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Abstract
Most cancer treatments efficacy depends on tumor metastasis suppression, whesagpnessor genes
play an important role. Maspin (Mammary Serine Protease Inhibitor), an non-inhibéquin has been
reported as a potential tumor suppressor to influence cell migraticesiadhproliferation and apoptosis
in in vitro andin vivo experiments in last two decades. Lack of computational investigations hinders its
ability to go through clinical trials. Previously, we reported first computdtimoael for maspin effects
on tumor growth using artificial neural network and cellular automata paradignmwitho data support.
This paper extends the previomssilico model by encompassing how maspin influences cell migration

and the cell-extracellular matrix interaction in subcellular level. A feedfatweural network was used



to define each cell behavior (proliferation, quiescence, apoptosis) which followelticycle algorithm
to show the microenvironment impacts over tumor growth. Furthermore, the modehizates how the
in silico experiments results can further confirm the fact that maspin reducesgrmltion using specific
in vitro data verification method. The data collected fiammitro andin silico experiments formulates an
unsupervised learning problem which can be solved by using different clusteringhedlgoA density
based clustering technique was developed to measure the similarity between twis OakesE on the
number of links between instances. Our proposed clustering algorithm firstifendedrest neighbors of
each instance, and then redefines the similarity between pairs of instances iof teormvsmany nearest
neighbors share the two instances. The number of links between two instances is ddfimediabéer of
common neighbors they have. The results showed significant resemblancas viith experimental
data. The results also offer a new insight into the dynamics of maspin andsbstablh metastasis
suppressor gene for further molecular research.

Keywords: SERPINB5, Serine Protease Inhibitor, Cellular Automata, Clustering, Tumor Growth

1. Introduction

Cancer is a complex disease because of its involvement with different bablpgicesses at the cellular
and subcellular level (Hanahan and Weinberg, 2011). Genetic mutations lead tonadboel
proliferation and a mass initially called a benign tumor which has a locala=tiop. When the tumor
spreads to distal parts of the body it is called as malignant tumor. Thisrisapp a process whereby
control of key biological processes is eroded i.e. invasion, metastasis and angioddieesaively,
tumor life span can be divided into three stages: avascular phase (diffosted Btage), vascular phase
(angiogenesis stage) and finally metastatic phase (spreading to the distal body pagsa(Z0204). At
the molecular level, these stages involve both intracellular and extracellular rsethdaiinfluence
proliferation, cell-cell adhesion, cell migration, cell-extracellulaatni®n (ECM) interactions and
angiogenesis. Overall, the efficacy of most existing treatments depends onasmetagppression.

Maspin or SERPINBS5 is a 42 kDa protein that has been characterized as a wyperlinetastasis



suppressor. Maspin expression is downregulated in breast, prostate, gastric and melanoma cancers but
overexpressed in pancreatic, gallbladder, colorectal, and thyroid cancers, suggesting that masain may pl
a prognostic roles on different cell types (Bodenstinal.,2012; Berardet al.,2013). Maspin decreases
tumor growth and metastasis iim vivo (Zou et al.,1994) and invasion i vitro (Biliran and Sheng
2001). This is achieved by the ability of maspin to influence aspects of celidreinaluding migration,
invasion, proliferation, angiogenesis and apoptosis. These effects have been investigatedrirvitro
models(Shenget al.,1996;Biliran and Sheng, 2001; Ngamkitidechaletllal.,2003;Bailey et al.,2005;

Yin et al., 2006; Basset al., 2009; Ravenhillet al., 2010) andin vivo models to investigate the
intracellular (Zouet al.,1994; Zhanget al.,2000 and Shét al.,2001) and extracellular (Cedt al.,2006;

Basset al.,2009; Ravenhilet al.,2010; Endslet al, 2011) activities of maspin.

The clinical data regarding maspin expression are variable. In this case, computatidels can be

built to support then vitro and in vivo hypotheses to establish the effects of maspin on basic cell
migration, cell invasion and understand the metastasis suppression mechanismelyNor silico
models integrate the complex multiple processes of a biological system and buigd fardgng multiple
spatial and temporal scales with a deeper understanding éKam2012; Andersoret al.,2013). From

our best knowledge, the diversity of maspin has been investigated for theirfiestfrom the
computational point of view in our previous model (Al-Manatral.,2013b), where the model showed

its potential engagement with multiple cellular phenomena using artificimbineetwork (ANN) and

cellular automata (CA) modeling techniques.

1.1. Biological Background

Tumor cell migration is the movement of a cell through or on a surfaBEbf. Cells need attachment
sites on extracellular matrices in order to re-organize their cytoskedeid initiate protrusions. Tumor
cells require a well regulated peri-cellular proteolysis to migrate. Rysieds a process where ECM
contents are degraded by cellular enzymes. It is now widely believed that the breakdosge diarriers

is catalyzed by proteolytic enzymes released from the invading tumor. Most efptiésases belong to



one of two general classes: matrix metalloproteases (MMPs) and setig@speo This regulation system
consists of the urokinase plasminogen activator (uPA), urokinase receptor )(UEARI and
plasminogen activator inhibitors: type-1 (PAI 1) and type-2 (PAI 2). uPAnisxtracellular serine
protease produced from cells as a single chain pro-enzyme pro-uPA (AndseateR000). Generally,
the protease moiety activates plasminogen and generates plasmin. Plasmin is acteaise papable of
digesting basement membrane and ECM proteins. Plasmin itself has complex mecHearisrit is not
only catalyzes the breakdown of many of the known ECM and basement membrane m@dectles
vitronectin, fibrin, laminin and collagens), but also activates metalloproteinases. Naturally, the
unrestrained generation of plasmin is potentially hazardous to cells. In a rerglimjsm the process of
plasminogen activation is strictly controlled through the availabilityplaBminogen activators (PASs),
localizedactivation and interaction with specific inhibitors (PAls) (Andreaseret al.,2000). But in cancer
cells this control mechanism gets affected due to different alterations in the cellitanemnts.

Maspin is a potential protease inhibitor with its multicellular funcfiea. Exogenous maspin decreases
proliferation and increases cell adhesiowitro (Ngamkitidechakukt al.,2001). It inhibits angiogenesis
in vivo (Zhanget al.,2000) and causes apoptosis when expressed in endothelial celisa(l.2005). In
addition, it has been shown that maspin can inhibit the migration of vascularhsmastle cells
(VSMCs) (Bas<=t al.,2009). Ravenhilet al., (2010) showed the G-helix is necessary and sufficient for
maspin migration effects. Integrins have complex roles in regulating cellityn@itd migration.
Previously, it was shown that maspin binds to cell surface integrins, in particular a5p1. This binding
causes inactivating conformational changes in the integrin and leads to theiptgtiect of maspin on
cell migration (Basst al., 2009). Another anti-invasive mechanism has been suggested that maspin
targets the uPA/ UPAR complex at the cell surface. Although maspin does ndly divkittit uPA
activity, it has shown to reduce cell surface associated uPA/UPAR by indigcinigrnalization (Biliran
and Sheng, 2001; Yiet al., 2006). This finding has been supported by Aetral., (2005) which

indicated that transfected maspin was able to reduce hypoxia-induced uPA/UPAR i@xpiess



MDAMB-231 cells. It has also been shown that maspin binds the pro-uPA zymogen, inhilsiting it
activation (Yinet al.,2006).

Recently, the possible interaction of maspin with uPA system was investiga{&thdsleyet al.,2011)
where it was indicated that two proposed pathways can be utilized by maspicrdase cell-ECM
adhesion; that is, the plasminogen activation system and B1 integrin signaling. But still the extracellular
presence of maspin is in debate according to a recent study, where it hasteeethat maspin has no
influence on tumor growth and embryonic development (Bt@t.,2014). These motivated us to extend
our previous cellular level model with cell-cell adhesion and cell-ECktaation to define how maspin
reduces cell migration by showing potential enhancement with ECM components (fibrolaectimin,

collagen etc.).

2. Related work

In silico models have a tremendous ability to handle multiple dynamic interacting varisindbs as
numerous cell types or various environmental factors. Innovative computational modelingaiaticsn,

in addition to appropriately designed biological experiments can facilitate afpbtel to refine high-
throughput biological data, hypotheses and more accurate predictions (Macklin aedghavy 2007,
Kamet al.,2012; Edelmamt al.,2010; Deisboeckt al.,2011;Johnsoet al.,2013). These models can be
formulated from the concept of biological spatial spaces: atomic, molecular, oojgigs and
macroscopic (Andersoet al., 201]). In relation with this study, some CA models are essential for
understanding tumor dynamics. A CA model of avascular tumor invasion investigatedgtia¢ory
behavior of the cancer cells using a set of partial differential equations YBbBdEthat it coupled the cell
dynamics to continuous fields of oxygen, ECM and matrix degrading enzymes (MDEs) dé@mder
2005). Another model revealed that MDEs degrade surrounding ECM and tumor cells thignadg
ECM gradients during tumor invasion (Conelieal., 2008). Other CA models investigated some other
important factors: impact of oxygen concentrations, dynamics of solid tumorthgr@®erlee and

Anderson, 2007) and the evolutionary aspects of glycolytic phenotype (Smadlbahe2007; Gerlee



and Anderson, 2008; 20pand emergence of the glycolytic phenotype which suggested that the oxygen
concentration and matrix density have combined effects on the tumor morphology. Receriityd a hy
silico model calculated tumor mass with consideration of oxygen, glucose, ECM, cell-cellbadiuedi

cell movement as key micro environmental parameters (Kaguui.,2012a). The model includes more
microenvironment parameters such as protein expression, growth promoters/inhibitorscaadustive

drug tirapazamine (TPZ) transport model for hypoxic tumor cells on top of thergmis model
(Anderson, 2005). In another study, the same authors showed that diminished drug transporttigeone of
key reasons for TPZ failure, which needs further optimization of the tiangport properties in the
emerging TPZ generations (Kazeti al.,2012b). To date, our previous model presented maspin effects
on tumor growth dynamics using a hybrid computational framework where maspin wagdnidushow

its effects on proliferation, cell migration, invasion, and apoptosis (Al-Maghath.,2013b). The model
suggested 10-40% cell migration reduction and 20-30% cell proliferation enhanchkradont maspin in

in silico environment. Later on, severial vitro experiments were presented to show the resemblances
with thein silico results.

Essentially, our previous model did not consider cell-matrix adhesion and celdbeion during the
tumor growth simulation subcellularly. Moreover the data resemblances method was basedical $tatist
test, which can only present the variation of mean value of cell migration datgcuRrly, this
investigation introduces an extension where it considers the impacts of magmii-cell adhesion and
cell-ECM phenomenon. Also this model provides a rievgilico data verification method to see the
resemblances with a previousvitro model (Ravenhilket al.,2010). The key objective of this paper is
not only to provide support the extracellular presence of maspin in tuma@ndebut also to provide a
data resemblances method wiih vitro lab data. More specifically, the assumptions taken into
consideration for building model are maspin reduces cell migration while pesssygnously (Basst

al., 2009 and Endslegt al.,2011), it increases cell-ECM adhesion while it reduces the cell migration
(Ravenhillet al.,2010; Endsleyet al.,2011) and it reduces the overall tumor growth (from £obal.,

1994; Zhangt al.,2000).



The model presented here is investigating the complex interaction of maspatttmmmvith the different
microenvironment parameters but especially the celllECM components and cell-celiomadifes
supporting our computational method, we presented a mowitiro experiment of MCF7 breast cancer
cell line adhesion assay to show maspin dynamics over different ECM components like collagen |,
laminin and fibronectin. Results of our previous models showed various agreementsolatficél
experiments: HT29 human colon carcinoma cell line growth on spheroids obtained &nootayer
cultures (Kazmiet al.,2012a) andn vitro apoptosis assay for transiently transfected DU145 prostate
cancer cell line (Al-Mamuret al., 2013b). Moreover, it is clear from the previous papkat maspin
reduces cell migration and increase cell-adliesion where 1 integrin, ECM, E-cadherin, uPA-uPAR
maspin complex have putative roles. Theseitro andin vivo results led us to build this model to show
the cell-cell adhesion and cell-ECM interaction due to maspin effect on top of theusresimputational
models (Kazmiet al.,2012a; Andersoet al.,2013 Domschkeet al.,2014). The proposed model was
implemented, tested and verified through a set of experiments to demonstrate themndecapabilities

of the scheme. Previous tumor growth models for maspin showed only the dynamics explening
underlying mechanisms like cell migration, cell invasion, apoptosis (Al-Maghua., 2012;2013a), but

no model provided any data analysis techniques to establish maspin impacts on tumor gedeshaft@
Anderson, 2007; Kazmét al.,2012a;2012bAl-Mamunet al.,2013b). This model proposed clustering

methods to analyze the cell migration data attained fromibafitro andin silico experiments.

3. Tumor growth framework

3.1. Tumor growth model construction

Our extended model is hybrid in nature, where tumor cells are discrete indigittitgtl and chemical
fields are continuous. For modeling the basic tumor growth a tumor tissue was develapéalifrcells
at the center of a 2D lattice grid. Each grid element was either iedchp an abnormal cell or was
empty. The grid elements had local concentrations of oxygen and maspin. A set didvBibgen used

to demonstrate the interaction between cells and the local chemicals concentrations. Inckicved



influenced by different tumor microenvironment constraints and each cell can tak@nitgecision
during its life time. This complex decision mechanism was applied by using a feedforward newoed net
(FNN). The output of the FNN defines the individual cell’s behaviors: proliferation, quiescence, apoptosis
and/ or cell movement. Depending on selected behaviors, then model performs cell oyitteralnd
nutrients consumption with time and space around the neighboring grid paintbstraction of the

model is given in figure 1.

Feedforward Neural Network

Microenviroment S e Hanoivna S Bhanckivoe
(Chemicals, ECM etc.) = o0 yp//_, IR

~

Cellular Automata Grid
{Updating the occupied
grid points according to the |
NN response)

Fig. 1. Tumor growth model construction summary describes how a cell takesctioenmaironment as
an input and processed (genotype to phenotype) to the ultimate response of thiecedsulting
phenotypic changes have the potential to modify the microenvironm&a grid which deals with all
the parameters

The model considered normal tumor growth with an oxygen supply as oxygen is one of theikagsnutr
for the tumor growth and progression. For picturing the maspin effect, we have ndadepsohs
hypoglycemia (lack of glucose) or acidity (lack of hydrogen). The corat@ms of glucose and
hydrogen ions did not vary in the reportedvitro experiments (Ravenhi#t al., 2010). The varying
distance of cells from a blood vessel can cause heterogeneity in the tioromenvironment and the
tumor mass. The model introduced external blood vessel by stating boundary condifRidEst The

boundary conditions simulated such an environment where the surrounding blood vessel obthe tum



supplied the nutrients and also removed the metabolic waste produced by the twndheedvolution
of oxygen and maspin with respect to time was maintained by the following second order PDEs

% = Dg,A0,(x,t) — fo,(x, 1) (1)

Where,D,, is the oxygen diffusion constant. For maspin, we have taken diffusion equatiiomed in
(Gerlee and Anderson, 2007).

oM (x,t

TR0 — DM ()~ fuC ) @
Where,D,, is the maspin diffusion constant. The tefitx, t) was the utilization or production function
of oxygen and maspin=0,,M), for each cell at a specific positionand at timet and is described in
equation 2.

0 no tumor cell at that grid point (3)
crF(x) grid point occupied by a tumor cell

fitet) = |

Where,cr; is the base consumption/production rafs) is the modulated energy consumed by the cell
located at the grid element x and calculated in equation 3. It was used tothepdifferences for the
energy consumptions among different subclones.

F(x) = max(k(R —T,) + 1,0.25) 4)
Where, k is the strength of modulation, R is the response of FNII.aedhe target response. The term
max(,0.25) shows that the cell’s metabolism was at least a quarter of the base line consumption rate as
considered by Gerlee and Anderson (2008). This function also ensured that the cdilevgtedtest
network response would consume more nutrients. As this modelling scheme is takestandaad
procedure for growing avascular tumor in many studies (Anderson, 2005; Gerlee and Anderson,

2007;2008; Kazmét al.,2012; Al-Mamuret al.,2013b).

3.2. Cdll signaling nodes



Each cell behavior is defined by an intracellular signaling network which takesmutdncentration
inputs (oxygen and maspin) as a phenotype from the grid points. After signaling mechamiefines
cells behavior as a genotypic response. A FNN mimicked this setup and normallysitscohsumber of
nodes and it can take real number values as input. The nodes are constructed into three layersr,input lay
hidden layer and output layers. The construction of proposed FNN is shown in figure 2. Ttenuofcti
each layer
* Input layer nodes take chemical values from a particular grid point and numbepiyf em
neighbors of that point
« Hidden layer nodes take the input layer response and perform as an intermediate layer where
there can be groups of co-regulated gene complex
» Output layer determines the fate of each cell which can be proliferationcentieslead
and/or movement
Different layer nodes are connected together with varying weights, determined atvices X and Y,
and hidden layer nodes and output layer nodes consist of their internal thr@sBalske figure 2).

Further description of of X, Y¢, and 6 and the functional mechanism can be found in appendix A.1.

JEPO
R

Cell's Meighbours

. T
m‘(\g A

\\/Za0

Genotype 0; Phenotype

Fig. 2. Cellular signaling response network.



However, in case of real cells, the regulatory mechanisms are much more complexuwvitzesls of
biochemical reactions take place; it has been shown in the literature that ANdheihidden layer can
approximate any continuous function (Bray, 1990; Kiaemal., 2012b), if we add more intermediate
layers nothing will change in the output. The presented network is able toatalthg output for an
undetermined sample set that is not specified in the training set. This network was notarainested
the weights in the network were constructed by hand and were selected by an iterativespriteddhe
network produced a predefined output. The network parameters have to be adjsstédamnmanner that

they summarize the behavior of actual cancer cells (Gerlee and Anderson, 2007).

3.3. Cdl cyclerules

The individual part of the model took the input vector (environment parahdter each cell and
sampled from the grid point. Cell behavior was determined as output from AbtlNagan. There were

four nodes in output: proliferation, quiescent, apoptosis and movement. Each cell consugerd oxy
(considered constant exogenous maspin supply) or maspin (considered constant oxygen supply) according
to its behaviour (FNN response) in automaton points. Then the amount of oxygen gets ehecKed

there is no sufficient oxygen present the cell dies from necrosis. If a cell dies once, it isenapmtaied.

The life-cycle action decided by the network is carried out:

« If proliferation (P) is chosen, check if the cell has reached proliferation agi tnede is
space for a daughter cell or not. If both are true the cell divides and the daughget ce
placed in a neighboring grid point, if not the cell does nothing

» If quiescence (Q) is chosen the cell becomes quiescent

» If apoptosis (A) is chosen the cell dies and

+ If movement (M) is chosen the cell moves to the empty neighbors. Heresenptwo kinds
of cell movement; each cell can move if FNN output is movement and reovdmalso

depend on the ECM degradation and cell-cell adhesion (describes in section 3.5).



3.4 Maspin asan ECM constraint

In reality, cell-cell adhesion and cell-ECM interactions are responsible for the maideHular signaling
involving with different biological factors. The model takes into accaumbt growth, ECM remodeling

and mechanical interaction with host tissue. We consider ECM as a whole withmguiksiing its
components (collagen, laminin, fibronectin etc.) to reduce the complexity of the modeling method, though
we are aware that they contribute differently to the mechanical and adhegiedipsoof the matrix and

have different production mechanism. Normally, tumor cells make contact with the ECM proteins, release
proteases including MMPs which degrade the ECM. In this model, ECM has been takeymoagh
constraint for each cell. We formulated a set of equations to define cell-E@Mambdn by relating
maspin as a controlling factor. In the following equatidi(, t) represents the ECM densitM,, (x, t)

is production of degrading enzym#,(x,t) is maspin value at particular grid point aAgx,t) is the

density of degraded ECM.

0E(x,t) -
ET —BM(x,t)N(x,t) + A(x,t) — M(x, ), + BrE(x, t)
% = Dy AMp (x, £) + Yy N(X, £) — @ Mp (%, ) 6)
aAf;i’ 2 YMp (2, )E(x,t) + XoAA(x, ) — g A(x, 1) (7)
®)
N(x,t) = Z Ip, () (%)
i=1
Where

I _ {1, ifxi € Bg(X')
Be(x) 710, Otherwise



ECM digestion rate8 has got constant value equal toNl(x, t) represents the number of neighbors
around the celk at specific timet. B.(x) is a ball of radiug (approximately equal to the radius of a
cancer cell) that is centeredaatN is the total number of tumor cells in the tumor tissue xgnid the
position of theit” cell. A constant was introduced which is the production rate of attracignis the
diffusion coefficient of the digested ECM apg is the decay rate of the digested ECM. The ECM
densities and degradation rates have not been measured in biological experimemgsth@utumor
growth, ECM density has assumed to be 1 with no degraded BC#)) = 0. Every proliferating cell
had to degrade 7% of the ECM before the placement of a daughter cell in thélavagighboring

points.

3.5 Cadll-cdl adhesion and cell movement

For modeling cell-cell adhesion, model took cell-cell adhesive forces functiarh vdeifines the cell
movement called cadherin induced motion biologically. Cells attractionnisckéd as a pulling force or
the potential functionP(x,t) during the solid tumor growth. At every time step model calculates the
pooling force for each and every cell. The potential function and cell movemectiah were calculated

using equations (9) and (10) respectively (Cosioal.,2008).

9
PGy t) = I ey ( TGt he‘(d(xirxj)‘£/2)2> ®)
irXj

D = =VP(x;,t) (10)
Where,d(x;, x;) is the distance between two cells, whBy€x;) is a neighbourhood centred rrwith a
radiuse, e% is the maximum energy aridis the cells capacity to bond. When the movement node value
was greater than 0.5, the cell was allowed to move. After acquiring theeekaugtwork response the
model calculated the attraction forces of the other cells for the seledtemsingl equation 9. Each cell
moved to the specified direction by followiaguation 10. The model compared each cell’s P value to the

surrounded cell® values and moved towards the highest value cells. During the movement thascell



also allowed to proliferate only if it met the proliferation criteria. With the ECM irerokent the cell took
longer to divide because it could place its daughter cell in the availablébogigy grid point only if the

surrounding ECM had been degraded sufficiently.

3.6 Model parameters

CA is getting a famous modeling paradigm in different fields of researcher@lyr its diversity spreads
around the different multidisciplinary areas (Xiaat,al., 2008;2011). CA method has also been used
successfully for different aspects of tumor growth modeling (explained insejti&or this model, a 2D
lattice grid has been taken imibx N. All presented PDEs were discritised using standard fivepoint finite
central difference formula and used length saale= 0.0025 (the rescaling of the length gives each
square cell an ared 6.25 x 10~°cm? (Casciariet al.,1988) and time scalst = 5 x 10~*. Each time
step the chemical concentrations are solved using the discretised equations and ewtitheomemor
cells is updated in a random order. The necrosis has been activated when oxygen concevgstion g
below certain threshold levél,,. Cg, is suggested 15% of the initial oxygen concentration (Gerlee and
Anderson, 2007; Al-Mamuet al.,2013b). Cells should not divide if there is no sufficient space for the
daughter cell; in this model the value of neighb(g,t) > 3. Previous models have shown different
tumor dynamics for different oxygen concentration values (Gerlee and Anderson, 200 et al.,
2012; Al-Mamunet al.,2013b), but for the relatively small values we consider this effect e

The parameters used for equation (1-4) are listed in table 1. Table 2 gives goéishrokters used in
equations (5-10) to design the cell-cell adhesion and cell-ECM interactioto doaspin. The weights

and thresholds of initial neural network setup is given in appendix A.2.

3.7 In vitro Methods: Cdll line, Plasmids, Transfection, Time L apse Video Microscopy

This paper includes aim vitro experiment to determine the adhesion of MCF7 breast cancer cell line

which was stably transfected with wild type maspin. We formulateéhthigro hypothesis that maspin



increases cell-cell adhesion to various ECM components like collagen I, laminin aomgditn. MCF7
cells were obtained from ATCC and grown in MEM supplemented with 10% (@étalf calf serum
(FCS), 1% (v/v) nonessential amino acids and 1% (v/v) sodium pyruvate. Adlultelie reagents were
from Life Technologies (Paisley, UK). Cell lines stably expressing diffemmsd of maspin have been

described previously (Ravenhdt al.,2010).

Table 1: A list of parameters and values used during the tumor growth simulation

Parameters Definition Value References

Co Oxygen background conc.  1.7x10mol cnf Anderson, (2005)
Doz Oxygen diffusion constant ~ 1.8x10cn?s Groteet al.,(1977)
Du Maspin diffusion constant 1x1Ccnfs Younget al.,(1980)
Ny Cancer cell density 1.6x106cellscnt Casciariet al.,(1988)
Croo Base oxygen consumption rai 2.3x13%mnol cellds'  Klieseret al.,(1986)
Kk Modulation strength 6 Model specific

T, Target response 0.675 Model specific

Table 2: A list of parameter used cell-cell adhesion and cell-ECM interaction equations

Parameters Definition Value References

S Digestion rate of ECM 1 Model specific

P Maspin inhibition constant 400 mofcn?  Basset al.,(2002)

B; ECM remodeling parameter for ECM (0,0.015) Conde et al., (2008)

Dm Diffusion constant of degrading enzyme 0.08 Tomaet al.,(2012)

lo. Decay coefficient 01 Tomaet al.,(2012)

Ym Production constant for MDEs 1 Tomaet al.,(2012)

y Degradation rate of ECM by MDEs 8.15 Andasariet al.,(2011)
(plasmin)

Xa Diffusion constant of digested ECM 0.01 Conde et al., (2008)

Ug Decay rate of the digested ECM 0.01 Conde et al., (2008)




4. Dataclustering

The model was fed two datasets consisting withitro andin silico cell migration dataln vitro data set

was composed of control (normal tumor growth without maspin) and maspin (gritwtmaspin) data

set. In silico data set consists of normal tumor growth and tumor growth with maspin dhtdueAl
datasets were obtained from independent set of experiments frorimitlo andin silico models. The

cell migration data was measured in biotlitro andin silico experiments via velocity. lim vitro model,

the cell velocity was measured using cell tracking toolkit integratedxiovision 4.7.1 software and
Zeiss Examiner 4.0. Im silico model, the distance of each cell was tracked by saving the co-ordinate
after every time point. Then in the same way likevitro, the average velocity was measured for each
cell. Normally, in biological experiments, the data from two different ssusice analyzed via student t-
test or ANOVA test. But most of the time, the data patterns of theseeimdiept data samples get
ignored, as a results not that much assumptions can be made through this hypothdsiotegtrevious
attempt we presented resemblances betvirearnitro andin silico cell migration data using different
statistical measurements (Al-Mamanal.,2013b). But here we employed several clustering algorithm to
reveal the hidden patterns of the datasets in order to see the sirilaniiyin silico model within vitro

model (Ravenhillet al., 2010). Clustering or data segmentation of unsupervised data is the process of
grouping the data instances into clusters, so that instances within a tlagéehigh similarity in
comparison to one another but are very dissimilar to instances in other clusiensaf@ Miao, 2011).

Similarity of instances is based on the attribute values describing in the instanogsafWdaChan, 2013).

Most of the existing clustering algorithms work well on small datasets norgaiewer than several
hundred data instances with few attributes; however, a large data set main coitlions of data
instances with a large number of attributes (Lee and Olafsson, 2011). Generalgringusiethods
structures the set of instances into groups based on their similaritheandssign labels to the relatively
small number of groups. It has been widely applied in numerous real world applicatcadinm

biology, medicine, anthropology, marketing, pattern recognition, and image processing (W&igand



2013). For analyzing these unsupervised datasets, initially we calculated isimalad distance
measurement and then implemented nearest neighbor clustering and k-Meansglusterthese
methods are already well established, we described the methods in brief withhrlgarit appendix
section B. After using the common clustering approached we proodedsity based clustering
approach to solve the holes of the existing clustering algorithms for debomgxperimental datasets.
The main objective was to see that how much similar wamailico model to then vitro model in case

of cell migration data.

4.2 Proposed density based clustering

After exploring the existing k-Means and NN clustering techniques, we formuatdehsity based
clustering technique to identify similarity based on the number of linkseleetvinstances. A pair of
instances are said to be neighbors if their similarity exceeds some thresholgro@ased clustering
algorithm first finds the nearest neighbors of each instance, and then rededir@mitarity between
pairs of instances in terms of how many nearest neighbors the two instances sisareedhnot be
defined based on a precise metric, but rather a more intuitive approach using dgregs lenowledge.
The number of links between two instances is defined as the number of common neignpdrsve.

The objective of our clustering algorithm is to group instances that have simedNe used Jaccard

coefficient instead of using euclidean distance to measure similarity that shown in equation 11

sim(x;, xj) = |xl- N xj|/|xl- U xj| (11)
A goodness measure was used to merge clusters which pair of instances is merged at each step that shown

in equation 12.

KK = link(K;, K;) (12)
i) — _1+2f(@) __1+2f(@)
(xi +xj)1+2f(®) X; Xj

In equation 12link(K;, K;) is the number of links between the two clusters. Algsoandx; are the

number of instances in each clustxel}fzf(@) is an estimate for the number of links between pairs of



points inK; when the threshold used for the similarity measui@. i§he functionf (0) depends on the

data that eack; € K; has approximately/ ®

;- neighbors in the cluster.

5. Computational Experimental Setup

Thein silico model was coded using custom way in MATLAB environment. The clustering experiments
were conducted using a MacBook Pro with Retina display with 2.7 GHz quadcore Intel Core i7 Processor
and 16 GB of RAM. We implement the clustering algorithm in Java. We use NetBeans IDE 7.3.1 for Java
coding. NetBeans IDE is the first IDE providing support for JDK 7 and Java BEp&/aetbeans.org/
index.html). The code for the basic versions of NN and k-Means clustering are adopted fram Wek
version 3.0, which is open source data mining software @iall.,2009). It is a collection of machine
learning algorithms for data mining tasks. Weka @&ntains tools for data preprocessing, classification,
regression, clustering, association rules, and visualization. The clusteidnighatg in Weka 3.0 can be

either applied directly to a dataset or called from our own coding.

5.1 Adhesion Assays

Adhesion assays were performed as described previously (Raetrail2010). With the exception that
here individual matrix components at Sug/ml were used to coat the wells of tissue culture treated 96 well

plates overnight at4C, prior to assay.

6. Results and discussion

6.1. Tumor growth dynamics dueto maspin

Tumor growth started from four cells in our simulation and grew spherically in layered structure
consisting of dead region in the center and quiescent and proliferating cells surrounding the necrotic
region respectively. At every time step each cell completed its own lifecycle actions depending on the NN
response. Figure 3 shows compact spherical morphology for normal tumor growth and tumor growth with

maspin respectively. This round morphology is matched with a basic study of multicellular tumor



spheroids of EMT6/Ro model proposed by (Freyer and Sutherland, 1986). The growth dynamics showed
three compartments at 20™ day of growth: necrotic region is surrounded by quiescent and proliferating
cells sequentially. For both case, the tumor size was almost same because during first few days the tissue
was small in size and cells got sufficient amount of nutrients to survive. On 60™ and 100" day, the
apoptosis region appeared throughout the center area because decreased diffusion in the central region.
Moreover, diameter of the maspin growth was smaller than the diameter of the normal growth on 60™ and
100™ days and also the compactness and roundness on 60" and 100™ days shows the effects of maspin in
figure 3. It has to be noted that previous papers showed the experimental evidences that tumor shows
round morphology in the presence of ECM in different circumstances (Harmé et al., 2010; Chan ef al.,
2013).

From the early age of maspin investigations, it has been suggested that maspin reduces cell migration
while it enhances the cell adhesion to ECM components especially fibronectin (Seftor et al., 1998; Cella
et al., 2006). The layered structures in figure 3b suggest the reduced cell migration and increased cell
adhesion in an abstract format when maspin was present in the model. This indicates that maspin possibly
enhanced the cell-ECM adhesion to show this compact layered structure. It corroborates the notion
presented in previous literature (Al-Mamun et al., 2013b) about reduced proliferation, migration and

invasion mechanism of maspin.
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Fig. 3.a. Normal tumor growth morphology and b. Solid tumor growth morphology due to nvelspia,

red color represents dead regions, blue color represents quiescent cells, cyaapredents proliferatin

cells, and white color represents empty grid points during the growth evolution

6.2. Maspin asan ECM Constraint

For simulating the overall maspin impact, we calibrated the model to seleewbat ECM equations (5-
8) present the real scenario or not. The microenvironment parameter of ECM dEhsgtyidently
influenced tumor growth rate (or proliferation of tumor cell). The ababgalls grow at a slower rate
because they are not allowed to accommodate daughter cells unless their surteGMlisgsufficiently
degraded (shown in figure 4). We simulated the model where first, tumor greeutnECM and maspin
and then compared the growth with the scenario while tumor grew with both ECM apuh.nTdse
inclusion of the ECM and maspin constraint in the model causes a verydomhgate. This time the
tumor takes more time to reach the same size as observed when no ECM was includeddelthi is

also important to mention that this kind of behavior has been seen fromoysrestudies (Condet al.,



2008; Kazmiet al.,2012b) which confirm the ECM inclusion in our extended model signifies that ECM
itself has an impact on the tumor growth. The tumor growth rate withogratitegy ECM also quite

similar to the rate mentioned in Al-Mamehal, (2013b).

12000
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Fig. 4. The tumor growth rate comparison in terms of abnormal cells before ECM inclusion and after
ECM inclusion
Normally, a tumor cell needs to invade the surrounding ECM in order to go to the metatgsisThe
model measured the ECM density for different maspin concentration during the tumtr @rowe 5).
Initially, ECM densityE(x,t) is taken zero and afterwards cells created the ECM layer surrounding them
which restricted cells to move the neighboring cells. After every iberdfiCM density has calculated
from equation 5 which is related to MDEs/UPA production and amount of degradargeters. ECM

density is highest when maspin concentration has given 1.5uM.
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Fig. 5. ECM density measurements during the tumor growth for different maspicentration
0.5uM,1.0uM and 1.5uM.

The model also measured the degraded ECM density during the tumor growth (figure 6). For gtewing
maspin impacts on ECM density, every proliferating cell degrades 7-10% of the EQké& ble¢
placement of a daughter cell in the available neighboring points. The model calculates amount
degrading ECM density from equation 7 which defines a complex biological where MDEs production,
amount of created ECM density and maspin involved themselves. Degraded ECM density measurements
are shown in figure 6 that when maspin has given in low concentration in the riieedECM

degradation increased whereas the high maspin concentration showed minimal ECM degradation.
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Fig. 6. Degraded ECM density measurements during the tumor growth for different maspéntration
0.5uM,1.0uM and 1.5uM.

Collectively, figure 5 and 6 suggest that maspin certainly has a roleulatiag ECM concentration and
also present in the supra-molecular structure of the adhesion plaque. This mecheoligas direct
engagement of extracellular matrix ligands to mediate cell adhesion, whitk asdulated by “inside-

out” signals to alter the affinity for these ligands, and also to transduce “outside-in” signals to the
cytoplasm (Basst al.,2009). Density of ECM at extracellular surface and amount of degraded density
refines the hypothesis made earlier in (Seétoal., 1998; Cellaet al.,2006) that maspin enhances cell
adhesion. Though in boih vitro andin vivo studies, the ECM turnover has not been measured, the

results presented here predict the possible impact of maspin over ECM turnover.

6.3. Maspin effects on cell matrix components

To support the maspin effects on cell-ECM enhancement, a novel in vitro experiment has been adopted to
see the percentage of adhesion to the individual matrix component in the presence of maspin. Here we
examined the effect on cell adhesion when cells were transfected with wild type pcDNA3.2maspin from
the cell adhesion assay of MCF7 cell lines. Using an in vitro assay to measure cell adhesion, it was found

that wild type maspin enhanced MCF7 cell adhesion to various ECM components (Figure 7). Specifically,



MCF7 cells stably expressing wild type maspin significantly increased cell adhesion by 113+5% on a
laminin matrix and by 45+6% on either collagen I or fibronectin matrices, in comparison to cells
expressing vector only. Figure 7 shows MCF7 cells stably transfected with pcDNA3.2 (open bars) or
pcDNA3.2maspin (hatched bars), plated onto Spg/ml matrix components. Adhered cells were stained with
methylene Blue and absorbance was measured at 630 nm. 100% adhesion is defined by pcDNA3.2 cells;
an average OD630 of 0.7, 0.25, 0.7 for collagen I, laminin or fibronectin respectively. Three independent
experiments were performed in triplicate. Statistical significance was compared to cells transfected with
pcDNA3.2 and measured by Students t-test (p*<0.05). These results confirm the undertaken hypothesis in
our computational model that maspin has direct influence in enhancing the cell-ECM adhesion. The real

dataset for this experiment has given supplementary file 1 .
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Fig. 7. Adhesion of MCF7 stable cells on matrix components.

6.4. Experimental analysis

The main motivation of implementing the clustering method was to establish thleafiamaspin reduces
cell migration. Another purpose was to see whether the produced celliomgtata from ouin silico
model was really resemblance with the supplieditro data (Ravenhilet al.,2010) or not. For this
purpose, we proposed several clustering algorithms in section 4. Table 3 presents thedasaodn

standard deviation for both vitro andin silico datasets. By using student t-test it has been shown in our



previous attempt tham vitro result showed that maspin reduces the cell migration up to 70%, wirereas
silico model reduced cell migration up to 73%. As the results produced from the raget&ba both
models, it is clear that the scaling was not same for both models. Scalingoisveibediscussed issue in
previous models (Gerlee and Anderson, 2007; i€aal.,2012; Andersoret al.,2013).

Table 3: Basic statistical parametersrofitro andin silico data

Dataset Minimum Maximum Mean StdDev
In vitro control 0.2 8.176 2.256 1.298
In vitro maspin 0.104 5.899 1.576 1.071
In silico control 0.234 3.087 1.996 1.019
In silico maspin 0.126 2.774 1.457 0.707

The experimental analysis vitro andin silico data using clustering algorithms are shown in tables 4, 5,
6, and 7. k-Means clustering centroid result has been measured and it also suppstasistioal
hypothesis (shown in table 3). Three clusters also give the centroid variatioreetndwo datasets
(shown in table 4). It is clearly seen that centroid of first clustease of in vitro maspin andn silico
maspin reduce cell migration significantly in compared with second cl8&have seen, the shape of
the clusters were circular in shape with overlapped data points forirbettto andin silico datasets
(shown in fig 8). This is one of the major problems of k-Means clustering, as it needssgatification

of the number of clusters and does not work well with non-globular clustesther problem is that the
intra and inter cluster distance vary in each iteration. One example is shown & Tiguhere the
distribution of data points in each cluster is shown in cagesilico control and maspin datasets.

Table 4: Cluster centroids of vitro andin silico data using k-Means clustering

Dataset Mean Cluster 1 Cluster2 Cluster 3
In vitro control 2.2563 5.0825 2.6434 1.271
In vitro maspin 1.5764 0.7858 3.5007 1.7996
In silico control 1.9957 3.242 0.8545 2.089

In silico maspin 1.4567 0.6798 2.3082 1.5279




Table 5 tabulates the percentage of instances in each cluster. It shovis tiitab, clusters have unequal
distribution of instances because of their frequent nature values arld #i42% and 47% respectively,
whereas in silico clusters have almost equal distribution of instances, that is 30%, 35% and 35%
respectively. In case of maspin data for both models also show the same assumptionsaivhggreeidy

that control data for both models are scattered in nature and spread more than maspin data.

Table 5:In vitro andin silico data points in each cluster using k-Means clustering

Dataset Full data Cluster 1 Cluster2 Cluster 3
In vitro control 500 54 209 237
In vitro maspin 500 246 81 173
In silico control 500 148 176 176
In silico maspin 500 180 150 170

Table 6 and table 7 represent the centroid and data points distributionedbtiaim density based
clustering algorithm respectively. Our algorithm produced two clusterddtr datasets and show
significant resemblances between both models. Proposed clustering algorithm fineisrést meighbors
for each instance and redefines the similarity between pairs of instances. The oiuimkershowed the
successive common neighbors they have. We can get the similarity measurement froon dduatid
we calculated than silico control data points are almost 65% similaintaitro data points anh silico
maspin data points are almost 62% similar withitro data points. These specify that our computational
model is mimicking the maspin effects with 60-65% similarity. The density basstérwhg algorithm
normally does not need any apriori specification of number of clusters atiuehasility to identify then
noise. The main advantage of using density based clustering is that it cambiinarily sized and

arbitrarily shaped clusters.



Table 6: Cluster centroids of vitro andin silico data using density based clustering

Dataset Mean Cluster 1 Cluster2
In vitro control 2.2563 4.3766 1.759
In vitro maspin 1.5764 1.066 3.029
In silico control 1.9957 2.8334 1.0736
In silico maspin 1.4567 0.6149 2.0636

Table 7 tn vitro andin silico data points in each cluster using density based clustering

Dataset Full data Cluster 1 Cluster2
In vitro control 500 95 405
In vitro maspin 500 370 130
In silico control 500 262 238
In silico maspin 500 249 251
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Fig. 8. Distribution of data points in clusters using k-Means clustering approach for a) in vitro control and

b) in silico control datasets.

Previous computational models for maspin growth dynamics did not show &itgo data verification
(Al-Mamun et al.,2013b), but this paper provides a clustering approach to see the similaoitg &me

unsupervised data collected from both models for the first instance. Our proposed densityubtsatcl



algorithm which provides the similarity measurement of litvitro andin silico datasets. The proposed
algorithm shows up to 60-65% similarity of the preseritedilico model within vitro data. It offers
better agreement of both models that the other clustering algorithms like k-Mehnsarest neighbor. It
is worth to mention that clustering algorithm presented here has shown good agreitiment datasets
obtained from Ravenhikt al., (2010); it can also work for the other databases of raw cell migratio

datasets.

6.5. Discussion

Tumor growth results (in section 6.1) suggest that maspin reduces cell movement and also increases cell-
cell adhesion. Figure 3 indicate compact circular morphology of avascular tumor when maspin is present
in the growth model, where red color represents dead regions, blue color represents quiescent cells, cyan
color represents proliferating cells, and white color represents empty grid points. It matches with the
previous findings of (Kazmi et al., 2012a) where multicellular spheroids experiments of HT29 showed the
solid tumor morphology. Moreover, the growth pattern depended on the ECM degradation for the
presence of maspin. It has been suggested that maspin can use two proposed pathway for increasing cell-
ECM adhesion: regulating the plasminogen activation system (PAS) and f8; integrin signaling pathway
(Endsley et al.,, 2011). PAS is strictly maintained by uPA which is an extracellular serine protease. uPA
binds to uPAR and activates plasminogen which basically localized ECM degradation. ECM degradation
is a crucial component in cancer invasion and metastasis. It has been presented that maspin has an active
role to reduce invasion and migration by incorporation of cell surface maspin-uPA-uPAR complexes
(Endsley et al., 2011). Maspin has been reported to bind to 5, integrin cell adhesion receptors and maspin
has a certain effects to ; integrin activation status. Al-Mamun et al., (2013b) developed a computational
model which showed maspin effects computationally and simulation results were verified by in vitro raw
data supplied by (Ravenhill et al., 2010).

Results presented in section 6.2 also suggest that maspin increases the cell-ECM layer which restrict cell

movement and increase cell-cell adhesion. Also the in vitro results presented in section 6.3 showed an



evidence of increasing cell-cell adhesion for the individual components of ECM. It is also seen elswhere
that collagen type I and II showed binding percentage to maspin 70% and 25% respectively
(Ngamkitidechakul et al, 2001).Moreover, our current model also added the data verification method
using clustering approach. The results showed in section 6.4 provide a density based clustering method
which showed significant similarity between in vitro and in silico data pattern. These corroborate that
maspin has a potential role in reducing cell migration and this might be happened via enhancement of
cell-ECM adhesion. It is worth to mention that data clustering has been used in this study to see the
similarity and dissimilarity between the datasets. The extended model is differs from our previous attempt
is several ways, firstly, this model includes ECM in presence of maspin to see whether it regulates the
tumor growth or not. The results suggest that tumor growth decreased in terms of round morphology in
presence of ECM with maspin at extracellular environment. It is required to mention that our previous
model gave the tumor suppressive features of maspin like proliferation, apoptosis, cell migration and
invasion whether we did not consider microenvironment constraints ECM in the model. Secondly, this
model concluded an important behavior of maspin that it might have impact on ECM turnover, though
currently no study showed any potential engagement of ECM turnover with maspin. This can help us to
build a new in vitro method to investigate this assumption. Thirdly, the computation result of the extended
part of the model was supported by a novel in vitro experiment. Fourthly, the data verification method
gives our model more confidence that our model resemblances the in vitro biologics of maspin.

Overall, the paper contributes to the subtle maspin behavior in different ways; firstly, the results presented
in figure 6.1 to 6.3 suggest that extracellular maspin has potential engagement with cell-ECM adhesion
enhancement which again matches our previous lab results (Bass et al., 2009 and Ravenhill et al., 2010).
It also indicates to develop new in vitro and in vivo studies for ECM turnover alteration due to maspin
engagement. Secondly, in vitro results presented in figure 6 provides a direct resemblances with in silico
results that maspin enhances cell-ECM components engagement by which it reduces cell migration
(proposed in Endsley et al., 2011). It also provide clear indication that maspin resides exogenously in

cellular environment to display its potential influences tumor metastasis suppression. Thirdly, the results



presented in section 6.4 clearly showed a new data verification method using data clustering method. The
results are plausible to show up to 60-65% similarities between both in vitro (Ravenhill et al., 2010) and
in silico models. This leads this modeling framework one step closer to the reality where the real data
from the wet lab experiments can be compared with in silico data. It is worth to mention that there are
some limitations which need to be considered in case of data verification methods. The selection of
clustering algorithms totally depends of the nature of the produced data, the density based clustering

method is not a solely option for other problems.

7. Conclusion

This paper presents an in silico model composed of an in silico tumor growth model and a data
verification method using clustering. First, the extended in silico model upgraded our previous model for
maspin dynamics (Al-Mamun et al., 2013b) and added cell-ECM interactions, cell-cell adhesion and cell
movement constraints in presence of maspin. Our results suggest that maspin has influence on
microenvironment constraint including cell-ECM, cell-cell adhesion and cell movements which show
good agreement with the previous in vitro model hypotheses (Ngamkitidechakul et al., 2003; Bass et al.,
2009; Ravenhill et al., 2010: Endsley et al., 2011). The model predicts that maspin can play an important
role when ECM is present in the model. It can slow down the growth dynamics. More significantly, we
presented a novel in vitro adhesion assay on matrix components (fibronectin, laminin and collagen I) of
MCF7 cell line transfected with wild type pcDNA3.2maspin. Collectively, the results suggested the
extracellular presence of maspin at the cell surface along with ECM components and MDEs.

Second, the later part of the model showed similarity between in vitro and in silico cell migration datasets
using clustering method. The model presented a density based clustering algorithm to find the similarity
between two models. Results showed that our in silico model’s data matched about 60-65% with the in
vitro data (Ravenhill et al., 2010). From our best knowledge, this is the first attempt of adopting clustering
approach to show the resemblance of an in silico model with real in vifro experimental data. The

implication of this data clustering attempt increases the fidelity and superiority of the computational



model over the biological experiments.

It is important to mention that although this hybrid model does not cover the whole range of maspin
effects, but it informs the maspin mechanism on basic biological constraints like cell migration, cell-ECM
interaction, and cell-cell adhesion. This model provides a justified subcellular investigation of maspin by
supporting novel in vitro experiments. Also, introduction of clustering approach to data analysis can bring
our effort to one step closer to the real experiments, as it is still far from being a precise model of the
subcellular dynamics. The impact of this data verification would be to confirm more real data to see the
similarity using this model as a tool in case of in vivo data. It is worth to mention that treatment with
maspin has been investigated from the very beginning of its discovery. Re-expression of Maspin or
treatment with rMaspin decreases tumor growth and metastasis using in vivo experiments (Zou et al.,
1994; Bodenstine et al., 2012; Berardi et al, 2013). Recently, a paper by Bodenstine et al., (2014)
considered recombinant Maspin (rMaspin), which alters invasive properties when directly applied to
cancer cells. This study indicates that cellular processing of rMaspin plays a key role by affecting its
biologic activity and highlights the need for new approaches aimed at increasing the availability of
rMaspin when used to treat cancer. These give us a new clue that our presented model can be usable from

different aspects of experiments and treatments while maspin will be taken as a constraint.



Appendix A

A.1. Feedforwad Neural Network Construction and M echansim

The FNN consisted of a number of nodes which can take real numbe values. Thease nodasised org
intro three layers: Input layer (1), Hidden layer (H) and Output layer (O). iipet iparameters are
transferred to the hidden layer and this layer does its processing using steensfed functiorl” (x),
weight matrixX and threshold vectap. X;; determines the conncetion strengh between node j in the the
input layer (I) and i in the hidden layer (H). The hidden layer then passesldhiateal values to the
output layer that performs its calculation using) as a transfer functioy; matrix and threshold vector
6.Y;; defines the connection strength between node j in the hidden layer (H) andindte putput
layer (O). Input nodes are summed together in equation 6eaml output nodes are summed together as
0;.

Al

Ty =1 +e7%x

T(x) is the standard transfer fuction considered, as it gaurantees that the reuslting node values of hidden

lyaer are the range of [0, 1].

A.2
k

I; is the sum of the input nodes weighted with connection matrix X and the thréshioidame way, the

node i of the output layer is given by
=T Zyijlj_‘ibj
j
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J

A.2. Networ k Parameterisation

X is the weight matrix between input (I) and hidden layer (H)
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Y is the weight matrix between hidden layer and Output layer (O)
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¢ and@ are two threshold vectors of hidden and output layer respectively
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Therefore, the behavior of the network is determined by these parameters iagdcdlirdivision, the
model allowed these parameters to be copied to the daughter cells with themdtaé number of
parameters to be mutated is chosen from a Poisson distribution with parameter phese glatameters
x the mutations are modelled by letting> x +s, where s is random number from the normal

distributionV (N, o), where ¢ determines the strength of the mutation.



Appendix B

B.1. Smilarity and distance measures

Given a data seD) = {x4, x,, -+, x,}, Of instances, a similarity measusén(x;, x;), defined between any
two instancesy;, x; € D, and an integer valug the clustering problem is to define a mappfand —
1,---, k where each; is assigned to one clust€y, 1 < j < k. Given a clusteik;, Vx;;, x;, € K;, and

x; & Kj, sim(xj;, Xjm) > sim(xj;, x;). A good clustering is that instances in the same cluster are “close”

or related to each other, whereas instances of different clusters are “far apart” or very different from one
another, which together satisfy some requirements: (1) each cluster must contain at leastrmee amst

(2) each instance must belong to exactly one cluster.

A distance measurdis(x;, x;), as opposed to similarity measure, is often used in clustering. The
clustering method then has the desirable property that given a éystey;, x;,, € K;, andx; &
K;, dis(xji, xjm) > dis(xj;, x;). Equations B.1 to B.3 are used to calculate centroid, radius, and diameter

of a given clusterk,, of N data point§x,,1, Xmz, ***» Xmn }-

i1 (o B.1
centroid = C,,, = M
N
B.2
radius = R.,, = \]2{\]:1 (mi — Cm)?
" N
B.3

Iiv=1 ?’=1 (xmi - xmj)z

(M(n—-1)

diameter = D, = \/

B.2. Nearest neighbor (NN) clustering
The instances are iteratively merged into the existing clusters that are closBi. dtustering a
threshold, t, is used to determine if instances will be added to existing clusiéra new cluster is

created. The complexity of the NN clustering algorithm depends on the numloestarices in the



dataset. For each loop, each instance must be compared to each instance already inEhakstiee
time complexity of NN clustering algorithm is GfnSince, we do need to calculate the distance between
instances often, we assume that the space requirement is afsoARforithm 1 outlines the NN based

clustering method.

Algorithm 1 Nearest Neighbor Clustering

Input: D = {xq,x5...... , X, } /I A set of instances

A/l Adjacency matrix shows distance between instances.
Output: A set ofK clusters.

M ethod:

1: Ky = {x,}

2:K ={Ki};

3:k=1;
4: fori=2tondo

5:  find x,, i some clusters K, in K so that
dis(x;, xp,)is the smallest

6: if dis(x;,xy) = t, threshold, g .then

7: Km = Km U Xx;

8: else

9: k=k+1;

10: Kk = {xi};

11: endif

12:end for

B.3. k-Meansclustering

Given a data se) = {x4, x5, ***, x,,}, 0Of n number of instances in euclidean space. Partitioning method
distributes thex; € D into k clusters{Cy, -, C,}, thatis,C; c D andC;nD = ¢ for1 <i,j < k. An
objective function is used to assess the partitioning quality so that instances within saoctusieilar to
one another but dissimilar to instances in other clusters. A high degree of siraitaoityg instances in
clusters is obtained, while a high degree of dissimilarity among instances is differens ctuatdrieved

simultaneously. The cluster meanigf= {x;1, x;2,***, X;1, } iS defined in equation B.4.



1 & B.4
Mean, m; = az Xij
j=1
The k-Means algorithm requires that some definition of cluster mean exists. Note thatahesiliés
for the means are arbitrarily assigned. These could be assigned randomly. Algorithm 8 thelkze

Means clustering method.

Algorithm 2 k-Means Clustering

Input: D = {xq,x5...... , X, } /I A set of instances

k // the number of clusters

Output: A set ofK clusters.

Method:

1: arbitrariliy choose x;,, € D instances as the initial k

centers
2:repeat
3: (re)assign each x; - k to which the x;is the most

similar, based on the mean value of the x;, € k ;
4: update, the k means, that is, calculate the mean

valueof the instances foreach clusters;
5: until, no change
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