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Abstract

Inspired by the recent developments in the study of the thermodynamics of van der Waals fluids via the theory of nonlinear conserva-
tion laws and the description of phase transitions in terms of classical (dissipative) shock waves, we propose a novel approach to the
construction of multi-parameter generalisations of the van der Waals model. The theory of integrable nonlinear conservation laws
still represents the inspiring framework. Starting from a macroscopic approach, a four parameter family of integrable extended van
der Waals models is indeed constructed in such a way that the equation of state is a solution to an integrable nonlinear conservation
law linearisable by a Cole-Hopf transformation. This family is further specified by the request that, in regime of high temperature,
far from the critical region, the extended model reproduces asymptotically the standard van der Waals equation of state. We provide
a detailed comparison of our extended model with two notable empirical models such as Peng-Robinson and Soave’s modification
of the Redlich-Kwong equations of state. We show that our extended van der Waals equation of state is compatible with both
empirical models for a suitable choice of the free parameters and can be viewed as a master interpolating equation. The present
approach also suggests that further generalisations can be obtained by including the class of dispersive and viscous-dispersive non-
linear conservation laws and could lead to a new type of thermodynamic phase transitions associated to nonclassical and dispersive
shock waves.
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1. Introduction

The van der Waals model first introduced to describe liquid-
vapour coexistence in simple fluids [1] is now considered a
classical paradigm for the description of phase transitions for
a large family of physical systems (see e.g. [2, 3].) In fact, the
celebrated van der Waals equation of state(

P +
a
v2

)
(v − b) = RT (1)

can be both obtained from first principles as a mean field ap-
proximation for a system of hard core particles with electro-
static interaction and also via a simple and intuitive heuris-
tic derivation (see e.g. [3]). An alternative mean field ap-
proach has been recently introduced in [4] that allows to rig-
orously establish a formal analogy between the van der Waals
model and magnetic mean field models such as the Curie-Weiss
model and its multi-component extensions [5, 6, 7, 8]. Inter-
estingly, the phenomenological approach has played a key role
over the decades, in particular for chemical engineering appli-
cations [9, 10, 11, 12, 13] aimed at providing a more accu-
rate description of composite systems, such as solutions and
multi-phase systems, for which a statistical physics approach

∗contact: antonio.moro@northumbria.ac.uk

and a mean field theory is not currently available. It should also
be mentioned that although the van der Waals models catches
many fundamental qualitative features of phase transitions in
fluids, a quantitative demands for more accurate, though empir-
ical, equations of state.

Hence, a number of alternative and/or generalised ap-
proaches to the van der Waals theory have been introduced
based on both mean field theory or phenomenological ap-
proaches (see e.g [14, 15, 16, 17, 18, 19, 20, 9, 10, 11]).

More recently, in a series of papers [4, 21, 24] it was observed
that the van der Waals equation of state can be interpreted as a
particular solution to an integrable nonlinear partial differential
equation (PDE), that is equivalent to the first law of thermody-
namics, specified by assigning a particular isothermal/isobaric
curve, possibly far from the critical region. The choice of such
particular isothermal/isobaric curves is equivalent to the choice
of an initial datum for the PDE and it is sufficient to fix uniquely
the solution. Therefore, initial data can be used to parametrise
a large family of integrable models of which the van der Waals
equation is one example. Moreover, as shown in [21] and [4]
this approach formulated through integrable nonlinear conser-
vation laws can be extended to the critical region relying on
an asymptotic procedure that automatically encodes Maxwell’s
equal areas rule and provides an asymptotic analytic descrip-
tion of phase transitions in terms of shock wave solutions to
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hyperbolic nonlinear conservation laws [25].
We note that the correspondence between phase transitions

and shock solutions of nonlinear PDEs has been also observed
and studied in depth in the context of mean field spin mod-
els [26, 27, 28, 5, 6, 7, 8], chemical kinetics and cybernet-
ics [29], neural networks [30] and their statistical mechanical
description.

In the present work we propose a new method to extend a
thermodynamic model by the request that the equation of state
remains a solution to a suitable extended nonlinear conservation
law. Although the approach can be easily formulated for any
model within the general class studied in [24], for the sake of
simplicity we will focus on the construction of the extension to
the van der Waals model only. Our fundamental assumptions
are:

i) the van der Waals model is assumed to be accurate in
regime of high temperature and low density, so that the
proposed extension must asymptotically reproduce the van
der Waals equation of state;

ii) the nonlinear conservation law is required to be
C−integrable, that is linearisable via a Cole-Hopf trans-
formation.

Property (i) relies on the idea that if the gas is in thermodynamic
equilibrium and sufficiently rarified, particles can be modelled
as rigid spheres interacting by a Coulomb potential. In this
regime, the van der Waals model is expected to be sufficiently
accurate. Property (ii) is based on the result obtained in [4]
where it was shown that the van der Waals mean field model
is completely integrable by linearisation. In fact, it was proven
that volume density fulfils a nonlinear PDE, in the class of con-
servation laws, that is linearisable to the Klein-Gordon equation
via a Cole-Hopf transformation. Hence, we require that the ex-
tended model preserves this property. The family of models so
obtained is parametrised by four arbitrary constants and con-
tains the van der Waals model as a particular case. These mod-
els can be viewed as a two parameter deformation of the van der
Waals model. The thermodynamic limit is then calculated via
a standard asymptotic expansion in the small expansion param-
eter η = 1/NA where NA is Avogadro’s number the associated
phase diagrams are then evaluated. We also observe that the
Cole-Hopf transformation provides the natural extension of the
mean field van der Waals partition function derived in [4].

We finally compare our model with two well-known phe-
nomenological extensions of the van der Waals model: the
Soave’s modification of the Redlich-Kwong (SRK) equation
of state [9, 10] and the Peng and Robinson (PR) equation of
state [11]. We show that our model exactly reproduces both
Soave-Redlich-Kwong and Peng-Robison critical points for a
suitable choice of the parameters and can be proposed as the
interpolating model. Our analysis suggests that the proposed
model is suitable for describing a wide class of real systems
such as, solutions and multi-component thermodynamic sys-
tems, within the range of applications of both SRK and PR
equations of state.

The paper is organised as follows: In Section 2 we introduce
the general macroscopic model and formulate of the first prin-
ciple of thermodynamics in terms of a nonlinear PDE. The inte-
grability condition by linearisation via a Cole-Hopf transforma-
tion, given a suitable expansion in the order parameter, allows
us to specify the class of models such that the equation of state
is obtained as a solution to an integrable nonlinear PDE. In Sec-
tion 3 we focus on the sub-family of models that can be viewed
as an extension of the van der Waals model, provide their full
characterisation and construct a natural extension of the mean
field partition function. We evaluate the critical asymptotics and
phase diagrams in Section 4. Section 5 is devoted to a detailed
comparison of our model with PR and SRK models. Final re-
marks and an outlook on future works is included in Section 6
where we also argue that the present method can be applied to
construct a wider class of models where the equation of state is
obtained as a solution to a dissipative and dispersive equation
implying a richer critical phenomenology.

2. General model equations

Let us consider n moles of a gas whose physical state is
determined by its volume V , pressure P and temperature T .
The number of particles is N = nNA where NA is Avogadro’s
number. Introducing the Gibbs thermodynamic potential G =

E − TS + PV where E is the internal energy, the first principle
of thermodynamic reads as

dG = −S dT + VdP, (2)

where the S is the entropy of the system. Introducing the vari-
ables

x =
P
T

t =
1
T

(3)

and the molar volume density

v =
V
n

the balance equation (2) is written as follows

dψ = εdt + vdx (4)

where ψ := tG/n and ε := E/n is the internal energy per mole
unit. We also observe that the Equation (4) is locally equivalent
to the closure condition

∂v
∂t

=
∂ε

∂x
, (5)

also known as Maxwell relation [2]. In the present paper, we fo-
cus on the class of models such that the internal energy function
admits the following expansion in terms of the small parameter
η = 1/NA

ε = ε0(v) + ηε1(v)
∂v
∂x

+ ηε2(v)
∂v
∂t

+ O(η2) + g(t) (6)

where εi(v), i = 0, 1, 2 are functions of the one single variable
v and g(t) is an arbitrary function of its argument t. A sim-
ilar expansion has been considered for the entropy function in
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[21]. We point out that the internal energy for the van der Waals
model is a separable function of volume and temperature (see
e.g. [14])

EvdW =
Na2

V
+ g(T ).

Moreover, perturbative approaches based on a double parameter
expansion of Lennard-Jones potentials (see [22] and also [23]
for a review) lead to equations of states which explicitly depend
on the compressibility and the coefficient of thermal expansion,
and then on derivatives of the volume with respect to pressure
and temperature respectively. The ansatz (6) reflects the above
two properties. In the region of thermodynamic variables, x and
t, where the derivatives of the molar volume are bounded, O(η)
terms can be neglected and we can approximate

ε ' ε0(v) + g(t).

Equation (5) gives the Riemann-Hopf type equation of the form

∂v
∂t

= ε′0(v)
∂v
∂x

(7)

with the notation ε′0(v) = dε0/dv. The class of van der Waals
type thermodynamic systems described by the equation (7) ad-
mits the following equation of state

x + ε′0(v)t = f (v) (8)

where f (v) is an arbitrary function of its argument and
parametrises the family of models associated to the equa-
tion (7). The equation (8) defines implicitly the general solu-
tion v = v(x, t) to the Riemann-Hopf type equation (7). For the
special choice

ε0(v) = −
a
v

f (v) =
R

v − b
(9)

this family of models provides just the van der Waals equation
of state (

P +
a
v2

)
(v − b) = RT (10)

where R ' 8.3145 J/molK is the gas constant, b is the molar
hard core volume and a is the macroscopic parameter describ-
ing the macroscopic effect of long range electrostatic interac-
tions. As it was pointed out in [24] equations of state of the
form (8) can be interpreted as a nonlinear wave solution to a
system of hydrodynamic type. Such solutions generically break
in finite time and the breaking point corresponds to the critical
point associated to the gas-liquid phase transition.

Let us now consider the internal energy asymptotic expan-
sion (6) up to O(η2). In this case, the truncated equation (5)
reads as follows

∂v
∂t

=
∂

∂x

[
ε0(v) + ηε1(v)

∂v
∂x

+ ηε2(v)
∂v
∂t

]
. (11)

We note that away from the critical region solutions to the equa-
tion (11) are expected to converge, at the leading order, to the
solution (8) of the Rieman-Hopf equation (7) discussed above.

However, near the critical point, where derivatives of the solu-
tions of the van der Waals equation diverge, the O(η) terms will
importantly affect the leading order, providing a result that is
consistent with experimental observations also within the criti-
cal region. Introducing the function ϕ via the Cole-Hopf trans-
formation

v(x, t) = ση
∂ logϕ
∂x

(x, t; η) , (12)

where σ is a non-vanishing real constant, Equation (11) trans-
forms into the following nonlinear PDE

σ2η2
[
ε2
∂2ϕ

∂x∂t
+ ε1

∂2ϕ

∂x2

]
−η(σε2v +σ2)

∂ϕ

∂t
+ (σε0 −ε1v2)ϕ = 0.

(13)
We are interested in the class of nonlinear conservation laws
of the form (11) that are linearisable via a Cole-Hopf transfor-
mation. We shall choose the functions ε0(v), ε1(v) and ε2(v) in
such a way that the equation (13) reduces to a linear PDE. More
precisely, we impose

σ2ε2 = c1B σε2v + σ2 = −c3B

σ2ε1 = c2B σε0 − ε1v2 = c4B

where B = B(v) is a function to be determined and the ci’s,
are arbitrary real constants. Solving the above linear system for
ε0(v), ε1(v) and ε2(v) and B(v) we obtain

ε0 = −
c2v2 + c4σ

2

c1v + c3σ
ε1 = −

c2σ

c1v + c3σ
ε2 = −

c1σ

c1v + c3σ
(14)

and

B = −
σ3

c1v + c3σ
.

Consequently, the function ϕ satisfies the following linear equa-
tion

η2
(
c1
∂2ϕ

∂x∂t
+ c2

∂2ϕ

∂x2

)
+ ηc3

∂ϕ

∂t
+ c4ϕ = 0. (15)

Equation (15) defines a four-parameter integrable extension of
the standard van der Waals model and, for the choice of co-
efficients (14), it is equivalent to the equation (11) on all so-
lutions such that the Cole-Hopf transformation is defined. We
will explicitly construct the solution to the Equation (15) at the
leading order in the parameter η and then the leading order so-
lution to the equation (11). Let us observe that the particular
case c2 = c3 = 0, where the equation (15) reduces to the Klein-
Gordon equation, has been obtained in [4] and the function ϕ is
interpreted as the mean field partition function. This solution,
outside the critical region, and in the limit η → 0, gives the
van der Waals equation of state (10) for the volume v defined
via (12).

Finally, the asymptotic expansion of the internal energy up
to O(η2) is given by the following formula

ε ' −
1

c1v + c3σ

[
c2v2 + c4σ

2 + ση

(
c1
∂v
∂t

+ c2
∂v
∂x

)]
+ g(t)

(16)
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and the equation (11) for the volume reads as follows

∂v
∂t

+
∂

∂x

{
1

c1v + c3σ

[
c2v2 + c4σ

2 + ση

(
c1
∂v
∂t

+ c2
∂v
∂x

)]}
= 0.

(17)
Solutions v = v(x, t; η) to the nonlinear conservation law (17)
provide the equation of state for the family of models associated
to the internal energy admitting the expansion the form (16).
We also observe that the integrable nonlinear PDEs (17) be-
longs to the more general family of integrable viscous conser-
vation laws as classified in [31]. The integrability implies the
existence of infinitely many commuting flows in the form of
conservation law. In the thermodynamic context they involve
the existence of infinitely many functions of state and corre-
sponding conjugated variables. We also point out that the lin-
earisable equation (17) can not be obtained as a particular case
of the classification procedure discussed in [33] as it is not of
evolutionary type.
Equation (17) is indeed an example of integrable viscous con-
servation law that can be written in non-evolutionary but finite
form. Based on the results in [31, 34] we can check that the
equation (17) is a nonlocal symmetry of the Burgers equation.
This can be straightfowardly done by computing the viscous
central invariant. The notion of viscous central invariant has
been introduced in [31] where it was conjectured that all scalar
integrable viscous conservation laws are parametrised by one
function of a single variable. Indeed, observing that up to O(η2)
equation (17) can be written in evolutionary form as follows

∂v
∂t

=
∂

∂x

[
f (v) + ηA(v)

∂v
∂x

+ O
(
η2

)]
(18)

where

f (v) = −
c2v2 + c4σ

2

c1v + c3σ

A(v) =
σ

c1v + c3σ

−c2
1

(
c2v2 + c4σ

2
)

(c1v + c3σ)2 +
2c1c2v

c1v + c3σ
− c2

 ,
the viscous central invariant a(v) is calculated via the for-
mula [34]

a(v) =
2A(v)
f ′′(v)

which gives a(v) = σ. A constant viscous central invariant
proves that equation (17) belongs to the Burgers hierarchy. We
finally observe that a new example of integrable viscous con-
servation law associated to a nonlinear (rational) viscous cen-
tral invariant can be constructed via the hodograph transforma-
tion (interchange of dependent and independent variable) of the
form

ψ = ψ(x, t) → x = x(ψ, t)

where ψ is the potential such that v = ∂ψ/∂x. Setting u(ψ, t) =

∂x/∂ψ, equation (17) transforms to

∂u
∂t

=
∂

∂ψ


(
u2 + ηε2

∂u
∂ψ

)−1 [
−u3ε0 + η

(
ε1
∂u
∂ψ

+ uε2
∂u
∂t

)] = 0,

(19)

where εi = εi(v), i = 0, 1, 2 are given in (14) and v = ψx = 1/u.
The viscous central invariant a(u) of the equation (19) is the
rational function

a(u) = −
2u

ε0(v)′′
(
ε1(v) + ε′0(v)ε2(v)

)∣∣∣∣∣
v=u−1

(20)

The equation (19) is a first new example of integrable viscous
conservation law with nonlinear viscous central invariant. The
standard van der Waals case is obtained for the particular choice
of the parameters c2 = c3 = 0. This case is associated to the
linear viscous central invariant a(u) = −σu that characterises
the viscous analog of the Camassa-Holm hierarchy as studied
in [31, 32].

3. Extended van der Waals model

In this section we study the model equation (15) viewed as a
deformation of the van der Waals model. It was shown in [4]
the van der Waals mean field partition function satisfies Klein-
Gordon equation, that is obtained as a particular case of (15)
for c2 = c3 = 0 with c1 , 0 and c4 , 0. Hence, dividing the
equation (15) by c1, that is assumed to be non zero, we have

η2
(
∂2ϕ

∂x∂t
+ r2

∂2ϕ

∂x2

)
+ ηr3

∂ϕ

∂t
+ r4ϕ = 0. (21)

where we have introduced the parameters

r2 =
c2

c1
r3 =

c3

c1
r4 =

c4

c1
.

Hence, the expansion coefficients for the internal energy (16)
read as follows

ε0 = −
r2v2 + r4σ

2

v + r3σ
ε1 =

r2σ

v + r3σ
ε2 = −

σ

v + r3σ
.

The request that the function ε0 reduces to the internal energy
expansion coefficient for the van der Waals model (9) immedi-
ately implies that

r4 =
a
σ2 ,

so that

ε0 = −
r2v2 + a
v + r3σ

. (22)

The extended model so constructed can consequently be viewed
as two-parameter (i.e. r2 and r3) family deformation of the
standard van der Waals model. The corresponding equation of
state (8) is given by

x +

[
r2v2 + a

(v − Rr3)2 −
2r2v

v − Rr3

]
t −

R
v − b

= 0. (23)

One can immediately check that for r2 = r3 = 0, the equa-
tion (23) reduces to the van der Waals equation (10). Similarly
to the van der Waals equation, the integrable extended van der
Walls (IEW) equation of state (23) provides a description of the
thermodynamic system in the case where the internal energy
expansion in the parameter η is truncated at the leading order
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and, as well known, it has local validity only, outside the re-
gion of thermodynamic variables where the system undergoes
a phase transition.

Based on the considerations in [4], a global asymptotic so-
lution can be constructed by solving the equation (21) obtained
from the first order expansion of the internal energy (16).

Let us consider the class of solutions to the equation (21) of
the form

ϕ =

∫ ∞

b
exp

[
xv + ε0(v)t − g̃(v)

ση

]
dv, (24)

where g̃(v) is an arbitrary function of its argument. At this stage,
the above solution (24) has to be considered in the formal sense
as the convergence of the integral is not guaranteed for arbitrary
g̃(v), and arbitrary value of the parameters σ, r2 and r3.

We require that at t = 0 (i.e. T → ∞ and P → ∞ such that
the ration P/T is finite) the equation of state for the extended
model coincides with the corresponding limit of the standard
van der Waals equation of state reducing to a perfect gas of
rigid spherical molecules. Consequently, if the temperature is
sufficiently high, possible thermodynamic effects that could be
described by the parameter r2 and r3 are assumed to be negli-
gible as well as the electromagnetic interaction encoded in the
mean field parameter a.
Under this condition, a direct comparison between the mean
field partition function obtained in [4] suggests to choose

σ = −R g̃(v) = R log(v − b).

It is straightforward to verify that, with this choice, the solution
of the form (24) at t = 0, and in the limit η → 0, reduces to the
van der Waals equation of state.

Observing that exponent in (24) behaves as

−
xv + ε0vt − R log(v − b)

Rη
' −

(x − r2t)v
Rη

in the limit v → ∞, the convergence of the integral (24) for all
x > 0 and t > 0 is guaranteed by the request

r2 ≤ 0.

Finally, the required solution to the equation (21) is

ϕ(x, t) =

∫ ∞

b
exp

(
−

xv + ε0(v)t − R log(v − b)
Rη

)
dv, (25)

naturally interpreted as the mean field partition function for the
IEW model. Evaluating the molar volume at t = 0, using the
formula (12), we have

v(x, 0) = −Rη
∂ logϕ(x, 0)

∂x
= b +

R
x

+
Rη
x

that, in the limit η→ 0, coincides with the van der Waals equa-
tion evaluated at t = 0.

4. Critical asymptotics and phase diagram

As discussed in sections above, our model assumes the for-
mal expansion (16) and its solution is given by the partition
function (25). Due to the small parameter η, thermodynamic
properties of the model can be determined via the asymptotic
evaluation of the partition function (25).

For convenience, let us introduce the function

Φ(x, t, v) =
1
R

[
xv + ε0t − R log(v − b)

]
.

Using the standard Laplace’s formula, the partition func-
tion (25) can be approximated, at the leading order, as follows

ϕ(x, t; η) =

∫ ∞

b
e−Φ/η dv '

∑
k

√
2πη
Φ′′k

e−Φk/η (26)

where the sum index runs over the local minima of the function
Φ(x, t, v) at fixed x and t, Φ′ = ∂Φ/∂v, Φ′′ = ∂2Φ/∂v2 and
Φk ≡ Φk(x, t) = Φ(x, t, vk(x, t)) where vk(x, t) is a solution of
the equation

Φ′(x, t, vk) = 0, (27)

that is equivalent to the equation of state (23). Then, vk’s iden-
tically satisfy

x +

 r2v2
k + a

(vk − Rr3)2 −
2r2vk

vk − Rr3

 t −
R

vk − b
= 0.

We point out that the function Φ(x, t, v) is related to the Gibbs
free energy up to a factor 1/t and an additive function of the
variable t only and therefore the above critical points provide
the equation of state for the thermodynamic system.

The critical point (xc, tc, vc) is obtained as a simultaneous so-
lution to the equations

Φ(xc, tc, vc) = 0 Φ′(xc, tc, vc) = 0 Φ′′(xc, tc, vc) = 0.

Solving the above relations we obtain

vc = 3b − 2Rr3 xc =
R

8(b − Rr3)
+

27Rr2(b − Rr3)
8(a + R2r2r2

3)

tc =
27R(b − Rr3)
8(a + R2r2r2

3)
.

(28)

The extended model parametrised by r2 and r3 admits a physical
critical point, provided that formulae (28) do not conflict with
the fundamental inequalities

vc > b xc > 0 tc > 0,

In virtue of this, and bearing in mind that r2 is restricted in sign,
we conclude that admissible critical points do exist if

r3 <
b
R

−
a

R2r2
3 + 27(b − Rr3)2

< r2 ≤ 0. (29)

In Figure 1, for illustrative purposes, we compare the phase dia-
gram for the van der Waals model r2 = 0, r3 = 0 and the similar
diagram for the extended model with the particular choice

r2 = −
55
54

a
b2 r3 =

27
28

b
R
. (30)

5



The two solid lines intersect at the critical point (xc, tc) and
identify the critical region, that corresponds to the value of ther-
modynamic parameters for which the equation of state admits
three distinct roots. Two roots are associated to the local min-
ima of the free energy function Φ that are stable equilibrium
states of the system; the remaining one is a local maximum
associated to an unstable state. The coexistence line (dashed
line in Figure 1) corresponds to the set of points where the free
energy admits two minima of equal magnitude, and it is inter-
preted as the state where two phases (gas and liquid) coexist.
Combining the formulae (12) and (26), we obtain the following
asymptotic expression for the molar volume

v ' R
∂Φl

∂x
η→ 0 (31)

where Φl = Φ(x, t, vl(x, t)) is evaluated on the root vl(x, t) of the
equation of state (27) where the free energy Φ attains the lowest
minimum. Hence, the molar volume v plays the role of order

a)

(xc,tc)
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Figure 1: a) Phase diagrams for the van der Waals model b) and the choice (30)
with R ' 8.3145 J/molK, a = 1 Pa m6 mol−2, b = 1 m3 mol−1.

parameter and develops a discontinuity along the coexistence
curve associated to a first order phase transition.

5. Comparison with empirical model equations

This section is aimed at a comparison between the equation
of state (23), that results from the asymptotic analysis of the
IEW model, and two of the most popular semi-empirical equa-
tions of state introduced in the chemical engineering literature:
Soave’s modification of the Redlich-Kwong equation [9, 10]
and the Peng-Robinson equation [11]. This comparison will
provide some interesting insights on the generality, actual po-
tential and effectiveness of the extension procedure discussed
above.

We look for suitable choices of the parameters r2 and r3 such
that the critical point of the IEW model coincides with the one
of SRK and PR models and compare both critical and off critical
isotherms. For illustrative purpose, van der Waals parameters
are chosen for the hydrogen gas.

For convenience, let us introduce the following parametrisa-
tion of the constants r2 and r3

r2 = k2
a

b2 r3 = k3
b
R
,

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-2

0

2
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6

v I10-3m3M

P
I1

06 P
aM

Figure 2: Isothermal curves for the hydrogen (a = 2.476 10−2Pa m6 mol−2 and
b = 2.661 10−5 m3 mol−1) at the SRK critical temperature, Tc = 23.29K. The
dashed line is the van der Waals equation, the thin solid line associated to the
SRK equation (33), and the thick solid line associated to the IEW equation,
with k2 = −0.2417 × 10−3, k3 = −0.4237 and ac = 1.027a, eq. (32) show an
almost perfect overlap.

where k2 and k3 are (in general) two dimensionless functions of
the van der Waals parameters a and b. Hence, the equation of
state in the original variables v, T and P reads as follows

P =
RT

v − b
−

a
(v − k3 b)2

[
1 + 2k2k3

v
b
− k2

( v
b

)2
]
. (32)

5.1. Soave-Redlich-Kwong equation.
In [9], Soave proposed the following refined version of the

equation of state previously introduced by Redlich-Kwong [10]

P =
RT

v − b
−

a(T )
v(v + b)

, (33)

where b is the hard core volume and a(T ) models attractive
forces van der Waals forces between the molecules. Denoting
with Tc the critical temperature of the model, we have

a(T ) = ac

[
1 + (0.480 + 1.574ω − 0.176ω2)(1 −

√
T/Tc)

]2
,

where ac = a(Tc) and ω is the so called acentric factor. The
acentric factor, introduced by K. S. Pitzer et al. in [12], takes
into account the deviations from sphericity of molecules and it
is typically obtained via empirical analysis.

The critical point (Tc, Pc, vc) of the SRK model is given by

Tc = 0.2027
ac

bR
Pc = 0.01756

ac

b2 vc = 3.847 b .

One can verify that for ac = 1.027a and for the special choice
of k1 and k2

k2 = −0.2417 × 10−3 k3 = −0.4237

the critical point of the equation (32) coincides with the critical
point of the SRK equation (33).

Figure 2 shows a remarkable overlap between the hydrogen
critical isothermal curves of the SRK equation and those of the
equation (32) with the above choice of parameters k2 and k3.
The corresponding van der Waals isothermal curve is also re-
ported for further clarity. Figures 3 and 4 show a very good
agreement between isothermal curves of both models above and
below the critical temperature. The isothermal curves of the
SRK equation are considered for the hydrogen acentric factor
ω = −0.22 [35].
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Figure 3: Isothermal curves above the critical temperature (T = 50 K) for equa-
tions (33) (thin solid line), (32) with k2 = −0.2417×−3, k3 = −0.4237 and
ac = 1.027a (thick solid line) and van der Waals isothermal curve (dashed line)
for the hydrogen, a = 2.476 10−2Pa m6 mol−2 and b = 2.661 10−5 m3 mol−1.
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Figure 4: Isothermal curves below the critical temperature (T = 18 K) for equa-
tions (33) (thin solid line), (32) with k2 = −0.2417 × 10−3, k3 = −0.4237 and
ac = 1.027a (thick solid line) and van der Waals isothermal curve (dashed line)
for the hydrogen, a = 2.476 10−2Pa m6 mol−2 and b = 2.661 10−5 m3 mol−1.

5.2. Peng-Robinson equation.
In [11] Peng and Robinson proposed the equation of state

P =
RT

v − b
−

a(T )
v(v + b) + b(v − b)

, (34)

where

a(T ) = ac

(
1 + (0.3746 + 1.542ω − 0.2699ω2)(1 −

√
T/Tc)

)2
,

ac = a(Tc) and ω is the acentric factor as introduced for the
SRK equation of state. The critical point is

Tc = 0.1701
ac

bR
Pc = 0.01324

ac

b2 vc = 3.951 b .

Similarly to the case of the SRK equation, a comparison can
be made between our extended model (32), and the PR model.
More precisely, for ac = 1.180 a and for the choice

k2 = −0.1387 × 10−2 k3 = −0.4757

the critical point of the equation (32) equals the critical point
of the Peng-Robinson equation (34). Figure 5 shows a re-
markable overlap for critical isotherms given by the equation
(32) with the corresponding PR critical isothermal curves. Fig-
ures 6 and 7 show isothermal curves respectively above and
below the critical temperature with the hydrogen acentric fac-
tor ω = −0.22. As for the SRK equation the agreement is very
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Figure 5: Isothermal curves at the PR critical temperature (Tc = 22.46 K)
for equations (34) (thin solid line), (32) with k2 = −0.1387 × 10−2, k3 =

−0.4757 and ac = 1.180a (thick solid line) and van der Waals isothermal
curve (dashed line) for the hydrogen, a = 2.476 10−2Pa m6 mol−2 and b =

2.661 10−5 m3 mol−1.
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Figure 6: Isothermal curves above the critical temperature (T = 50 K) for equa-
tions (34) (thin solid line), (32) with k2 = −0.1387 × 10−2, k3 = −0.4757 and
ac = 1.180a (thick solid line) and van der Waals isothermal curve (dashed line)
for the hydrogen, a = 2.476 10−2Pa m6 mol−2 and b = 2.661 10−5 m3 mol−1.

good both above and below the critical temperature. The re-
sult of this comparison suggests that the IEW model can be
proposed as a single two parameter van der Waals extension
that allows to interpolate between the SRK and PR equations of
state.

6. Concluding remarks

We have introduced a new procedure for the construction
of multi-parameter extensions of the standard van der Waals
model. Our method relies on the macroscopic formulation of
the van der Waals equation of state as a solution to an inte-
grable nonlinear conservation law. Unlike the numerous empir-
ical extensions based on a phenomenological modification of
the form of the equation of state, we start from the asymptotic
expansion of the internal energy in the small parameter given by
the inverse of Avogadro’s number and require that the nonlinear
PDEs for the molar volume, equivalent to the first law of ther-
modynamics, is linearisable via a Cole-Hopf transformation.
The model so constructed is also required to reproduce the stan-
dard van der Waals equation of state in regime of high temper-
ature and far from the critical region. The Cole-Hopf transfor-
mation provides a natural integrable extension of the mean field
partition function obtained in [4] which satisfies a two parame-
ter deformation of the Klein-Gordon equation. The integrability
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Figure 7: Isothermal curves below the critical temperature (T = 18 K) for equa-
tions (34) (thin solid line),(32) with k2 = −0.1387 × 10−2, k3 = −0.4757 and
ac = 1.180a (thick solid line) and van der Waals isothermal curve (dashed line)
for the hydrogen, a = 2.476 10−2Pa m6 mol−2 and b = 2.661 10−5 m3 mol−1.

condition implies that similarly to the van der Waals case, there
exist infinitely many conservation laws associated to infinitely
many state functions and conjugated variables. Such a family of
admissible integrable extended models is completely specified
by four real constants. Two of these constants can be identified
with the standard van der Waals parameters a and b d respec-
tively to the electromagnetic mean field interaction and the hard
core volume. We have also shown that the two additional defor-
mation parameters can suitably be chosen to match the critical
point of the PR and SRK equations of state which have been
previously introduced in the literature to provide a more accu-
rate description of the critical properties of solutions and multi-
phase systems. With these choices of parameters, isothermal
curves of our model are in good agreement with both PR and
SRK isotherms suggesting that the IEW equation of state (23)
can be used as interpolating model. The procedure presently
discussed demonstrates how new models of phenomenological
and theoretical relevance can be introduced starting from a sim-
pler model, possibly obtained from first principles, introducing
the condition that the extension preserves some key features
of the original model, e.g. C−integrability [36]. Integrability
implies the existence of infinitely many functions of state and
leads to the explicit evaluation of phase diagrams and asymp-
totic formulae for the isotherms. This suggests that new models
could be constructed based on alternative notions of integra-
bility and might have a physical counterpart in the context of
complex and multiphase thermodynamic systems. For exam-
ple, considering higher order terms in the expansion of the free
energy of the form (6)

ε =ε0 + η

(
ε11

∂v
∂x

+ ε12
∂v
∂t

)
+ η2

(
ε21

∂2v
∂x2 + ε22

∂2v
∂x∂t

+ ε23
∂2v
∂t2

)
· · · + g(t)

where εi j = εi j(v) the associated equation (5) can be anal-
ysed by using more general approaches to integrability such as
e.g. symmetry and perturbative symmetry approaches [37, 38,
39], perturbative approaches to integrable or quasi-integrable
(bi-)Hamiltonian conservation laws [40, 41], perturbative ap-
proaches to non-Hamiltonian dispersive and viscous conserva-
tion laws [31, 34]. The asymptotic behaviour and the shock
structure of solutions to nonlinear conservation laws in the limit

of small viscosity-dispersion is as rich as intriguing and could
possibly lead to new type of phase transition in thermodynam-
ics of multicomponent and complex systems associated to non-
classical and dispersive shocks (see e.g. [42]). This interesting
direction is currently under study and will be the subject of a
future publication.
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