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Abstract 
 

The modelling of the agglomeration and deposition on a constricted tube collector of 

colloidal size particles immersed in a liquid is investigated using the Discrete Element 

Method (DEM). The ability of this method to model surface interactions allows the modelling 

of particle agglomeration and deposition at the particle scale.The numerical model adopts a 

mechanistic approach to represent the forces involved in colloidal suspension by including 

near wall drag retardation, surface interaction and Brownian forces. The model is 

implemented using the commercially available DEM package EDEM 2.3®, so that results can 

be replicated in a standard and user-friendly framework. The effect of various particle-to-

collector size ratios, inlet fluid flow-rates and particle concentrations are examined and it is 

found that deposition efficiency is strongly dependent on inter-relation of these parameters. 

 

1 Introduction 

 
Aggregation and deposition of particulate colloids (particle size between 1μm and 5μm 

diameter) on a solid surface is of great importance in many industrial processes such as 

micro-contamination control of microelectronics, membrane filtration, fouling of heat 

exchangers and surface deposition in micro-fluidic devices. In nature, micro-particle 

deposition is of great interest in microbial pathogen removal through natural granular 

filtration of surface water. 

 

Deposition of inert colloids is also significant in water disinfection, since microbes and inert 

colloids exhibit important similarities in saturated porous granular media, as stated by 

Johnson et al (2007)[1], who observed that hydrodynamic drag mitigates deposition and 

drives re-entrainment of both biological and non-biological colloids. 

 

As opposed to dissolved matter, which behaves as a continuum within the fluid medium, 

particulate matter is made of discrete entities that interact amongst themselves, with the 

fluid and with any physical boundaries. Modelling colloidal objects therefore requires specific 

numerical techniques that would allow the consideration of all these interactions. The 

Discrete Element Method (DEM) has been designed to model the flow of granular solids [2] 

by integrating the information (velocity, mass, collisions) of each individual particle. The 

present work uses DEM as framework enabling the consistent implementation of simulations 

of micro-scale particles and colloid dynamics therefore increasing reproducibility, visibility 

and impact.  

 

This paper endeavours to define a model including relevant force models (interfacial 

interaction, retardation effect, Brownian effects) and numerical implementations that enable 

the simulation of hydraulically mediated colloidal surface interaction, flocculation and 

deposition by using the commercial DEM software EDEM 2.3® [3]. 

 

In order to model a solid-fluid system like particle-laden flow or suspensions, DEM 

computation can be coupled with Computational Fluid Dynamics (CFD). More generally, the 

DEM technique allows the consideration of the influence of external force fields by a using 

data map of the field. Independently, DEM also considers boundary-particle and particle-

particle interactions, enabling the modelling of surface and interfacial forces. The force 

contribution of each interaction is added to the force balance and the equation of motion of 

each particle and then integrated [4]. 
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Similarly the DEM approach has been successfully applied by Peng et al. [5] who developed 

a 2D in house DEM-based model to simulate nano-particle aggregation in a quiescent 

suspension influenced by an external alternating electrical field, over a broad pH range. 

Random Brownian diffusion and di-electrophoresis physics were implemented along with the 

standard DLVO forces. The present work represents an attempt to extend such a procedure 

to a 3D suspension flowing through constricted tubes. The deposition in a filter bed can be 

linked to the deposition in constricted tube through the approximate number of constricted 

tubes per unit area of filter. 

 

Yoshida and Tien [6] experimentally studied the deposition of particles in a granular filter 

bed using sinusoidal constricted tubes. They plotted collection efficiency (that is the ratio 

between the amount of particles deposited and the number of particles injected) against the 

wall deposit concentration, in order to study re-entrainment, which was found to be a 

monotonic function of the extent of deposition. It was also stated that past a threshold wall 

concentration, a filter bed becomes non-retentive for particles equal to or less than 0.1μm. 

In the other hand, Marshall [7] reported the importance in the deposition process of 

particle-particle interaction (particle size exclusion combined with inter-particle DLVO 

interaction) by showing that aerosol channels with previously deposited particles and 

agglomerates had a higher capture rate of incoming particles. Bigger deposited 

agglomerates increase floc re-suspension [8]. Therefore particle-particle interactions in a 

flowing fluid are shown to be as critical as surface interaction. Results presented in the 

present paper will demonstrate that this conclusion is also true in hydrosols. 

 

In order to simulate Brownian particle retention in the pore structure of a filter bed, Chang 

et al. [9] used a Brownian dynamics simulation of a constricted tube model. Particle 

diameter varied from 0.5 to 2 microns. They plotted the collection efficiency against the 

Reynolds number for different tube geometries. Like Johnson et al [1, 10, 11], they also 

encountered difficulty predicting deposition efficiency when wall and particle have similar 

surface charges (non favourable conditions) which demonstrates, the challenge faced when 

dealing with a secondary energy minimum. For this reason, in the first instance, the present 

paper will only consider favourable deposition conditions, where surface charges are not 

hindering deposition. 

 

2 Definition of constricted tube geometry 
 

The constricted tube geometry is used as a three-dimensional colloidal particle-tracking 

model that predicts colloid retention in porous media in favourable retention conditions (i.e. 

no electrostatic energy barrier). The geometry of the tube constriction and the inlet fluid 

conditions imposed define the flow field that is computed with CFD.  

 
For comparison purposes, the constricted tube geometry used in this work corresponds to 

the parabolic constricted tube (PCT) described by Chang et al.[9, 12] 

             
Figure 1: Parabolic Constricted Tube parameters definition 
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Universal constant  Value 

h 100μm 

dP 1μm - 2μm 

dc 36μm 

dm 80μm 

Table 1: geometrical parameters of the parabolic constricted tube 
 

3 Numerical model 

 
● Definition of the mechanistic model (forces) 

 

Both the shape of the computational domain and the inlet condition (flow rate, inlet velocity 

distribution) define the flow field inside the tube.  The trajectories of immersed particles 

within the flow field are integrated for different particle sizes, particle concentration and 

fluid flow rates following the method described below. 

 
The Lagrangian method determines the trajectory of each particle under the effect of 

colloidal and external forces, and the governing equation of particle transport is the 

stochastic Langevin equation, including particle Brownian motion. Particle trajectory and 

particle deposition are controlled by the combined influence of colloidal and hydrodynamic 

interactions, this is described by the force balance equation (1) [11]. 
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Eq. 1 

 

Where m is the particle mass and up is the particle velocity vector. FD is the fluid drag, FG 

the gravity, FL the shear lift, FEDL the electrostatic repulsion, FLVdW the van der Waals 

attraction, and FB the Brownian forces.  

 

It is to be noted, however, that DEM is not commonly used to simulate processes involving 

very small finite particles, like colloids. The following paragraphs give an exhaustive list of 

the models and equations required to model the flow of a dilute colloidal suspension.  

 
A. NEAR THE WALL HYDRAULIC RETARDATION 

 

In the vicinity of a channel wall, the displacement of the fluid between the particle and the 

wall becomes increasingly difficult because of the fluid between the particle and the wall 

needing to be accelerated (see Figure 2). 

 

 
Figure 2: Fluid behaviour between a wall and an approaching particle [13] 

 

This causes the particle to bear an additional hydrodynamic drag over the Stokes drag on 

the particle. Hence, near a channel wall, particle motion is retarded due to the presence of 

Fluid being pushed away 

from the contact point 



the wall. Similarly, the presence of neighbouring particles causes the mutual retardation of 

the particles.  

 

In order to consider this phenomenon let us express the 3D-vector of the particle velocity 

into the wall’s local reference frame that is defined by the vector normal to the surface and 

two vectors normal to each other in the plane tangential to the surface. 

 

Any motion of the particle relative to the wall can therefore be expressed as the sum of an 

velocity vector orthogonal to the wall with a velocity vector parallel to the wall. The 

following section explains how to use this decomposition to include the wall’s presence 

effect. 

 

 
Figure 3: Fluid behaviour between a wall and an approaching particle 

 

 

 Particle impinging Orthogonally on a rigid wall 

 

The short-range hydrodynamic force, F, applied to a sphere with radius, R, can be described 

by the modified Stokes equation[11]: 
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Eq. 2 

 

In equation 2, the drag is composed of the sum of two terms: 

- First term, F1, corresponds to the case where the particle with velocity V normal 

to the wall moves in a zero velocity field and therefore experiences a drag in the 

opposite direction of its velocity. 

- the second term, F2 corresponds to the case of a motionless particle within a 

liquid flow field with velocity U at the centre of the particle. The particle therefore 

experiences a drag in the same direction of the liquid velocity. 

 

Equation 2 deviates from stokes law by the introduction of λt and f2, correction factors that 

take into account the presence of a nearby wall. They are functions of the inter-surface 

separation distance, assuming a non-slip boundary condition applies to both the particle and 

solid surfaces. The factors tend to 1 at a large enough distance from the wall. 

 



For the situation in which the sphere radius is small compared to the separation distance, 

Lorentz[14] found that the resistance of the particle is greater than would be predicted by 

Stokes’ law by a factor  . Independently of the ratio of radius to distance, Brenner 

[15](1961) calculated the general analytical expression for  , the first two terms of the 

Taylor expansion of   being the Lorentz formula. Nguyen and Evans (2007) derived the 

exact and approximate expressions for resistance coefficients of a motionless colloidal 

sphere approaching a solid surface. In order not to hinder computation efficiency, analytical 

retardation functions are accurately approximated by simpler equations. For a solid particle 

approaching a much larger solid surface with non-slip boundary conditions at low Reynolds 

numbers, the approximate solution is [16]: 
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Eq. 3 

 

 

 Translational and rotational motion of a sphere parallel to a rigid wall 

 

Goldman et al (1967) [17, 18] developed asymptotic solutions for the near-wall 

hydrodynamic forces when a particle flows past an obstacle. 

 

For a non-rotating sphere near a plane in a quiescent fluid, Goldman et al computed the 

asymptotic drag function: 
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Eq. 4 

 

Considering the linearity of Stokes equations, Goldman et al superimposed the force 

induced by a linear shearing flow past an immobilized sphere near a rigid wall: 
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Eq. 5 

 

In the end the drag force acting on a sphere flowing closely along a wall is the sum of all 

contributions: 
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Eq. 6 

 

 

B. BROWNIAN MOTION AND DIFFUSION 

 

For sub-micron sized particles, the local Stokes drag force must be corrected by a 

Cunningham factor [19], regardless of near the wall hydraulic retardation on the Stokes 

drag. The drag force expression is then given by: 
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F Is the usual drag force including the hydraulic retardation and  is the molecular mean 

free path of the surrounding medium.  
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Eq. 8 

Where  is the drag or friction coefficient ( P
r..6   ),kB is the Boltzman constant and T 

is the temperature in Kelvin. Following the method used by Ounis et al. (1991) [19], the 

Brownian force components are independent white noise processes. At every time step, 

three independent Gaussian random numbers (Gi) of zero mean and unit variances are 

generated. These relate to the Brownian force (FB), to be implemented in the momentum 

conservation equation (Eq. 1 ), by: 
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Where Ni is the amplitude of the ith component of the Brownian force and has for 

expression: 
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Eq. 10 

 

C. DLVO FORCES 

 

The interaction between two charged solute particles is generally expressed by the DLVO 

potential, which comprises an attractive Lifshitz–Van der Waals (LVdW) and a repulsive 

electrostatic double layer (EDL) interaction[21].  

 

In this paper, we are restricting the simulation favourable condition, meaning only the Van-

der-Waals force between two spherical surfaces immersed in a fluid medium is considered: 
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Eq. 11 
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Figure 4: interaction between two spherical particles 

 

Magnetic retardation effects should also be included as a multiplying factor in the Van der 

Waals force expression [22]: 
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Eq. 12 

Table 2 summarises the forces influencing the dynamics of colloidal particle that need to be 

incorporated in the momentum conservation equation (Eq. 1). 

 

Force expression Ref 
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Table 2: Expression of forces to be considered in the momentum conservation equation 

 

4 Model implementation 
 

 
 CFD method description 

 
 



Although analytical solutions exist for flow fields inside constricted tube of regular 

geometries, this might not be the case for other system configurations, and therefore 

computational fluid dynamics (CFD) was used to derive the flow field. The commercial 

software Fluent 12.1 has been used to solve the steady-state Navier-Stokes equations 

under laminar flow hydrodynamics. The mesh was created to ensure residual convergence 

and stability. Because of the axi-symmetric nature of the constricted tube, simulations were 

carried out for only a tenth sector of the tube (Figure 3) 

 

 
Figure 5: reduction of the computational domain 

 

Boundary conditions for the model include no-slip boundaries at the tube wall surface, 

symmetry boundaries on both lateral boundaries of the slice and a predefined velocity inlet 

at the cell entry. 

 
 DEM implementation description 

 
Mechanistic principles are implemented via the EDEM™ 2.3 software which allows coupling 

with CFD data, with the ability, via API programming, to add the required force models.  

Particles were created within an inlet control window of width 0y =5E-6μm (Figure 6), which 

stretches along the wall of the tube. Following the limiting trajectory model, particles 

injected further way from the wall would not contribute to the deposition process. 

 

 
Figure 6: particle inlet window 

 

 

Particles were randomly created one by one following a uniform law over the control window 

surface and the inlet particle concentration was tuned through the Particle creation rate in  

ranging from 5E3 sparticles /  to 1E5 sparticles /  this easily relates to the inlet bulk 

suspension’s particle concentration [20] by: 

In order to reduce the 
computation time, the domain 
has been reduced to a tenth 
portion of the tube 
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Eq. 13 

 

For each single simulation, the computation was left running until the suspended particles 

escaped entirely and only the deposited particles remained in the computational domain. 

The collection efficiency could then be calculated as: 

 

gen

dep

in

w

N

N

A

A
.  

Eq. 14 

 

Due to the high degree of randomness in the particle inlet, each simulation was repeated 

several times and the collection efficiency averaged over the range of the simulations. 
 

 Limitations of the model 

 
The current version of the EDEM software does not give the possibility to perform 

systematic analysis of the size distribution of the particle clusters as a function of either 

time or space. Such a feature would however be useful in order to support visual 

observations. Regarding the implementation of the particle mechanics immersed in water, 

the model described does not include hydraulic retardation between particles, which would 

be required for high particle concentrations. The implementation of surface interaction, 

surface roughness and heterogeneity has not been taken into account, although it was 

argued to have significant effect on particle deposition[24, 25].  

 
 

5 Results and Discussion 
 

The simulation parameters common to all tested configurations are presented in Table 3.  

 

Universal constant  Value 

Boltzmann constant Bk  1.381e-23 J/K 

Temperature T  300 K 

characteristic wave length   1e-7 m 

Hamaker constant 
22nH   1.5e-20 J 

Water dynamic viscosity   1e-3 kg.s/m 

Density of particle P  1e3 kg/m3 

Table 3: simulation parameters 

 

Specific configuration parameters are summed up in 



 
Table 4 

 
Table 4: configuration parameters and number of deposited particle for each configuration 

 

The number of particles deposited in a parabolic constricted tube (PCT) obtained from the 

numerical model and simulation procedures described above with the purely attractive Van-

der-Waals interaction energy curves are given in Figure 7, which clearly shows the 



variability between different runs of same configuration, due both to the random particle 

generation and the randomness of cluster formation and re-suspension. 

 

 
Figure 7: number of deposited particles for each configuration 

 

 

● Effect of particle size on deposition 
 

As a trend, for the range of particle sizes and concentration considered in this work, results 

show that the smaller the particle the less the chance of deposition. It is to be observed that 

for a given particle size, higher concentration induces higher deposition. The determining 

factor on particle deposition is not merely the size, but the ratio of total volume of particles 

flowing inside the tube with respect to the volume of the fluid domain. Interestingly, the 

total volume of particles is only the number of particles in the domain multiplied by the 

volume of each particle; so there is already a correlation to be observed between the size of 

particle and the concentration on the number deposited, the higher the volume of particle 

the higher the deposition. However, the number deposited does not increase linearly with 

the total volume of particles; this is due to impaction and scouring mechanisms as later 

described. 

 

● Effect of suspension concentration and particle size exclusion 
 

Fluid and particle material are chosen to have the same density, therefore inertial effects do 

not play any role in the particle deposition process. As they have a finite volume, the 

number of particle per unit of volume plays a critical role in aggregation. EDEM 2.3® allows 

considering the finite nature of particle volume, and results show that the major deposition 

mechanism identified is particle size exclusion, meaning that particles cannot physically 

overlap or occupy the same volume as another object. Instead, particles colliding then push 

each other, which is a major cause of lateral displacements and that induces wall 

aggregation.  

 

● Particle deposition morphology  
 



Flocculation behaviour of the particle suspension flowing through the tube is displayed on  

Figure 8. 

 

Both fluid and particles flow from the top of the figure to the bottom (though note that 

gravity was not included in the simulation and the orientation of the figure has no 

significance). In the region immediately downstream of the inlet, at the top of the figure, 

particles are evenly distributed due to the particles being injected following a uniform 

average distribution over the control window, corresponding to the particle inlet rate 

previously described. Particle inlet is in a smallregion near the wall, particles flowing at the 

centre  being omitted,  as following the limiting trajectory principle, they do not contribute 

to the deposition. Under the combined influence of the tube constriction, Brownian forces, 

particle volume and velocity gradient, the particles form clusters, or flocs, as they flow 

along the tube. Clusters grow while flowing through the constriction, and doing so, they 

segregate themselves from each other, meaning that distinct flowing aggregates are formed 

that are delimited by large, particle-free regions in between (see  

Figure 8, configuration 1 and 3). 

 

The deposition morphologies resulting from each configuration are displayed in  

Figure 9. Along with Table 4 and Figure 7, it can be seen that collection efficiency decreases 

when concentration or particle size decreases, and also when flow rate increases. 

 

The growth rate of the flocs increases with increasing particle concentration (as defined in 

Eq. 13) since particles are given more chance to collide through volume exclusion when a 

larger number of particles occupies the same volume. That, however, does not necessarily 

mean that particles deposit proportionally to the concentration: see columns 1 and 2 of 

Table 4, as flocs formation can have an adverse effect on deposition through impaction and 

scouring. This increases re-suspension via the mechanism shown in  

Figure 11 and described later. The re-suspension rate is defined as the ratio of deposited 

particles with respect to detached particles. 

 

 



  
 

Figure 8: particle agglomeration during particle injection  
 

Fluid direction 

Surface contact arrow 



 
 

Figure 9: Deposited particles after free-flowing particles have escaped  

 

● Effect of flow rate on deposition 
 
The number of particles deposited where Uin = 0.1 cm/s is always greater than where Uin = 

0.2 cm/s, hydraulic forces being much larger in the later case, so surface forces become 

less significant and re-suspension is easier.  

 

Between configurations 1 and 3, the effect of flow rate on the size of flowing flocs can be 

compared visually. In order to keep the same volume concentration of particles, the particle 

creation rate was increased in the same proportion as the inlet  velocity, following Eq. 13. 

Interestingly, from visual inspection the flow rate does not seem to influence the size of 

flowing clusters. Therefore, at given particle volume concentration, determining factors for 

cluster size can only be the remaining ones, meaning, the constriction geometry, the 

particle size and the other physical properties of the particles. 

 

● Effect of Brownian motion 
 

For configuration 1, a series of simulations have been performed with Brownian forces 

enabled and disabled. Results are displayed on Figure 7. As previously observed by Chang 

et al[12], Brownian particles have a lower collection efficiency than non-Brownian particles, 

which is explained by the random forces having an adverse effect on deposition, due to the 

Brownian forces being applied at each time step, uniformly in all directions i.e. mostly in 

directions non favourable to aggregation. 
 



 

● Importance of cluster formation 
 
Altmann [26] showed that deposited particles are either re-suspended as flocs or not at all, 

meaning that single deposited particles will not re-suspend due to hydrodynamic forces 

alone. Because of their bigger size, the side of deposited clusters closer to the centre of the 

tube is subjected to larger fluid forces than the cluster side near the wall.  

Figure 10 plots the evolution of the number of deposited particles as a function of time;, by 

looking at the graphs one can clearly see the deposition and re-suspension behaviour.  

 

If a cluster is loosely attached to the wall, i.e. via a small number of its particles, it can roll 

along the wall, attaching itself to the wall via different particles that successively attach and 

detach themselves from the wall as the cluster rolls. The rolling mechanism is generally 

associated on  

Figure 10 with flattened peaks (indicated by the arrows). Where there are higher peaks, the 

clusters are bigger.  

 

In some cases, the number of particles that attach the cluster to the wall is not enough to 

balance the fluid forces acting on the cluster, and it will re-suspend ( 

Figure 11), meaning it is pulled back into the bulk of the suspension. 

 

Aggregate or floc formation in the bulk of the fluid facilitates particle re-suspension by 

cluster collision and scouring; in fact, these phenomena are identifiable here as the main 

cause of particle detachment.  

Figure 11 illustrates each step of the mechanism, where a deposited aggregate of particles 

(1), grows bigger by accumulating/catching free flowing particles and flocs, (2). Then either 

the impact (3) of the free flowing cluster will cause the initial deposited aggregate to re-

suspend (4) or the newly agglomerated particle will cause the deposited aggregate to 

withstand higher hydraulic force without contributing to the cluster attachment to the wall, 

causing it to either roll or re-suspend directly. 

 

 
 



 
 

Figure 10: Evolution of particle deposition 

 

 



 

 
 

Figure 11: Frame by frame example of scouring mechanism on deposited particles 

 
 



 

 
6 Conclusion 

 
A series of particle scale simulations have been performed using DEM in order to 

numerically model flocculation and deposition of colloids in a constricted tube. Colloidal 

surface forces were implemented and interfacial Van der Waals interaction, retardation 

effects were considered along with Brownian forces. A numerical model was implemented 

through the commercial DEM software EDEM 2.3®, allowing the implementation of custom 

forces. A CFD computed velocity field was used to represent fluid velocity. 

 

Results show that number of particles deposited does not increase linearly with the total 

volume of particles, but is controlled byimpact and scouring mechanisms. Graphs showing 

the evolution of the number of deposited particles in function of time can be interpreted to 

monitor the deposition and re-suspension behaviour of clusters of particle. 

 

The ratio of total particle volume to fluid volume is a determining factor for deposition 

efficiency, due to the particles’ lateral displacement resulting from volume exclusion and 

collision. Cluster formation influences deposition by increasing interception rate, which 

through impact, has an adverse effect on deposition. Collection efficiency is also reduced 

through cluster rolling and scouring. 

 

Implementing colloidal forces with DEM-CFD technique through the commercial framework 

of EDEM2.3 has offered the ability to look easily into details of each of the particle 

deposition factors and their correlation between each other. DEM-CFD modelling in this 

context therefore represents an improvement on the previously published work, enables 

higher visibility and reproducibility, and broadens the number of possible users of such 

modelling.  
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