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ABSTRACT 
We need more reliable usability inspection methods 
(UIMs), but assessment of UIMs has been unreliable [5].  
We can only reliably improve UIMs if we have more 
reliable assessment. 

When assessing UIMs, we need to code analysts’ 
predictions as true or false positives or negatives, or as 
genuinely missed problems.  Defenders of UIMs often 
claim that false positives cannot be accurately coded, i.e., 
that a prediction is true but has never shown up through 
user testing or other validation approaches.  We show this 
and similar claims to be mistaken by briefly reviewing 
methods for reliable coding of each of five types of 
prediction outcome.  We focus on falsification testing, 
which allows confident coding of false positives.   

Keywords 
User testing, falsification testing, usability inspection 
methods, model-based methods. 

1. INTRODUCTION 
Currently, there are two general ways to evaluate a 
product’s usability: predictions by analysts or user testing 
(with real participants).  While the latter can be more 
reliable, achieving this is very labour intensive, time 
consuming and very expensive.  When getting the product 
right first time is essential, there is a pressing need for 
more efficient methods of achieving satisfactory usability. 

Usability Inspection Methods (UIMs) would appear to be a 
suitable approach here, as they are generally quicker, and 
consequently less expensive.  However, speed and reduced 
cost come at a price since UIMs can be significantly less 
reliable than user testing.  We thus need to improve UIM 
usage, but before we can, we must have reliable methods to 
assess UIMs.  One key issue with UIM assessment is 

confident coding of analyst predictions from usability 
inspections.  It is not a clear cut matter of successful 
predictions vs. missed problems.  A major concern is the 
issue of false positives.  How can we be sure that an 
analyst prediction is really a false positive?  In fact, some 
believe that false positives don’t exist, i.e., research simply 
fails to flush out predicted problems that really do exist! 

2. HOW DO WE ASSESS UIMS? 
UIMs are commonly assessed by their validity, 
thoroughness and effectiveness [9], even though 
percentages fail to comprehensively assess UIMs [10].  
Validity drops as the number of problems found with a 
UIM exceeds the real problems found.  Analysts make 
false predictions (false positives), as well as successful 
ones.  Fewer false positives mean a more valid UIM. 

         Validity = Count of real problems found using UIM
               Count of problems predicted by UIM 

Note that if false positives do not exist, both counts must 
become identical and all UIMs have a perfect validity of 1!  
The thoroughness of a UIM rises as more of the real 
problems that exist that are found. 

Thoroughness = Count of real problems found using UIM
                  Count of known usability problems  

The effectiveness of a UIM is the (weighted) product of its 
thoroughness and validity [6].  To calculate this accurately, 
we must correctly code all analyst predictions.  This is not 
just to get the right percentages.  To understand how and 
why false positives and genuine misses arise, we must first 
be able to properly code analyst predictions. 

3. ASSESSMENT VIA USER TESTING 
The “count of known usability problems” used to calculate 
thoroughness can become known from: 

• Helpdesk logs 

• Logging (via software) 

• Observation in real use 
This space must be left blank as it is required for the copyright 
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• User interviews 

• User diaries 

• User testing 



 

User testing is thus just one approach.  The approach 
below uses examples for user testing to validate UIMs, but 
much generalises to other empirical problem sources. 

4. RELIABILITY IN VALIDATION  VIA USER TESTS 
Reliable assessment of UIMs (or model based methods) 
starts with accurate coding of predictions.  We need to be 
absolutely sure that when we assess UIMs that a ‘hit’ really 
was a true positive and a ‘miss’ is a missed problem (i.e., 
not a false negative but a genuine miss).  Accurate coding 
requires confidence in genuine misses and in classifying 
analysts’ predictions as true or false positives or negatives.  

 

Correct Coding 
Result  

(miscoded as) 
Source of Error 

Genuine Miss 
NOT DISCOVERED 

REAL PROBLEM 
 (found in tests) 

True +ve Incorrect extraction 

Incorrect extraction 
False +ve 

Incomplete coverage 

True +ve (hit) 
PREDICTED (discovered 

and confirmed) 
REAL PROBLEM Genuine miss Merging error 

False +ve 
PREDICTED 

NOT FOUND IN TESTS 
True +ve Incorrect extraction 

Incorrect extraction 
True -ve 

Incomplete coverage 

False –ve 
NOT PREDICTED 
(discovered and 

eliminated) 
REAL PROBLEM 

Genuine Miss 
No evidence of 

elimination 

False -ve Incorrect extraction True –ve 
NOT PREDICTED 

NOT FOUND IN TESTS Not detected 
No evidence of 

elimination 

Table 1: Sources of coding errors and their results 

There are five types of (non)-prediction when assessing 
UIMs.  Each has associated risks, as shown in Table 1.  We 
can see that a problem that should be a genuine miss 
(correct coding) could be miscoded (result = true positive) 
if a problem is incorrectly extracted from empirical data 
(source of error, [7]) and matched to an analyst prediction.  
The same source of error miscodes a false positive as a hit. 

A true positive (i.e., a ‘hit’) could be miscoded as a false 
positive from two sources of error: a real problem 
incorrectly extracted from empirical data; empirical 
coverage that misses the problem.  A third source of error, 
poor merging of analyst predictions, results in miscoding 
as a genuine miss if a correct prediction was not kept 
separate from others — analyst agreement on problem 
identification can widely vary [7] and great care needs to 
be taken with merging and matching analyst predictions 
[2]. 

True and false negatives do not arise with all UIM usage, 
since instruments such as extended report formats are 
required to reveal analyst elimination of (im)probable 
problems [4].  Without evidence of elimination (source of 

error), a false negative will be miscoded as a genuine miss.  
Another source of error, 

incorrect extraction from user test data, will result in 
miscoding as a hit (true positive). 

For true negatives, incorrect extraction results in miscoding 
as false negatives.  Without evidence of elimination, true 
negatives are undetectable, and thus analysts’ abilities to 
spot fair to excellent design cannot be assessed. 

There are thus four sources of error when validating UIMs: 

1. Incorrect extraction: finding and describing 
problems from empirical data 

2. Incomplete coverage: finding real problems 
(e.g., via user testing) 

3. Merging error: incorrect or misleading merging 
of analyst predictions 

4. No evidence of elimination: recording analyst 
decision making 

Our approach to these errors has been developed over four 
years and applied in two major studies [2, 3].  The first 
source of error can be addressed by structured problem 
extraction methods such as SUPEX [1].  The last two 
sources of error can be addressed by Extended Structured 
Problem Report Formats (ESPRFs [4]).  Within our DARe 
model for analyst behaviour [11], usability inspection has 
two distinct phases.  Analysts discover possible problems, 
then analyse them (using a variety of knowledge resources 
in both discovery and analysis), keeping probable 
problems, and eliminating improbable ones.  ESPRFs 
allow for the reporting of both false negatives and true 
negatives.  Without ESPRFs, both true and false negatives 
will be miscoded unless the UIM explicitly records success 
and failure cases (e.g., [8]).   We have not yet fully 
reported our approach to the second source of error, and 
we are often challenged to defend the existence of false 
negatives. 

The first source of error is the most cited reason for 
mistrusting unfavourable UIM assessments. We have 
addressed this to ensure reliable validity scores over five 
years via falsification testing.  As many still believe that 
false positives cannot be reliably coded, we explain our 
approach in detail to show that doubts are poorly grounded. 

5. PERFORMING FALSIFICATION TESTING 
The method for falsification testing involves the rigorous 
testing of analyst predictions via user testing (Figure 1).  
Analyst predictions are analysed and merged into a master 
problem set, taking care not to distort predictions.  The key 
to falsification testing lies in analysing individual problems 
to identify likely user difficulties that should arise in 
testing.  Within the context of the test application, task sets 
are systematically derived to expose these likely 
difficulties, that is, if the prediction is valid.  Put simply, 
the individual predicted problems are ‘stressed’ via user 
testing to ensure a high level of confidence in final coding. 



 

The principle is simple, if a prediction is accurate, then it 
will be confirmed by user testing.  If a prediction does not 
materialise as a problem, we can have confidence that it 
does not exist, and that the particular prediction can be 
confidently coded as a false positive.  Falsification testing 
ensures that false positive coding of predictions is not a 
consequence of incomplete coverage in user testing. 

 Figure 1: Process of Falsification Testing 

In summary, falsification testing is fixed task user testing.  
It is not open, users have restricted choice.  Thus it cannot 
be used for accurate thoroughness scores, which are 
achieved via a complementary method of asymptotic 
testing [6].  Nor can the process distinguish between 
genuine misses and false negatives without evidence of 
analyst elimination (hence ‘misses’).  The goal of 
falsification testing is accurate validity scores, so task sets 
for testing are systematically derived from analyst 
predictions.  

 

 Predicted Problem Description 

1 Ambiguity of start screens regarding the selection of 
presentations and types of layouts 

2 Toolbar command buttons small and hard to discriminate 

3 
Visual status of toolbar command button availability. 

No visual distinction between (un)available buttons 

4 User has imited time to read error messages (5 secs) 

5 
Unfilled objects and ‘white’ filled objects are displayed the 
same, but selection and manipulation of these objects 
require different methods 

6 Incorrect and misleading information on status bar when 
manipulating text 

7 The task of ungrouping objects is not complete until the 
user performs a secondary unprompted action 

8 Status Bar is badly positioned resulting in much of the 
system feedback being missed by the user 

9 The user is forced to reselect the toolbar button 

10 Cursor feed back, no change for circles or squares, 
remains as cross hairs 

11 Graphic representation of toolbar buttons, hard to interpret 

12 Right mouse button functions (shortcuts), hard to find 

Table 2: Predicted problems from [2,12] 

5.1 Example mapping 
It is not always necessary to develop unique tasks for every 
predicted problem.  Quite often individual tasks will 
address several predictions.  Three tables from a previous 
study [2,12] show how tasks are mapped to specific 
usability problem predictions.  Table 2 briefly describes 12 
predicted usability problems.  The study involved a 
‘drawing editor’ (PowerPoint version 4.0), with which 
multiple analysts performed a heuristic evaluation.  There 
were clearly many usability issues with selecting 
appropriate slides and layouts depending on the task at 
hand.  Furthermore, issues with the drawing tools and 
manipulating objects were also of concern.  In keeping to 
the context of use of the application, the general scenario 
involved a relatively inexperienced individual replicating a 
sketch in PowerPoint for an up-coming presentation. 

After first of all recreating the drawing, the users were then 
required to manipulate various objects in order to address 
potential usability problems associated with such actions. 

User test instructions in Table 3 specify tasks that address 
both specific and general potential problems (analyst 
predictions).  

 

 User Task 

a Launch the application and create the drawing you have 
been supplied on a blank slide 

b The barrier in the drawing should be positioned at 60o to the 
horizontal 

c
The default setting for the colour of generated objects is 
blue.  Do not change the colour of any of the objects until all 
objects have been created and positioned 

d
Text sizes differ.  Do not alter text size of any text until all of 
the text has been completed (exact font size is not critical, 
only maintain approximate proportionality). 

e Reposition the demonstration stands as shown in Drawing 2 

f Reposition the barrier to its new horizontal position 

g Remove stands 4, 8 and 11 

h

There is a command button on the toolbar for generating 
squares. Create a box to surround the barrier and three of 
the display stands.  Make sure that the information beneath it 
is visible.  This can be achieved by selecting the 'no fill' 
option from the fill colour command on the toolbar 

j Reposition the square you have just created so that it 
surrounds the display stands 

Table 3: User test instructions from [2,12] 

Table 4 brings together the potential problem set and the 
instructions.  The predicted problems are listed in the first 
column.  The second column gives a brief description of 
the action that will expose the predicted problem.  The 
third refers to the instruction(s) in Table 3 that, in the 
course of user testing, should cause users to encounter 
elements that were predicted as causes of potential 
usability problems. 

Analyse 
predictions 

Derive task 
set for all 

predictions 

Rigorously 
‘stress’ all 

prediction in 
user testing 

Confident coding 
of predictions as 

hits, false 
positives and  

‘misses’ 



 

Prediction Exposing User Action Task 

1 Selecting desired slide format a 

2 Selecting various toolbar buttons c,d,k 

3 Selecting various toolbar buttons c,d,g,k 

4 Actions resulting in error messages k 

5 Need to manipulate filled and 
unfilled objects differently 

e,g,h 

6 Following incorrect information on 
status bar 

d 

7 Separate unprompted action 
required when ungrouping objects 

e,g 

8 Feedback on status bar often 
missed by user 

b,f,k 

9 Reselection of tool after one action k 

10 Limited cursor feedback k 

11 Perception of graphical 
representation of toolbar buttons 

c,h,k 

12 Right mouse button functions 
(shortcuts) 

c,d,k 

Table 4: Mapping from predictions to test instructions [2,12] 

In Table 4, some problems are addressed by several 
actions, e.g., Problem 2, Toolbar command buttons are 
small and difficult to discriminate, is addressed by tasks: 

(c) Changing object colours after they have been created 

(d) Changing text size after all text has been inserted 

(k) Wildcard. 

A unique task is not always necessary to address potential 
problems.  For example, no specific task was needed to 
address Problem 10 (limited cursor feedback).  As test 
participants carried out various tasks designed to address 
other predictions, difficulties with cursor feedback would 
be apparent.  k in Table 4 indicates such ‘wildcard’ steps. 

5.2 Mapping and card sorts 
Table 4 uses a 1:n mapping strategy from predictions to 
test tasks  This was manageable due to the relatively small 
master problem set.  With larger sets, a m:n mapping of 
several predictions to the same test tasks is possible.  We 
used card sorts to create such compact mappings in a more 
recent study [3].  Predictions were sorted by the third 
author into groups that could be tested by the same (group 
of) test task(s).  Larger problem sets can thus be handled 
without having a linear increase in test task set size. 

6. CONCLUSIONS 
Reliable assessment of UIMs depends on accurate coding 
of analyst predictions.  Random user testing for UIM 
assessment carries the risk of miscoding.  A combination of 
ESPRFs [4], asymptotic [6] and falsification testing 
(presented above) reduces the risks of miscoding, allowing 

for more accurate assessment of UIMs.  These approaches 
increase confidence in the reliability (within their scope) of 
our studies [2,3,11,12]. Hopefully, sceptics on the 
existence of false positives will reconsider their position, 
and the true validity of UIMs will be acknowledged. 
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