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During the attempt to directly access, measure and
sample Subglacial Lake Ellsworth in 20122013, we
conducted microbiological analyses of the drilling
equipment, scientific instrumentation, field camp and
natural surroundings. From these studies, a number
of lessons can be learned about the cleanliness
of deep Antarctic subglacial lake access leading
to, in particular, knowledge of the limitations of
some of the most basic relevant microbiological
principles. Here, we focus on five of the core
challenges faced and describe how cleanliness and
sterilization were implemented in the field. In the
light of our field experiences, we consider how
effective these actions were, and what can be learnt
for future subglacial exploration missions. The five
areas covered are: (i) field camp environment and
activities, (ii) the engineering processes surrounding
the hot water drilling, (iii) sample handling, including
recovery, stability and preservation, (iv) clean access
methodologies and removal of sample material, and
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(v) the biodiversity and distribution of bacteria around the Antarctic. Comparisons are made
between the microbiology of the Lake Ellsworth field site and other Antarctic systems,
including the lakes on Signy Island, and on the Antarctic Peninsula at Lake Hodgson. Ongoing
research to better define and characterize the behaviour of natural and introduced microbial
populations in response to deep-ice drilling is also discussed. We recommend that future access
programmes: (i) assess each specific local environment in enhanced detail due to the potential
for local contamination, (ii) consider the sterility of the access in more detail, specifically
focusing on single cell colonization and the introduction of new species through contamination
of pre-existing microbial communities, (iii) consider experimental bias in methodological
approaches, (iv) undertake in situ biodiversity detection to mitigate risk of non-sample return
and post-sample contamination, and (v) address the critical question of how important these
microbes are in the functioning of Antarctic ecosystems.

1. Introduction

Since the discovery of Antarctic subglacial aquatic ecosystems, there has been a rapid expansion in
our understanding of these environments, their number [1], diversity [2] and interconnectivity [3].
More importantly, technological and logistical capabilities have made deep Antarctic subglacial
lake access both feasible and scientifically compelling in recent years [4].

One of the key goals of Antarctic subglacial lake exploration has been to measure, analyse and
understand life in these extreme environments [5]. Microbiological activity and function have
already been shown to be present in such systems, albeit at the ice sheet margin [6]. This might
be expected, as microorganisms are known to withstand the range of selection pressures and
indeed have been predicted to exist within deep subglacial environments [7]. Indeed, microbes
have been shown to exist in analogous extreme environments, such as deep sea sediments [8],
to display a huge diversity, to have the ability to exist in the absence of photoautotrophy and to
remain dormant in isolation for hundreds of thousands to millions of years.

The ecosystem types targeted for exploration comprise a diversity of habitat types,
including those that are ice covered (Lake Vida), emerging from under the Antarctic ice sheet
(Lake Hodgson), sediments (Kamb ice stream), the largest (Lake Vostok), potentially most
microbiologically diverse (Lake Whillans) and close to the ice divide (Lake Ellsworth). What is
likely, from the information emerging to date, is that Antarctic subglacial lakes follow the patterns
of Antarctic supraglacial lakes, in that while they may turn out to have features in common, every
system might come to be regarded as unique.

To advance knowledge of subglacial lake microbiology, three ambitious projects aimed to
access discrete subglacial aquatic systems and retrieve samples for analysis. These projects built
on earlier observations of microbial activity made at the Kamb Ice Stream [9], Lake Vostok
accretion ice [9,10], Blood Falls [11], Lake Vida [12] and Lake Hodgson [13]. In this paper, attention
is focused on one of these access targets—Subglacial Lake Ellsworth [14,15].

Subglacial Lake Ellsworth lies at the bottom of a deep trough, 3 km beneath the ice surface at
the centre of the West Antarctic Ice Sheet about 70 km west of the Ellsworth Mountains. Seismic
studies reveal that this long narrow lake is approximately 150 m deep and covers an area of 29 km?
[14,16]. In 2012, an experiment was conducted to explore this lake using a purpose built clean
deep-ice hot water drill [14].

Lake Ellsworth, as all other Antarctic environments, is not only located in the most remote
continent on the Earth, but has been physically separated from other continents since the
detachment of Antarctica from the Gondwana supercontinent approximately 100 Ma ago. This
region is isolated from the rest of the world by the Southern Ocean, the Antarctic circumpolar
current and the circumpolar vortex. The configuration of the Southern Ocean, in fact, presents a
major barrier to potential colonizers of Antarctica by introduced species [17] and the absence of
industry and relatively low human impact have often earmarked the Antarctic as a region where
we can study the global effects of human activity. Nonetheless, diverse microbial communities
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Table 2. Fundamental questions in subglacial microbiology. Some of the fundamental questions in microbiology that still
remain and need to be properly addressed in developing deep subglacial lake access technology.

Do introduced cells interact through signalling with the indigenous population, for example, through quorum sensing or
quorum quenching?

In terms of establishment, how dominant are introduced cells which are unlikely to be highly adapted to the subglacial
lake selection pressures, when compared to the existing, established dominant communities?

How plastic are the introduced microorganisms genetically, can they adapt to subglacial conditions, e.g. low
temperature adaptations, pressure, no light?

Within deep Antarctic subglacial lakes how important is the rare diversity, how much functional redundancy exists and
is there a core environmental genome?

Is existing population resilience more likely as they are better adapted than potential colonists (cf. human pathogen
emergence from these environments is unlikely as there are no suitable ‘hosts’)?

have been reported in the snow and ice from the Antarctic (table 1; see also table 2 in Pearce
[34]), following similar studies in other regions in the cryosphere, including snow from the
Alps [35], the Tibetan plateau [36], Arctic Svalbard [37,38], Arctic Greenland [39], Arctic Alaska
[40] and Antarctic snow (this study, [41]). Microbial communities differ significantly across
the environments of nthe cryosphere [42], and this also applies to Antarctica, including both
supraglacial lakes [43] and subglacial lakes, with Ellsworth potentially harbouring unique
microbial communities.

Set against this background, the presence of different communities in different environments
makes the transmission of microorganisms from snow, into the melt tank for drilling fluid, then
through the ice and into the subglacial lake, potentially very important as it represents moving
new microbes into an environment where they had not existed before. The risk of doing this is
still unknown.

In addition, technological limitations to fully understand microbial ecology in extreme polar
environments still exist. Of particular concern, is that when microbiological investigation is
technically challenging, there is a tendency to accept the limitations, thus restricting scientific
outcomes, or simply to overlook them, which also limits scientific discovery. Technological
advances over the last few years mean that it is now possible to understand these limitations and
to mitigate their influence on the science. Fundamental questions in microbiology remain and still
need to be addressed (table 2), which make the use of novel technological applications compelling.

One such technological limitation relates to the issue of sterilization. This is a term used to
refer to any process that eliminates or kills all forms of microbial life. Hence, sterility ought
to refer to the absence of life. However, our definitions of sterility for practical purposes, and
particularly for its assessment, rarely reach this ideal. Many of the planetary protection criteria
(http:/ /planetaryprotection.nasa.gov/methods) talk of bioburden reduction and are constrained
by the need for research and technology development, which in some cases are required to
enable ambitious future planetary exploration missions [44]. In the pharmaceutical industry
(http:/ /www.fda.gov/downloads/Drugs/... /Guidances/ucm070342.pdf), on the other hand,
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Figure 1. Lake Ellsworth field camp. Site map showing the locations of the drill site (‘drill hole’ on image), generator site
(‘generators’ on image) and kitchen ('living weatherhaven’ on image). Scale: drill containers are standard shipping containers.
(Online version in colour.)

sterility tests are limited in their ability to detect contamination because of the small sample size
typically used. Green [45] in stating that the field of surgical sterilization and surgical safety is less
confused by technical inconsistencies identified the need to learn how to translate sterility tests in
terms of real world infection hazards. For regulatory purposes, in the food industry, it has been
quoted that “absolute sterility can never be reached or guaranteed’.

The general principle used in the Lake Ellsworth programme was to target ‘no measurable
microbial populations” to be present on any engineered structures in contact or communication
(i.e. the probe, tether, sediment corer and thermistor string if deployed) with the subaquatic
environment [14]. Indeed, all engineered structures were checked both after manufacture and
once ready for shipping, to determine the presence of microbial populations (i.e. to confirm that
the principle was being upheld). Components of the probes and corers were assembled in a clean
room environment to ISO 14644 (cleanliness for equipment used in clean rooms) working to Class
100000 (ISO 8). Once assembled, the instruments were transported to Antarctica in sealed bags,
to be opened only once in the sterilized environment of the borehole.

The issue of potential contamination is also scalable to the size of the Antarctic field camp
required for the lake access operation (figure 1), and with logistic movements and personnel
accessing the site, as it is inevitable that some human impact will be felt in the local environment.
As part of the Lake Ellsworth programme, a number of advances were made in how to
approach and deal with microbial contamination issues [14]. These included assessment of
sterility techniques, manufacturing of the probes to high levels of cleanliness, designing the hot-
water drill to be clean and testing of sterility techniques during field operations. A comprehensive
environmental evaluation [14], discussed at the 2011 and 2012 Committee on Environmental
Protection, at the Antarctic Treaty Committee Meetings, identified three potential areas of concern
regarding contamination of the field site: (i) material brought into the Antarctic from the UK or
any of the tropical and temperate locations passed in transit, (ii) material taken from the surface
snow used to generate drill fluid which might enter the lake, and (iii) material melted out of the
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ice itself which was not yet in the subglacial ecosystem. The latter may introduce microbes into
the lake that might otherwise have perished due to longer residence times in the ice matrix.

The Lake Ellsworth programme demonstrated how a high degree of environmental
stewardship can be assured in deep-field Antarctic exploration programmes. However, such
assurance should not be restricted to projects that aspire to search for life. While they are not
generally assumed necessary for geological or glaciological projects, their use in such work
may be just as necessary to avoid contamination of pristine environments. Despite development
in cleanliness protocols, when investigating environmental samples in remote locations, using
hot water drills and probes, particularly when human activity is involved, it is impossible to
guarantee sterility. Uncertainty can therefore remain around the quality and integrity of both
the samples obtained and the long-term effects on the subglacial system under investigation. In
consequence, it is important that the costs involved in the development and use of drill and probe
systems that ensure clean access and sampling are fully incorporated into all subglacial access
programmes.

So, the key technical challenges in sterility and cleanliness relate to (i) the ability to generate
‘sterile” materials, (ii) the ability to demonstrate that they are indeed sterile, and (iii) knowing the
environmental impact if they are not sterile. Most sterility testing is still based upon the number
of colony forming units per unit volume or surface area. However, the VBNC (or Viable but Non-
Culturable) state has been known for some time [46]. Indeed only a relatively small (but variable)
proportion of cells can be grown in culture. The impact of introducing cells that have not been
detected in culture but are still viable is yet to be determined.

Here, we present the results of a combined laboratory and field study at the Lake Ellsworth
drill site (Nov 2012-Jan 2013) to identify means to mitigate the effects of human impact in the
lake through technology and logistics operations. Specifically, three key sites were sampled in
an attempt to establish whether human impact was detectable in the environment as follows:
(i) outside the mess-tent kitchen, due to the level of human traffic and the presence of non-
indigenous microorganisms in the food being handled there, (ii) around the fuel blubbers, due
to the potential for hydrocarbon spills and the handling and transfer of potential microorganisms
that the fuel could contain, and (iii) in the waste management area.

2. Material and methods

(a) Sterility validation of engineering materials

During the manufacture and assembly of the lake measurement probes [47] (figure 2), swab
samples were collected in order to assess the efficiency of the four-stage sterilization process
undertaken (detergent wash, ethanol rinse, a commercially available biocide (Tenon Biocleanse)
and hydrogen peroxide vapour exposure) as previously reported [48]. Randomly chosen titanium
grade V surfaces of the probes were sampled with human DNA-free SK-1S DNA Buccal Swabs
(Isohelix), which were wetted with PCR grade water (Sigma) in a sterile environment. Surfaces
were sampled in a unidirectional horizontal manner holding the swab at an approximately 30°
angle to the surface for 30s for each side of the swab. Swab heads were aseptically placed in
a 5ml tube and sealed until further analysis. A total area of 314 to 528 cm? was sampled per
swab. Swabs wetted with PCR grade water were used as blanks. To remove the sampled material
from the swabs 1 ml of PCR grade water (Sigma) was added to the tubes followed by vortexing
for 30s and 5000g centrifugation for 5min. The liquid sample was transferred into sterile 1.5ml
centrifuge tubes for DNA extraction. DNA was extracted using the DNeasy Blood and Tissue
DNA Extraction kit (Qiagen). Total dsSDNA concentration was measured based on fluorescence
after staining the DNA extracted from the swabs using the Quant-it PicoGreen kit (Invitrogen).
For the detection of bacteria, the extracted DNA was amplified using Universal Bacterial Primers
27F (5-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5-GNTACCTTGTTACGACTT-3') at a
final concentration of 10 uM. Taq DNA polymerase (NEB) and Standard Taq buffer (NEB) were
used. DNA was initially heated up to 94°C for 2min followed by 60 cycles of 94°C (1 min),
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Figure 2. Probe handling in field and laboratory conditions. Construction of the probe in a specially constructed containment
facility. (Online version in colour.)

50°C (I1min) and 68°C (1.5min) and a final elongation step of 68°C for 10 min. PCR products
were initially analysed using gel electrophoresis while for increased sensitivity an Agilent 2100
Bioanalyser with the High-Sensitivity DNA kit (Agilent) was used. Water sample containers and
filters were visibly checked for sterility and for behaviour following forward contamination with
bacterial cells using scanning electron microscopy.

(b) Microbes in the field site surface snow

Bacteria from the surface snow (101) were collected by filtration onto 0.2um pore-size
polycarbonate filters. Genomic DNA was extracted directly from the filters using the MoBio
PowerWater DNA isolation kit (MoBio, CA, USA) according to the manufacturer’s instructions.
The V4 region of the 165 rRNA gene was amplified in 25ul PCR reactions containing
1uM primers, 0.2mM dNTPs (NEB) and 125U of Taq Polymerase (5Prime, HotMaster
Taq) with the recommended PCR buffer. The primers used for the amplification of the
165 rRNA gene were the universal 515F (5-GTGCCAGCMGCCGCGGTAA-3) and 806R
(5'-GGACTACHVGGGTWTCTAAT-3) as suggested by Caporaso et al. [49] containing the
appropriate adaptors. Samples were amplified using an initial denaturation step of 2 min at 94°C,
followed by 15 cycles of 45s of denaturation at 94°C, 60 s annealing at 50°C and 90 s elongation at
70°C followed by a final elongation step at 70°C for 10 min. The amplicons were used as template
for a 15 cycles nested PCR with the same conditions and reagent concentration to increase the
PCR efficiency. Amplicons were sequenced on a MiSeq Illumina Sequencer (Illumina) in Liverpool
(Centre for Genomic Research, University of Liverpool, UK). Raw output files were trimmed with
Cutadapt (v. 1.2.1) followed by a further trimming with Sicle (v. 1.200) with a minimum quality
score of 20. Both pair reads with a minimum length of 290 bp were uploaded to the BaseSpace
platform (Illumina) for assembling. The assembled reads were taxonomically classified against

i 0 5 S g B


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 1, 2016

Figure 3. Probe handling in field and laboratory conditions. Field environments where samples would be handled. (Online
version in colour.)

the GreenGenes taxonomic database (version May 2013) using the 16S Metagenomics application
(v. 1.0.1). Diversity indexes were estimated and principal components analysis (PCA) graphs were
generated with Past software (v. 3.0).

(c) Onsite handling of engineering and maintenance of sterility

During Lake Ellsworth field operations, prior to hot-water drilling, the probe and corer were
set up and moved into position in a dry practice run of the deployment procedure (figure 3). The
container which housed the probe was lifted into place above the drill hole and was connected via
an “air-lock’ to a sterile dummy ‘well-head’. Throughout the process, the equipment was swabbed
and checked for contamination (figure 4). On return to the UK, the boxes were opened within a
clean containment facility and the probes were again swabbed for contamination.

(d) Limits of detection

In order to estimate the limit of detection of the DNA extraction and amplification method
that we applied, an overnight Pseudomonas fluorescens (NCTC 10038, Health Protection Agency,
UK) culture was prepared with the Pseudomonas-specific King’s B medium (20gl~! peptone,
6.6 mM potassium phosphate dibasic trihydrate, 6.1 mM magnesium sulfate heptahydrate and
1.4M glycerol) [50] at 25°C and continuously agitated in an orbital-shaking incubator (Stuart
Equipment, UK) at 200r.p.m. Starting with a P. fluorescens culture concentration of 7.74 x
107 cellsml™1, the culture was 10-fold diluted. DNA was extracted from 1ml of each culture
dilution (in triplicate samples) and amplified with the same method as with the swab and blank
samples. PCR grade water was used for the DNA extraction blank samples (1 ml) and PCR blank
samples. In total, two replicate experiments were performed.
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Figure 4. Probe handling in field and laboratory conditions. Attachment of the probe to the tether inside a portable glove box
in the field. (Online version in colour.)

(e) Potential changes to sample integrity

A variety of changes are possible during sample recovery from the lake to the ice surface. The floor
of Lake Ellsworth is 3.2 km beneath the surface of the ice. As a result the probe would have taken
some time (several hours) to acquire and recover the samples. With a significant drop in pressure
on recovery from the lake to the surface (i.e. from at least 300 bar down to atmospheric pressure,
exceeding this considerably in samples frozen within their chambers) and potential freeze/thaw
temperature cycles on sample recovery, the possibility existed of significant induced physiological
change in the sample.

To test the effect of hydrostatic pressure change on Antarctic surface microbiota, bacteria
isolated from the surface snow at the Ellsworth site were first identified and analysed. Droplets of
melt water from the surface snow were placed on R2A agar (Sigma) plates [51] and incubated
at 4°C until colony formation. Colonies of different colour and characteristics were isolated.
Genomic DNA was extracted using the DNeasy Blood and Tissue DNA Extraction kit (Qiagen)
and the 16S rRNA gene was amplified using Universal Bacterial Primers 27F and 1492R as
described above. To identify the isolates the resulting amplicons were individually sequenced
(Eurofins Genomics) and the 16S rRNA gene reads were then subjected to BLAST sequence
similarity search [52] to identify the nearest taxa. An overnight culture of isolated bacteria closely
related to Hymenobacter sp. was prepared in R2A liquid medium using the same recipe but
excluding the agar (0.5gl~! yeast extract, 0.5gl~! proteose peptone, 0.5gl~! casein hydrolysate,
0.5gl~! glucose, 0.5 gl ! soluble starch, 0.3 g1~ dipotassium phosphate, 0.3 g~! sodium pyruvate
and 0.024 gl~! magnesium sulfate) incubated at 25°C with continuous agitation at 200 r.p.m. The
culture was centrifuged at 5000¢ for 2min and suspended in sterile phosphate-buffered saline.
Cultures were placed in sterile 150 ml Flexboy Bags (Sartorius) prior to pressure tests. The culture
was pressurized to 300bar to simulate the in situ pressure of subglacial environments [53] in
the pressure test tank PV2 of the NOCS Pressure Testing Facility. A fast (10 min pressurization
followed by 2s depressurization) and a slow (2h pressurization and 2h depressurization) cycle
were used to assess the effects of pressure change rate. Samples kept at atmospheric pressure
were used as controls. Cell viability was assessed with the standard plate assay. Cell abundance
was calculated in samples stained with SYBR Green I (Molecular Probes) (final dilution: 4 x 1074
of the commercial solution) and incubated in the dark at room temperature for at least 15min
using an Apogee A50 Micro Flow Cytometer (Apogee). Scattered light detected by the Forward
(FSC) and 90° Side (SSC) detectors was also measured to validate the physical changes in cell
membrane, shape and size.
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3. Results

(a) Sterility verification of engineering materials

In all the samples, total dsDNA fluorescence was below the quantification limit of the Quant-it
Picogreen kit (150 pg). No amplification was detected after the analysis of all the swab and blank
samples (figure 5). Water sample containers and filters (figure 6) were visibly checked for sterility
and for behaviour following forward contamination with bacterial cells.

(b) Microbes in the site snow

In total, 3112567 reads were obtained and passed the quality checks with 69% of the reads
classified up to genus level. Some 738 056 reads classified belonged to the three samples collected
from the camp sites (Kitchen, Drill and Generator sites) while 1399225 belonged to the five
samples collected from the surface snow at a 500-1500 m distance from the camp. PCA revealed
three and four district groups of samples on the taxonomic levels of phylum, class and order,
genus, respectively (figure 7). Samples collected from the kitchen and the generator sites are
characterized by the lowest diversity at all taxonomic levels with Shannon species diversity
index values of 1.036 and 0.836, respectively, and approximately 735 species identified, whereas
the Lake Ellsworth drill site presented the highest Shannon diversity index value among
all samples analysed (1.680) with 1487 species identified. In comparison, the samples from
the surface snow presented mean Shannon diversity index value of 1.29 4 0.29 with 997 & 94
species identified per sample. Alphaproteobacteria are the predominant class group in the
Kitchen (56.3%) location consisting of 505 individual OTU (figure 8). Most Alphaproteobacteria
sequences (54.4% of all reads) belonged to the Bradyrhizobium genus. Alphaproteobacteria
were also the dominant class in the Generator site (40.3%), whereas Actinobacteria (30.5%),
Alphaproteobacteria (24.1%) and Bacilli (18.3%) were the most common classes at the Drill
site. Relative abundances of the 15 main species classified at each Camp sample are presented
in table 3.

(c) Onsite handling of engineering and maintenance of sterility

Subsequent analyses of the swabs revealed that at no stage during any of the handling procedures
were contaminants detected on any of the probe surfaces.

(d) Limits of detection

DNA amplification was detected up to the 7th dilution, which corresponded to 7.7cells
(figure 9a,b). As no amplification from bacterial DNA was detected from the swabs studied to
date, we estimate that the bacterial numbers were less than 10 per 300-500 cm?.

(e) Potential changes to sample integrity

To examine the effects of hydrostatic pressure on bacteria inhabiting the Antarctic snow above
Lake Ellsworth two pressure change rates (slow and fast) were tested. Our preliminary data
(figure 10) show a significant loss in cell viability of approximately 25% at both pressure change
rates (24.6% and 27.6% in fast and slow treatments respectively) as determined by the ability of
cells to form colonies. Cell abundance measured by flow cytometry following positive staining
with SYBR Green I also presented significant decrease at both pressure change rates (15.7%
and 35.1% in fast and slow treatments, respectively). In both cell viability and abundance, no
statistically significant changes between the slow and fast pressure changes were detected.
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Figure 5. Probe swabbing experiment. (a) Gel image showing absence of amplification from any of the test samples
(and decreasing concentration from the positive controls where known quantities of cells were added), (b) a diagrammatic
representation of the gel photograph, showing no detection of microbes from any of the test swabs and (c) an electrograph of
the swab samples and the ladder that was used based on the High-Sensitivity DNA kit (Agilent Technologies). (Online version
in colour.)

4. Discussion

(a) Sterilization of engineering materials

The aim of the Lake Ellsworth programme was to target ‘no measurable microbial populations” on
any engineered structures [14]. To this end, our results showed that it is possible to demonstrate
the sterility of engineering materials to below the limit of detection of contamination and to
maintain this apparent sterility throughout deployment, handling and return to the UK.
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Figure 6. Scanning electron micrographs of a titanium coupon from which the sample bottles were made. (a) Post-sterilization,
(b) forward contaminated, and the filter membranes in the filter housing (c) post- and (d) pre-sampling.

(b) Microbes in the site snow

Our results suggest that the field camp may have a detectable impact on the bacterial community
on the ice. In total, 378 635 reads were classified up to species level from the three Camp samples
with 16.1% of them being 97% similar to the Bradyrhizobium cytisi sequence; its dominance
varied significantly between samples. Sequences classified to Bradyrhizodium sp. have been
reported from Antarctica such as in the accretion ice above Lake Vostok [54] where they are
hypothesized to play a significant role in nitrogen fixation and nitrification and also was reported
as one of the most abundant genera in soil community of Mars Oasis on Alexander Island
[34]. Bacillus nealsonii, a spore forming Gram-positive bacterium, was one of the top species
found in all of the Camp samples and, in particular, in the Drill site accounting for 1.5% of all
reads up to species level; this species has been previously isolated from a NASA spacecraft-
assembly facility [55]. The spores of this bacterium exhibited increased survivability to UV and
hydrogen peroxide which were the on-site sterilization methods of choice during the drilling
[14]. Arthrobacter psychrochitiniphilus, Janthinobacterium lividum and Cellulomonas xylanilytica were
also found to be common between all three samples. Most of the species have been previously
identified in environmental samples (e.g. [56,57]). Propionibacterium acnes (3.3% of all species
reads at the Kitchen site and 3.0% at the Generator site), Streptococcus pseudopneumoniae (0.88%
at the Kitchen and 0.53% at the Generator site), Streptococcus oralis (0.37% at the Kitchen site)
and Staphylococcus haemolyticus (0.14% at the Kitchen site) were the main potential human-
related microbiota found. Bacterial species diversity decreased in the Kitchen and Generator sites
due to increased dominance of the nitrogen fixing genus Bradyrhizobium. Potentially human-
related microbiota were found at the Kitchen site, which demonstrates that further effort
may have to be taken in preventing contamination from the camp. Finally, the significantly
different bacterial community composition at the drilling site and particularly the presence
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Figure 7. PCA on the different samples analysed. The different groups of samples are marked with coloured circles. The
samples collected from the Drill site (red circle) and SLE5 and SLE4 sites (blue circle) that were collected from locations
closer to Ellsworth Mountains appeared very different compared with the rest of the samples at all taxonomic levels.
The samples from the rest of the snow sites and the Generator and Kitchen sites were initially grouped together up to
order level (green circle) while at lower taxonomic levels Camp and snow samples can be grouped separately (green and
purple circles).

of spore-forming bacteria resistant to common sterilization methods indicated the potential
danger of contaminating the site and then the subglacial lake (via drill fluid) during the
drilling process and points to the need to assess the local environment when conducting
drilling projects.

(c) Onsite handling of engineering and maintenance of sterility

As aresult of a suboptimal operation of the hot-water drill boiler during field operations [15], soot
particles clogged the microbiological filters, which as a consequence needed to be replaced while
drilling the initial borehole. This left the field party with only the backup filters to clean the drill
water prior to lake entry (figure 11). As a consequence, we retained the 0.2 um filters until the end
of the drilling process, saving them for the moments just prior to lake access. In future, the issue
of drill water filtration needs to be looked at carefully, with additional backup and potentially
more rigorous pre-filters. In any case, a potentially serious issue with sub 0.2 um cell filtrate has
recently emerged after Luef ef al. [58] recently suggested that small cells of less than 0.2 pm might
be enriched by filtration.

it ey s g Sosasnsianoiores [


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 1, 2016

& Alphaproteobacteria
& Bacilli

& Actinobacteria

s Betaproteobacteria

& Gammaproteobacteria
& Clostridia

i Deinococci

i Sphingobacteria

& Bacteroidia

Figure 8. Class level distributions of sequences. Distribution of sequences, at the class level, observed in the Drilling (D),
Generator (G) and Kitchen (K) sites.

(d) Limits of detection

A key issue in environmental protection is in providing evidence for the potential of significant
harm. This is incredibly hard to demonstrate for work involving remote subglacial lake access.
One of the key challenges identified during both pre-season preparation and fieldwork was the
limited ability to detect if things had gone wrong in terms of contaminating the lake. To this
end, we made a simple contamination calculation for Lake Ellsworth, based upon the detection
limits of cells in the assays used, the volume of drill fluid likely to penetrate the lake and the
volume of the lake. The detection limit of the various assays available to us was approximately 2—
8cellsml~!. In the sample probe, the total sample volume across all bottles was 1.21. Therefore, in
order to detect contaminants, we would have needed 9600 contaminant cells to be in the samples.
With a total lake volume of 6.4 x 10131 and assuming any water entering the lake would have
been rapidly well mixed, we would need 6.4 x 10! cells of contamination in the lake in order to
detect them. It is extremely unlikely, therefore, that any cells entering the lake within the drill
fluid would ever be detected in the lake itself. We believe such calculations are of value for
other subglacial lake investigations, to comprehend whether potential contamination can ever
be detectable.

All methodologies in microbiology have some form of bias associated with them. In this
study, further methodological considerations included the following. (i) The DNA extraction
methodology: Vishnivetskaya et al. [59] demonstrated that genomic DNA yields differ between
the extraction kits, but reproducible bacterial community structure analysis may be accomplished
using genomic DNAs from the three bead-beating lysis extraction kits for permafrost samples.
(ii) The lack of 100% coverage of diversity, inherent in almost all molecular methodologies
could exclude important taxa—many rare-biosphere taxa have important ecological roles, as
described below, serving as nearly limitless reservoirs of genetic and functional diversity [60].
(iii) Lake samples determined in the same system at the same time on subsequent seasons can
yield completely different results (figure 12). (iv) Next generation sequencing/high throughput
sequencing technology has revolutionized genomic and genetic research. The pace of change in
this area is significant with, for example, three major new sequencing platforms having been
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Table 3. The top 15 species classified at each camp site.

Drill site Generator site Kitchen site

Bradyrhizobium cytisi 6.3%  Bradyrhizobium cytisi 21.8%  Bradyrhizobium cytisi 18.0%

Dokdonella fugitiva . Pelomonas Enhydrobacter
saccharophila aerosaccus

Bacillus longiquaesitum 32%  Blastococcus 4.0%  Pelomonas 51%
aggregatus saccharaphila

Janthinobacterium lividum 32%  Bradyrhizobium 32%  Acinetobacter ursingii 4.5%
yuanmingense

Blastococcus aggregatus 3.0%  Propionibacterium 3.0%  Acinetobacter 4.2%
acnes tjernbergiae

Nocardioides islandensis 2.6%  Micrococcus 23%  Propionibacterium 33%
yunnanensis acnes

Clostridium frigoris 2.0%  Sphingomonas melonis 21%  Brevundimonas staleyi 3.1%

Brevundimonas staleyi 20%  Acidovorax temperans 1.6%  Acidovorax temperans 3.0%

Clostridium vincentii 19%  Pelomonas puraquae 1.6%  Bradyrhizobium 2.9%

yuanmingense

Cellulomonas xylanilytica 1.6%  Pseudonocardia 13%  Pelomonas puraquae 1.4%
hydrocarbonoxydans

Bacillus nealsonii 15%  Asticcacaulis 12%  Gardnerella vaginalis 11%
benevestitus

Clostridium bowmanii 14%  Enhydrobacter 11%  Janthinobacterium 1.1%
aerosaccus lividum

Methylobacterium goesingense 13%  Janthinobacterium 11%  Arthrobacter 11%
lividum psychrochitiniphilus

Methylobacterium adhaesivum 12%  Arthrobacter 0.9%  Streptococcus 0.8%
psychrochitiniphilus pseudopneumoniae

released in 2011: Ion Torrent’s PGM, Pacific Biosciences’ RS and the Illumina MiSeq. Quail et al.
[61] compared the results obtained with the performance of the Illumina HiSeq, the current
market leader. There were key differences between the quality of those data reported. (v) The
quality and depth of the reference databases—with the race to high throughput sequencing, a lag
has been created leaving a credibility gap, whereby the sequence information available is better
than the supporting physiology in the sequence databases, i.e. the quality of the data is directly
related to the quality of the reference material and not the quality of the sample material collected.
This issue will doubtlessly improve, over time, but it limits our present ability to draw functional
conclusions about sequence data. This is analogous to the 165 rRNA databases when they were
first proposed and started to be constructed. (vi) Repeat sample extraction and analysis do not
always generate exactly the same results and many methodologies require some knowledge of the
potential targets before they can be applied. Prior to the Lake Ellsworth campaign, we reviewed
bacteria taxa that were present in Antarctic supraglacial lakes (table 4). The sample targets were
decided based upon the Ellsworth probe’s dimensions and transit time, which allowed for the
recovery of a total of 21 of lake water and a further 2001 continuous filtration onto the filter
membranes. For this reason, the assays available for life detection were constrained by potential
sample volume. A polyphasic approach, employing more than one extraction method, is the only
practical way around these considerations.
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Figure 9. Detection limit assay. (a) The detection limit assay showing the amplification generated at different cell
concentrations and (b) an electrograph of the swab samples and the ladder that was used based on the High Sensitivity DNA kit
(Agilent Technologies). (Online version in colour.)

(e) Potential changes to sample integrity

With a significant drop in pressure and a potential for freeze/thaw temperature cycles during
sample recovery, the possibility existed of physiological changes inside the sample bottles
(figure 13). These significant changes in the environment that the sample is exposed to could
lead to cell loss and/or misinterpretation during analysis in a number of ways: (i) freeze-thaw
cycling, which can lead to cell lysis; it is also important to know the effect of sample degassing
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Figure 10. Hymenobacter sp. population densities following slow and rapid depressurization. Hymenobacter sp. population
densities and cytometric characteristic following slow and fast pressurization changes. The figure shows the results as measured
by (a) direct culture, (b) cell abundance, (c) log of Side Scattered and (d) log of Forward Scattered light.

Figure 11. Drill fluid filters. (a) Filter units removed, (b) filters clogging with carbon particles and (c) filter housing in situ. (Online
version in colour.)
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Figure 12. Bacterial community profiles as indicated by denaturing gradient gel electrophoresis profiles from supraglacial
Antarctic Lakes across two consecutive field seasons in 1999 and 2000. A transect of trophic status is shown. Moss Lake is
oligotrophic (nutrient poor), Sombre Lake is oligotrophic but becoming progressively enriched and Heywood Lake is eutrophic
(nutrient rich). Key here is that samples taken in the same way at the same time of year from the same site can yield completely
different results.

from the chamber on the microbiological integrity of the sample as although cells can tolerate high
or low pressure, the transition from one to another and the speed at which it is done (figure 10);
(ii) as sample material is brought back to well-equipped laboratories outside Antarctica, the time
that elapses might lead to changes within the sample—it is therefore important to maintain the
sample chambers in a closely controlled environment; (iii) it is known that multiple stressors
in combination can have a different effect on cells than the combined effects of each stress
individually summed together [62], deep Antarctic subglacial lakes are likely to impose many
individual stresses [14], and we have yet to generate a full understanding of the implications;
and (iv) the issue of cell viability—any RNA work conducted on the sample will be following the
time taken to raise the sample from the lake. With a half-life of 30's in some RNA, this calls into
question any interpretation of RNA expression profiles.

Although cells can tolerate high or low pressure, the transition from one to another and the
speed at which it is done can lead to cell loss as our preliminary data point out (figure 10a—d). In
brief, bacteria that have been isolated from the surface snow at the Ellsworth site were pressurized
up to 300bar during a 2h (slow) and 10min (fast) period and depressurized to 1bar within
2h (slow) and 2s (fast) using the pressure pot facility at NOCS. Colony forming units (CFU),
cell abundance (based on SYBR Green I fluorescence) and scattered light via flow cytometry
were measured in pressurized and control (atmospheric pressure) samples. Our preliminary data
from the bacteria related to the genus Hymenobacter (figure 10a—d) show a significant loss in
cell viability of approximately 25% (24.6% and 27.6% in fast and slow treatments, respectively)
and in cell abundance (15.7% and 35.1% in fast and slow treatments, respectively). Changes
in scattered light measured by the Forward (FSC) and Side (SSC) detectors correspond to
changes in cell size and membrane integrity and structure. Furthermore, our data indicate
that slow pressure change affects more the cell membrane physically compared to the fast
pressure change.

Hydrostatic pressure increase is expected to physically disrupt the cell membrane and
this disruption can be detected by the intensity of the scattered light detected by the flow
cytometer. Based on previous studies [63, and references therein] the intensity of scattered light
measured by the Forward detector (FSC) of the flow cytometer corresponds to size changes
while the intensity of the scattered light detected by the Side detector (SSC) corresponds to
changes in cell membrane integrity and structure. Our data show that Hymenobacter cells were
significantly affected by pressure changes in the slow rather than fast rate (figure 10c,d). Those
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Table 4. Target genera.

data should be handled carefully as they are qualitative rather than quantitative. Further studies
incorporating electron microscopy images are needed to define the nature and magnitude of this
physical disruption.
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Figure 13. Sample containers used in the probe for recovering water samples. (Online version in colour.)

Table 5. A comparison of two recently studied Antarctic systems.

phylum Whillans data (%) Hodgson data (%)
Proteobacteria 75 21

unclassified 10 20
Proteobacteria by class Whillans data (%) Hodgson data (%)
Alphaproteobacteria 1 ll

(f) Recommendations for a future access programme

Our experience in the field during the first attempt to access and sample Lake Ellsworth
highlighted a number of important issues relating to the microbiology of deep subglacial lake
access.

(i) Context

As one of the sources of potential contamination of samples derived from deep subglacial lakes is
the environment of the lake itself, i.e. the supraglacial environment, there is a need to assess each
specific local environment when conducting drilling projects, as there will be local differences
that it is not possible to predict in advance. Initial results across a range of independent subglacial
access projects are starting to suggest that each Antarctic subglacial aquatic ecosystem might be
unique (e.g. table 5), hence a single access is unlikely to give us all of the answers.
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(i) Fundamental assumptions

A review of the sterility and cleanliness literature for industry would suggest that more
scientifically relevant and informative sterility and cleanliness tests are needed, as we do not yet
know whether a single cell is sufficient to colonize a new environment, or indeed, if a threshold
cellular concentration is required, what that threshold level is. Indeed, the whole basis of using
colony forming units on media needs to be re-examined, as it is of limited scientific relevance.

(iiii) Ecological significance

Surprisingly little is still known about microbial colonization processes in natural environments
particularly when new species are introduced into pre-existing microbial communities. The
factors that lead to successful colonization, growth and reproduction urgently require further
study.

(iv) Methodological considerations

Experimentally, bias in specific methodologies such as filtration, DNA extraction, high
throughput sequencing, cloning or 16S rRNA gene amplification needs to be accurately
determined and assessed for each study undertaken. Detection limits in both experiments for
life detection and in the detection of contaminants need to be determined for each field situation
and for each experiment. Many of these details are not beyond current technology, and use
could be made of analogous environments, mesocosm and microcosm studies, model systems
and simulation chambers. To add to this, bacteria from phyla lacking cultivated representatives
are widespread in natural systems and some have very small genomes. The limitations of
our understanding of colonization processes are important. There is a need of independent
verification of the data generated, as microbiology strongly relies on accurate methodology,
linked to a deep understanding of which methods are appropriate to test which hypothesis,
despite any possible methodological shortcomings; the lack of comparable studies means that
any observations made must stand alone until several subglacial systems can be compared.

(v) Future developments

In situ detection methodologies had not been developed in time to be incorporated into the
design of the Lake Ellsworth probe. However, the next version of the probe could (and should)
incorporate some form of in situ biodiversity detection to mitigate the risk of non-sample return.
Non-sterility is not an issue in most drilling and subglacial lake access operations, and yet we
just do not know the risks yet as we do not yet fully understand the behaviour of microbes.
Filtration and verification technologies are not perfect and still need to be improved. However, the
potential exists for using melting probes and/or self-sterilization. Currently, we cannot get 100%
coverage of biodiversity, though coverage is improving with technological advances. Perhaps
most importantly, the critical question of how important microbes are in the functioning of these
Antarctic ecosystems still remains.
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