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Abstract Being marker-free and calibration free, Microsoft Kinect is nowadays widely
used in many motion-based applications, such as user training for complex industrial tasks
and ergonomics pose evaluation. The major problem of Kinect is the placement require-
ment to obtain accurate poses, as well as its weakness against occlusions. To improve the
robustness of Kinect in interactive motion-based applications, real-time data-driven pose
reconstruction has been proposed. The idea is to utilize a database of accurately captured
human poses as a prior to optimize the Kinect recognized ones, in order to estimate the true
poses performed by the user. The key research problem is to identify the most relevant poses
in the database for accurate and efficient reconstruction. In this paper, we propose a new
pose reconstruction method based on modelling the pose database with a structure called
Filtered Pose Graph, which indicates the intrinsic correspondence between poses. Such a
graph not only speeds up the database poses selection process, but also improves the rele-
vance of the selected poses for higher quality reconstruction. We apply the proposed method
in a challenging environment of industrial context that involves sub-optimal Kinect place-
ment and a large amount of occlusion. Experimental results show that our real-time system
reconstructs Kinect poses more accurately than existing methods.
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1 Introduction

Immersive environments with natural movement interaction have become popular in human
performance training and analysis, as they provide standardized training environments and
objective evaluations [5]. In these applications, it is important to capture the user’s motion
accurately and efficiently with minimal intrusion and technological constraints. Microsoft
Kinect can measure 3D human motion without complex setup and wearable devices, which
makes it a promising system for motion analysis in such a context. Nowadays, low-cost
Kinect has been applied to clinical gait analysis [2, 3, 16], sign-language analysis [17, 24],
sport training [7, 22] and ergonomics [12, 39].

However, using Kinect in complex environments, with sub-optimal camera placements
and cluttered environments, has not been tested. Kinect is designed to be used in open areas
and should be placed directly in front of the user. Accuracy of the Kinect skeleton data drops
when these conditions are not satisfied. However such constraints cannot be easily satisfied
in real sports or industrial context with machines, equipment and many other objects or
people that clutter the environment. Moreover, since Kinect recognizes body parts based on
the observed features in the depth image [35], partial or total occlusion strongly affects the
recognition rate [30]. Especially, using Kinect in an industrial environment where users have
to handle large equipment is therefore challenging due to the large amount of occlusion.

To improve the robustness of Kinect under complex environment, an effective method
is to correct potential errors by reconstructing the unreliable part of the Kinect poses using
prior knowledge of human movement [37]. The idea is to construct a database of accurately
captured human poses as a prior to optimize the Kinect ones, so as to estimate the true
pose performed by the user despite the errors returned by the Kinect. Here, the key research
problem is to identify the most relevant subset of poses in the database to accurately and
efficiently reconstruct skeleton data. In particular, the brute force database search proposed
by Shum et al. [37] cannot ensure temporal continuity across frames. Thus, it reduces the
relevance of the retrieved poses and therefore degrades the quality of the reconstruction.

In this paper, we introduce a data structure named Filtered Pose Graph to enhance the
pose reconstruction process introduced by [37]. Using Filtered Pose Graph aims at ensuring
continuity and relevance in the candidate selection, and consequently enhance the perfor-
mance of the reconstruction. Hence, with such a graph, a more relevant set of poses can be
selected with smaller computational time.

We have two main contributions in the paper:

– As an offline process, we propose a Filtered Pose Graph structure to organize a database
of poses in order to enhance the performance of the online pose reconstruction pro-
cess. Nodes are representative poses in the database and edges are potential transitions
between two poses ensuring continuity if connected one to each other.

– As an online process, we propose a customized search algorithm based on the Filtered
Pose Graph to efficiently retrieve the set of poses that are relevant depending on the
current pose before reconstruction. This not only ensures continuity in the retrieved
poses, but also greatly enhances computation cost to reach real-time perform during
reconstruction for interactive applications.

To challenge the system, we carried-out a set of experiments under challenging situa-
tions similar to real industrial environments: occlusions and sub-optimal camera placement.
Results show that our method generated higher quality reconstructed poses than previous
works, such as the original Kinect pose estimation [35] and the reconstruction method
proposed in [37].
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The paper is organized as follows. Section 2 presents a review of previous works. Then,
Section 3 describes the overview of our approach. Section 4 explains how the database is
structured as a graph to speed up the process and improve the quality of the reconstruction.
Sections 5, 6 and 7 provide information about reliability estimation, example-based opti-
mization and dynamic filtering of the results respectively. Experiments performed under
highly constrained industrial scenarios are presented in Section 8. Finally, we conclude and
discuss our method in Section 9.

2 Related works

Firstly, in this section, we review previous works on motion analysis based on depth cam-
eras. Then, we focus on the pose reconstruction based on incomplete and noisy data.
We finally review and discuss the data structures used in computer animation to organize
databases of motion clips.

2.1 Depth camera based motion analysis

Motion sensing systems based on depth camera, such as the Kinect, use pattern recognition
techniques based on depth images to recognize and estimate a human pose. In particular,
Kinect recognizes different body parts using decision forests trained with a large num-
ber of synthesized depth images [35]. Depth images can be viewed as 2.5D point clouds,
and fusing them can generate a 3D mesh of the tracked object [29]. Real-time perfor-
mance capture involving both movement and surface deformation has become possible
thanks to this approach [43]. Depth cameras have introduced a new direction of motion
analysis research and a new generation of motion-based application that has not been seen
before [20].

There is a large body of research aiming at estimating the accuracy of the Kinect data for
various types of applications, such as motion analysis, rehabilitation and ergonomics. Pre-
vious works reported good accuracy of the Kinect when analysing simple full body motion
such as gait [11], or reaching movements [10]. It has also shown high accuracy in terms of
timing and range during large movements, with potential application in clinical assessment
of Parkinson’s diseases [16] and in rehabilitation [14]. Automatic pose evaluation system
with Kinect has shown consistent results in ergonomics for musculoskeletal disorder risk
assessment, such as the Rapid Upper Limb Assessment (RULA) [30], which is a popular
assessment method in ergonomics [28]. Kinect is particularly suitable for pose monitoring
in workplace to avoid musculoskeletal injury due to its small size and easy setup [13]. It
can be used for real-time ergonomic analysis of lifts performed by human so as to mini-
mize injury [26]. Combing colour and depth information can enhance the tracking in smart
environments [19]. However all these methods have been tested in laboratory condition,
whereas actual work condition exhibit challenging constraints, such as sensor placement
and cluttered environments.

2.2 Pose reconstruction

The major problem for real-time motion analysis is the completeness and accuracy of the
input data. Raw Kinect data exhibits high inaccuracies mainly due to sub-optimal sensor
placement and occlusions [30]. Using the knowledge provided by a motion database, it is
possible to reconstruct high dimensional full-body movements based on low dimensional
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input. Hence, considering the local subspace in the database where the poses match well
with the joint positions from a small number of reflective markers, it is possible to esti-
mate the position of all the other body joints [8]. Since human motion is highly non-linear,
learning statistical dynamic models as a motion prior can produce movements that better
satisfy the required constraints [9]. Such a motion prior concept is applied to real-time pose
reconstruction by generating higher quality movements [25]. When adapting this idea to
accelerometer-based systems, an online lazy neighbourhood graph is used to minimize false
positive samples in the local subspace [38]. When applying these methods to reconstruct
Kinect poses, the main problem is that they assume the input data to be accurate, whereas
the joint positions estimated by Kinect are noisy or even incorrect due to sensor error and
occlusion.

While basic inaccuracy such as jittery movements can be corrected by physical filters
[36], more complex problems such as incorrectly detected joints cannot be corrected with
this approach. Methods based on optimizing a set of spatiotemporal constraints have been
proposed to address this type of error [33]. To this end, information about the reliability
of the current Kinect pose is necessary. Such a reliability estimation can then be integrated
into a lazy learning framework to reconstruct the true pose [37]. Since the learning frame-
work requires a large amount of poses, Gaussian Process is proposed to produce an abstract
representation of the pose space and reduce the required database size [42]. However the
unstructured nature of the database used during optimization cannot guarantee continuity of
the resulting reconstructed poses and leads to consider a large number of candidate, some
of them being inappropriate. In this paper, we propose a new data structure, named Fil-
tered Pose Graph, to preselect the most relevant subset of poses to consequently enhance
the global performance of the reconstruction method.

2.3 Motion database structure

With an appropriate motion database structure, we assumed to enhance optimization-based
reconstruction systems, as described in the previous section. Motion graphs have been intro-
duced in computer animation to organize a database of motion as a set of nodes (indicating
poses or small clips) and edges (indicating possible connection between nodes without dis-
continuity) [23]. It has been used extensively to automatically combine motion clips to
produce and control character animations [18, 31, 32]. A large motion database usually
results in a dense graph with a large number of nodes and edges. As a result, several authors
proposed to decrease the size of the motion graph [41] or synthesize new artificial motion
and consequently to improve graph connectivity [40]. Parametric motion graphs have been
introduced to support motion re-sequencing and motion blending for parameterized move-
ments [21]. Fat graphs combine similar poses into fat nodes and modelling correspondence
between fat nodes as fat edges [34]. Motion-motif search [4] could be used to enhance the
performance and the quality of the search of similar motions in large databases.

All these previous structures have been designed to identify and represent similar poses
in a database to control character animation. The main point in character animation using
this approach is to find a sequence of poses/clips that minimizes a distance to a goal, such
as following an imposed trajectory while preserving continuity. In a pose reconstruction
perspective, the problem is different: the data structure should enable us to select examples
that would help to reconstruct poses with reliable and unreliable joints. Hence, variability is
important to guarantee that a variety of examples is available for a given pose with unreliable
parts, whereas computer animation approaches generally tend to gather similar examples in
a unique node.



Multimed Tools Appl

3 System overview

The overview of our system is shown in Fig. 1. Offline, a human pose database is con-
structed using accurately captured human motion obtained thanks to an optical motion
capture system. Then, the database is organized as a Filtered Pose Graph aiming at enhanc-
ing the performance of the reconstruction. Online, reliability of the current Kinect pose is
evaluated for each individual joint. We then use the Filtered Pose Graph to preselect can-
didate poses prior to an optimization process aiming at replacing unreliable joint position
by more appropriate ones. Finally, a physical model is used to filter the results, ensuring
continuity and physical correctness of the resulting motion.

4 Database organization with filtered pose graph

In this section, we explain how we capture accurate motion using an optical motion capture
in an industrial operation context, and detail the method to create the Filtered Pose Graph.
Notice that while the content of our database is in industrial context, our methodology can
be applied for any type of motion, but industrial context provides us with very challenging
constraints due to cluttered environments.

4.1 Motion data collection

In this section, we describe the protocol and methods used to capture motion which will
serve as examples in the Filtered Pose Graph. As these examples need to be error-free, we
used an accurate optical motion capture system (Vicon, product of Oxford Metrics). To be
useful for Kinect data improvement, such motions should 1) belong to the same family
of tasks as those performed by the user during run-time, and 2) contain enough relevant
examples to provide reasonable variability. The former constraint ensures that the system

Fig. 1 Overview of our Kinect pose reconstruction system
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has enough information to reconstruct the run-time pose, while the latter ensures to get
examples with different styles for the same task.

Since our main target application is to monitor industrial operations, we captured the
motion of trained operators when performing a series of short working tasks. The list of
motion is designed according to Method TimeMeasurement (MTM) list [27], which is com-
monly used in industrial settings to analyse tasks performed by operators. Using the Vicon
system, we captured 130 types of motion including grasping, re-grasping, putting, moving,
position, etc. as suggested in MTM. For each type of motion, the operator performed 5 tri-
als, with different speeds and locations to ensure variability. The captured motion of the
different operators were then retargeted to the Kinect skeleton structure using commercial
software. We normalized individual pose by removing the rotation along the vertical axis
and the global 3D translation, as such information is irrelevant to the pose context. Each
pose is represented as a set of joint positions p = {j (xj , yj , zj )}j=1..N , where N is the
number of joints in the pose, and xj , yj , zj are the 3D Cartesian coordinates of the j th joint.

4.2 Graph construction

The Filtered Pose Graph is computed using an unorganized set of recorded motions. We
build the Filtered Pose Graph using a two-steps process as described below.

In the first step, to reduce the size of the graph and consequently save computation time,
we perform an intra-motion and inter-motion filter to remove redundancy or too-similar

Fig. 2 Filtered Pose Graph construction. (Upper Left) Pruning similar poses within each clip to create local
Filtered Nodes in Pintra (red nodes). (Upper Right) Pruning similar Local Filtered Nodes in Pintra to obtain
Pinter (blue Filtered Nodes). (Lower Left) Determining statistical information about the natural links between
successors in Pintra within each clip. (Lower Right) Combining logical connections between nodes in Pinter

as Filtered Edges
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poses. Two poses are supposed to be similar if the distance in-between is lower than a
given threshold. This distance dist (pa, pb) between two poses pa and pb is defined as the
maximum of all the joint position differences between pa and pb:

dist (pa, pb) = maxj=1..N ‖ pa(j) − pb(j) ‖ (1)

where N is the total number of joints. Contrary to many traditional approaches based on
the mean error between the joints, using the maximum error enables us to detect large
local differences in one particular joint. In particular, since our motion database is specific
in industrial operations, many motions are different in terms of the arm movement only.
Traditional methods of averaging the errors of all joints may be inefficient to detect such
differences in some cases.

The intra-motion filter is performed by screening the motion from start to end, and keep-
ing only the poses that are not similar to the previous ones (i.e. dist was less than a threshold
thres1), as shown in Algorithm 1. The upper left part of Fig. 2 depicts this filtering process
starting from input poses (grey circles) to a set of Local Filtered Nodes named Pintra (red
boxes) within each clip. Then, inter-motion filter is performed using the same process to
eliminate similar Local Filtered Nodes between motions, as shown in Algorithm 2. The red
boxes with a cross in the upper right part of Fig. 2 represent local Filtered Nodes that have
been eliminated because too similar to previous ones. The resulting set of Filtered Nodes
(blue boxes) is denotedPinter . After both local and global filtering, we obtain a compact set
of nodes in which poses are at least separated by distance thres1 on at least one of the joints.
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In the second step, we compute the Filtered Edges to connect Filtered Nodes and build
the final Filtered Pose Graph. In a motion, two successive Local Filtered Nodes Pintra are
naturally connected as they correspond to an existing sequence of poses. Firstly, we conse-
quently identify these logical connections within a clip, which are illustrated with the red
curves in the lower left part of the Fig. 2. For each connection, Equation 1 is used to compute
the distance between the two connected nodes Pintra . The average distance conn, and the
standard deviation σconn are computed for all these existing connections within each clip.
Such values are then used to estimate a reasonable distance threshold thres2 below which
two nodes can be logically connected within or in-between clips without discontinuity:

thres2 = conn + 2σconn (2)

Finally, we compute all the distances between all the Filter Nodes Pinter within and
between clips and created a Filtered Edge if this distance is smaller than thres2. The resul-
tant Filtered Edges are depicted with blue lines in the lower right part of Fig. 2. Algorithm
3 shows how Filtered Edges are computed. In our system, Filtered Edges are considered
to be bidirectional as we assume motion can be performed in both forward and backward
directions.

The two-steps process to construct a Filtered Pose Graph is summarized in Algorithm 4.

When selecting pose candidates to reconstruct a pose using optimization (see Section 6), it
is important to select poses that have a chance to help reconstructing unreliable parts of the
body. It helps us to estimate the actual pose of the user while taking into account what the
user would logically perform at this time, in a continuous manner.
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In our experiment, 532,624 poses were captured. We applied the filtering process to
obtain a reduced number of Filtered Nodes equal to 2,048, using thres1 = 0.2m. When
applying the above method, we found that conn = 0.21m and σconn = 0.02m for this
database, leading to set thres2 to 0.21 + 2 ∗ 0.02 = 0.25m.

5 Joint reliability estimation

The Filtered Pose Graph aims at providing relevant examples to reconstruct unreliable parts
of the skeleton returned by the Kinect. Thus, it is important to identify which part of the
skeleton is reliable and which part was badly estimated by the Kinect. Indeed, the pose
provided by the Kinect may consist of incorrect joints due to occlusions and sensor errors.
In this paper, we adapted the method proposed in [37] to evaluate the reliability of each joint
in the Kinect skeleton. Reliability is represented as a real number between 0 (not reliable at
all) and 1 (fully reliable), and is calculated based on three terms. Here, we briefly review
the algorithm.

The first term is the behaviour term that calculates the amount of vibration of a joint,
modelled as the acute angle between the displacement vectors formed by joint j in the past
fb frames:

Rb(j) = 1 − meanf =1..fb

[
df −1(j) · df (j)

|df −1(j)||df (j)|
]

(3)

where df (j) = pj (f ) − pj (f − 1) is the displacement vector of joint j from frame f − 1
to frame f . Note that the angle value is set to 0 if the length of either df (j) and df −1(j) is
smaller than a threshold, to avoid large angle changes when unnoticeable vibrations occur.
Rb(j) is truncated between 0 and 1 if it is outside this interval. The behaviour term is
designed according to the fact that human movement must be continuous. This term is useful
to detect dynamic errors, when a joint vibrates around the actual position due to occlusion.

The second term is the bone length consistency term that evaluates if bone length remains
constant during the motion:

Rc(j) = 1 − meanb=1..btotal

[ |lb(f ) − lb ref |
lb ref

]
(4)

where btotal is the total number of bones connecting joint j , lb(f ) and lb ref are the observed
bone length of bone b at frame f and the reference bone length value respectively. The
reference length of all bones is computed based on measured joint positions using a pose
where all the joints are supposed to be perfectly visible. Rc(j) is truncated between 0 and
1 if it goes beyond this interval.

The third term is the Kinect feedback term, Rf (j), that is calculated based on the joint
tracking state returned by the Kinect for each joint j . It is set to 1.0 if this tracking state is
“tracked”, and 0.0 if the state is either “inferred” or “not tracked”.

The reliability of the joint j is defined as a combination of these three terms:

R(j) = min(Rb(j), Rc(j), Rf (j)) (5)

A Gaussian filter is then applied to the resulting reliability values using previously
computed ones, to ensure continuity.

The reliability terms measure the joint reliability for different types of error. The
behaviour term is useful to detect dynamic error, when a joint vibrates around the true posi-
tion due to occlusion. The bone length term is useful to detect other type of errors that make
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the distance between two joints of the same segment change over time. The Kinect feedback
term provides information delivered directly by the Kinect to state if the joint is tracked or
inferred because occluded or outside of the capture area. As a result, depending on the type
of error, one or more reliability terms may be sensitive, while the others may not. Using the
minimum value instead of the average ensures the system to capture all types of errors.

6 Pose reconstruction

The aim of this process is to reconstruct unreliable parts of the body that are considered to
be badly estimated by the Kinect. To this end, we use a local optimization process consisting
of two main steps: selecting the pose candidates which are considered as relevant according
to the current Kinect pose, and optimizing the pose based on a set of energy functions. The
main contribution of this paper is to design a novel pose selection algorithm to enhance the
performance of the optimization process introduced in previous works [37].

6.1 Database pose evaluation

Selecting potential candidates in the Filtered Pose Graph based on the pose delivered by
the Kinect involves defining a dedicated metric. This metric aims at comparing the input
Kinect pose and all the potential candidates (Filtered Nodes) to find good candidates before
reconstruction. In previous works [37] this distance metric was only based on the similarity
(e.g. a distance) between the Kinect pose and each candidate. Similarity could only be tested
on reliable joints as the other ones could be totally false. However candidates selected using
this criterion only could lead to important discontinuities in the unreliable joints trajectories.
We consequently propose to ass another criterion based on continuity to overcome this
limitation.

Similar to [37], the first selection evaluation function returns a score related to the simi-
larity between the tested Filtered Node and the current Kinect pose. This score is high when
the two poses are similar. Reliability values computed for each joint provided by the Kinect
are used as weights, such that reliable joints would have a higher weight when computing
this score:

Ss(pk, pd) = meanj=1..jtotal [R(j) × (pk(j) − pd(j))] (6)

where pk(j) and pd(j) are the observed Kinect position and database position of joint j

respectively, R(j) is the reliability value of joint j from the Kinect pose.
Only using (6) to select candidates does not take the unreliable parts of the body into

account, as explained above. To overcome this problem, another criterion is introduced to
ensure continuity for the reliable but also the unreliable joints. To this end, we compute
a prediction of the current pose depending on the previous reconstructed one pl and its
derivative ṗl :

Sc(pk, pd) = meanj=1..jtotal [(1 − R(j)) × (pl(j) + ṗl(j) × dt − pd(j))]

where pl(j) and ṗl(j) are the position and velocity of the last reconstructed pose for joint j
respectively, and dt is the frame time. Note that introducing a weight 1−R(j) enables us to
give more importance to non-reliable joints when computing this criterion. The key idea is
to consider that reliable joints should be mainly taken into account using the other criterion
Ss , while continuity is the only available criterion for unreliable joints.
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The final score to select a pose pd is defined as the sum of the two terms:

S(pk, pd) =
{

Ss(pk, pd) + Sc(pk, pd) if f > 1
Ss(pk, pd) otherwise

(7)

where f is the frame number, and in frame 1 ṗl(j) is not available.
Let us consider now how these criterions are used to efficiently select appropriate

candidates in the Filtered Pose Graph before reconstruction.

6.2 Database pose selection

Before reconstruction, a set of Nodes are selected from the Filtered Pose Graph using (7).
Previous works [37] performed a brute force search with an unorganized database, which
leads to high computation time and selection of irrelevant Nodes. To overcome this limita-
tion, we take advantage of the Filtered Pose Graph to evaluate Nodes that have high potential
to contribute to the pose reconstruction process, thereby enhancing system performance and
reducing computation time.

The main idea is to keep track of the Filtered Nodes that have been selected to recon-
struct the pose in the previous time step, and use such information to speed up the selection
in the current time step. As shown in Fig. 3a, we first consider the set of candidate Nodes
(white circles) that are connected to those selected in the previous time step (red squares)
and ignore the rest (grey circles). This is based on the observation that human motion is con-
tinuous, and therefore the Nodes for the current time step should be relevant to those used
in the previous time step. Then, as shown in Fig. 3b, we apply (7) to evaluate these candi-
date Nodes. The K Nodes with the best scores (green circles) are used for the current time
step for pose reconstruction, and the rest of the candidate nodes are rejected (red crosses).
In our system, K is set empirically as 30, as suggested in [37].

As a result, comparing with the brute force search, we only need to evaluate a small
portion of the database with Equation 7 to enhance computational speed. Our algorithm
also ensures that only relevant Nodes are selected, which can enhance the performance of
the pose reconstruction process. Notice that for the first time step, we still need to do a full
database search because the previous time step information is not available.

Fig. 3 (a) We select the candidate Nodes (white circles) that connects to those used in the previous time
step (red squares) and ignore the rest (grey circles). (b) We then evaluate these candidate Nodes using (7) to
select K Nodes (green circles) to be used in this time step and reject the rest (red crosses)
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Computation time in [37] was O(n) where n is the number of poses in the database. The
computation time of our system is O(e) where e is the average number of edge per node
and e << n, as shown in Fig. 9. Consequently, computation time is almost independent of
the size of the database, which makes it possible to reconstruct poses with a large database
in real-time.

6.3 Kinect pose optimization

As described in [37] a low dimensional latent space is computed using the K candidate
Filter Nodes which have been selected during the last step. To this end, we apply principal
component analysis on the set of selected Filtered Nodes. In this space, a point is a linear
combination of the selected Filtered Nodes. Optimization consists here in searching for the
best combination to reconstruct the actual pose performed by the user. This is formulated as
an energy minimization process with four energy terms.

The control term aims at minimizing the difference between the optimized pose pop

and the observed Kinect pose pk while considering the reliability values of the joints. This
encourages the optimized pose to be similar to the measured one at least for the reliable
joints:

Ec = meanj=1..jtotal

[
R(j)

(
pop(j) − pk(j)

)]
(8)

The style term minimizes the difference between the optimized pose and its closest
neighbour pdb to preserve the style of the selected pose compared to its neighbours in the
database (style continuity):

Es = min
db

meanj=1..jtotal

(
pop(j) − pdb(j)

)
(9)

The bone length term minimizes the change in bone length lop compared to the reference
values lref to avoid unrealistic elastic body segments:

Eb = meanb=1..btotal

[
(lop − lref )2

]
(10)

Finally, the temporal continuity term minimizes high frequency jittery movements. It
consists in computing the variation between the current optimized pose and the past two
synthesized poses p1 and p2:

Et = meanj=1..jtotal

(
(pop(j) − 2p1(j) + p2(j))2

)
(11)

As the pose space is highly non-linear, we apply local stochastic search to find the pose
that maximizes a weighted sum of the four terms with predefined negative weights. Hence,
ideal score is 0 while highly negative scores are considered to be bad:

E = wcEc + wsEs + wbEb + wtEt (12)

where wc, ws , wb, and wt are the weights. In our system, they have been set to -1.0, -0.5,
-1.5 and -0.25 respectively, as suggested in [37]. The optimization process stops when a
local optimal pose is found, or when the optimization takes longer than one frame time. The
optimized result is back-projected to the full joint position space and form the full optimized
pose.
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7 Physical modelling

The optimized pose obtained in Section 6 may still have some small artefacts that could
affect the quality of the reconstruction, and consequently the potential user avatar animation.
To tackle this problem, the optimized pose enters a dynamic filter made of a physical model
of the user, as suggested in [36]. As a result, the movements of the body parts obey Newton
physics, and the segments lengths are accurately maintained.

The character is represented by 19 body segments and 20 joints in accordance with
the Kinect skeleton definition. The size and the mass of each segment are set accord-
ing to anthropometric tables [1]. All joints are modelled as ball joints, which indi-
cates that each segment has 3 degrees of freedom, to avoid unintentionally locking up
of limbs.

We control the movement with 3 dimensional forces and the 1 dimensional torque along
the body segment direction, driving the physical model to the target synthesized pose. In
each time step, the control force for a joint is calculated by a PD controller with hand-tuned
gains. Readers are referred to [36] for more details.

During simulation, the physical simulation engine Bullet Engine [6] maintains the seg-
ment length and segment connectivity while applying the calculated control forces and
torques. The resultant pose is the equilibrium state of the character, representing the pose
that can satisfy the optimized pose the most.

8 Experimental results

To evaluate the performance of our system under highly constrained environments, we
carried-out experiments in an industrial context under different conditions. Our proposed
Filtered Pose Graph selected relevant poses before optimization, aiming at generating
superior results compared to [37].

Let us consider now the experimental set-up and the results.

8.1 Experimental setup

Ten scenarios were tested to evaluate the relevance of the real-time reconstruction method.
We set-up the scenarios according to real industrial study cases where operators have to
manipulate large objects during real industrial processes, leading to large occlusions. These
scenarios were inspired by actual work tasks performed in car manufacturer factories. In
most of these scenarios, the sensor was not placed in front of the user due to industrial
cluttered environments.

Table 1 describes the main characteristics of the ten tested scenarios, in which we set-up
three camera positions with different levels of occlusions due to external objects. Figure 4
shows an example of industrial task performed by the user when the Kinect was placed 45◦
on the left, with huge occlusions.

For each of these scenarios, the motion of the user was recorded by both a Kinect and a
15 cameras Vicon optical motion capture system. Synchronization between the two systems
was ensured by performing a posteriori cross correlation between joint centres trajectories
estimated in both systems.

In our experiments, we used a graph based on 130 motion clips of industrial activities.
This resulted in 532,624 poses, which were filtered into 2,048 nodes with an average of 7.8
edges per node.
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Table 1 Description of the ten scenarios used for evaluation

ID Frames Occlusion Kinect Pos. Visualization

1 1076 Few Front

2 1290

3 945

4 2385 Many Front

5 1488

6 1136

7 671

8 1978 Many 45◦ right

9 1968

10 1316

8.2 Accuracy comparison

We compared the accuracy of poses provided by the Kinect to those reconstructed with
Shum et al. [37] and our method. We evaluated the system error by comparing these poses to
those captured with the Vicon optical motion capture system, supposed to be the reference
system. Information about the statistical tests used in this paper can be found in [15].

Firstly, we compared the poses estimated the by Kinect (pkin,i), the pose reconstructed
using [37] (pshum,i) and our method (pour,i), to the reference one (pref,i) for each frame i.
The error was given by:

EX = 1
m×n

∑m
f =1

∑n
j=1 | (pref,i (j)−parent (pref,i (j))

) −(
pX,i(j) − parent (pX,i (j))

) | (13)
where X stands for the method, m is the number of frames, n is the number of joints and
parent (pi(j, f )) returns the parent node of pi(j, f ) in the human skeleton hierarchy.

We evaluated the mean error for each method and its standard deviation (σ ) across all
scenarios. Kolmogorov-Smirnov test was used to check the normality of the distribution.

Fig. 4 Example of in industrial environment in which the user was partly occluded by the equipment
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We found that the mean error followed a normal law. An Anova test was used for a one-way
repeated measures analysis of variance. A Bonferroni post-hoc test was conducted to detect
significant differences between methods. The level of significance was set to p < 0.001,
denoted with *** in Fig. 5a. The mean errors of [37] (0.10m, σ = 0.02) and our method
(0.09m, σ = 0.02) were significantly (p < 0.001) lower than those of the Kinect (0.15m,
σ = 0.04). Our method performed slightly better than [37].

Secondly, we calculated the percentage of frames in which the error was greater than
or equal to 0.2m, Err0.2X . Such a large error would create noticeable visual artefact
that would impact the user experience in immersive/interactive applications. Incoherence
between the user pose and the immersive feedback may heavily distract the attention of the
user when performing a task in such interactive applications.

We evaluated the means, standard deviations (σ ), min and max of Err0.2X across all
scenarios. The distributions did not follow a normal law. A Friedman test was used for a
one-way repeated measures analysis of variance. A Wilcoxon signed rank post-hoc test was
carried-out to detect significant differences between methods. The level of significance after
Bonferroni correction was set at p < 0.01, denoted with * in Fig. 5b. There were signif-
icantly (p < 0.01) less cases where the error was greater than or equal to 0.2m between
Kinect Err0.2kin (19.1 %, σ = 27.3, min = 0.3, max = 92.1) and our method Err0.2our

(3.3 %, σ = 3.9; min = 0, max = 10.5). However, while the value of [37] Err0.2shum

(8.8 %, σ = 7.9, min = 0, max = 19.7) was lower than those of the Kinect Err0.2kin,
no statistical difference has been shown. There was significant (p < 0.01) improvement
between Err0.2our and Err0.2shum supporting the hypothesis that the Filtered Pose Graph
used to preselect pose candidates actually enhance the performance of the reconstruction
method.

Thirdly, to further study the performance of each method, we studied the histogram of
errors represented as the percentage of frames in quantized error bands. In most immer-
sive/interactive applications, the occurrence of large errors is more problematic than small
ones, as the user would experience noticeable artefacts.

In Fig. 6, we analysed two of the most challenging scenarios more precisely: 8 and 10
in which the operator manipulated car seats leading to large occlusions. Scenario 8 was
about fitting the protective casing of the seat. Scenario 10 was about in screwing the seat
adjustment handle. As a result, in scenario 8, the mean error of our systemEour (0.08m, σ =

Fig. 5 Accuracy analysis for Kinect (dark grey), [37] (medium grey), and our method (light grey) with (a)
mean errors, and (b) percentage of frame with error greater than 0.2m
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0.02) and previous work [37] Eshum (0.09m, σ = 0.03) were similar. However, as shown in
Fig. 6a, our system had a much better error distribution, which is shifted towards the lower
error value levels, compared to those using previous work [37]. Our system performed the
worst in scenario 10, in which the mean error Eour (0.078m, σ = 0.02) was slightly higher
than those of [37] Eshum (0.076m, σ = 0.02). As shown in Fig. 6b, our method had similar
error distribution as previous work [37], and shifted the Kinect error from high value bands
to lower ones. Except scenario 10, our method had better error distribution compared to
previous work [37] in all other scenarios.

Fourthly, to quantify the ability to avoid large errors for each method, we computed the
number of cases for which the error was greater than a set of error values in all scenarios,.
The results are shown in Fig. 7. Our method consistently achieved lower error values in
all bands. More importantly, in larger error bands, the difference between our method and
previous [37] became larger. This was mainly due to using the Filtered Pose Graph during
the pose selection phase as most of the other parts of the methods were similar.

Finally, we illustrated several challenging poses in which high errors occurred, as shown
in Fig. 8. For each of the four poses, we showed the Kinect pose on the left, the reconstructed
pose using previous work [37] in blue, the reconstructed pose by our method in green,
and the reference one in red. We calculated the error between each pose and the reference
one for each frame using (13) (in cm), as depicted in Fig. 8 below the poses. Our method
always overperformed previous work [37]. As our method is able to produce continuous
poses even if only few reliable information is given by the Kinect, it is well adapted to
situations with large occlusions. Hence, using an unorganized database of examples could

Fig. 6 Percentage of error occurrence (in %) for each level of error (in m), between the Kinect and Vicon
data, for Kinect (dark grey), [37] (medium grey), and our method (light grey) in (a) scenario 8 and (b) scenario
10
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Fig. 7 Histogram of cumulative errors in our method (light grey) and [37] (medium grey)

lead to discontinuous poses that rapidly diverge from the actual trajectory, while continuity
ensures local correspondence with the actual trajectory.

Fig. 8 Comparison of
reconstruction performance on
challenging poses
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Fig. 9 The optimization score (left axis, blue line) and computing time per frame in ms (right axis, red line)
for different number of (a) Filtered Nodes in the Filtered Pose Graph, (b) Filtered Edges per Filtered Node,
and (c) Filtered Nodes selected for reconstruction

A supplementary video is attached to this paper to assess the quality of the reconstruction
in these scenarios.

8.3 Performance analysis

In these evaluations, our system ran faster than real-time (i.e. 30Hz). The average frame
time of our method was 12.28ms (σ = 0.7), which is lower than those based on using
previous work [37] 14.53ms (σ = 1.0). This is mainly due to the preselection of successors
in the Filtered Pose Graph that limits the number of candidates and provides more relevant
examples. The offline computation time to design the Filtered Pose Graph used in these
experimentations was 115s.

We analysed the effect of the Filtered Pose Graph parameters on reconstruction quality
and computational time. The results is shown in Fig. 9. The optimization score is calculated
according to (12).

As shown in Fig. 9a, a heavily filtered pose graph using high threshold thres1 led to poor
reconstruction quality, due to the small number of relevant poses available for preselection.
We found better results when using at least 2,000 nodes in the Filtered Pose Graph. In
contrast to [37], the number of nodes in the graph did not directly affect computation time.
This is due to the efficient pose selection process based on the Filtered Pose Graph.

As shown in Fig. 9b, the number of Filtered Edges per Filtered Node had minimum effect
on the performance and computation time. There was only a small increase in computation
time due to the evaluation of a slightly larger number of connected nodes.

As shown in Fig. 9c, the number of nodes used for reconstruction (K value in Section 6.2)
strongly affected the optimization score. Using 15 Filtered Nodes, the reconstruction quality
reached a plateau and computation time per frame remained constant.

Overall, the results showed that the Filtered Pose Graph allowed us to use large database
of examples while maintaining good performance. Thus it could be possible to extend the
database with more examples, to address a wider variety of motions, without strong impact
on computation cost.

9 Conclusion

The main contribution of this paper is to introduce a new data structure to enhance the per-
formance of algorithms aiming at reconstructing unreliable Kinect skeleton data in cluttered
environments. The Filtered Pose Graph structure helps to preselect a set of relevant poses
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in a very efficient manner. Our results showed a lower average error compared to those
obtained with previous works that used an unorganized database. In many cases, especially
with large errors, our method achieved better performance thanks to the more efficient pose
selection process.

If extreme occlusion persists during a long time, the reconstructed poses may diverge
from the actual trajectory because too few reliable information is available. Our system
tackle the problem by including criteria focusing on unreliable joints to select a set of rel-
evant poses for reconstruction. This allows us to outperform previous works [37]. In some
extreme situations, it would be interesting to consider using multiple Kinects, but it would
require to calibrate all the sensors, which is not always possible in wide public applications.

One of our future direction is to improve the reliability terms to avoid false positive and
negative values. In an industrial context, tasks are usually repetitive and performed with
a logical sequence. We will explore reliability terms that exploit the prior knowledge of
industrial tasks. We are also interested in adapting the framework to other serious appli-
cations such as sport analysis and rehabilitation using immersive environments, especially
when real-time feedback with avatars is needed. As our system is more robust to occlu-
sions, we should be able to achieve better presence in virtual reality applications, but further
perception studies are needed to evaluate the actual impact.
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