the software, one containing the images from the NIR

photography and a second containing the stratigraphy of the snow. Each layer

identified in the snowpack was drawn in a different colour over the image and

once all the layers had been drawn the layer containing the NIR photography
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was turned off, leaving an image the same size as the NIR photography, but

only containing the digitised snow layers. The layer locations (in pixels) were

extracted from the image using the Image Processing Toolbox in MATLAB, and

the different layers identified and separated using their RGB values. The output

from this process for the example trench is shown in figure 3.3.

Figure 3.3: Position of digitalized snow layers in pixels, i.e. before pixel
locations have been translated into geo-referenced cm co-ordinates

Snow and radiative transfer models require snowpack snow layer heights that are

parameterised in cm. By measuring the graduations on the horizontal and vertical

measuring devices it is possible to convert a pixel × pixel co-ordinate read from

the image in MATLAB into a cm × cm co-ordinate.
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3.2.3 Calculating positions in digital images in cm

In Tape et al. (2010) and Rutter et al. (2014) a manual graduation size quan-

tification method is used. The location of graduations and the number of pixels

between them can be quantified using the Matlab image processing toolbox which

records the locations of points located with a cursor on the image. Here the

horizontal pixel per cm values were measured using a more automated method,

which completely removes the element of human error from the process and also

decreases the time taken by a factor of approximately ten.

To measure the graduations a GUI has been developed where a line is drawn over

the graduations of the staff (Figure 3.4) and the distance between every edge under

that line measured automatically. From this, the number of pixels between each

graduation can be determined as well as their exact location on the image. To do

this the Canny edge detection algorithm (Canny, 1986) is applied to the image, as

shown in Figure 3.4b. The Canny algorithm works by applying a Gaussian filter

to the image and the regions of the image with a high spatial derivative are then

highlighted to create a gradient magnitude image. Edges are determined by the

location of ridges in the gradient magnitude image, the algorithm tracks along

the ridges setting all other values to zero thereby defining the image edges. Two

threshold values, T1 and T2, are set as parameters where T1>T2. Tracking can

only start at a location on a ridge where the pixel brightness value, or ridge height

is greater than T1, and continues out from the starting point in all directions until
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the ridge height is less than T2 (Canny, 1986). The parameters are set to identify

the outline of the graduations on the measuring staff. Noise, identified as edges

less than 10 pixels in length, is then removed from the image. When a line is

drawn over these detected edges using a GUI, the pixel co-ordinates of the points

underneath that line are checked against the binary edge image created by the

Canny algorithm. By doing this the position of edges can be detected. After the

locations have been recorded, any errors (such as areas where the graduations are

obscured) are removed manually from the data.

(a) Measuring staff prior to apply-
ing edge detection

(b) Measuring staff after applying
edge detection algorithm

(c) GUI for quantifying size of cm graduations in pixels

Figure 3.4: The impact of applying the canny edge detection algorithm to a
measuring staff to assist in determining the pixel per cm ratio across a snow

trench

To convert the pixels per graduation into a geo-referenced location efficiently the

variation in pixel per cm values across the image are converted into a translation
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matrix (T). T is the same size as the stitched image, where each cell contains

a decimal value which, when divided by the pixel co-ordinates of that location,

returns that same location as a geo-referenced cm by cm x, y co-ordinate. The

purpose of this is to allow snow layer boundaries to be identified on the stitched

trench image and then quickly converted into a format for use in mathematical

models or in the measurement of roughness. Once T has been created changes

can be made to the digitised stratigraphy image and quickly converted into cm.

To create the translation matrix, Tape et al. (2010) used one pixel per cm value

for a trench and used this to translate every co-ordinate of a snow layer using

Equations 3.1 and 3.2, where cmx and cmy are the horizontal and vertical location

of a point in cm, px and py are the horizontal and vertical location of a point in

pixels, and gx and gy the average pixel per graduation values in the x and y

dimensions respectively.

cmx =
px
gx

, (3.1)

cmy =
py
gy
, (3.2)

This method can yield accurate results when applied on a smooth surface such as
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a frozen lake (Tape et al., 2010), but when applied to more varied terrain error

increases. One source of error occurs because small variations in the distance

between the trench face and the camera, of just a couple of cm, can vary the

pixel per cm ratio across the image. On a flat surface it is easier to ensure that

this distance remains constant, but in a tundra region the surface is uneven and

covered in vegetation, making it almost impossible to achieve the kind of precision

required to negate this error.

If every graduation across an image is quantified, a very accurate per pixel method

(PPM) of translating between pixels and cm can be implemented. The number

of pixels which constitute a single cm graduation is defined as pg and so, within

that cm of the trench image the size of a pixel in cm equals 1/pg.

The translation from pixels to cm using the translation matrix (T), of i rows

and j columns, can be described using matrix algebra as follows, where p is the

position of point to be calculated in pixels and c is the position of the point in

cm:

c =
p∑

j=1

Ti=1,j (3.3)

Taking the pixel co-ordinate of the end of the measuring staff in the one value

per trench method, and translating that position into cm gives a value of 502
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cm, compared to 518 cm using the per pixel method, this technique represents a

significant increase in accuracy over the existing methodology.

3.2.4 Accounting for artefacts in digitised snow stratigra-

phy information

While this new method of geo-locating positions in NIR imagery provides sub-

stantial benefits, both in terms of increasing accuracy and reducing uncertainty,

there is an issue that has been recognised, where abrupt discontinuities can

occur in the digitised snow layer boundary positions where adjacent images meet.

When vertical positions are calculated using the cumulative per pixel translation

method, these values differ between images and, as a result, a step in layer

boundary height can occur between images. The best way to illustrate this

is to draw a horizontal layer across the stitched snow trench image, and then

digitise this line. Figure 3.5 shows the output from this process; discontinuities

at image boundaries are very apparent. In the same way when layer boundaries in

a snow trench are digitised (Figure 3.6) the same discontinuities are visible at the

image join locations. Removal of these discontinuities is not a simple process of

subtracting the height of the discontinuity from each layer. As the true location

of the horizontal layer is not known, such a simple subtraction would increase

uncertainty i.e. the horizontal layer drawn on the images would not be equal to

the digitised layer with the discontinuities height removed. Instead the influence
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of the abrupt discontinuity would occur more gradually over a larger area of the

layer.

Figure 3.5: Horizontal test layer translated using the per pixel translation
method

Despite the visual impact of the abrupt discontinuities (for comparison Figure

3.3 shows the raw data from the snow trench, prior to translation and therefore

missing the discontinuities) it is only necessary to consider methods of accounting

for the discontinuities if they have the potential to impact on the data outputs

e.g. the calculation of layer boundary roughness. There are many potential

methods which can be used to measure boundary roughness, here the random

roughness metric is used, which is simply the standard deviation (SD) of the layer

boundary elevation from the mean boundary elevation (Fassnacht et al., 2009b).

This roughness metric is used because it is effective at describing layer boundary

roughness at a variety of scales and is very fast to calculate, making it suitable
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Figure 3.6: Un-smoothed snow layers quantified from NIR photography of
snow trench wall, Red box indicates area displayed in Figure 3.7

for the iterative method which is used in section 3.2.4.2. If the random roughness

metric is applied to the section of the layer boundaries highlighted in Figure 3.6

the impact of the discontinuity on layer boundary roughness is substantial (Figure

3.7). If the roughness metric is applied across an entire trench, histograms of layer

boundary roughness values allow comparisons of image join roughness along the

layer boundary.

Figure 3.8a shows that several of the roughness values at image joins lie outside

the mean plus one standard deviation. For this reason, a method for removing

these discontinuities, while minimising the impact on the rest of the layer has

been developed.
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Figure 3.7: Random roughness over the section highlighted in Figure 3.6,
layers numbered in descending order according to height
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Figure 3.8: a) Histogram of the random roughness metric for a sample snow
layer showing location of image boundaries in green b) Histogram of the random
roughness metric for a sample snow layer showing location of image boundaries

in green after smoothing has been applied
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3.2.4.1 Applying smoothing

From a stitched image the locations where image boundaries occur are recorded.

The discontinuity that occurs in the translation array over the join is measured

and smoothing is applied by taking the value for pixels either side of the join,

and linearly interpolating the values between these points. Interpolation over the

discontinuity (from horizontal positions x0 to x1) is carried out using

T = T0 + (T1 − T0)
x− x0

x1 − x0
(3.4)

Where T is the translation value for the horizontal position x. This is applied to

the translation array automatically for every row and at every image join location;

the degree of smoothing is defined as x1 − x0.

3.2.4.2 Smoothing Optimisation

An iterative process was used to determine the optimum level of smoothing,

(the number of pixels to smooth either side of the join), to apply over snow

trench image joins. The random roughness over the joins was measured for

a layer boundary, if any joins had a roughness greater than the mean of that

layer plus 1 standard deviation then two pixels either side of the image join were

smoothed, and the test repeated. The level of smoothing was increased until the
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roughness for all joins on that layer boundary were less than the mean plus one

standard deviation. An upper limit of smoothing was also set in the case that

it is not possible to reduce roughness adequately over every join. Histograms of

the random roughness for each layer boundary before and after smoothing are

shown in Figure 3.8. The impact smoothing has directly on the layer boundary

roughness is shown in Figure 3.9, which shows the same layer sections as Figure

3.7 after smoothing has been applied. The impact of this smoothing method is

visible by comparing the smoothed and unsmoothed snow layer boundaries over

the entire trench (Figure 3.6 3.10).

Figure 3.9: Random roughness over the section highlighted in Figure 3.6 after
smoothing has been applied, layers numbered in descending order according to

height.

The smoothing methodology described in section 3.2.4.1 can be optimised to

favour either a smoother transition across a join or a higher proportion of the layer

represented by the data in each image, i.e. if the the gradient in the translation
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Figure 3.10: Impact of smoothing on whole trench

between each image the flatter, less of that layer is at its original unsmoothed

location. In order to determine the optimum level of smooting the effect of the

artefacts on snow surface roughness metrics (Fassnacht et al., 2009b) is measured.

When the artefacts no longer affect the random roughness metric, the standard

deviation of the difference between the surface elevation and the mean surface,

then the correct level of smoothing has been applied.

Figure 3.8a shows a histogram of the random roughness metric for the surface layer

of a snow trench, the mean (dashed red vertical line) and 1 standard deviation

from the mean (red vertical lines) are also marked, the random roughness values

of the artefacts are marked by green vertical lines. If we categorise the histogram

into signal and noise, noise being any reading within one standard deviation of the

mean it is clear that several of the artefacts impact on the signal. As smoothing
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is applied to the translation matrix the impact of these artefacts decreases. We

increase the smoothing level until the random roughness metric for the artefact is

below one standard deviation of the mean. For this particular layer this is shown

in figure 3.8b. Figure 3.9 shows the impact that this level of smoothing has on

the roughness metric itself, again at a smoothing level of 16 cm. The effect of the

smoothing can be clearly seen at the point of the image join.

Figure 3.6 shows the smoothed snowpack stratigraphy. This method is able to

visibly remove the effect of the artefacts on the snow layer as well as crucially

remove their impact from the data itself.

3.2.5 Assigning snowpack properties to digitised

stratigraphy

In previous work, measurements of snowpack properties taken in the field were

assigned to digitised snow layers using a fixed protocol and human interpretation

(Rutter et al., 2014). An automated approach was not possible because the

exact position of the snow layers was not completely known. With the improved

technique described in the previous section it is now possible to locate the position

of the measurements in the digitised snow trench and, as a result, automatically

assign measured snow properties to snow layers.

Figure 3.11 shows the locations of density measurements in an example 5 m

trench in Churchill MB. Where measurements overlapped layers, the value from
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that measurement was assigned to that layer. Where more than one measurement

existed within a layer, an average of all the measurements in the layer at that

horizontal position was taken. The outcome of this automated process was a table

of x positions for each layer and a density value attributed to the layer at that

point. The same process was used for grain size and temperature data. These

values could then be averaged to provide an average value for each property for

each layer or interpolated horizontally to give continuous variation in the property

value along the layer. Where the layer had a greater spatial extent than the

measurements, the value of the furthest left or furthest right value was continued

until the end of the trench. No extrapolation took place. Whilst this provides a

good graphical representation of the variation in properties that occurs within a

trench, it makes an assumption that properties change linearly, which may well

not be the case.
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Figure 3.11: Locations of density measurements placed automatically on
snowpack stratigraphy
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3.3 Field Methods

3.3.1 Field Site

Field work was conducted in Churchill MB (58.7692◦N -94.169268◦W) over the 8-

9th January 2011. Churchill is broadly representative of a subarctic tundra region

on the northern edge of the tree line. The landcover consists of scattered forest,

lakes and large areas of exposed shrub-land (Derksen et al., 2012a). Churchill

generally experiences a winter typical of subarctic regions and this was the case

in 2010 - 2011. Prevailing winds of approximately 6 m s−1, an average air tem-

perature of -25◦C and a winter snowfall of 201 cm were recorded (Environment

Canada, 2013).

Four 5 m trenches were dug in total, at two different sites shown in Figure

3.12. The trenches were dug perpendicular to each other to capture stratigraphic

variability in three dimensions. Trenches 1 and 2 were dug on an open tundra

area located next to a forest. Trenches 3 and 4, were located in a fen and so

somewhat more sheltered from the wind. In each trench ten NIR photos were

taken overlapping each other by approximately 50 cm and covering the entire

length of the 5 m trench. At every meter along the trench snow grain diameter,

density, temperature, hardness and manual stratigraphy was recorded. Density

was measured using a stainless steel 10 cm3 snow density cutter and digital

scales, grain diameter was recorded using a field microscope, and temperature
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was recorded at 4 cm intervals using thermocouples inserted into the snow trench

face.

Figure 3.12: Locations where trench sampling took place. The red marker
shows the location of trenches 1 and 2 and the green marker shows the location

of trenches 3 and 4

3.4 Results

The results are split into two main sections. The first section will describe and

characterise the snow trenches. Differences and similarities between the snow

stratigraphy recorded in the trenches at each site and between the two sites will

be outlined. It will also address the variation that occurred within the snow

layers within each snow trench. The second section will address the impact of the
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variation in snow properties within layers and within the snowpack on simulated

brightness temperatures from snow emission models.

3.4.1 Variation in snowpack properties and characteristics

During the winter of 2010-2011 the majority of snow accumulated from pre-

cipitation between December and January and while there were precipitation

events later in the season, the continuously high wind speeds encouraged wind

redistribution and thus snow depths remained shallow into the latter half of the

season (King et al., 2014).

Overall the snowpack was characterised as having 10 - 20 cm of depth hoar at

the base of the pack overlaid with wind and melt-refreeze crusts between layers

of wind slab. Depth hoar growth occurs when a strong temperature gradient is

present (Baunach et al., 2001). This is demonstrated by the increased thickness

of depth hoar in trenches 1 and 2 where depth hoar formed in the hummocks and

undulations on the tundra surface.

Figure 3.13 summarises the difference in snow depth and SWE for all for trenches.

Trenches 1 and 2 had a wider range of depths than Trenches 3 and 4, this was

caused by the more hummocky undulating subnivean topography but compara-

tively smooth snow surface at the open tundra site. At the fen site where trenches

3 and 4 were located the subnivean surface was much less hummocky. The snow

depth was greater at the open tundra site, although the SWE for that site was not
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significantly greater. This is explained by the hard compacted, high density wind

slab which formed the upper part of the snowpack on the tundra site. The fen

site had a much softer looser upper snowpack consisting mainly of larger facetted

grains or freshly deposited snow which was decomposing on the surface. Figure

3.14 shows the variation which occurred within the snow layers in each snowpack,

the layers are organised so the bottom layer is on the right hand side of each plot,

and the upper on the left.
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Figure 3.13: Difference in range of total snowpack SWE and Depth measure-
ments across entire trench. The whiskers of each plot are the lowest or highest
datapoint within 1.5× the interquartile range. The boxes cover the 1st to third
quartile the median marked by a line and the mean by a hollow circle, this

convention is used for all subsequent box plots.
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Figure 3.14: Variation in snow properties within and between layers in each
trench.

The stratigraphic information digitised from the snow trenches 1 to 4 is shown in

Figures 3.16 to 3.19 respectively, snow grain type symbols are taken from Fierz

et al. (2009) and a guide can be found in Figure 3.15. These Figures provide

a visualisation of the variation which exists within the layers of the snowpack.

Figure 3.20 shows how trenches 1 and 2 are related to each other spatially. By

considering Figures 3.16 and 3.17 in relation to Figure 3.20 (the colour scales

are identical) you can see that properties such as grain diameter and density

exhibit a similar level of variability in both trenches, and therefore in both spatial
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directions. Trenches 1 and 2 varied more between orthogonal directions, the

impact of the wind is evident in the high number of discontinuous layers in trench

2 (5) compared to trench 1 (3). Additionally the depth of Trench 2 was much

greater, having an average depth of 38 cm compared to Trench 1 which had

an average depth of 28 cm. Between trench 3 and 4 there is less quantifiable

difference with both trenches consisting primarily of continuous layers and both

trenches having similar average depths, 18 cm compared to 22 cm.
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Figure 3.15: Snow microstructure and grain type symbols used in this thesis
(classification/symbols from Fierz et al. (2009))

The results of the random roughness metrics are shown in Figure 3.21. At the

base of the snowpack the greater roughness was observed at Trenches 1 and 2.

This reflected the more undulating subnivean topography at this site. However,

the roughness dropped off substantially towards the top of the snowpack, and

overall trenches 3 and 4 had a higher and more consistent level of roughness

throughout the snowpack.

65



Chapter 3. Digitising Snowpack Stratigraphy

Figure 3.16: Stratigraphy and snowpack properties of Trench 1, ice crusts are
marked in red on the top image
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Figure 3.17: Stratigraphy and snowpack properties of Trench 2, ice crusts are
marked in red on the top image
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Figure 3.18: Stratigraphy and snowpack properties of Trench 3, ice crusts are
marked in red on the top image
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Figure 3.19: Stratigraphy and snowpack properties of Trench 4, ice crusts are
marked in red on the top image
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Figure 3.20: Stratigraphy from trenches 1 and 2, showing how they relate to
each other in three dimensions.
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Figure 3.21: Boxplots for random roughness.
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3.4.2 Variation in n-HUT model Tb

The n-HUT model was initialised with the trench stratigraphy data in three ways,

of increasing complexity

1. Bulk Properties: the average of all of the data collected over the course of

the trench was averaged into one layer, the n-HUT model was then used to

simulate the brightness temperature for this snow layer, the output can be

found in Table 3.1.

2. Layered average: The average of each layer is taken to produce one averaged

multi-layered snow profile. Properties of discontinuous layers were included

with adjacent layers so the overall mean depth was equal to the profile

depth. The results from these simulations can be found in Table 3.2.

3. Trench simulation: Properties were averaged for each layer and then the

n-HUT run for each horizontal profile. The mean and standard deviations

of the brightness temperature distributions can be found in Table 3.3 and

the distributions of the simulations found in Figures 3.22 to 3.25.

Table 3.1: Simulated brightness temperatures from using bulk snowpack
properties

Trench 19V 19H 37V 37H
1 247 236 208 199
2 244 233 194 186
3 249 237 215 205
4 249 238 219 210
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Table 3.2: Simulated brightness temperatures from using averaged snowpack
based on trench data

Trench 19V 19H 37V 37H
1 232 158 202 141
2 233 176 188 145
3 238 182 209 161
4 233 163 209 148

Table 3.3: Mean and standard deviations of simulated brightness tempera-
tures from trenches

Mean
Trench1 19V 19H 37V 37H
1 186 131 176 125
2 206 149 179 132
3 243 186 213 165
4 239 167 214 151

Standard Deviation
Trench 19V 19H 37V 37H
1 1.41 5.22 3.74 6.23
2 2.89 8.89 7.82 9.09
3 0.62 0.46 3.37 2.50
4 0.78 1.16 4.00 3.15

Table 3.4 shows the differences between brightness temperature of each pair of

trenches in different orthogonal directions when the different methods of simu-

lating brightness temperature were used. When the bulk, one layer simulation

was used there was little difference between trench pairs, with the exception of

37 GHz for trenches 1&2. Overall the disparity between the pairs of trenches

increased the more complex the method of simulation used.
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Figure 3.22: Histograms showing the distribution of Brightness Temperatures
simulations for Trench 1 when variable layer heights are used with the mean
properties for top-left)19V, top-right)19H, bottom-left)37V, bottom-right)37H

Table 3.4: The absolute difference in simulated brightness temperatures
between the pair of orthogonal trenches at each site. Three different methods

of using the trench data are compared

Freq/polariastion 1 layer Bulk n-layer mean from trench
Trench 1&2 19V 2.4 1.4 19.9

19H 2.7 18.3 18.3
37V 13.6 14.6 2.7
37H 13.4 4.7 7.6

Trench 3&4 19V 0.3 5.2 4.3
19H 0.9 19.7 19.3
37V 3.9 0.1 0.7
37H 4.3 13.8 13.3

Mean 5.2 9.7 10.8
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Figure 3.23: Histograms showing the distribution of Brightness Temperatures
simulations for Trench 2 when variable layer heights are used withe mean
properties for top-left)19V, top-right)19H, bottom-left)37V, bottom-right)37H
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Figure 3.24: Histograms showing the distribution of Brightness Temperatures
simulations for Trench 3 when variable layer heights are used withe mean
properties for top-left)19V, top-right)19H, bottom-left)37V, bottom-right)37H
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Figure 3.25: Histograms showing the distribution of Brightness Temperatures
simulations for Trench 4 when variable layer heights are used withe mean
properties for top-left)19V, top-right)19H, bottom-left)37V, bottom-right)37H
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3.5 Discussion

Quantifying snow stratigraphy from near-infrared photography has the potential

to introduce error into the digitised snow profile information, as a result of an

imperfect method of translating pixel co-ordinates from a photograph into a geo-

referenced location. While past methods of conducting this translation have

proved accurate on flat terrain such as frozen lakes, when applied to areas of more

varied subnivean terrain large errors are introduced to the digitised snow layer

boundary data. To address this problem a semi-automated method of quantifying

scale across a stitched snow trench image was developed, allowing for pixel co-

ordinates to be translated more accurately. An adverse effect of this method

was that discontinuities form in the image, where boundaries in the stitched

snow trench image occur. The impact of these artefacts was negated by applying

optimal smoothing to the layers at the image joins in an iterative manner. The

result is a more accurate method of quantifying snow trench stratigraphy from

near infra-red photography that is accurate on a variety of subnivean surfaces and

also offers a substantial improvement in efficiency over existing post-processing

methods.

The new method was used to measure layer boundary roughness from within the

snowpack, a property which has been shown to be important in radar applica-

tions (Rott and Mätzler, 1987; Ulaby et al., 1981) but whose impact on passive

microwave remote sensing is unknown. It has been demonstrated that there is
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substantial variation within the snowpack, and that the degree of variation is

likely to depend on the roughness of the subnivean topography. Additionally, the

speed of the wind at a site may work to reduce the roughness in the upper layers,

and it is believed this was the case at our site, although, it is well documented

that very high wind speeds will lead to surface features such as drifts or sastrugi,

and so this hypothesis will require further investigation.

The improved accuracy of this method also allowed properties to be assigned to

snow layers based on in situ measurements, which removes the subjectivity from

previous work. Using this automated technique, the variation of the internal

properties of snow layers was investigated. This was found to vary significantly,

although the degree of variability was not substantially different when layers from

two different trenches at the same site were compared. This implies that one

trench is able to capture a significant amount of variability from within a snow

layer, although the variation in the stratigraphy itself is significant.

The impact that this variation had on the actual modelled brightness temperature

is interesting. The mean brightness temperature from two trenches at the same

site is usually very similar, often within sensor noise, when bulk values were

used. However, as the stratigraphy was represented with an increased level of

accuracy, more variation in brightness temperature simulations was found. Where

discontinuous ice layers were present the distribution of simulated brightness

temperatures for a trench split so that contained multiple peaks for vertically
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polarised radiation. This demonstrates the significant impact that the presence

of even a very thin ice layer can have on a snow pack’s microwave signature.
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Improved measurement of ice layer

densities and application in snow

microwave emission models

4.1 Aims

The aim of this chapter, as set out in Chapter 1 is to improve the parameterisation

of ice layers in snow emission models by measuring and analysing the influence

of their structural properties (such as density and bubble size) on the accuracy

of simulated brightness temperatures. This will be achieved by addressing the

following three objectives. . .

1. To develop a new field method for measuring the density of ice layers
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2. To compare simulated and observed brightness temperatures using mea-

sured ice layer densities to test the sensitivity of the MEMLS and DMRT-

ML snow emission models to changes in ice layer parameterisation

3. To examine the impact that any sensitivity could have on ice layer detection

algorithms

4.2 Measurements of ice layer density

4.2.1 Development of ice density measurement method

A new laboratory and field-based method was developed to measure the density

of ice layers found in seasonal snow, based on volumetric displacement. The basic

principle is that when an ice layer sample is submerged in a vessel of liquid, calcu-

lating the volume displacement and sample mass will yield an estimate of density.

The laboratory and field protocol for measuring the density of ice layers with this

method is outlined in Figure 4.1. The mass of a sealed 50 ml centrifuge tube with

2.5 ml graduations containing white spirit (sometimes termed ’mineral spirits’),

was measured with a precision of ±0.001 g under laboratory conditions before

entering the field. White spirit is immiscible with water and has a low freezing

point (-70◦C), which means it can be used at temperatures < 0◦C eliminating

potential sample melt. White spirit also has a low density (650 kg m−3), making

it likely that the ice sample would sink and be completely submerged. In the
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field the centrifuge tube was held by a fixed, levelled, mounting system within

the macro setting range of a compact camera. Each camera image was centred

on a visible datum on the mounting system to ensure the camera was correctly

focused, and that repeat images were consistently made from the same horizontal

position. Images were taken before and after each ice sample was submerged as

shown in Figure 4.2.

Figure 4.1: Flow chart describing the methodology to measure densities of
ice samples from a snowpack

In each image three positions were identified during post processing: the liquid

level, the graduation above the liquid level and the graduation below the liquid

level. Pixel co-ordinates of these positions were taken and as the volume of the

graduations on the centrifuge tube were known, and their location in pixels known,
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Figure 4.2: Example of pair of photos used in calculation of ice sample volume.
A, taken before the sample was added and B, taken after. V is equal to the
volume of the ice sample. Black lines are guides added to help assess the quality

of the photos.

the height of the liquid level in pixels could be translated to a volume in ml at a

higher resolution than just the centrifuge tube graduations would allow. The top

of the liquid level was located rather than the meniscus for ease of identification;

as relative volume change was used no error was introduced. After images were

taken, the centrifuge tube containing the sample was sealed and the change in

mass was measured on return to the laboratory. Only samples where the liquid
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in the tube was level in both images and the sample was short enough to be fully

submerged were used in analysis.

4.2.2 Methodological error

Ice layers found in snowpacks are very difficult to accurately and consistently

re-create under laboratory conditions. Therefore to assess the accuracy of the

ice density measurement technique, ball bearings of known volume were mea-

sured. Stainless steel ball bearings were used (manufactured to a diameter of

1 cm ±2.5× 10−5 cm), resulting in a volume range of 0.5236 cm3 ± 0.0004 cm3.

The volume of the ball bearings was calculated from photos of the before and after

images of 10 ball bearings submerged in the centrifuge tube. The expected total

volume of all ball bearings of approximately 5.236 cm3 is comparable to the mean

volume of ice samples collected in the field during pilot studies. Of 134 samples,

each consisting of 10 ball bearings, the mean volume was 5.045 cm3. The volume

measurements were normally distributed and an error value based on ±1 standard

deviations was calculated, resulting in a systematic volume measurement error or

bias of −0.19 cm3.

The largest source of error is in reading the height of the liquid in the centrifuge

tube from the camera photos. Identifying the precise height of the surface of

the liquid between the graduation markings on the cylinder is limited by the

quality of the camera focus and resolution of the camera. If the camera focus
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is not perfect it is difficult to perfectly locate the height of the liquid, and error

and uncertainty occurs. Based on carrying out 10 repeat measurements on 10

centrifuge tube photos we estimate the error to be ±0.125 cm3 in each volume

measurement photo, equating to a root mean squared error in the measurement

of the ice sample volume of ±0.18 cm3, as each volume measurement involves

reading the volume from two photos.

To calculate the optimum sample volume the number of ball bearings used in

each volume measurement was increased from 1 to 24, a volume range of 0.52

cm3 to 12.57 cm3. Correlation between standard deviation and sample volume

was not statistically significant (confidence >99%), demonstrating that the error

in volume measurement was independent of sample volume. Field trials suggested

that 10 cm3 was the maximum sample volume routinely possible to use due to

the diameter of the centrifuge tube. Although no minimum sample volume was

set, effort was always taken to obtain the largest possible.

To estimate the potential impact of the uncertainty in volume measurement on

samples taken in the field, the random (±0.18 cm3) volume measurement error

from the ball bearing experiment was applied to a theoretical ice sample of

volume 4.89 cm3 and mass 4.53 g (equating to a density of 916 kg m−3). This

volume error from the ball bearing experiment translated into an observed volume

range of 4.53 - 4.89 cm3 (i.e. 4.71 cm3 ± 0.18 cm3). Assuming no error in the

balance (precision of ±0.001 g), the upper density value (minimum volume) was

951 kg m−3 and the lower density value (maximum volume) was 881 kg m−3,
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representing an uncertainty in density of ±35 kg m−3 or 4%. The impact of the

error was estimated to be low enough to justifying the practical application of

this technique.

4.2.3 Field Measurements

4.2.3.1 Ice layer measurements

During the winter of 2013, ice layer density measurements were collected at three

sites in Canada: North Bay, Ontario (46.33◦N, 79.31◦W) between 8-9 February,

CARE, Egbert, Ontario (44.23◦N, 79.78◦W) on 25 February, and Trail Valley

Creek, Inuvik, North West Territories (68.72◦N, 133.16◦W) on 9 April.

In North Bay, information on the snow stratigraphy, density and the mean maxi-

mal extent of individual snow grains was collected in a woodland clearing. Ground

based radiometers were used to collect brightness temperatures at this site. An

artificial ice layer was created on the surface of the snowpack and compared with

naturally formed ice layers. Artificial ice layers have been created in previous

work (Montpetit et al., 2012) so it is important to know if their characteristics

differ from naturally occurring ice layers. To create the layer a very thin top layer

of undulating recent snow (less than 6 hours old) was swept from the snowpack

to expose a melt crust below, this was done to maintain an ice layer of even

thickness across the site. After the removal of recent snow, water was sprayed onto

the snowpack to create a surface ice layer (air temperatures were approximately
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-20◦C). A natural ice layer covering the entire clearing was also present lower

within the snowpack (formed by 2 mm of rain on 30 January). Density, bubble

diameter, and thickness measurements of both natural and artificial ice layers

were made; whenever bubbles were visible their diameters were measured using a

field microscope and snow grain card, a resolution of 0.1 mm was possible with the

field microscope. Very small bubbles, with a diameter of < 0.1 mm were recorded

as being visible although a diameter could not be applied to them. Layer thickness

was measured to a resolution of 1 mm for each sample. 15 density measurements

were made of the natural and 15 of the artificial ice layer.

At CARE, measurements were conducted in an open, grass-covered field. A

spatially continuous ice layer formed over an area of at least 200× 100 m in the

10 cm deep snowpack as a result of above-freezing daytime temperatures for a

period of 4 days prior to measurement; ice layer thickness and densities were

measured in the same manner as in North Bay, 29 measurements of ice density

and thickness were made.

In Inuvik, water was sprayed onto a 30 cm tundra snowpack when air tempera-

tures were approximately -25◦C to form an artificial ice layer on the surface of

the snowpack as no natural ice layer was present. Water was sprayed over an area

of 1 m2, concentrating the spraying towards one edge, creating an ice thickness

gradient that allowed 28 measurements of ice layer density across a range of ice

layer thicknesses.
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4.2.3.2 Brightness Temperature observations

Brightness temperatures were measured at 19 and 37 GHz using portable surface-

based microwave radiometers (dual polarisation, ≈ 1.5 m above the snow, 52.5◦

incidence angle, sampled at a 1 second integration time and averaged over 3

minutes) at the North Bay field site. Radiometers were calibrated using a two-

point procedure, before and after field measurements, using a microwave absorber

at ambient temperatures (warm target) and another cooled by liquid nitrogen

(cold target) (Solheim, 1993). A non-linear iterative procedure was used to

account for sensor drift between calibrations before and after field measurements;

coefficients for converting target, load and noise diode voltages into brightness

temperatures were calculated. As a result, brightness temperature measurements

were produced to an accuracy of <2.0 K (Derksen et al., 2012a). After brightness

temperatures were recorded, a snow pit was excavated in the radiometer footprint

to measure a vertical profile of snow stratigraphy, temperature, grain diameter

(mean maximal diameter) and density.

4.3 Results: Ice layer measurements

4.3.1 Ice layer bubble size and thickness

Table 4.1 summarises the measurement of ice layer thickness and bubble size.

In some cases bubbles were visible in the ice layer, but were not large enough
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to be measured using the field microscope. These were noted as < 0.1 mm in

Table 4.1. For the purpose of calculating the mean and standard deviation of the

bubble distribution a value of 0.05 mm was applied to these bubbles. There was

no correlation between ice layer thickness and bubble diameter.

Table 4.1: Measurements of ice layer bubble size and thickness (all sizes in
mm)

Bubble Diameter Layer Thickness
Type n n < 0.1 Mean SD n Mean SD

CARE Natural 0 - - - 29 8 0.6
North Bay Natural 14 4 0.16 0.12 15 3 0.6

Artificial 12 6 0.08 0.03 15 5 0.9
Inuvik Artificial 0 - - - 28 2 0.5

Overall - 26 10 0.12 0.1 86 5 2.7

4.3.2 Ice layer density

Mass and volume measurements were made of 86 samples of ice layers and are

summarised in Table 4.2 and Figure 4.3. The mean sample volume was 6.4 cm3

meaning the random error on the density measurements was ±18kgm−3. Ice layer

densities varied between 841 and 980 kg m−3, with an overall mean of 909 kg m−3

and standard deviation of 23 kg m−3. Natural ice layers were on average less dense

than artificial ones although the difference was within the methodological error.

Table 4.2: Ice layer density measurements, (all values have been corrected to
account for the measured −0.19cm3 bias in volume)

Site n Mean (kg m−3) SD (kg m−3)
CARE 29 906 17
North Bay - Natural 15 890 21
North Bay - Artificial 15 921 18
Inuvik 28 915 26
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Figure 4.3: Summary of ice layer density measurements. Stacked histogram
showing frequency of each density measurement, colours show distribution of

artificial and natural ice layers across multiple sites

4.3.3 Error in measured density

Three sources of error were identified, the systematic error that exists in the

method used to measure the volume of the ice samples (and would apply to any

object measured using this method) which was described in the methodological

error section, the random error in the method and the error from sample porosity,

(which applies only to the measurement of ice layer density using the submersion

method). In this section we will quantitatively assess the impact these sources of

error on the measurements of ice layer density.
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The measured ice layers had a closed porosity, where the layers contained bubbles

but they were not connected in a porous structure. However, due to the presence

of bubbles in the ice layers some increase in porosity would occur when the ice

layer was broken and placed in the centrifuge tube, this is called the effective

porosity.

To quantitatively evaluate the effect of effective porosity on the ice layer density

measurements, the ice layer, and the bubbles within it were numerically modelled.

The ice layer was represented using spheres, representing air bubbles scattered

randomly within an ice sample of size x, y, z and density d.

We randomly placed spheres within the x, y, z co-ordinate system without any

overlap. The size of the spheres was determined by taking a random sample

from a normal distribution of bubble sizes based on a given mean and standard

deviation. A sphere size was chosen from the random sample and located at

random within the x, y, z axes, if that sphere in that location overlapped another

sphere then the location was changed. If after 1000 attempts a location for the

sphere could not be found its radius was changed to another random sample from

the normal distribution and the process repeated. After each sphere was placed,

the total volume of all the spheres and the density of the ice sample was calculated.

Spheres were added to the sample until the desired density was reached.

Slices were taken through the ice sample and the volume of the spheres that would

be open to the surface (and therefore allow liquid to penetrate the ice surface)
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was calculated. For instance, if the slice went through a sphere at exactly the

halfway point, half of the volume of that sphere would be added to the porosity

value for that sample. This approach is illustrated schematically in Figure 4.4.

This method assumes that the ice layer is a solid ice layer containing bubbles

rather than a granular snow-like structure. Great care was taken to only measure

and include impermeable layers which are more likely to exhibit this structure.

Figure 4.4: schematic representation of slicing technique to measure porosity.
Air bubbles (shaded in blue) are shown in an ice sample, the theoretical slice
was made at the location of the dashed line. The left hand side was chosen
as the side to be sampled, and so all of the striped areas marked ’A’ were

calculated and summed to calculate the overall porosity of the sample.
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The mean and standard deviation of bubble diameter measurements were used

to create the distribution of bubbles in the ice layer. Examples of the ice layers

with bubbles distributed in them are shown in Figure 4.5.

Figure 4.5: Examples of the numerical representation of the ice layers used to
investigate porosity, a) shows a sample with simulated density of 800 kg m−3

and b) shows a sample with density 885 kg m−3

For a theoretical ice sample of size 1× 1× 1 cm the sample density was increased

in increments of 0.01 kg m−3, and porosity was measured through the sample by

taking slices at 0.1 cm intervals. The relationship between effective porosity and

density (d) for this bubble and sample size is linear, and the effective porosity (p)

in cm3 is found using:

p = 0.000078d+ 0.72 (4.1)
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this assumes the same porosity on all edges of the ice sample (where the sample

was broken). The bubble diameter mean and standard deviation were taken as

the overall values from all samples. To calculate the impact of this porosity on

our samples we assumed a sample width of 2 cm (the width of the centrifuge

tube), we measured the sample thickness and we measured the volume (with

known methodological error) so we were able to estimate the maximum and

minimum dimensions of each sample. By using the relationship in Equation 4.1

we estimated the porosity of each sample based on the measured density. Sample

porosities ranged from 6.5× 10−5 to 0.0001 cm3. The mean increase from using

either the maximum or minimum value for density in the porosity calculations

was 1.42× 10−6 cm3.

The maximum random error (±0.18 cm3), the volume measurement bias (−0.19 cm3)

and the porosity correction were applied to each of the volume measurements and

the maximum range of density calculated for each sample. Due to the very high

densities of the samples porosity was negligible (less than 0.0001 cm3). Overall

the measurements of ice layer density (909± 18 kg m−3) were not significantly

different to measurements of pure ice.
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4.4 Simulation of brightness temperatures using

measured ice density

Objective measurements of ice layer density with fully characterised uncertainty

(see previous section) were applied to the representations of ice layers in snow

emission models. In this section we: 1) outline how ice layers are represented

in snow emission models and how the models were initialised, 2) describe how

we initialised the snow emission models and, 3) present the impact of measured

ice layer densities on simulation bias of brightness temperatures, and the impact

on the polarisation ratio method of detecting ice layers (Grenfell and Putkonen,

2008).

4.4.1 Model Initialisation

4.4.1.1 DMRT-ML

The vertical profile of snow properties measured at North Bay (Figure 4.6) was

used to initialise both snow emission model simulations. The two layers directly

beneath the artificial surface crust were merged together for model initialisation

as an exact lower boundary was not evident in the stratigraphy; an average grain

diameter of both layers was used (0.95 mm).
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The measured soil temperature was -2◦C and an assumed soil permittivity value

of 6-j was used (Zhang et al., 2003). The n-HUT soil model was used in the

DMRT-ML model runs (as in Roy et al. (2013)). The bubble diameter in ice

layers was set to 0.12 mm, as 0.12 mm was the mean bubble size recorded across

all ice layer samples. In later sections, the properties of the ice layers were scaled

to investigate the sensitivity of model output to specific parameters based on our

observations. Model initialisation values are summarised in Table 4.3.

Table 4.3: Summary of range of input and initialisation parameters across all
model runs

Measured Modelled
Type T (cm) Da Gd

b Bd
c Temp(◦C) D Gd Bd lcd P

Ice 0.5 909 - 0.2 -13 500 - 916 - 0.2 - 0.5 0.67 -
Snow 17.75 330 0.95 - -7 330 0.95 - 0.17 -
Ice 0.25 909 - 0.2 -1 500 - 916 - 0.2 - 0.5 0.67 -
Snow 2.5 340 1.35 - -1 340 1.35 - 0.20 -
Ice 1 909 - 0.2 -0.73 500 - 916 - 0.2 - 0.5 0.67 -
Soil - - - - -2 - - - - 6-j

aDensity (kg m−3)
bGrain Diameter (mm)
cBubble Diameter (mm)
dCorrelation Length (mm)
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Figure 4.6: Observed and modelled snowpack at North Bay, explanation of
snow symbols in figure 3.15

4.4.1.2 MEMLS

MEMLS was initialised using the same snowpack stratigraphy as DMRT-ML

(as shown in Figure 4.6). Density and temperature parameters were directly

transferable between models. MEMLS does not use the grain size parameter to

define snow microstructure but rather correlation length. Initialisation values are
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shown in Table 4.3. For snow layers, the grain size of the layer was converted into

a correlation length using the relationship in Equation 4.2 presented in Durand

et al. (2008)

pex =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.18 + 0.09 ln Dmax, v > 0.2 and Dmax > 0.125 mm

p0, otherwise

(4.2)

where pex is the exponential correlation length, Dmax is the largest measured

extension of the snow grain, and v is the volume fraction (snow density divided

by density of ice). In the case of ice layers a correlation length of 0.71 mm was

used as this value is suggested as a suitable value for ice crusts in Matzler and

Wiesmann (1999).

4.5 Results: Brightness temperature simulations

This section is split into three parts: firstly a sensitivity analysis was conducted

on the parameters used to describe ice layers in both DMRT-ML and MEMLS,

secondly the models were tuned to find the optimum ice layer density to minimise

bias and, thirdly the impact of ice layer density on the polarisation and gradient

ratios used in ice layer detection was investigated.
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4.5.1 Model Sensitivity to ice layer properties

The models were initialised using the snowpack observed at the North Bay field

site and described in section 4.4.1. Each snowpack input parameter was varied

individually between a range of values typically found in shallow snowpacks. The

percentage change in the model output was recorded for each iteration. The

results from the MEMLS and DMRT-ML models are discussed below.

4.5.1.1 MEMLS

MEMLS has no ice layer specific parameters, it describes an ice layer using the

same parameters as are used to describe any snow layer. These are: density,

thickness, temperature and correlation length, the sensitivity to these parameters

is shown in Figure 4.7.

Ice layer density was varied between 500 and 900 kg m−3. Between 500 and

600 kg m−3 jumps are visible in the sensitivity plot. These jumps are caused by

coherence effects as the ice layer switches from a coherent to incoherent layer, this

occurs at a slightly different density for both 19GHz and 37GHz which explains

the offset between the two. H-Pol is more sensitive to ice layer density than V-pol.

Coherence is dependent on layer thickness and density, and this is demonstrated

again in the rapid changes in sensitivity which are visible in the ice layer thickness

sensitivity plot between 0.01 and 5 mm. For 37 GHz both H-pol and V-pol

demonstrate virtually the same sensitivity profile to ice layer thickness, with
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only a small difference when the layers are incoherent at very low thicknesses.

Correlation length and temperature both exhibit much lower sensitivity compared

to ice density or ice layer thickness.
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Figure 4.7: Sensitivity of MEMLS to ice layer properties

4.5.1.2 DMRT-ML

Unlike MEMLS, DMRT-ML uses an ice layer specific parameter, bubble radius, to

describe the microstructure of the ice layer, it does not use a grain size parameter

for ice layers. In addition to the bubble radius parameter ice layers are assigned

a temperature, density and thickness, the same parameters which are used for
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snow layers. The model sensitivity to these parameters is shown in Figure 4.8.

Sensitivity to ice layer density was of a similar magnitude to MEMLS, although

different in character. DMRT-ML does not include simulation of coherence effects,

and this leads to a more linear model sensitivity to this parameter, with the jumps

that were exhibited in the MEMLS sensitivity curve absent for DMRT-ML. DM-

ML is more sensitive to changes in ice layer temperature than MEMLS, and has

similar overall sensitivity to layer thickness at very low thicknesses. However, for

thicker layers, changes in layer thickness had much less effect on DMRT-ML than

MEMLS. The bubble radius parameter had a very low sensitivity.
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Figure 4.8: Sensitivity of DMRT-ML to ice layer properties
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4.5.2 Model optimisation using ice layer density

The results of the sensitivity analysis in section 4.5.1 show that V-pol exhibited

limited sensitivity to ice layer density compared to H-pol. Based on this the

models were tuned to minimise bias for the V-pol simulations. The observed

brightness temperatures are shown in Table 4.4 and have an accuracy of ± 2K

(Asmus and Grant, 1999).

Table 4.4: Observed brightness temperatures

37 V 37 H 19 V 19 H
208 203 250 232

To minimise bias for V-pol simulations the microstructure parameter for both

DMRT-ML (Grainsize) and MEMLS (correlation length) was tuned using a scal-

ing factor. The microstructure parameter was chosen as snow and ice microstruc-

ture is difficult to quantify using a field microscope (as was used here) and so

there is some inherent uncertainty in the grain size and converted correlations

lengths measured in the field. For DMRT-ML the mean bias was zero when the

scaling factor was 2.252 and for MEMLS the mean bias was zero when the scaling

factor was 0.95.

After applying the optimum scaling factor to the model initialisation data in

order to minimise bias for the V-pol simulations the ice layer density at which

H-pol simulation bias was minimised was calculated. Ice layer density was varied

from 500 kg m−3 to 916 kg m−3 and model bias was minimised at 497 kg m−3

for DMRT-ML and 504 kg m−3 for MEMLS, results from the optimisations are
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shown in figures 4.10 (DMRT-ML) and 4.9 (MEMLS). For DMRT-ML mean bias

across both frequencies and polarisations was −7.5K and for MEMLS mean bias

was −7.7K.
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Figure 4.10: Difference between modelled and observed brightness tempera-
tures with changing density for DMRT-ML

4.5.3 Effect of ice layer density on polarisation and gradient

ratios

Figures 4.11 and 4.12 show the impact of varying ice layer density (between

500 kg m−3 and 916 kg m−3) on the gradient ratio

GR(37, 19) =
[TB(p, 37GHz)− TB(p, 19GHz)]
[TB(p, 37GHz) + TB(p, 19GHz)]

(4.3)

and polarisation ratio
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PR(v) =
[TB(V-Pol, v)− TB(H-Pol, v)]
[TB(V-Pol, v) + TB(H-Pol, v)]

(4.4)

used in the ice layer and rain-on-snow detection algorithm presented by Grenfell

and Putkonen (2008). The gradient ratio from the observed brightness temper-

atures was -0.0917 for V-pol and -0.07 for H-Pol and was not well simulated by

either model. MEMLS’ simulation of gradient ratio had far higher sensitivity to

ice layer density than DMRT-ML’s.

The observed polarisation ratio for 19 GHz was 0.0373, both MEMLS’s and

DMRT-ML’s simulations of polarisation ratio were similarly sensitive to changes

in ice density. The biases in the simulated polarisation and gradient ratios were

minimised when a low, physically unrealistic, ice layer density was used.
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4.6 Discussion and Conclusions

A new laboratory and field protocol was used to produce direct estimates of ice

layer density (including uncertainty). Measurements of natural and artificially

made ice layers produced an average density of 909± 18 kg m−3. The uncertainty

terms are related to systematic bias in the method used to measure the volume

of the ice samples, and the effective porosity of ice layers. Our measured density

values are higher than those in Marsh (1984) (mean 800 kg m−3), and Pfeffer and

Humphrey (1996) (400 kg m−3 to 800 kg m−3). It is unclear whether previous

studies assessed and quantified the density of ice layers that were permeable and

porous, including thin, non-continuous ice layers, which may explain the density

differences.

Characterisation of ice layer properties is of fundamental importance for the

application of snow emission models. When used in two different emission mod-

els (MEMLS and DMRT-ML) our ice layer measurements show that physically

unrealistic ice layer density values are necessary to optimise agreement between

simulations and observations. For the North Bay snowpack presented in this

study, bias was minimised when an ice layer density of between 497 kg m−3 and

504 kg m−3 was used. This is consistent with Durand et al. (2008) who used

ice layer densities of 500 kg m−3 to improve agreement between simulations and

microwave observations. The soil beneath the snowpack also has an impact on
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the accuracy of brightness temperature simulations, although it has not been

included in this study.

Calculations of absorption occurring in a planar ice layer are well established,

modelling bubbly ice has produced good results in other scenarios (Dupont et al.,

2014) and changing the bubble diameter within the ice layer (in DMRT-ML)

has negligible impact on simulation bias. Consequently, this suggests simulation

bias does not result from radiative transfer within the ice layer, but rather at

layer boundaries where a high dielectric gradient leads to increased uncertainty

in simulated brightness temperatures. Montpetit et al. (2012) hypothesises that

MEMLS will better cope with these kinds of simulations as it models coherence

effects, however, in this case MEMLS has not performed better than DMRT-ML

(which does not include coherence effects).

As the predicted frequency of winter melt events increases, so will the need to

detect melt and rain on snow events (Montpetit et al., 2012). One possible method

of doing so would be to detect the existence of ice layers (Grenfell and Putkonen,

2008). We have also shown that ice layer density strongly impacts the polarisation

ratio used in ice layer detection algorithms (Figure 4.12). Future work in this

area should account for density if snow emission models are used. Currently

snow emission models are unable to correctly simulate ice layers when physically

realistic values of ice layer density are used. Future work is necessary, therefore,

to address the disconnect between observed ice layer properties and the necessary

ice layer inputs to optimise emission model performance.
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Snow Trenches in Inuvik

5.1 Introduction

In this chapter an array of snow trenches, varying in length from 5 to 50 m, is used

to capture variability within snowpack stratigraphy, layer boundary roughness

and simulated brightness temperatures over these scales. Subnivean topography

is far rougher and more undulating than the snow surface, we hypothesise that

the roughness of snow layers decreases with distance away from the ground, a

relationship would be useful for applying snow pack and snow emission models in

two dimensions.
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5.2 Aims and Objectives

The research question of this chapter is: "What is the impact of stratigraphic

variability on spatial distribution of brightness temperatures in a snow covered

tundra environment?" This question will be answered by addressing three aims

and achieving their associated objectives outlined below each aim.

• Aim 1 : To quantify layer thickness and boundary roughness variability

1. To test our hypothesis that snow layer boundary roughness is a func-

tion of the proportional height of the boundary in the snowpack and

ground roughness

2. To quantify the spatial variation in layer thickness in an Arctic tundra

watershed

• Aim 2 : To quantifying the impact of spatial variability of stratigraphy on

Snow Microwave Emission Models

1. To simulate brightness temperatures continuously along 5 and 50 metre

transects taken from Arctic tundra snowpacks

2. To compare simulated brightness temperatures at different spatial scales

and at different locations within one snowpack.

• Aim 3 : To determine the minimum subset size in each trench location

required to calculate the mean brightness temperature for that trench.
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5.3 Field Methods

The data requirements for this chapter were to have a large number of trenches,

long enough to capture local variability in snowpack stratigraphy, distributed over

a single land surface type with in situ measurements to enable snow emission

models to be run at each location. The general trench sampling method used

in Chapter 3 was also used to collect data for this chapter. Some modifications

were applied, which are described in Section 5.3.2.1. The Arctic tundra location

of Trail Valley Creek in Inuvik NWT, Canada was chosen to be the location of

the snow trenches.

5.3.1 Field Site

To achieve the research aims of this work a large number of snow trenches was

required on one land cover type and in one area. The location of Trail Valley Creek

in Inuvik NWT, Canada was chosen for this as it provided a small watershed with

large areas of flat tundra suitable to the excavation of many trenches quickly and

efficiently.

Figure 5.1 shows the location of Trail Valley creek at the margin of the Mackenzie

River Delta. Data was collected at the watershed over two periods during March

and April 2013.
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Figure 5.1: Landsat image and map showing the location of Trail Valley
Creek to the East of the Mackenzie Delta in NWT.

Trail Valley creek experiences a climate typical of the Canadian Arctic, winter

temperatures typically range from -35 to -15 C and high wind speeds of 10 to

15 ms−1 are regularly experienced throughout the winter (winter meteorological

summary shown in Figure 5.2). The tundra is a largely flat undulating surface

crossed by gullies and dotted with a vast array of lakes and ponds. During the

early season (before December) snow begins to infill the undulations in the tundra

and the gullies where the vegetation height is greater (willows as opposed to scrub
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on the upland areas). Later in the winter (after March) the bottom of the gullies

are filled with snow and only willow and spruce trees protrude from the snow

surface.

Figure 5.2: Meteorological data from Trail Valley Creek collected over the
study period in winter 2012-2013 from the main tundra met site situated on

the upland tundra plateau (shown in photo).
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5.3.2 Field Measurements

5.3.2.1 Application of NIR trenches to distances >50 m

Snow trenches were excavated and used to obtain a large number of snowpack

profiles from each site, allowing snowpack variability to be characterised. In order

to ensure that as much variability was recorded at each site as possible trenches

of 50 m were used. A 50 m trench was dug using ten 5 m trenches situated next to

each other. This process was carried out over multiple days, and each 5 m section

processed individually using the methods described in Chapter 3. In order to

stitch each 5 m section together horizontal and vertical rulers were attached to a

board which was visible at the start and repositioned to appear at the end of each

5 m section (shown in Figure 5.3), as the board was not moved between the start

and end of each section it was able to act as a point of reference for the trench

sections to be aligned in the NIR trench photographs. The method used to stitch

the 5 m sections together is the same as the method used to smooth the artefacts

and discontinuities which occured between photographs in a 5 m trench.
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Figure 5.3: Photo showing collection of snowpack data from Trench 4 in Trail
Valley creek

5.3.2.2 Trench measurements

Snow trenches were excavated in March and April, Figure 5.4 shows the locations

that the trenches and pits were excavated. In Figure 5.4 land cover classifications

(Tundra, shrub and willow, and Forest) were created using a LiDAR derived

land surface classification as detailed in Marsh et al. (2010) and this was used

to classify the land surface on which the trenches were excavated, in addition to

local knowledge about the land surface obtained from members of the team who

had visited the field site during snow free times of year.

In the trenches measurements of snowpack properties were made every 5 m. This
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equates to one stratigraphic profile for a 5 m trench and 10 for a 50 m trench. The

horizontal location of the stratigraphic profile within every 5 m trench was chosen

in order to maximise the number of layers that were sampled in the stratigraphic

profile. Each profile consisted of a visual grain diameter estimate taken to the

nearest 0.1 mm using a field microscope. Measurements were made by the same

person in each Trench during the April samples, during March measurements

were made by either the April sampler or one additional sampler. At the site

of the grain size measurements snow density was also measured, either a 100

cm3 or a 1000 cm3 sampler was used to measure a sample of snow which was

weighed using a spring balance. Measurements of density were taken through the

entire snowpack profile irrespective of layer locations and the height of the density

sample was recorded. Snowpack properties were assigned using the method

described in Chapter 3. Hardness was measured using manual methods described

in the international classification of seasonal snow on the ground and grain type

was identified also using the guidelines found in the classification. Specific surface

area was measured at every April trench using an IRIS (Gallet et al., 2009), and

NIR photography was taken of all trenches, as it was required for the digitisation

of the snow layers. Table 5.1 outlines the measurements which were made in

the snow pits and snow trenches across the Trail Valley Creek watershed. For

logistical reasons manual grain size was not recorded at Trench 8, and IRIS was

not used at any of the March Trenches or Trench 6 or 2.

117



Chapter 5. Trail Valley Creek

Figure 5.4: Locations (red dots) where trenches were dug at the Trail Valley
Creek field site. Surface colours indicate land cover type (Blue: water, Dark
Green: Forest, Green:Tall shrub/willow, otherwise scrubland. Contours are at

10 m intervals, classification adapted from Marsh et al. (2010)
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Table 5.1: Table of all measurements made at trenches their lengths and
reference to locations in Figure 5.4

Trench Landcover Type Length
2 Tundra 50
3 Tundra 5
4 Tundra 50
5 Willow 5
6 Tundra 5
7 Tundra 5
8 Tundra 5
9 Tundra 5
10 Tundra 5
11 Tundra 5
12 Tundra 5
13 Forest 5

5.4 Results and Analysis

The results and analysis for this chapter are split into three sections determined

by the Aims outlined in the first section of the chapter. Analysis has been

incorporated with the results and then the results are discussed in the next section

5.4.1 Snowpack characteristics and variability

5.4.1.1 Snowpack variation over 50 m

Two 50 m trenches and a further eleven 5 m trenches were excavated. Not all

of these trenches are suitable for analysis. Due to problems with the digital

camera auto focus trenches 1 and 3 do not have accurate horizontal positioning

of layer properties and scale. While they are useful for some more general

applications, they will not be considered here. Trenches 5 and 13 were excavated
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on willow and forest landcover types. This means they are particularly useful

when examining the differences between landcover types, however, in this chapter

only the scrub/low shrub covered tundra landcover type is considered. When

exploring the general characteristics of the snowpack over 50 m both trenches 2

and 4 are suitable, however, as trench 2 is the only trench excavated in March,

and therefore is likely to have a different structure to the trenches excavated in

April it will also not be considered here.

36 layers were identified in Trench 4, the properties of these layers were assigned

based on the measurements made in the field at 5 m intervals along the snow

trench. Where no measurements were made of a particular layer then properties

from a layer with similar proportional height and thickness were used. The general

structure of the snowpack was a layer of fresh deposition overlaying a middle

section composed of a mixture of wind slab layers of varying thicknesses, grain

sizes and types. The bottom layer was depth hoar, which filled the undulations

in the ground surface and the areas between vegetation. The depth hoar chains

did not extend much into the rest of the snowpack, as a result of this the

overall covariance between the depth hoar percentage and snow depth is -0.15

demonstrating that as the depth of the snow increased the depth hoar fraction

decreased. It should be noted that many of the middle windslab layers in the

snowpack were facetted, but had not metamorphosed to the point where they

became cohesive depth hoar chains.

Semivariograms can be used to investigate the spatial variability of snow layers or
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snowpack properties over different spatial scales. The semivariance is described

as

γ̂(h) =
1

2
· 1

n(h))

i=1∑

n(h))

(z(xi + h)− z(xi))
2 (5.1)

Where z denotes a data value at a particular location, h is the distance between

data values, and n(h) is the number of pairs of data values a distance of h apart.

In a semivariogram the lag distance (h) is plotted against semivariance. The

point that the curve flattens is referred to as the sill. The sill occurs at the

point where there is no longer correlation over the lag distance. At this point

the property has been, theoretically, completely quantified (Wackernagel, 1995),

measurements made past this point no longer provide additional information

on spatial variability. The lag distance at which the sill occurs was calculated

by fitting a spherical model to the data points as described in Minsasny and

McBratney (2005). An example of a spherical fit is shown in Figure 5.5, the

purple points are the points from the semivariogram and the blue and orange line

shows the fitted model and detected sill.

Figure 5.6 illustrates how variation in the top, middle and bottom snow layers

(as defined in the previous section) changes at different spatial scales. The lag

distance where the sill is reached is shown in Table 5.2 and varies between 29

and 400 cm for different layers and different trenches. The range at the sill varies

independently of type and there is no correlation between trenches.
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Figure 5.5: Example of a spherical model (line) fitted to the semivariogram
data points (purple), the sill is highlighted in orange

Figure 5.6: Semivariogram of snow layer thickness within trenches excavated
in Trail Valley Creek for a) the top layer, b) the middle layer and c) the bottom

layer, colours relate to the different trenches sampled
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Table 5.2: Range (cm) at sill for top middle and bottom layer thicknesses in
each trench

Trench Top Middle Bottom
2 296 149 60
4 184 225 78
6 400 351 134
7 49 190 29
8 276 53 39
9 365 178 115
10 85 87 184
11 32 144 103
12 126 68 42

5.4.2 Boundary Roughness Variability

Boundary roughness was measured using the random roughness method outlined

in Chapter 3. Roughness was calculated relative to a 50 cm running mean in

keeping with past studies such as Rutter et al. (2014). The trenches contained

complex stratigraphy particularly in the middle of the snowpack where many

wind slab layers overlapped. To maintain consistency the boundary roughness

of the snow surface, ground surface, top of the bottom snow layer and bottom

of the top snow layer was considered. Figure 5.7 shows the random roughness

metric of each 50 cm section of snowpack plotted against the proportional height

of the snow layer. Exponential curves were fitted to each roughness profile

for each trench, Figure 5.7 shows these fits for each trench and the values for

each coefficient in the exponential fit is shown in Table 5.3. While there is

an overall relationship showing a decrease in roughness towards the top of the

snowpack it was not possible to generalise the relationship between proportional

height and boundary roughness using a measurable parameter, such as ground
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or snow roughness. Figure 5.8 shows a generalised relationship (fitted expo-

nent) for all of the data points collected as well as 95% confidence prediction

bounds. The general fit has the equation f(x) = 1.986exp(−0.061x), the up-

per prediction bound f(x) = 1.459exp(−0.0793x), and lower prediction bound

f(x) = 2.492exp(−0.04223x).

Figure 5.7: Layer boundary roughness compared to proportional layer
boundary height, each colour indicates the results from each trench, each point
represents the roughness of the layer and its proportional height within the
trench, lines are exponential fits the coefficients of which are detailed in Table

5.3
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Table 5.3: Coefficients from the exponential relationships fitted to the
boundary height and roughness relationships plotted in figure 5.7, equation

of the fits takes the form a exp(bx)

Trench a b
2 12.58 -2.87
4 2.84 -1.78
6 1.86 -1.51
7 1.33 -0.79
8 6.99 -3.81
9 2.62 -1.55
10 5.04 -2.15
11 1.99× 1010 -26.36
12 4.23 -1.94

Figure 5.8: Layer boundary roughness compared to proportional layer
boundary height with a generalised fit and 95% confidence prediction bounds
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5.4.3 Variation in simulated brightness temperatures

The n-HUT snow emission model was run for each snow profile in the trenches

excavated using the methodology described in Chapter 3. Soil properties were

assumed to be a mineral soil with a highly reflective surface and permittivity of

6 − j (Hallikainen et al., 1985). Soil properties were assumed to be consistent

between sites. For the 50 m trench, Trench 4, it was possible to visualise the

additional data that a continuous trench profile provides over a series of 10 pits

each approximately 5 m apart from each other. Figure 5.9 shows the brightness

temperature simulations from these ten profiles as red lines on the histogram

simulations from the entire trench.

From the simulated brightness temperatures semivariograms were plotted, these

are shown in Figure 5.10. The values for the range at the sill were calculated

using the method mentioned previously and are shown in Table 5.4. Similarly to

the results from the layer thickness semivariograms the maximum value for the

range at the sill is 297 cm. This means that for the tundra landsurface a trench

of 297 cm should be able to capture the variability of the brightness temperature

simulations for this land cover.
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Figure 5.9: Comparison of trench data and distributed pit data, for trench 4,
snow profiles were distributed approximately every 5 m along a 50 m trench.

a) 19V, b)19H, c)37V, d)37H

Table 5.4: Range (lag distance) at sill of semivariograms

Frequency / Polarisation
Trench 19V 19H 37V 37H
4 80 78 79 79
6 158 154 162 162
7 158 144 176 171
8 28 29 28 28
9 297 261 277 268
10 132 139 131 132
11 180 171 181 175
12 50 50 51 50
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Figure 5.10: Semivariograms of simulated brightness temperatures across
digitised snow trenches of log-linear scale

5.4.4 Sample size to accurately simulate brightness tem-

perature

Data presented here can be used to inform sampling strategies for arctic environ-

ments. The key value is the calculation of the average brightness temperature of

the snow cover and so knowing the size of sample which is required to be able to

accurately model is crucial.

The brightness temperature simulations generally conformed to a normal dis-

tribution (example shown in Figure 5.11) meaning that because of the central
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limit theory of normal distributions and due to the large sample size, parametric

statistics can be used for data analysis.

Figure 5.11: Histograms for a) 19 GHz V-pol, b) 19 GHz H-pol, c) 37
GHz V-pol, d) 37 GHz H-pol showing the distribution of simulated brightness
temperatures obtained from running the n-HUT model for the length of trench

4. Normal distributions have been fitted to the histograms.

If each trench is considered as a population of snow profiles representing a small

area which needs to be sampled then it is possible, based on the standard deviation

and margin of error of a surface based radiometer (± 2 K) (Asmus and Grant,

1999), to calculate the required sample size to achieve the population mean, to a

99% confidence level using
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n = (2.326
σ

MOE
)2 (5.2)

Where MOE is the margin of error, n is the sample size and σ is the standard

deviation of the population (all the values simulated for each trench). Table

5.5 shows the minimum sample size calculated for each trench, polarisation and

frequency. Figure 5.12 provides a visual insight into the impact of increasing the

sample size to below the given sensor error of a radiometer. Taking account of

the ± 2 K error in observed brightness temperatures a 249 cm trench is required

to capture the same mean value, accounting for error, as the 50 m trench. This

supports the semivariograms in Figure 5.10 which show that variability is fully

quantified over 3 m.
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Table 5.5: Minimum sample size to achieve population mean for given
standard deviation, using a margin of error of ± 2 K and a confidence level

of 99%.

Trench Freq/pol Mean (K) SD (K) population min sample size
4 19v 239 2.5 5017 9

19h 227 3.29 5017 13
37v 210 11.24 5017 133
37h 200 11.01 5017 116

6 19v 175 1.85 500 3
19h 155 1.44 500 1
37v 123 8.25 500 25
37h 113 7.15 500 16

7 19v 241 1.31 502 2
19h 224 1.32 502 2
37v 226 8.06 502 79
37h 211 7.49 502 60

9 19v 232 3.42 506 15
19h 222 3.59 506 15
37v 190 16.93 506 249
37h 183 16.42 506 216

10 19v 235 2.44 502 8
19h 218 2.21 502 6
37v 203 12.98 502 166
37h 188 11.99 502 122

11 19v 232 1.37 502 2
19h 201 1.28 502 2
37v 193 6.52 502 38
37h 170 5.9 502 24

12 19v 182 0.88 503 1
19h 163 0.72 503 1
37v 149 4.98 503 13
37h 138 4.47 503 9
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Figure 5.12: a random sample was taken from the simulated brightness
temperatures with a 50 m snow trench, the mean brightness temperature of
that sample is compared to the sample size here, the red line is a 50 sample
moving average. a)19 GHz V-pol, b)19 GHz H-pol, c)37 GHz V-pol, d)37 GHz

H-pol
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5.4.4.1 Differences between sites

As well as investigating the role of stratigraphic variability within different lo-

cations in each trench, it is also important to compare the simulated brightness

temperatures between different trenches at different locations on the tundra land-

cover. Figure 5.13 shows the observed satellite brightness temperature as well as

the mean brightness temperature for each frequency and polarisation for each

trench location. Trenches 6 and 12 had a consistently lower mean brightness

temperature due to an increased depth hoar thickness at those sites and a hard

coarse, facetted wind slab layer.

Table 5.6 summarises the mean and standard deviation of the simulated bright-

ness temperatures for groups of: all trenches, just the trenches containing the

facetted wind slab layer (6 and 12), or just the trenches which didn’t contain

this layer. The minimum sample size required to obtain the population mean for

each of these snowpack categories was also calculated. If samples are just taken

randomly, from all sites then 4976 samples are required to accurately calculate

the mean. This makes the assumption that samples would include both types

of snow, so to capture this variability samples must also be distributed spatially.

Note, that the lower sample sizes shown in the table for just sites 6 and 12 are a

function of the lower simulated brightness temperatures and the margin or error

being based on a static ± 2 K level.
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Figure 5.13: The mean brightness temperature modelled at every trench
excavated in Trail Valley Creek. The orange points are sites 6 and 12, which
have a consistently lower modelled brightness temperature than the other sites
on tundra landcover over the watershed. SSM/I satellite radiometer readings

are shown as black points

Table 5.6: Comparison between the simulated brightness temperatures and
required minimum sample size between different groups of sites

All Sites Without 6 and 12 Just 6 and 12
Mean 19V 231 238 179

19H 216 224 159
37V 199 208 136
37H 187 196 125

Std 19V 20 4 4
19H 23 8 4
37V 28 14 15
37H 28 15 14

Sample Size 19V 3539 124 72
19H 3966 476 79
37V 4976 1406 675
37H 4467 1383 508
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5.5 Discussion

The snowpack observed at Trail Valley Creek agreed with previous observations of

arctic snowpacks cited in Sturm et al. (1993) and Derksen et al. (2014), a shallow

snowpack consisting of approximately six vertical layers. The bottom layer was

a depth hoar layer consisting of very large (3.5 mm) chains. This was overlaid

with wind slab layers, in some cases (trenches 6 and 12) these layers had become

facetted and experienced grain growth, leading to hard, high density coarsely

grained layers in the middle of the snowpack.

In terms of the stratigraphic variability of the snowpack, semivariograms showed

that variation in layer thickness was fully characterised after only 365 cm. This

agrees with similar work by Sturm and Benson (2004) which found that on large

scales layers were largely continuous and did not exhibit much variability but at

shorter scales variability increased. No ice lenses or layers were present in the

snowpack.

Impact that the variability in stratigraphy has on simulated brightness temper-

atures is addressed in two ways. At individual trench sites the maximum range

of the sill for any individual site on the semivariogram of brightness temperature

was 297 cm. The range at the sills of the brightness temperature semivariograms

was consistently shorter than the semivariograms of layer variability alone, this

is because the brightness temperature variation is a function of the variation in
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all layers, leading to increased variability over shorter distances and therefore a

shorter range at the sill.

The presence of the coarsely grained facetted wind slab layer at some sites caused

these locations to have a much lower simulated brightness temperature. This helps

address an important question regarding the method in which snow sampling

strategies are conducted. The minimum sample size required to obtain the

mean brightness temperature for each individual trench was always less than

249. However, for all the trenches it was 4976. When the trenches were subset

into those with coarsely grained wind slab layer and those without it, the sample

size was less than 1406. This highlights how snowpack sampling strategies need to

capture the breadth of different snowpack structures in a field site but also capture

the local variability to a high enough degree to ensure the mean at that location

is actually representative of that snowpack. This has particular application to

work such as Derksen et al. (2012a). Sampling strategies should aim to capture a

range of aspects/slope angles and elevations as well as vegetation types. It should

be noted that the satellite observations displayed in Figure 5.13 match the mean

values for the sites which did not include the coarsely grained wind slab. This

highlights the further questions that exist in how sub-footprint variability effects

the observed brightness temperature at the satellite scale.

The smaller scale roughness between the boundaries of the snow layers can now

be characterised from NIR photograph and the metrics described in Fassnacht

et al. (2009b) and Anttila et al. (2014) applied. Snow layer boundary roughness
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decreases exponentially within the snowpack from the ground to the surface,

although as it was not possible to generalise this, it is only possible to estimate

the boundary roughness of internal layers when both the surface roughness and

ground roughness are known. The equation f(x) = 1.986exp(−0.061x) described

the general relationship of all the boundary roughnesses sampled in relation to

their proportional height and for future measurements the 95% upper prediction

bound had the equation f(x) = 1.459exp(−0.0793x) and lower prediction bound

the equation f(x) = 2.492exp(−0.04223x). Data from other sites will be required

to test with wider applicability of this relationship. Aside from snow emission

modelling, knowing the roughness of internal layer boundaries has applications

to a wide range of snow research, including snow evolution modelling and radar

backscatter modelling.

5.6 Summary

At the start of this chapter, three aims were identified, this section will address

each of them individually.
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5.6.1 Quantify layer thickness and boundary roughness

variability

Layer thickness is much more variable in the lower layers of depth hoar, as it is

related to the undulation of the ground, and this is demonstrated by the negative

covariance correlation between the hoar fraction and snowpack depth. However,

when characterising the snowpack using a snow trench there is no significant

difference in the range at sill for semivariograms of snow layer thickness. This

has important implications for SAR and passive microwave remote sensing, where

depth hoar has a large impact, however, more data needed to show if this exists

at wider scales.

The roughness between snow layers is quantified here for the first time, the most

significant finding being that snow layer boundary roughness decreases with a an

exponential relationship as the proportional height of the snow layer increases.

This can be used to inform snow evolution, radiometric and surface energy balance

modelling.

5.6.2 Quantifying the impact of spatial variability of stratig-

raphy on Snow Microwave Emission Models

In this work snow trenches of up to 50 m were used to investigate spatial variability

of brightness temperature simulations. The main finding is that variability occurs
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at a much smaller scale than this, semivariograms reached a sill in brightness

temperature simulations before 3 m, meaning that a trench of 3 m length is able

to quantify brightness temperature variability to the same level as a 50 m one.

This is a key finding for the benefit of small, plot scale trenches for informing

variability in brightness temperatures at a wider scale.

5.6.3 Determine what the minimum subset size is

3 m of snow trench measurements will provide enough data points to characterise

the brightness temperature at spatial scales of up to at least 50 m. While there are

differences between trenches made at different locations within the same landcover

type (expected given the variability that is known to exist in tundra environments)

at each individual location 3 m allows variability to be fully captured at each site.

This is in keeping with other findings looking at spatial scales of variability from

the semivariograms presented here.
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Synopsis

6.1 Summary

The overall aim of this thesis is to quantify and evaluate how snowpack stratig-

raphy influences the precision and accuracy of snow microwave emission models

in Arctic tundra environments. This has implications for many areas of research,

but the ability to quantify error and uncertainty of stratigraphy measurements

and microwave brightness temperature simulations, has particular implications

for data assimilation schemes used in deriving SWE products.

Figure 6.1 shows the key way that using trench based NIR photography both

provides the data for the observed snowpack stratigraphy, and informs error and

uncertainty on those measurements. These measurements of error and uncertainty
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can, in turn, be used to inform error analysis on simulated brightness tem-

peratures from snowpack observations and the output from snowpack evolution

models. Simulated brightness temperatures from snowpack evolution models and

observations are types of data which are implemented, or have the potential to

be, implemented in data assimilation schemes (Langlois et al., 2012).

Figure 6.1: Flow chart of the key areas used in data assimilation schemes,
the sections highlighted in red are improved by the work in this thesis although

as can be seen, there are further implications in other areas

6.1.1 Snowpack stratigraphy

In this thesis two key weaknesses in the current literature were identified. Firstly

that ice layers pose a considerable challenge to snow emission models (Rees
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et al., 2010; Durand et al., 2008) and secondly that spatial variation of snowpack

stratigraphy, at spatial scales smaller than the satellite footprint, are not well

quantified or characterised for Arctic tundra environments (Rutter et al., 2014;

Derksen et al., 2012b). Methodological developments presented here have made

considerable improvements to both of these weaknesses. Existing work which

addressed the question of snowpack stratigraphy variation at small scales, was

limited to looking at single short trenches (Rutter et al., 2014; Domine et al.,

2012) or a series of pits (Derksen et al., 2009). Here, a method for digitising

snowpack stratigraphy from NIR photography collected along a trench (initially

presented by Tape et al. (2010)), was optimised and improved to the point

where it was accurate enough for use in a hummocky tundra environment, over

distances of up to 50 m, and fast enough to allow spatially distributed sampling

to be conducted over a wide tundra area. New methods of converting the NIR

photographs collected into pixel co-ordinates provided the main improvement.

By addressing each point on an NIR photograph and relating it directly to a

location in cm, determined by use of a physical scale present in each photograph,

it was possible to ensure accuracy along a trench, or series of trenches, while

simultaneously decreasing the time required for analysis to be conducted.

These developments meant it was possible to: collect and analyse the longest

(to my knowledge) continuous profiles of cm accurate snowpack stratigraphy,

recorded in a tundra environment; collect and analyse a large, spatially distributed

snow trench dataset, which allowed stratigraphy variability to be examined across
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a tundra watershed; measure internal snowpack layer boundary roughness and

locate snowpack properties recorded within a snow trench with cm accuracy,

allowing variation in properties, as well as stratigraphy, to be analysed across a

trench.

The improved trench methods were used to simulate brightness temperature on

data collected in Churchill MB. and Inuvik NWT. At Churchill it was noted that

ice layers in the snowpack led to distributions of brightness temperatures which

were split into two distinct peaks, dependent on whether or not the ice layer

was present in the pack. As no ice layers were present at Inuvik the brightness

temperature simulations provided a continuous distribution. Semivariograms

of the brightness temperature simulations showed that, variation in brightness

temperature occurred at a shorter scale than variation in any individual snowpack

layer, and that, for any individual site, a trench of 3 m length would completely

characterise the variation in brightness temperature for that area.

Internal layer boundary roughness was measured at both Churchill and Inuvik. At

Inuvik, layer boundary roughness decreased exponentially with the proportional

height of the layer boundary within the snowpack, although it was not possible

to generalise this relationship as a function of either ground or surface roughness.

The role of internal layer boundary roughness is an important factor in radar

measurements, as layer boundary roughness at scales less than the footprint causes

difficulty in radar stratigraphy interpretation (Marshall and Koh, 2008). From a

passive microwave perspective, if snow emission models are run in two dimensions
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then layer boundary roughness will need to be included. Additionally snowpack

evolution models need this data to verify and calibrate their outputs.

6.1.2 Ice layer Density

The second methodological development was to measure the density of ice layers.

This was done at sites in Southern and Northern Ontario and Inuvik in the

Canadian NWT, on both naturally occurring ice layers and ones created by

spraying water onto the snowpack at low temperatures. Ice layers were found

be have a density very close to solid, planar ice, and ice layer density was

found to have an impact on the accuracy of simulated brightness temperature

measurements in the region of 5 - 50 K. Previous work had used ice layer density

measurements significantly lower than the recorded value of 909 kg m−3 which

was found to give more accurate simulations but did not accurately represent

reality, suggesting that weaknesses in the way in which snow emission models

parameterise ice layers is the cause for the error in the simulated output. The

impact of the findings of this thesis are shown in Figure 6.2
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Figure 6.2: Conceptual diagram of the areas improved by this research, left
hand side shows the state of knowledge before the work conducted here and
the right hand side shows the state afterwards. Large areas indicate areas of

uncertainty.
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Figure 6.3: Comparison of a typical brightness temperature distribution for
19 GHz H-pol when ice layers are a) absent and b) present
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When snow emission models and passive microwave observations are used in data

assimilation schemes, a key part of the data assimilation algorithm is the weight

the observations are given based on the potential error from each of the error

sources which act on an observation (Reichle, 2008). Currently only vertically

polarised brightness temperatures are considered due to the impact that ice layers

have on horizontal polarisations. The work in this thesis highlights stratigraphic

variation and ice layers as two sources of error, and provides data and analysis

which will aid in their contribution to the error budget of passive microwave

observations and simulations. Both of these error sources have been identified

previously, however, their role in influencing the brightness temperature within

the context of a heterogeneous snowpack was not known.

When ice layers were present in the snowpack the distribution of simulated

brightness temperatures was split to form two peaks as shown in Figure 6.3 (b).

When calculating the error in simulated or observed brightness temperatures it

is important that this difference is recognised, as brightness temperatures when

no ice layers are present are likely to form a normal or quasi-normal distribution

but when ice layers are present, they will not. The method used to determine the

error budget for each of these two scenarios should be tailored to the individual

distribution.

It is therefore of key importance to be able to detect if an ice layer is present in

the footprint of a satellite radiometer. Methods for doing this have been proposed

(Grenfell and Putkonen, 2008) but they use the polarisation ratio, a metric which
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has been shown here to be be influenced by the density of the ice layer present.

Based on this finding the future work outlined in the following section is suggested.

6.2 Future Work

Future work should focus on. . .

• Parameterising ice layers to correctly account for ice layer density in snow

emission models

• Including ice layer density in the development of algorithms for ice layer

detection

• The trench methods demonstrated here should be applied for use with other

ground based sensors
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