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ABSTRACT 1 

The present study examined functional strength and endocrine responses to varying 2 

ratios of strength and endurance training in a concurrent training regimen. 30 3 

resistance-trained men completed 6 weeks of 3 d·wk-1 of i) strength training (ST), ii) 4 

concurrent strength and endurance training ratio 3:1 (CT3), iii) concurrent strength 5 

and endurance training ratio 1:1 (CT1) or iv) no training (CON). Strength training was 6 

conducted using whole-body, multi-joint exercises, while endurance training 7 

consisted of treadmill running. Assessments of maximal strength, lower body power, 8 

and endocrine factors were conducted pre-training and following 3 and 6 weeks. 9 

Following the intervention ST and CT3 elicited similar increases in lower body 10 

strength; furthermore, ST resulted in greater increases than CT1 and CON (all p < 11 

0.05). All training conditions resulted in similar increases in upper body strength 12 

following training. ST group observed greater increases in lower body power than all 13 

other conditions (all p < 0.05). Following the final training session, CT1 elicited 14 

greater increases in cortisol than ST (p = 0.008). When implemented as part of a 15 

concurrent training regimen, higher volumes of endurance training result in the 16 

inhibition of lower body strength, whereas low volumes do not.  Lower body power 17 

was attenuated by high and low frequencies of endurance training. Higher 18 

frequencies of endurance training resulted in increased cortisol responses to 19 

training. These data suggest that if strength development is the primary focus of a 20 

training intervention, frequency of endurance training should remain low. 21 

 22 

KEY WORDS combined exercise, interference, cortisol, resistance training, training 23 

frequency           24 
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INTRODUCTION 1 

Various sports and events require contrasting physical performance phenotypes for 2 

successful performance. Training for sports and events at the extremes of the 3 

strength-endurance continuum, such as Powerlifting and ultra-endurance challenges, 4 

is relatively straight-forward compared with sports and events that require a 5 

combination of strength and endurance capabilities. In these situations athletes and 6 

coaches are often forced to combine training methods which elicit contrasting and 7 

even antagonistic physiological and performance responses (12). In the case of 8 

‘concurrent training’, the divergent stimuli of strength and endurance training can 9 

result in attenuated strength type adaptation when compared to strength training 10 

performed in isolation.  This divergent physiology is known as the interference effect 11 

or phenomenon (17). 12 

 13 

Research has indicated that any interference experienced during a concurrent 14 

strength and endurance training regimen may be dependent in part on the volume of 15 

training performed (1, 13, 24, 25, 33). Despite this, no study has specifically 16 

examined the effects of whole body, multi-joint concurrent training inventions with 17 

varying training volumes and the effect that is has on muscle force characteristics. 18 

Previous work from our laboratory (20) has indicated that the magnitude of 19 

interference experienced may be proportional to the frequency of endurance training 20 

performed; indicating overall training volume and exercise stress may indeed 21 

regulate the presence of any interference experienced.    22 

 23 

Elevated training ‘stress’ has previously been proposed as a mechanism for 24 

interference (10), and is perhaps attributable to the experimental design of some 25 
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published studies in this area. Often the concurrent training condition will perform 1 

double the overall training volume and total work to that of the strength training alone 2 

condition, which has previously resulted in muted strength development (6, 16, 20, 3 

22). In contrast studies employing lower concurrent training volumes have reported 4 

no inhibited strength development as a result of concurrent training (24, 25). These 5 

findings may support the hypothesis that total work performed in a concurrent 6 

programme influences both the presence and magnitude of any interference 7 

experienced, although the underlying mechanisms are yet to be fully elucidated. 8 

 9 

Previous research has reported a decreased testosterone:cortisol ratio following 10 

concurrent training with no such decrease in participants who performed strength 11 

training alone (2, 3, 22). This may implicate elevated endocrine responses and 12 

catabolism as a contributing factor to interference. As such, it is reasonable to 13 

suggest that the higher training volumes experienced in concurrent training regimens 14 

can result in elevated physiological stress, which is reflected in the responses of 15 

primary anabolic and catabolic hormones. This shift in the endocrine milieu in favour 16 

of catabolism may contribute to attenuated strength and hypertrophic adaptation 17 

associated with concurrent training.  18 

 19 

Previous work from our laboratory (20) illustrates the value in exploring the role of 20 

training frequency in a systematic fashion. Furthermore no research has assessed if 21 

differing ratios of strength and endurance training can influence the degree of 22 

interference experienced as a result of adaptations in the anabolic:catabolic 23 

environment. Therefore, the purpose of this research was to investigate the strength, 24 
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anthropometric and endocrine responses to a variety of concurrent strength and 1 

endurance training ratios, with incremental loads in a functional multi joint model. 2 

 3 

METHOD  4 

Experimental Approach to the Problem 5 

A balanced, randomized, between-group study design was employed to examine the 6 

effect of differing ratios of strength and endurance training in a concurrent regimen 7 

on strength, anthropometric, and endocrine responses. A 6 week training 8 

intervention was completed, during which participants were randomly assigned to 9 

one of four experimental conditions: either i) strength training alone (ST), ii) 10 

concurrent strength and endurance training at a ratio of 3:1 (CT3), iii) concurrent 11 

strength and endurance training at a ratio of 1:1 (CT1), or iv) no training (CON). 12 

Participants in the ST group were required to perform strength training alone on all 13 

scheduled training sessions. The CT3 group completed strength training on every 14 

scheduled session with every third session immediately followed by an endurance 15 

training protocol. Elsewhere, participants designated CT1 completed an identical 16 

strength training protocol immediately followed by endurance training at every 17 

scheduled session. Those participants in the CON group performed no strength or 18 

endurance training during the entire experimental period. Due to the requirements of 19 

the separate training protocols, it was not possible to match total work performed in 20 

the respective experimental conditions. All participants were instructed to abstain 21 

from any other strength or endurance training throughout the experimental period 22 

beyond that prescribed by the investigator. 23 

 24 
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Participants completed their respective intervention 3 d·wk-1 with ~48 h between 1 

sessions for 6 weeks resulting in a total of 18 separate training sessions in the micro 2 

cycle. In order to assess whether the frequency and ratio of strength and endurance 3 

training performed influenced strength and changes in body composition, 4 

assessments of 1 repetition maximums (1RM), countermovement jump height 5 

(CMJ), and body composition were assed pre, mid and post-intervention. To assess 6 

the effect of the designated training interventions on endocrine factors related to 7 

strength and morphological adaptation, venous blood samples were taken and 8 

subsequently analysed for circulating testosterone and cortisol concentrations. 9 

During the investigation, venous blood samples were collected immediately before 10 

(pre) and following the cessation of exercise (post) in the initial, mid and final 11 

compound training sessions of the 18 sessions performed. 12 

 13 

Subjects 14 

Prior to all experimental procedures the study was approved by the Northumbria 15 

University research ethics committee. All subjects were informed of the risks and 16 

benefits of the investigation prior to signing an approved informed consent document 17 

to participate in the study. Thirty healthy, recreationally resistance-trained men (age: 18 

23 ± 4 y; body mass: 79.2 ± 6.7 kg; height: 179.2 ± 6.7 cm; % body fat: 16.2 ± 5.4 %; 19 

sum of assessed 1RMs: 506.0 ± 11.4 kg; CMJ: 52.5 ± 7.3 cm; �̇O2max: 50.2 ± 5.8 20 

ml·kg·min) volunteered to participate in the study.  Prior to commencing, participants 21 

were matched for age, body mass, body fat % and 1RM (sum off all assessed 1RMs) 22 

load (all p > 0.05), and then randomly assigned (via block randomisation) to one of 23 

the four experimental conditions. Each participant had completed > 2 years of 24 

strength training activities prior to the start of a study, and were considered 25 
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recreationally “resistance trained”; all participants were conducting strength training ≥ 1 

2 d·wk-1, however none were involved in a sport-specific training programme. All 2 

participants were non-smokers, free from any endocrine or metabolic 3 

contraindications, and were not following any specialized dietary interventions. In all 4 

cases participants were asked to refrain from nutritional supplementation or 5 

pharmacological interventions for 30 days prior to and throughout the duration of any 6 

experimental intervention. 7 

 8 

Procedures 9 

Strength training protocol 10 

Prior to the intervention all participants completed a familiarisation week involving 11 

each respective training session in order to habituate themselves fully with the 12 

exercise techniques employed. The strength training intervention was comprised of 3 13 

sessions, and each was performed on separate days with ~48 h between sessions. 14 

Each session was composed of differing exercises; as such each of the sessions 15 

were designated “compound”, “pull” and “push” respectively, to best describe the 16 

nature of exercises performed. Full details of each session are presented in Table 1. 17 

The respective sessions were performed in the same order each week (i.e., 18 

compound, push then pull). Furthermore, the order of exercises within each session 19 

was consistent throughout the intervention. 20 

 21 

During familiarisation, training intensity was set at 70% of 1 repetition maximum 22 

(1RM) for 3 sets of 10 repetitions. The first 3 weeks of the training intervention 23 

required participants to complete all sessions and exercises at 80% 1RM for 4 sets 24 

of 8 repetitions. The following and final 3 weeks of the intervention were completed 25 
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at an intensity of 85% 1RM for 5 sets of 6 repetitions. These loads, volumes and rest 1 

intervals were selected as they are deemed appropriate for eliciting adaptations in 2 

strength and hypertrophy in recreationally trained non-athletes (27, 28). Additionally, 3 

strength training programmes of this nature involving exercises which stimulate large 4 

muscle masses and shorter rest periods have been shown to elicit large increases in 5 

the endocrine factors assessed within this study (21, 32). Full details of the 6 

intervention are presented in Table 1.  7 

 8 

All strength and/or endurance-based exercise commenced at the same time of day 9 

(1000 h ± 1 h) to avoid any diurnal performance or endocrine variations (15). 10 

Participants were also advised to abstain from exercise for 24 h prior to a visit. 11 

Training load was modified accordingly for each exercise if a participant’s 1RMs 12 

were observed to change at the mid-intervention assessments. Compliance was 13 

100% for all participants. 14 

 15 

Table 1 about here 16 

 17 

Endurance training protocol 18 

In all instances endurance training was conducted immediately following strength 19 

training. The endurance training protocol required participants to run on a treadmill 20 

(hp Cosmos, Pulsar, Nussdorf-Traunstein, Germany) at 1% incline at 70% of their 21 

pre-determined peak running velocity at �̇O2max (v�̇O2max). Running velocity was 22 

modified if participant’s v�̇O2max was observed to change at the mid-intervention 23 

assessments. 24 

 25 



9 

 

Whole body strength assessments - 1 repetition maximum (1RM) 1 

1RM loads were established for all strength-training exercises prior to the 2 

experimental intervention and following 3 and 6 weeks of training. For analysis 3 

purposes lower body strength was assessed via back squat and deadlift 1RM total 4 

load. To examine strength development in the upper body musculature, bench press, 5 

bent over row and military press total 1RM load was analysed. These exercises were 6 

chosen as they are considered gross motor movements that require all the major 7 

joints and muscle groups involved in the strength training intervention. All 8 

assessments were conducted in line with standardised procedures (29). 9 

 10 

Maximal aerobic capacity - �̇O2max  11 

Assessments of participant’s maximal oxygen uptake and peak running velocity at 12 �̇O2max were conducted at baseline, after 3 weeks of training and following the 6 13 

week training intervention. All assessments were conducted in line with standardised 14 

procedures reported elsewhere (34). 15 

 16 

Lower body power - countermovement jump assessment 17 

Lower body power was assessed via maximal countermovement jump height (CMJ) 18 

and was conducted prior to and following 3 and 6 weeks of training. Maximal CMJ 19 

was adopted as a proxy of lower body power, and was assessed using a contact mat 20 

(Just Jump, Probotics, Huntsville, AL, USA).  Following familiarization, independent 21 

trials of CMJs were conducted with 3 min between each individual jump; the highest 22 

jump being recorded for data analysis. When performing the test, participants 23 

positioned themselves in the centre of the contact mat and place their hands on the 24 

iliac crest where they were to remain throughout. CMJs began from an erect 25 
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standing position. When ready, participants squatted to a self-selected depth 1 

perceived as their individual optimal depth, and immediately ascended to jump 2 

vertically for maximal height. 3 

 4 

Body composition - air displacement plethysmography 5 

All participants lean mass and % body fat was assessed prior to and following 3 and 6 

6 weeks of training. Lean mass and % body fat were assessed using air 7 

displacement plethysmography (BodPod, Life Measurements Instruments, CA, USA) 8 

(11, 26, 30). Initially the devise was calibrated using a metal cylinder of known and 9 

standardised composition. Participants were asked to disrobe to minimal clothing 10 

and place a tight fitting cap over their hair. Participants were then weighed on a 11 

calibrated scale prior to entering the chamber. Once two consistent measures of 12 

body composition were obtained % body fat and lean mass were calculated using 13 

associated software (8). 14 

 15 

Rate of perceived exertion 16 

To examine perception of physical exertion in response to the training intervention, 17 

rate of perceived exertion (RPE) was recorded during strength training. Briefly, 18 

participants were required to select a number from 6 to 20, corresponding to a 19 

statement which best described their level of exertion at that particular moment (4, 7, 20 

31).  21 

 22 

Blood sampling and storage 23 

When blood samples were collected, participants arrived at the lab having refrained 24 

from consuming food or caffeine for 2 h prior to assessment. Venous blood samples 25 
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were collected from the antecubital fossa in a branch of the basilica vein into 1 

vacutainer tubes (BD Vacutainer, NJ, USA) coated with Ethylenediaminetetraacetic 2 

acid (EDTA) to negate. Whole blood was subsequently centrifuged (accuSpin 3R, 3 

Fisher Scientific, Loughborough, UK) at 4°C and 1509 g for 10 min, after which the 4 

resultant plasma from each sample was then transferred to individual eppendorf 5 

containers for subsequent storage at -80°c. Venous blood samples were collected 6 

immediately before (pre) and following the cessation of exercise (post) in the initial, 7 

mid and final compound training sessions (additional information presented in Table 8 

1) of the 18 sessions performed. 9 

 10 

Biochemical analysis 11 

Plasma testosterone and cortisol were measured in duplicate (testosterone; ICC = 12 

0.89, R = 0.89, Cortisol: ICC = 0.92, R = 0.95) via commercially available enzyme-13 

linked immunosorbent assay (ELISA) kits (IBL International, Hamburg, Germany).  In 14 

all cases procedures were followed according to the manufacturer’s instructions. For 15 

both variables, 25 ųL of each standard, control and sample were pipetted into the 16 

respective wells of the mircotire plate, after which 2000 ųL of enzyme conjugate was 17 

then pipetted into each well and the plate was covered and left to incubate at room 18 

temperature (18 - 25°c) for 60 min. After this period the incubation solution was 19 

discarded and the microplate was washed 3 times with wash buffer and distilled 20 

water solution diluted at a ratio of 1:10.  100 ųL of Tetramethylbenzidine (TMB) 21 

substrate solution was then pipetted into each well prior to a 15 min incubation 22 

period. Immediately following this incubation 100 ųL of TMB stop solution was 23 

pipetted into each well and the contents were briefly mixed by gently agitating the 24 

plate. The optical density was measured at 450 nm within 10 min of the stop solution 25 
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being added using an Anthos 2010 mircoplate reader (DAZDAQ LTD, Brighton, UK 1 

(reference-wavelength 600 – 650 nm)). For testosterone there was a minimum 2 

detection limit of 0.2 nmol·L-1, inter-assay and intra-assay variation of 4.2 – 7.4 and 3 

3.1 – 5.4 and the calibration curve revealed Pearson’s correlation coefficients (r) = 4 

0.99. For cortisol there was a minimum detection limit of 6.8 nmol·L-1 with an inter-5 

assay and intra-assay variation of 2.1 – 5.0 and 2.6 – 3.5, the calibration curve 6 

revealed r = 0.99, respectively. 7 

 8 

Statistical analysis 9 

Data are presented as mean ± standard deviation. Values of RMs, CMJ and lean 10 

mass were transformed to a percentage change (Δ%) from baseline and used for 11 

analysis. Prior to analysis, dependant variables were verified as meeting required 12 

assumptions of parametric statistics and changes in all assessed measures were 13 

analysed using mixed model repeated measures ANOVA tests. ANOVA analysed 14 

differences between 4 conditions (ST, CT3, CT1 and CON) and 3 time points 15 

(baseline, mid-intervention and post-intervention).  The alpha level of 0.05 was set 16 

prior to data analysis. Assumptions of sphericity were assessed using Mauchly’s test 17 

of sphericity, if the assumption of sphericity was violated Greenhouse Gessier 18 

correction was employed. If significant effects between conditions or over time were 19 

observed post-hoc differences were analysed with the use of Bonferroni correction. 20 

Statistical power of the study was calculated post-hoc using G*Power statistical 21 

software (v3.1.3, Düsseldorf, Germany) using the effect size, group mean, SD and 22 

sample size of the primary outcome measures, in this case being lower and upper 23 

body maximal strength and endocrine factors. Power was calculated as between 0.8 24 

and 1 indicating sufficient statistical power (5). 25 
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 1 

RESULTS 2 

Physical performance measures 3 

Participant’s baseline strength and endurance physical performance capabilities 4 

were similar between experimental conditions, these data are presented in Table 2. 5 

 6 

Table 2 about here 7 

 8 

Upper and lower body maximal strength 9 

A significant group x time interaction was observed (F(4, 36) = 4.940, p = 0.003) for 10 

lower body strength development, as was an effect of time (F(1, 36) = 45.042, p < 11 

0.001). All training conditions elicited increases in lower body strength at the mid-12 

intervention time point following 3 weeks of training (ST; 9.0 ± 4.5%, p < 0.001. CT3; 13 

9.8 ± 11.0%, p = 0.024. CT1; 5.8 ± 3.2%, p < 0.001). Similarly lower body strength 14 

improved in all training conditions from baseline to post-intervention (ST; 17.2 ± 15 

7.2%, p < 0.001. CT3; 15.0 ± 11.8%, p = 0.003. CT1; 10.1 ± 4.9%, p < 0.001). ST 16 

was the only condition to significantly increase lower body strength from mid to post-17 

intervention (8.3 ± 2.8%, p = 0.016, Figure 1). 18 

 19 

Figure 1 about here 20 

 21 

All training conditions improved lower body strength to a greater extent that CON at 22 

both mid and post-intervention (all p < 0.05). Post-training ST improved lower body 23 

strength 7.1 ± 2.4% more than CT1 (p = 0.036, Figure 1).  24 

 25 
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A significant group x time interaction (F(5, 41) = 2.895, p = 0.027) and an effect of time 1 

(F(2, 36) = 31.510, p < 0.001) were observed for upper body strength development. 2 

CT3 and CT1 both improved upper body strength between baseline to mid-3 

intervention (6.2 ± 6.9%, p = 0.024 and 7.8 ± 4.5%, < 0.001 respectively, Figure 2). 4 

All training conditions increased upper body strength from pre to post-training (all p < 5 

0.05). Upper body strength improved in all training conditions following training 6 

interventions (ST; 10.5 ± 5.2%, p < 0.001. CT3; 10.6 ± 10.7%, p = 0.014. CT1; 12.1 7 

± 6.9%, p < 0.001). ST was the only condition to improve upper body strength from 8 

mid to post-training (6.9 ± 0.1%, p = 0.019). 9 

 10 

Figure 2 about here 11 

 12 

All training conditions elicited significantly greater increases in upper body strength 13 

than CON at mid- and post intervention (all p < 0.05, Figure 2).  14 

 15 

Lower body power 16 

A significant group x time interaction (F(6, 52) = 3.236, p = 0.009) and effect of time 17 

(F(2, 52) = 26.086, p < 0.001) were observed for lower body power development. Both 18 

ST and CT1 increased CMJ from baseline to mid-intervention (ST; 8.7 ± 7.0%, p = 19 

0.003. CT1; 3.0 ± 2.3%, p = 0.002). Post-intervention all training conditions elicited 20 

significant increases in CMJ from baseline (ST; 13.1 ± 7.3%, p < 0.001. CT3; 7.1 ± 21 

3.7%, p < 0.001. CT1; 4.8 ± 2.3%, p < 0.001; Figure 3). 22 

 23 

Figure 3 about here 24 

 25 
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Participants in the ST condition achieved significantly higher CMJ than those 1 

following CT1 (7.0 ± 3.5%) and CON (5.7 ± 4.7%) conditions after 3 weeks of 2 

training (i.e. mid-intervention) (both p = 0.04). Following training (i.e. post-3 

intervention), ST elicited 6.0 ± 3.6% greater increases in CMJ than CT3, 8.3 ± 5.0% 4 

greater than CT1 and 10.9 ± 2.3% greater than CON (all p < 0.05). 5 

 6 

Strength training performance 7 

During the first 3 weeks of the training intervention all groups ability to maintain the 8 

required training intensity was similar (F(3, 30) = 1.063, p = 0.548) and did not change 9 

significantly over time (F(1, 30) = 4.295, p = 0.062). Similar results were observed in 10 

the final 3 weeks of the intervention as ability to maintain designated training load 11 

was not different between conditions (F(3, 28) = 1.301, p = 0.293) or over time (F(1, 28) 12 

= 3.777, p = 0.052). 13 

 14 

Testosterone 15 

No group x time interaction was reported for circulating basal testosterone 16 

concentrations (F(6, 52) = 1.820 p = 0.113, Table 3). A significant group x time 17 

interaction was however observed for the testosterone response to strength training 18 

(F(3, 26) = 11.466, p < 0.001). Testosterone responses to the respective training 19 

interventions also changed significantly over time (F(1, 26) = 130.683, p < 0.001). 20 

Following the initial and mid sessions ST was the only condition to increase 21 

testosterone levels greater than CON (30.7 ± 5.0%, p = 0.04 and 37.1 ± 12.9% p = 22 

0.005 respectively). CT3 was the only condition to elicit a greater increase in 23 

testosterone than CON post the final session (42.2 ± 10.5%, p = 0.002). ST and CT3 24 

elicited significant increases from pre training in both the mid and final sessions (all p 25 
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< 0.05). Testosterone was also increased post training in the CT3 condition following 1 

the final session (p = 0.01). No other increases were observed. 2 

 3 

Cortisol 4 

No group x time interaction was observed for circulating basal cortisol concentrations 5 

(F(6, 52) = 1.540, p = 0.184, Table 3). A significant a group x time interaction (F(3, 26) = 6 

7.592, p = 0.001) and an effect of time (F(1, 26) = 101.852, p < 0.001) were observed 7 

for cortisol responses to the respective training interventions. Following the initial 8 

session ST was the only condition to increase cortisol levels to a greater extent than 9 

CON (84.7 ± 22.1%, p = 0.014). Post training after the mid-intervention session CT1 10 

was the only condition which resulted in significantly greater cortisol increases than 11 

CON (49.2 ± 3.1%, p < 0.001). Following the final session, CT1 elicited 26.6 ± 8.4% 12 

greater cortisol increases than ST (p < 0.008). All training conditions elicited 13 

significant increases in cortisol post training on all assessed sessions (all p < 0.05). 14 

 15 

Testosterone-cortisol ratio 16 

No group x time interactions were present for basal testosterone:cortisol ratio (T:C 17 

ratio) (F(6, 52) = 1.903, p = 0.098) nor the T:C ratio response to training (F(6, 52) = 18 

1.124, p = 0.361). 19 

 20 

Table 3 about here 21 

 22 

Lean mass 23 



17 

 

Participant’s baseline lean mass was similar between experimental conditions, these 1 

data are presented in Table 4. No group x time interaction was observed for changes 2 

in participant’s lean mass.  3 

 4 

Table 4 about here 5 

 6 

Body fat % 7 

A significant group x time interaction was observed for body fat % (F(6, 52) = 4.616, p 8 

= 0.001). Following the 6 week training intervention, CT1 resulted in 2.65 ± 0.04% 9 

greater decreases in body fat % than CON (p < 0.001) at the post-intervention time 10 

point. No other significant effects of time or group were observed for changes in 11 

body fat %.  12 

 13 

 14 

Rate of perceived exertion 15 

A significant group x time interaction was present for RPE (F(5, 52) = 2.744, p = 16 

0.029). At week 5 and 6 of the training intervention RPE was significantly lower in the 17 

ST group than CT1 (both p < 0.05) (Figure 4). No other interactions or effects were 18 

present. 19 

 20 

Figure 4 about here 21 

 22 

DISCUSSION 23 

The present study sought to prioritise strength development in concurrent training 24 

regimens with varying volumes of endurance training. The primary finding of this 25 
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study was that an increase in the frequency of endurance training and total training 1 

volume within the concurrent training paradigm resulted in the attenuated 2 

development of lower body strength when compared to strength training alone. 3 

Following 6 weeks of training, ST and CT3 conditions resulted in similar increases in 4 

lower body strength, whereas the improvements of those performing both strength 5 

and endurance training collectively 3 times per week (CT1) were muted (Figure 1). 6 

These findings reflect data presented in our previous work (20), in which ST and CT3 7 

resulted in similar increases in maximal voluntary contraction (MVC), whereas 8 

increases in the CT1 condition were significantly lower. Although no other published 9 

research has examined differing frequencies of strength and endurance training on 10 

strength-related adaptation, studies employing concurrent training frequencies of ≥ 3 11 

d·wk-1 have typically reported some manifestation of interference characteristics (2, 12 

14, 19, 22). Lower concurrent training frequencies (≤ 2 d·wk-1) have however 13 

resulted in similar development of strength related phenotypes following both 14 

concurrent and strength training programmes (24, 25). When combined, the findings 15 

of these studies are consistent with those of the present study. Concurrent training 16 

conducted 3 d·wk-1 (CT1) resulted in inhibited gains in maximal lower body strength, 17 

whereas performing concurrent training once per week with 2 strength alone 18 

sessions (CT3; concurrent training frequency of 1 d·wk-1) elicited similar lower body 19 

strength increases than strength-training in isolation. The findings of this study and 20 

those of previous research indicate higher training volumes and elevated 21 

physiological stress may contribute to the presence of the interference phenomenon.  22 

 23 

In addition to the inhibition of lower body strength development lower body power 24 

development was also inhibited following 3 and 6 weeks of training in the CT1 25 
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condition when compared with strength training alone (Figure 3). Furthermore, lower 1 

volumes of endurance training also resulted in attenuated increases in lower body 2 

power, as post-intervention participants who performed strength and endurance 3 

training at a ratio of 3:1 (CT3) exhibited improvements which were 6.0 ± 3.6% (p = 4 

0.04, smallest worthwhile change = 1.2% (18))  lower than those who performed 5 

strength training alone. As previously stated, maximal lower body strength 6 

development was not different between ST and CT3 conditions (Figure 1), which 7 

may indicate that power phenotypes are more susceptible to interference than 8 

maximal strength indices. This suggestion is supported by previous research 9 

indicating that development of variables including CMJ, rate of force development 10 

(RFD) and peak torques at high velocities have been inhibited as a result of 11 

combining strength and endurance training, yet maximal strength development 12 

remained uninhibited (6, 9, 14). 13 

 14 

Unlike lower body strength and power development, increases in upper body 15 

strength were similar following both strength training alone and both concurrent 16 

training conditions (CT3 and CT1). Furthermore, following 3 weeks of training CT1 17 

resulted in 4.2 ± 0.8% greater increases than strength training alone (Figure 2), 18 

although this was not statistically significant (p = 0.09). Previous research has also 19 

reported concurrent training does not result in the inhibition of upper body maximal 20 

strength (1, 3).  Unlike the present study, which employed steady state running, 21 

previous research involved rowing (3) and arm cranking (1) as the endurance 22 

training modalities. It may be argued that whilst aerobically demanding the stimuli of 23 

arm cranking and rowing are further towards the strength end of the strength-24 

endurance continuum than steady state running. As such, it is reasonable to suggest 25 
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that concurrent training may not differently affect the upper body musculature, but 1 

rather for interference to occur the assessed musculature must experience divergent 2 

contractile activity (i.e. strength and endurance stimulus) of contrasting intensities 3 

and durations. It is reasonable to suggest that the lower body musculature was 4 

placed in a greater state of conflict than the upper body, as both training stimuli 5 

directly affected hip dominant and lower limb muscle groups and only the strength 6 

training protocol required noteworthy contributions from the upper body musculature. 7 

Due to the relatively low number of high force contractions involved in strength 8 

training and the continuous lower force contractions experienced during endurance 9 

training, different patterns of motor unit activation are required. It is possible that the 10 

divergent demands placed on the neuromuscular system by strength and endurance 11 

training elicited differing alterations in motor unit recruitment in the musculature of 12 

the lower limbs, previous research has also implicated altered neural activation 13 

during high force contractions as a potential mechanism for impaired strength 14 

development (22, 23). Morevover, the potential alterered neural recruitment during 15 

rapid and high force contractions may have contributed to the inhibition of lower body 16 

power development as a result of both high and low frequncies of concurrent training 17 

(Figure 3). 18 

 19 

Following the final training session of the intervention CT1 elicited greater cortisol 20 

levels than ST which is consistent with previous research (2, 3). This may indicate 21 

higher frequencies of concurrent training can result in elevated physiological stress, 22 

which was also reflected in participant’s perceived exertion during training (Figure 4). 23 

In additional to enhanced training stress elevations in cortisol have been implicated 24 

in catabolism and impaired hypertrophic development with concurrent training (22). 25 
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However, in the present study increases in lean mass were similar between training 1 

conditions, as such it is unlikely the observed elevations in cortisol influenced muscle 2 

morphological adaptation. The variance in the findings of the present study and 3 

those of Kraemer et al. (22) are perhaps due to the differing lengths of the respective 4 

training programmes. Kraemer et al. (22) employed a 12 week intervention whereas 5 

in the present study participants trained for 6 weeks. As the CT1 condition resulted in 6 

the inhibition of strength development following 6 weeks of training it may be 7 

speculated that had the interventions been longer CT1 may have also resulted in 8 

impaired increases in lean mass. 9 

 10 

PRACTICAL APPLICATIONS 11 

The findings of this study build on the understanding of concurrent training 12 

developed in the isolated limb model discussed in our previous work (20). The data 13 

presented here indicate that if strength development is the primary goal of an training 14 

programme, endurance-training frequency should be kept to a minimum.  It should 15 

however be noted, that this minimal dose of endurance training should be sufficient 16 

to maintain any necessary endurance performance characteristics. Also the 17 

elevations in post exercise cortisol concentrations observed only in participants 18 

conducting strength and endurance training 3 times weekly indicate that overall 19 

training stress likely plays a key role in the inhibition of strength development. 20 

Therefore if a concurrent training programme must be performed it is imperative that 21 

appropriate monitoring strategies are employed to ensure training stress doesn’t 22 

become too great and result in the plateau of strength development. Furthermore if 23 

development of power type characteristics is required then it appears that frequency 24 

and volume of endurance training should be minimized or omitted from the 25 
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programme all together. This may be achieved via appropriate programme 1 

construction and periodization to allow power development to occur in periods in 2 

which endurance type training can be kept to a minimum.   3 
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Figure Legends 1 

 2 

Figure 1. Mean relative changes in lower body strength (as assessed by back squat 3 

and deadlift) in response to respective training interventions in the ST (n = 8), CT3 (n 4 

= 8), CT1 (n = 8) and CON (n = 6) conditions. ST, strength training alone performed 5 

every session; CT3, strength performed every session, strength and endurance 6 

training performed every third session; CT1, strength and endurance training 7 

performed every session; CON, no strength or endurance training performed during 8 

experimental period. * significant increases from baseline in all training conditions (p 9 

< 0.05). ** significant increase from mid-intervention in ST (p = 0.016). † significantly 10 

greater increases than CON in training conditions (p < 0.05). ‡ ST significantly 11 

greater than CT1 (p = 0.036). 12 

 13 

 14 

Figure 2. Mean relative changes in upper body strength (as assessed by bench 15 

press, bent over row and military press) in response to respective training 16 

interventions in the ST (n = 8), CT3 (n = 8), CT1 (n = 8) and CON (n = 6) conditions. 17 

ST, strength training alone performed every session; CT3, strength performed every 18 

session, strength and endurance training performed every third session; CT1, 19 

strength and endurance training performed every session; CON, no strength or 20 

endurance training performed during experimental period. * significant increases 21 

from baseline in CT3 and CT1 (p < 0.05). ** significant increases from baseline in all 22 

training conditions (p < 0.05). † Significant increase from mid-intervention in ST (p = 23 

0.019). ‡ all training conditions greater than CON (p < 0.05). 24 

 25 

 26 

Figure 3. Mean relative changes in countermovement jump height in response to 27 

respective training intervention s in the ST (n = 8), CT3 (n = 8), CT1 (n = 8) and CON 28 

(n = 6) conditions. ST, strength training alone performed every session; CT3, 29 

strength performed every session, strength and endurance training performed every 30 

third session; CT1, strength and endurance training performed every session; CON, 31 

no strength or endurance training performed during experimental period. * ST and 32 

CT1 significantly greater than baseline (p < 0.05). ** ST, CT3 and CT1 significantly 33 

greater than baseline (p < 0.001). † ST significantly greater than CT1 and CON (p < 34 

0.05). ‡ ST significantly greater than CT3, CT1 and CON (all p < 0.05). 35 

 36 

 37 

Figure 4.  Mean RPE experienced in the ST (n = 8), CT3 (n = 8) and CT1 (n = 8) 38 

conditions. ST, strength training alone performed every session; CT3, strength 39 

performed every session, strength and endurance training performed every third 40 

session; CT1, strength and endurance training performed every session. * ST 41 

significantly lower than CT1 (p < 0.05). 42 

43 
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Table 1. Programme variables within periodized resistance training intervention. 1 

 2 

Week 1 Pre-intervention assessments 

Week 2 Familiarisation 

Sets 3 

Repetitions 10 

% 1RM 70 

Rest (s) 90 

Weeks 3 – 5 Training 

Sets 4 

Repetitions 8 

% 1RM 80 

Rest (s) 120 

Week 6 Mid-intervention assessments 

Week 7 – 9 Training 

Sets 5 

Repetitions 6 

% 1RM 85 

Rest (s) 120 

Week 10 Post-intervention assessments 

Sessions Compound Pull Push 

 

back squat, bench 

press, bent over row, 

dead lift and military 

press 

high pull, lat pull down, 

seated row, standing 

dumbbell reverse fly 

and seated hamstring 

curls 

incline bench press, 

front squat, push 

press, seated leg 

press and dumbbell 

chest flys 

 3 
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Table 2. Participant’s baseline maximal strength, lower body power and maximal 1 

aerobic capacity. 2 

 3 

Lower body maximal strength – 1RMs (kg) 

 ST CT3 CT1 CON 

Back squat 117.8 ± 7.7 120.3 ± 11.8 122.4 ± 8.9 118.5 ± 12.5 

Deadlift 136.3 ± 7.9 142.6 ± 12.4 139.7 ± 6.7 136.9 ± 9.5 

Total 254.1 ± 11.5 262.9 ± 14.2 262.1 ± 10.6 255.4 ± 11.4 

Upper body maximal strength – 1RMs (kg) 

 ST CT3 CT1 CON 

Bench press 99.1 ± 9.2 105.9 ± 7.1 107.4 ± 12.4 101.6 ± 8.8 

Bent over row 80.0 ± 5.3 77.5 ± 6.6 82.5 ± 5.8 80.5 ± 7.4 

Military press 61.6 ± 6.1 67.5 ± 5.8 65.5 ± 7.9 60.3 ± 5.1 

Total 240.6 ± 11.9 250.9 ± 12.8 255.4 ± 14.0 242.4 ± 13.6 

Lower body power – CMJ (cm) 

 ST CT3 CT1 CON 

 52.7 ± 10.3 52.8 ± 7.7 50.7 ± 7.5 53.9 ± 5.1 

Maximal aerobic capacity – �̇O2max (ml·kg·min)  

 ST CT3 CT1 CON 

 52.1 ± 7.0 47.4 ± 4.9 49.5 ± 6.3 51.9 ± 7.8 

Note: ST, strength training alone performed every session; CT3, strength performed 4 

every session, strength and endurance training performed every third session; CT1, 5 

strength and endurance training performed every session; CON, no strength or 6 

endurance training performed during experimental period.  7 
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Table 3. Effects of respective training interventions on testosterone, cortisol and testosterone:cortisol (T:C) ratio. 1 

* significantly greater than pre (p < 0.05), † significantly greater than CON (p < 0.05),  ‡ significantly greater than post mid-session 2 

(p < 0.05), ᴭ increase significantly greater than ST (p < 0.05).3 

 Training Session 

Condition Initial Mid Final 

 Pre Post Pre Post Pre Post 

ST       

Testosterone (nmol·L-1) 17.2 ± 4.0 23.4 ± 5.4*† 16.4 ± 2.7 23.7 ± 4.2*† 19.6 ± 10.0 27.3 ± 13.6 

Cortisol (nmol·L-1) 262.6 ± 86.6 495.6 ± 150.0*† 254.4 ± 124.3 408.5 ± 145.3* 269.5 ± 116.0 389.1 ± 99.7* 

T:C Ratio (x103) 76.2 ± 46.3 53.5 ± 28.0 77.5 ± 36.0 63.4 ± 20.8 88.7 ± 69.7 77.67 ± 50.1 

CT3       

Testosterone (nmol·L-1) 13.0 ± 1.6 17.6 ± 2.2* 15.4 ± 3.7 20.1 ± 4.2* 19.5 ± 4.6 27.1 ± 5.6*† 

Cortisol (nmol·L-1) 
260.5 ± 
114.6 

522.0 ± 325.7* 284.7 ± 103.6 460.5 ± 134.6* 262.8 ± 90.9 428.7 ± 137.0* 

T:C Ratio (x103) 60.7 ± 31.5 50.3 ± 42.1 58.4 ± 16.6 48.4 ± 13.6 81.0 ± 28.5 68.6 ± 22.7‡ 

CT1       

Testosterone (nmol·L-1) 18.7 ± 7.5 24.4 ± 11.7 19.5 ± 5.2 24.5 ± 8.0 17.3 ± 4.3 21.9 ± 4.6 

Cortisol (nmol·L-1) 278.2 ± 64.9 471.6 ± 186.9* 331.4 ± 17.1 499.9 ± 48.3*† 368.3 ± 51.8 507.8 ± 45.2*†ᴭ 

T:C Ratio (x103) 71.4 ± 33.9 57.6 ± 30.4 59.0 ± 15.1 49.1 ± 14.9 47.8 ± 12.5 43.0 ± 6.4 

CON       

Testosterone (nmol·L-11) 16.1 ± 1.4 16.8 ± 1.1 16.2 ± 1.5 17.6 ± 1.4 18.5 ± 3.0 17.7 ± 2.1 

Cortisol (nmol·L-1) 291.6 ± 65.0 311.5 ± 47.8 305.5 ± 91.1 320.6 ± 96.2 306.6 ± 115.8 330.2 ± 101.9 

T:C Ratio (x103) 58.1 ± 16.4 55.0 ± 9.0 57.0 ± 18.1 59.1 ± 17.8 58.4 ± 20.8 63.5 ± 26.0 
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Table 4. Participant’s basal lean mass. 1 

 2 

Lean mass  (kg) 

ST CT3 CT1 CON 

68.4 ± 6.8 66.1 ± 8.1 70.2 ± 3.7 66.9 ± 8.7 

Note: ST, strength training alone performed every session; CT3, strength performed 3 

every session, strength and endurance training performed every third session; CT1, 4 

strength and endurance training performed every session; CON, no strength or 5 

endurance training performed during experimental period 6 

  7 
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Figure 1 1 
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Figure 2 1 
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