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ABSTRACT 

Rechargeable ion batteries based on the intercalation of multivalent ions are attractive due to 

their high energy density and structural stability. Surface of cathode materials plays an 

important role for the electrochemical performance of the rechargeable ion batteries. In this 

work we calculated surface energies of (001), (110) and (111) facets with different 

terminations in spinel MgMn2O4 and MgNi0.5Mn1.5O4 cathodes. Results showed clearly that 

atomic reconstruction occurred due to surface relaxation. The surface energies for the (001), 

(110) and (111) surfaces of the MgNi0.5Mn1.5O4 were 0.08, 0.13 and 0.11 J/m
2
, respectively, 

whereas those of the Ni-doped MgMn2O4 showed less dependence on the surface structures. 
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1. Introduction  

Currently, the electrode materials for rechargeable ion batteries based on the intercalation of 

multivalent ions are attractive for their high energy density and structural stability [1-3]. The 

research is now focused on finding suitable electrode materials with a good electrochemical 

performance for magnesium ion batteries (MIBs) in order to achieve high energy capacity and 

safety rechargeable ion batteries for electric vehicles [4-11]. Oxides with a spinel structure 

such as spinel-type Mn2O4 are widely used as cathode materials for lithium ion batteries 

(LIBs) [12, 13]. Actually spinel-type LiMn2O4 has been used as the cathode materials of the 

LIBs in electric vehicles [14, 15]. However, the commercial development of the LiMn2O4 

(LMO) is hindered by several drawbacks including a severe capacity degradation during 

cycling due to a Jahn-Teller (JT) distortion, as well as dissolution of Mn in the electrolyte. 

Doping with other transitional metal elements into the LMO can improve the electrochemical 

performance of the LIBs. Among them doping with Ni could make the spinel structure LMO 

more stable, thus improving the circulation characteristics of the LIBs [16, 17]. Amine et al. 

[18] reported that the LiNi0.5Mn1.5O4 (LNMO) used as the cathode material for LIBs presented 

high discharge capacity and good cyclic reversibility.  

   Intercalation of Mg
2+

 ions instead of Li
+
 ions into a spinel-type Mn2O4 could be used in 

fabricating a cathode material for the MIBs. This has attracted much attention since the MIBs 

can provide a higher volumetric energy density and a lower cost as Mg
2+

 ions carry two 

charges per ion, and the charge storage capability is twice as much as that of Li
+
 ions at the 

same concentration. Yuan et al. [2] reported that λ-MnO2 showed a high specific capacity and 

good coulombic efficiency in a MgCl2 electrolyte. A large discharge specific capacity of 545.6 



3 

 

mAh g
−1

 was achieved in 0.5 mol dm
−3

 MgCl2 at a current density of 13.6 mA g
−1

, together 

with a high columbic efficiency of ~100% [2]. Kim et al. [3] investigated the reversibility of 

Mg intercalation into the spinel-type Mn2O4 using a scanning transmission electron 

microscope, and provided a direct visualization of electrochemical intercalation of Mg
2+

 into 

the tetrahedral sites of a spinel oxide host. Kim et al. [11] claimed that the electrode composed 

of λ-MnO2 has a higher discharging capacity and a better efficiency for the insertion/desertion 

of the Mg ions when compared with those of α-MnO2 in the first cycle, but exhibited a poor 

capacity retention of 57% after the fifth cycle. It is generally agreed that nanoscale electrode 

materials have advantages to allow a fast Li diffusion, show a better accommodation of the 

strains during lithium insertion/removal, and thereby improve the cycle life of the LIBs [19]. 

The dramatically increased electrode/electrolyte contact areas due to using the nanostructured 

LIBs lead to higher charge/discharge rates, shorter path lengths for electronic transport 

(permitting operation with a low electronic conductivity or at a higher power) and shorter path 

lengths for Li ion transport (permitting operation with a low Li ion conductivity or at a higher 

power) [19]. Superior rate capability in nanostructured LiNi0.5Mn1.5O4 has been reported [20]. 

The surface stability is important for the nano-scale electrode materials to be used [21, 22], 

Surface modifications by carbon materials, AlF3, nano-Y2O3, TiO2 and Al2O3 coatings have 

been used to improve the electrochemical performance of the LiNi0.5Mn1.5O4 [23-26]. As the 

valence of Mg ions is higher than that of Li ions, the valence of Mn in MgMn2O4 (MMO) 

must decrease from average 3.5
+
 to 3

+
 to keep the charge neutrality. The JT distortion occurs 

due to the presence of high spin Mn
3+

 ions in the MMO. By replacement of part of the Mn 

with Ni, some Mn can keep at a state of 4
+
, thus avoiding the JT distortion, as discussed in the 
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section of results of this paper. From the superior rate capability of the LNMO [20], in this 

paper we used a doping level of 0.5 in the MgNi0.5Mn1.5O4 (MNMO) to investigate the doping 

effect on the surface stability of the MMO. The optimal doping level is needed to verify from 

theoretical and experimental confirmation. Considering the importance of surface structure 

and stability of the MMO and MNMO as cathode materials for the MIBs, in the present work, 

we investigated surface stability of both the MMO and MNMO using density functional 

theory (DFT). All the possible terminations of low-index (001), (110) and (111) facets on the 

MMO and MNMO were discussed. 

  

2. Simulation details 

   All the calculations were performed using the SIESTA code [27, 28] within a generalized 

gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional [29]. The 

interactions between the core electrons and valence electrons were described by nonlocal 

norm-conserving pseudo-potentials [30]. Simply employing the GGA is insufficient to capture 

the correct electronic state of materials. GGA+U can improve the description of the electronic 

structure. Karim et al. investigated the surface properties of LiMn2O4 spinel using the GGA 

and GGA+U for the electron exchange-correlation function [31]. They found that although the 

surface energies derived in the GGA and GGA+U differ by the absolute values, but the 

resulting Wulff shape obtained using these two is comparable due to their similar relative 

surface energies [31]. Therefore, we expected the omission of the Hubbard-type correction in 

our work would not significantly affect our conclusion. The valence electron wave functions 

were expanded using double-ζ basis functions. The lattice parameters and atom positions were 
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all allowed to relax by using a conjugate gradient minimization with a target pressure of 0 

GPa and the residual forces on each atom were smaller than 0.02 eV/Å on each atom. For 

calculating the self-consistent Hamiltonian matrix elements, the charge density was projected 

on a real space grid with a cutoff of 180 Ry. The localization radii of the basis function were 

determined using an energy shift of 0.01 Ry. The split norm used was 0.16. During the 

simulations a linear mixing strategy [32] was used where the input density matrix for the (n+1) 

stage of the self-consistent cycle was: 𝜌
𝑛 + 1

𝑖𝑛
= 𝛼𝜌

𝑛
𝑜𝑢𝑡

+ (1 − 𝛼)𝜌
𝑛
𝑖𝑛

. Density mixing 

weight of 0.01 was used in this work. An 4×4×4 Monkhorst-Pack mesh [33] was used for the 

k-points sampling of the Brillouin zone integration. Spin-polarization was considered for all 

the simulations. 

Recently, it was reported that the standard DFT with (semi)-local exchange correlation 

functional is not sufficient to describe the structural changes in cathode materials [34, 35]. 

Combining the DFT+U calculation and the van der Waals (vdW) interactions can yield more 

accurate lithiation voltages, relative stabilities, and structural properties which are in better 

agreement with experimental values in a layered cathode LixCoO2 [34]. The vdW interactions 

help to stabilize inserted ions and contribute to hinder ion diffusion in a layered V2O5 [36].  

From the results of Scivetti et al. [37], the vdW interactions do not affect relative stability of 

(001)-Li terminated surface and the (111)-Mn/Li-terminated surface in the spinel LNMO. 

Therefore, we expected the omission of the vdW interactions in our work would not 

significantly affect our conclusion. 

Crystal structures of the MMO and MMNO are shown in Fig. 1. The simulation supper 

cells of both the MMO and MNMO are consisted of 56 atoms. The skeleton of spinel-Mn2O4 
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in the MgMn2O4 (shown in Fig. 1(a)) is a three-dimensional network with tetrahedral and 

octahedral coplanar structures. Therefore, oxygen atoms were accumulated closely as in the 

face-centered cubic structure, and 75% of Mn atoms were alternately located among cubic 

close packing oxygen layers. The remaining Mn atoms were located in the adjacent layers. 

There were still plenty of Mn ions existed in each layer to keep the oxygen an ideal state for a 

cubic close packing, and ions were directly embedded in the tetrahedral gaps of oxygen atoms. 

This type of three-dimensional tunnel structure is more advantageous than the interlayer shape 

for insertion/extraction of the Mg ions. As shown in Fig. 1(b), Mg, Mn and Ni in spinel-type 

MgNi0.5Mn1.5O2 occupy 8c, 4b and 12d sites, respectively; O atoms occupy the 8c and 24e 

sites. Before the calculation of surface energies, the unit cells of the MMO and MNMO were 

all optimized. According to the periodic arrangement, all the possible terminations for (001), 

(110) and (111) facets were considered, i.e. two types of (001) and (110) terminations for both 

the MMO and MNMO, six types of (111) terminations for the MMO and MNMO, 

respectively. Using periodic boundary conditions for the repeated slab model calculations, the 

slabs were separated at least 25 Å in order to avoid the periodic image interactions. 

The surface energy surfE  was calculated using the following equation [38]. 

relclsurf EEE                                  (1) 

where clE is the cleavage energy of complementary surface, which can be calculated for the 

unrelaxed slabs using Eq.(2). 

         SnEEEE 4/)B()A()BA( bulkunrelunrelcl                   (2) 

where )(unrel AE and )(unrel BE  represent the total energies of unrelaxed A- and B-terminated 

slabs, respectively. A and B-terminated surfaces are mutually complementary; S is the area of 
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the A- and B- terminated surface, and bulkE is the energy of corresponding bulk materials per 

formula units; n is the number of formula units in the A and B-terminated slabs. relE  is the 

relaxation energy for each of the surfaces, which can be calculated using Eq.(3). 

  SEEE 2/)A()A()a( unrelrelrel                          (3) 

Here )a(relE  is the relaxation energy of the A-terminated surface, )A(relE is the total energy 

of A-terminated slab after relaxation, and )A(unrelE is the total energy of unrelaxed 

A-terminated slab. 

 

3. Results and discussion 

The unit cell of the MNMO contains 8 Mg atoms, 32 O atoms and 16 Ni+Mn atoms. All 

the possible variations of randomly distributed Mn and Ni in the unit cell are tested, as shown 

in Fig. 1 (a) and Table 1. The sequence of number of metals in the Table 1 has been marked in 

Fig. 1 (a), and the calculated relative energies reference to the lowest energy is shown in Table 

1. Results show that the most stable structure is when the Ni and Mn ions are regularly 

ordered and occupy 4b and 12d, respectively. The subsequent bulk and surface calculations of 

the MNMO were based on this configuration, as shown in Fig. 1(b). 

Both ferromagnetic (FM) ordering [39] and antiferromagnetic (AFM) [40] orderings along 

the [110] direction with alternating spin up and down (↑↓↑↓) were tested for both the bulk 

MMO and MNMO. The calculated lattice constants of the bulk MMO relaxation with an FM 

ordering spin are: a=b=c=8.56 Å with a cubic symmetry (α=β=γ= 90°), while the JT distortion 

occurs along the z direction after the bulk MMO relaxation with an AFM ordering spin 

(a=8.31, b=8.31, c=9.10 Å, α=β=γ= 90°). These results agree with that for the LMO [41]. 
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After replacing Mn with Ni in the MMO, the structure of the MNMO can keep the cubic 

symmetry calculated either using the FM or AFM, indicating that the JT distortion can be 

effectively constrained by substituting Mn with Ni. The calculated lattice constants are listed 

in Table 2. The results of Kim et al. [41] also showed that the AFM or FM ordering does not 

have a considerable effect on the surface energies of (001) surface of the LNMO. Therefore, 

only the FM ordering spin was considered for the rest simulations of this work. 

Building stoichiometric slabs with symmetrically equivalent surfaces and relaxing all 

atoms of the slabs, proved by Kim et al. [41], were the fastest converging scheme in 

calculating the surface energies. Fig. 2 shows the dependence of surface energies on the slab 

thickness. The variation of surface energy differs for different orientation surfaces with 

different terminations. The surface energies of Mn/O-terminated (001) surface of MMO and 

Ni/Mn/O-terminated (001) surface of MNMO decrease as the slab thickness increases. From 

the figure, all the surface energies are converged to given values as the thickness of slab 

increases. The number of atoms used for calculating the values in this work are given in Table 

2, which is sufficient to obtain accurate surface energies. 

The MNMO is composed of Mg- and Ni/Mn/O- atomic layers alternatively along the [001] 

crystal orientation, as shown in Fig. 3(a). Therefore, there are two types of terminations for 

the (001) surfaces, i.e. Mg- and Ni/Mn/O- atomic layers. The Mg- and Mn/Ni/O-terminated 

surfaces are complementary mutually along the [001] crystal orientation. There are also two 

types of terminations for the (001) surfaces in the MMO, i.e. Mg- and Mn/O- atomic layers as 

shown in Fig. 3(b). The MNMO is stacked with sequences of Mn/O-, Mg/Ni/Mn/O(I), 

Ni/Mn/O-, and Mg/Ni/Mn/O(II) atomic layers along the [110] crystal orientation, as shown in 
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Fig. 3(c). Therefore, there are four types terminations for the (110) surfaces in the MNMO, i.e. 

Mn/O-, Mg/Ni/Mn/O(I)-, Ni/Mn/O-, and Mg/Ni/Mn/O(II)- atomic layers. Fig. 3(d) shows that 

there are only two types of terminations for the (110) surfaces in the MMO, i.e. Mn/Ni- and 

Mg/Mn/O-layers. As shown in Figs. 3(e) and 2(f), there are six types of terminations for both 

the MNMO and MMO along [111] crystal orientation. The configuration of the atomic layers 

of the MNMO has the periodical sequences, i.e. in the order of Mn/Ni(I)-, O(I)-,O(II)-, 

Mg(I)-, Mn/Ni(II)- and Mg(II) atomic layers as shown in Fig. 3 (e). The O(I)- and O(II)- 

terminations have the same atomic layer structure but different adjacent atomic layers which 

may lead to the different surface stabilities. Similarly, the surfaces terminated with Mg(I)- and 

Mg(II)-layers have the same atomic configuration but different adjacent atomic layers. The 

Mn/Ni(I)-terminated surfaces are consisted of nine Mn atoms and three Ni atoms, and have 

different atomic layer structures with Mn/Ni(II)-terminated surfaces, which have three Mn 

atoms and one Ni atom in the plane. 

  As the bonding environment of the surface atoms is different with that in the counterpart 

one in the bulk materials, thus surface reconstructions often occur, which affect the properties 

of materials [42-44]. The atoms are frequently arranged periodically on a two-dimensional 

surface, but the periodicity is often broken in the direction perpendicular to the surface. The 

calculated surface energies for (001), (110) and (111) facets with different terminations are 

summarized in Table 3. The surface energies are 0.08 and 0.11 J/m
2
 for the (001) surfaces 

terminated with Mg- and Mn/Ni/O-layers, respectively. For the (001) surface terminated with 

Mg-layer, the surface Mg atoms move to the second Mn/Ni/O layer perpendicular to the 

surface after relaxation, as shown in Figs. 4(a) and 4(b). Whereas for the (001) surface 



10 

 

terminated with Mn/Ni/O-layer, the outmost Mn/Ni/O-layer moves inward towards the second 

layer after relaxation. The distances between the first layer and second layer are 1.17 and 

0.95Å before and after relaxation, respectively. The same surface relaxation has been 

observed on (001) surfaces of the MMO. The surface energy values of the (001) surface of 

MMO terminated with Mg- and Mn/O-layers are 0.08 and 0.10 J/m
2
, respectively. For the 

(001) surface of the MMO terminated with a Mg-layer, the Mg atoms on the surface move to 

the second Mn/O layer perpendicularly to the surface after relaxation, whereas those on the 

(001) surface terminated with Mn/O-layer move to the second Mg-layers after relaxation. The 

distance between the first layer and second layer decreases from 1.17 to 1.03 Å after 

relaxation, as listed in Table 4. 

The (110) surfaces of the MNMO show less dependence on the terminations. The surface 

energies are close to 0.13 J/m
2
. There are no prominent changes of the surface atomic 

configurations except for the shortening of interlayer distance between the first and second 

atomic layers after relaxation. The ions on the (110) surface terminated with the Mn/O-layer 

move closer to the second layer and the interlayer spacing between the first layer and second 

layer decreases from 1.59 to 1.49 Å after relaxation. For the (110) surface terminated with 

Mg/Mn/Ni/O(I)-layer, the distances are 1.41 and 1.37 Å before and after relaxation, 

respectively. In addition, for the MNMO (110) surfaces terminated with Mn/Ni/O- and 

Mg/Mn/Ni/O(II), the interlayer distance between the first and second atomic layers after 

relaxation was shorten with ~0.1 Å. The same surface relaxation occurs for the MMO (110) 

surfaces. The surface energies of (110) facets terminated with Mg- and Mg/Mn/O are both 

0.13 J/m
2
. The (110) surface of MMO terminated with Mn/O-layer has no obvious change 
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except the decrease of the distance between the first and second atomic layers from 1.60 to 

1.44 Å. The distances between the first and second atomic layers for the (110) surface 

terminated with Mg/Mn/O-layer are 1.42 and 1.37 Å before and after relaxation, respectively.  

The surface energy is not only related to the atomic configuration of terminated surface, 

but also depends on the sublayer. The surface energies of Mg(I)- and Mg(II)-terminations for 

the MNMO (111) surface are 0.22 and 0.12 J/m
2
, respectively. They have the same atomic 

configuration but different adjacent atomic layers. For the (111) surface with 

Mg(I)-teimination, the surface Mg atoms and the second Mn/Ni layer keep intact after 

relaxation, whereas the third Mg atomic layer moves inward to the fourth O-layer 

perpendicular to the surface (shown in Figs. 4(c) and 4(d)). The MNMO (111) surface 

terminated by Mg(II)-layer moves closer to the sublayers after relaxation. The distances 

between the first and second layers for the (111) surface terminated with Mg(II)-layer are 0.64 

and 0.54 Å before and after relaxation, respectively. The surface energies of the (111) facet 

terminated with O(I)- and O(II)-layers are 0.25 and 0.19 J/m
2
, respectively. The different 

adjacent atomic layers of O(I)- and O(II)-terminations would be a major factor for surface 

energies difference. For the (111) surface with O(I)-termination, the surface atoms maintain 

previous configuration after the relaxation, whereas the second atomic layer moves to the 

third layer perpendicular to the surface, as shown in Figs. 4(e) and 4(f). Nevertheless, the 

O(II)-terminated surface has no obvious change except the decrease of the distance between 

the first and second atomic layers from 1.21 to 0.95 Å.  

It is worth mentioning that the (111) Mn/Ni(II)-terminated surface shows the lowest 

surface energy of 0.11 J/m
2
 in all possible terminations of the (111) facets. The 
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Mn/Ni(I)-terminated surface (consisted of nine Mn atoms and three Ni atoms) has different 

atomic layer structure with that of the Mn/Ni(II)-terminated surface which has three Mn 

atoms and one Ni atom. In addition, they have different adjacent sublayers. The 

Mn/Ni(I)-terminated surface is near O-layer, whereas the Mn/Ni(II)-terminated one is adjacent 

to the Mg-layer. The (111) surface terminated with Mn/Ni(I)-layer moves near to the second 

atomic Mg-layer after relaxation, and the distances are 1.04 and 1.02 Å before and after 

relaxation, respectively. However, the surface atoms remain largely intact after relaxation for 

the (111) surface terminated with the Mn/Ni(II)-layer, whereas the second Mg atomic layer 

moves inward to the third O-layer perpendicular to the surface which is apparently different 

from the above results of the (001) and (110) surfaces as shown in Figs. 4(g) and 4(h).   

The same surface relaxation occurs for the MMO (111) surfaces. The (111) surfaces of 

the MMO terminated with Mn(II)-layer and Mg(II)-layer have the lowest surface energy of 

0.11 J/m
2
, as listed in Table 3. The MMO (111) surfaces terminated by Mn(I)-, O(II)- and 

Mg(II) show no prominent changes except for the shortening of distance between the first and 

second atomic layers after relaxation. The distances between the first and second layers of 

Mn(I)-terminated surfaces are 1.03 and 1.02 Å before and after relaxation. The distances 

between the first and second layers for the O(II)-terminated surface are 1.23 and 0.84 Å 

before and after relaxation, respectively. The interlayer distance between the first and second 

atomic layers of the Mg(II)-terminated surface after relaxation shortens with ~ 0.1 Å. The 

surface atoms maintain previous configuration after the relaxation, but the second atomic 

layer moves to the third layer perpendicular to the surface for the (111) surface terminated 

with O(I)-layer.  
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For the (111) surface terminated with Mg(I) layers on, the first Mg- and the second Mn- 

layers keep intact after relaxation, whereas the third Mg atomic layer moves inward to the 

fourth O-layer perpendicular to the surface. In addition, for the (111) surface terminated with 

the Mn(II)-layers, the surface atoms remain largely intact after the relaxation, whereas the 

second atomic layer moves to the third layer perpendicular to the surface. 

In general, the results exhibit that the (001) surfaces of both the MMO and MNMO 

terminated with Mg-layer have the lowest energy values (0.08 J/m
2
). For the MNMO, the 

surface energies of (111) facets terminated with Mn/Ni(II)- and Mg(II) are 0.11 and 0.12 J/m
2
 

which are very close to the lowest energies of (001) facet. The (111) surfaces terminated by 

Mn/Ni(II) show the lower surface energy and more stable structure. Compared with the 

surface energies of the MNMO with those of the MMO, the surface energies show less 

dependence on the Ni-doping. The Wulff shape of the LMO depends on the surface energy 

ratio of (001) and (111) surfaces, which varies from truncated-cube to cubo-octahedron to 

truncated-octahedron shape [41]. Our calculations show that the (001) surface is only 0.03 

J/m
2
 more stable than the (111) surface, so both the MMO and MNMO show more (001) 

facets, i.e., with more cubic characters. These results need further experimental confirmations. 

Doping with other cations in the LMO may affect the distribution of ions near the 

surface and in the bulk, thus influencing the structural and electrochemical properties. 

Recently, compositional segregation of Ni to surfaces in the layered LNMO has been reported 

[45, 46]. In contrast with the layered-LNMO, a uniform distribution of Ni dopant in a 

spinel-LNMO has been observed [47], however the Cr, Fe, and Ga dopants have a tendency to 

segregate toward the surfaces [48]. In order to determine whether the Ni dopant prefers to 
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segregate at the surface or not, we calculated the formation energy of a Ni atom replacement 

of a Mn atom in the MMO slabs with stable surface. The formation energy was calculated 

using [49], 

𝐸f(NiMn) = 𝐸tot(NiMn) − 𝐸tot(perfect) + 𝜇Mn − 𝜇Ni             (1) 

where 𝐸tot(NiMn) and 𝐸tot(perfect) are the total energies of a supercell with and without a 

Mn atom replaced by Ni, respectively. 𝜇Mn  and 𝜇Ni  are the corresponding chemical 

potential of bulk Mn and Ni, respectively. The calculated formation energies are shown in Fig. 

5. For the substitutional defects in (001) surface terminated with Mg and (110) surface 

terminated with Mg/Mn/O, the formation energies at the surface are higher than those in the 

inside, indicating the Ni prefers to occupy Mn site at the inside of slabs. For the (111) surface 

terminated with Mn(II), the formation energies show less dependence of the position. It can 

be concluded that Ni is less tendency for segregation at the surface of MMO, which shows the 

same behavior of spinel-LNMO [47]. 

Mn dissolution is believed to be the main cause of capacity degradation of the LiMn2O4 

[50-52], which is also responsible for the charge capacity fading of MnO2 used as cathode of 

MIBs [8]. In order to solve this problem, surface modification of the cathode electrode is an 

effective way to reduce the side reactions. It was reported that the single-layer graphene can 

suppress Mn dissolutions of LMO cathode [53] by blocking Mn diffusion and the oxidation 

state of surface Mn. Mn dissolution is a possible problem for the usage of MMO and MNMO 

as cathode for MIBs. To reveal the dissolution process of the MMO and MNMO surface, 

rare-event simulations such as DFT with blue moon ensemble [54] are needed to simulate the 

atomic-scale processes involved in the aqueous dissolution. 
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4. Conclusion 

The surface energies of spinel-MNMO and MMO were studied using density functional 

theory. The result exhibits that the (001) surfaces with Mg-terminations for both MMO and 

MNMO have the lowest surface energies (0.08 J/m
2
). The surface energies of 

Mn/Ni(II)-terminations surfaces for MNMO (111) facets are 0.11 J/m
2
. Two types of surface 

reconstructions were identified, through either shortening of interlayer distance between the 

first and second atomic layers or moving of surface atoms into the second layers 

perpendicular to the surface. 
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Table 1. Lattice sites for the Ni replacement of Mn in the MgMn2O4 and calculated relative 

total energies (eV). 

 Sites Configurations 

# x y Z 1 2 3 4 5 6 7 8 

1 0.125 0.625 0.875       Ni Ni 

2 0.375 0.875 0.875         

3 0.125 0.875 0.625 Ni Ni Ni  Ni  Ni  

4 0.375 0.625 0.625    Ni  Ni  Ni 

5 0.625 0.125 0.875 Ni Ni Ni Ni Ni Ni   

6 0.875 0.375 0.875         

7 0.625 0.375 0.625         

8 0.625 0.625 0.375         

9 0.125 0.125 0.375 Ni Ni  Ni  Ni  Ni 

10 0.875 0.125 0.625         

11 0.375 0.375 0.375   Ni  Ni  Ni  

12 0.375 0.125 0.125 Ni    Ni Ni Ni Ni 

13 0.125 0.375 0.125         

14 0.875 0.875 0.375         

15 0.625 0.875 0.125         

16 0.875 0.625 0.125  Ni Ni Ni     

ΔEtot 0.34 0.04 0.00 0.01 0.50 0.03 0.09 0.46 

 

Table 2. Calculated lattice constants of spinel-MgMn2O4 and MgNi0.5Mn1.5O4 and k-points 

used in the simulations  

 Space group  Lattice parameters K-points 

a (Å) b (Å) c (Å) i j k 

MgMn2O4 Fd-3m 
FM 8.56 8.56 8.56 4 4 4 

AFM 8.31 8.31 9.10 4 4 4 

MgNi0.5Mn1.5O4 P4332 
FM 8.50 8.50 8.50 4 4 4 

AFM 8.48 8.50 8.50 4 4 4 
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Table 3. Surface energies (in J/m
2
 ) for the (001), (110), and (111) facets of MgMn2O4 and 

MgNi0.5Mn1.5O4, respectively. The number of atoms (N) used are also given. 

 

 

 

 

Table 4. The distances between the first layers and second layers before and after relaxation, 

respectively. 

 

Facets 

MMO MNMO 

Termination Interlayer spacing (Å) Termination Interlayer spacing (Å) 

Before After Before After 

(001) Mn/O 1.17 1.03 Mn/Ni/O 1.17 0.95 

 

(110) 

Mn/O 1.60 1.44 Mn/O 1.59 1.49 

Mg/Mn/O 1.42 1.37 Mg/Mn/Ni/O (I) 1.41 1.37 

   Mn/Ni/O 1.66 1.51 

   Mg/Mn/Ni/O(II) 1.48 1.35 

 

(111) 

Mn(I) 1.03 1.02 Mn/Ni(I) 1.04 1.02 

O(II) 1.23 0.84 O(II) 1.21. 0.95 

Mg(II) 0.66 0.56 Mg(II) 0.64 0.54 

 

 

   MMO MNMO  

Facets Termination N Esurf Termination N Esurf  

 Mg 142 0.08 Mg 142 0.08 

(001) Mn/O 138 0.10 Mn/Ni/O 138 0.11 

 

 Mn/O 236 0.13 Mn/O 236 0.13 

(110) Mg/Mn/O 212 0.13 Mg/Mn/Ni/O (I)  212 0.13 

    Mn/Ni/O  180 0.14 

    Mg/Mn/Ni/O(II) 212 0.13 

 Mn(I)  292 0.31 Mn/Ni(I)  292 0.29 

(111) O(I)  212 0.22 O(I)  268 0.25 

 O(II)  268 0.15 O(II)  324 0.19 

 Mg(I)  236 0.23 Mg(I)  236 0.22 

 Mn(II)  284 0.11 Mn/Ni(II)  284 0.11 

 Mg(II) 276 0.11 Mg(II)  276 0.12 
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Figure captions: 

 

Figure 1: The crystal structures of (a) MMO (Fd-3m) and (b) MNMO (P4332). The purple 

octahedrons represent Mn atoms, and the grey octahedrons represent Ni replacement. The Mg 

and O atoms are depicted using the orange and red balls, respectively. 

 

Figure 2: Surface energies as a function of slab thickness. Surfaces of MMO and MNMO are 

denoted with real and dash lines, respectively. 

 

Figure 3: The atomic overall arrangement along the [001], [110] and [111] crystal orientation, 

respectively. The (a), (b) and (c) severally represent the atomic layer sequences along the 

[001], [110], [111] crystal orientation for MNMO. The (d), (e) and (f) severally represent the 

atomic layer sequences along the [001], [110], [111] crystal orientation for MMO, 

respectively. 

  

Figure 4: Atomistic configurations of MNMO surfaces before and after relaxations. (a)/(b) 

unrelaxed/relaxed (001) surface with Mg-termination; (c)/(d) unrelaxed/relaxed (111) surface 

with Mg(I)-layer; (e)/(f) unrelaxed/relaxed (111) surface with O(I)-layer; (g)/(h) 

unrelaxed/relaxed (111) surface with Mn/Ni(II)-layer. 

 

Figure 5: Formation energies of a Ni atom replacement of a Mn atom in the MMO slabs. 

 

 

 

 



22 

 

 

 

 

 

 

W.Jin et al. Figure 1 
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W.Jin et al. Figure 2 
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W.Jin et al. Figure 3 
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W.Jin et al. Figure 4 
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W.Jin et al. Figure 5 

 

 

 


