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Abstract 

Most cancer treatments efficacy depends on tumor metastasis suppression, where tumor suppressor genes 

play an important role. Maspin (Mammary Serine Protease Inhibitor), an non-inhibitory serpin has been 

reported as a potential tumor suppressor to influence cell migration, adhesion, proliferation and apoptosis 

in in vitro and in vivo experiments in last two decades. Lack of computational investigations hinders its 

ability to go through clinical trials. Previously, we reported first computational model for maspin effects 

on tumor growth using artificial neural network and cellular automata paradigm with in vitro data support. 

This paper extends the previous in silico model by encompassing how maspin influences cell migration 

and the cell-extracellular matrix interaction in subcellular level. A feedforward neural network was used 



to define each cell behavior (proliferation, quiescence, apoptosis) which followed a cell-cycle algorithm 

to show the microenvironment impacts over tumor growth. Furthermore, the model concentrates how the 

in silico experiments results can further confirm the fact that maspin reduces cell migration using specific 

in vitro data verification method. The data collected from in vitro and in silico experiments formulates an 

unsupervised learning problem which can be solved by using different clustering algorithms. A density 

based clustering technique was developed to measure the similarity between two datasets based on the 

number of links between instances. Our proposed clustering algorithm first finds the nearest neighbors of 

each instance, and then redefines the similarity between pairs of instances in terms of how many nearest 

neighbors share the two instances. The number of links between two instances is defined as the number of 

common neighbors they have. The results showed significant resemblances with in vitro experimental 

data. The results also offer a new insight into the dynamics of maspin and establish as a metastasis 

suppressor gene for further molecular research. 
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1. Introduction 

Cancer is a complex disease because of its involvement with different biological processes at the cellular 

and subcellular level (Hanahan and Weinberg, 2011). Genetic mutations lead to abnormal cell 

proliferation and a mass initially called a benign tumor which has a localized position. When the tumor 

spreads to distal parts of the body it is called as malignant tumor. This happens by a process whereby 

control of key biological processes is eroded i.e. invasion, metastasis and angiogenesis. Alternatively, 

tumor life span can be divided into three stages: avascular phase (diffusion limited stage), vascular phase 

(angiogenesis stage) and finally metastatic phase (spreading to the distal body parts) (Zou et al., 1994). At 

the molecular level, these stages involve both intracellular and extracellular mechanisms to influence 

proliferation, cell-cell adhesion, cell migration, cell-extracellular matrix (ECM) interactions and 

angiogenesis. Overall, the efficacy of most existing treatments depends on metastasis suppression. 

Maspin or SERPINB5 is a 42 kDa protein that has been characterized as a type II tumor metastasis 



suppressor. Maspin expression is downregulated in breast, prostate, gastric and melanoma cancers but 

overexpressed in pancreatic, gallbladder, colorectal, and thyroid cancers, suggesting that maspin may play 

a prognostic roles on different cell types (Bodenstine et al., 2012; Berardi et al., 2013). Maspin decreases 

tumor growth and metastasis in in vivo (Zou et al., 1994) and invasion in in vitro (Biliran and Sheng, 

2001). This is achieved by the ability of maspin to influence aspects of cell behavior including migration, 

invasion, proliferation, angiogenesis and apoptosis. These effects have been investigated in many in vitro 

models (Sheng et al., 1996; Biliran and Sheng, 2001; Ngamkitidechakul et al., 2003; Bailey et al., 2005; 

Yin et al., 2006; Bass et al., 2009; Ravenhill et al., 2010) and in vivo models to investigate the 

intracellular (Zou et al., 1994; Zhang et al., 2000 and Shi et al., 2001) and extracellular (Cell et al., 2006; 

Bass et al., 2009; Ravenhill et al., 2010; Endsley et al., 2011) activities of maspin.  

The clinical data regarding maspin expression are variable. In this case, computational models can be 

built to support the in vitro and in vivo hypotheses to establish the effects of maspin on basic cell 

migration, cell invasion and understand the metastasis suppression mechanisms. Normally, in silico 

models integrate the complex multiple processes of a biological system and build bridges among multiple 

spatial and temporal scales with a deeper understanding (Kam et al., 2012; Anderson et al., 2013). From 

our best knowledge, the diversity of maspin has been investigated for the first time from the 

computational point of view in our previous model (Al-Mamun et al., 2013b), where the model showed 

its potential engagement with multiple cellular phenomena using artificial neural network (ANN) and 

cellular automata (CA) modeling techniques.  

 

1.1. Biological Background 

Tumor cell migration is the movement of a cell through or on a surface of ECM. Cells need attachment 

sites on extracellular matrices in order to re-organize their cytoskeleton and initiate protrusions. Tumor 

cells require a well regulated peri-cellular proteolysis to migrate. Proteolysis is a process where ECM 

contents are degraded by cellular enzymes. It is now widely believed that the breakdown of these barriers 

is catalyzed by proteolytic enzymes released from the invading tumor. Most of these proteases belong to 



one of two general classes: matrix metalloproteases (MMPs) and serine proteases. This regulation system 

consists of the urokinase plasminogen activator (uPA), urokinase receptor (uPAR), ECM and 

plasminogen activator inhibitors: type-1 (PAI 1) and type-2 (PAI 2). uPA is an extracellular serine 

protease produced from cells as a single chain pro-enzyme pro-uPA (Andreasen et al., 2000). Generally, 

the protease moiety activates plasminogen and generates plasmin. Plasmin is a serine protease capable of 

digesting basement membrane and ECM proteins. Plasmin itself has complex mechanism where it is not 

only catalyzes the breakdown of many of the known ECM and basement membrane molecules (such as 

vitronectin, fibrin, laminin and collagens), but also activates metalloproteinases. Naturally, the 

unrestrained generation of plasmin is potentially hazardous to cells. In a healthy organism the process of 

plasminogen activation is strictly controlled through the availability of plasminogen activators (PAs), 

localized activation and interaction with specific inhibitors (PAIs) (Andreasen et al., 2000). But in cancer 

cells this control mechanism gets affected due to different alterations in the cellular environments.  

Maspin is a potential protease inhibitor with its multicellular functionalities. Exogenous maspin decreases 

proliferation and increases cell adhesion in vitro (Ngamkitidechakul et al., 2001). It inhibits angiogenesis 

in vivo (Zhang et al., 2000) and causes apoptosis when expressed in endothelial cells (Li et al., 2005). In 

addition, it has been shown that maspin can inhibit the migration of vascular smooth muscle cells 

(VSMCs) (Bass et al., 2009). Ravenhill et al., (2010) showed the G-helix is necessary and sufficient for 

maspin migration effects. Integrins have complex roles in regulating cell motility and migration. 

Previously, it was shown that maspin binds to cell surface integrins, in particular α5β1. This binding 

causes inactivating conformational changes in the integrin and leads to the inhibitory effect of maspin on 

cell migration (Bass et al., 2009). Another anti-invasive mechanism has been suggested that maspin 

targets the uPA/ uPAR complex at the cell surface. Although maspin does not directly inhibit uPA 

activity, it has shown to reduce cell surface associated uPA/uPAR by inducing its internalization (Biliran 

and Sheng, 2001; Yin et al., 2006). This finding has been supported by Amir et al., (2005) which 

indicated that transfected maspin was able to reduce hypoxia-induced uPA/uPAR expression in 



MDAMB-231 cells. It has also been shown that maspin binds the pro-uPA zymogen, inhibiting its 

activation (Yin et al., 2006).  

Recently, the possible interaction of maspin with uPA system was investigated by (Endsley et al., 2011), 

where it was indicated that two proposed pathways can be utilized by maspin to increase cell-ECM 

adhesion; that is, the plasminogen activation system and β1 integrin signaling. But still the extracellular 

presence of maspin is in debate according to a recent study, where it has been stated that maspin has no 

influence on tumor growth and embryonic development (Teoh et al., 2014). These motivated us to extend 

our previous cellular level model with cell-cell adhesion and cell-ECM interaction to define how maspin 

reduces cell migration by showing potential enhancement with ECM components (fibronectin, laminin, 

collagen etc.). 

 

2. Related work 

In silico models have a tremendous ability to handle multiple dynamic interacting variables, such as 

numerous cell types or various environmental factors. Innovative computational modeling and simulation, 

in addition to appropriately designed biological experiments can facilitate a powerful tool to refine high-

throughput biological data, hypotheses and more accurate predictions (Macklin and Lowengrub, 2007; 

Kam et al., 2012; Edelman et al., 2010; Deisboeck et al., 2011;Johnson et al., 2013). These models can be 

formulated from the concept of biological spatial spaces: atomic, molecular, microscopic, and 

macroscopic (Anderson et al., 2011). In relation with this study, some CA models are essential for 

understanding tumor dynamics. A CA model of avascular tumor invasion investigated the migratory 

behavior of the cancer cells using a set of partial differential equations (PDEs) and that it coupled the cell 

dynamics to continuous fields of oxygen, ECM and matrix degrading enzymes (MDEs) (Anderson, 

2005). Another model revealed that MDEs degrade surrounding ECM and tumor cells migrate through 

ECM gradients during tumor invasion (Conde et al., 2008). Other CA models investigated some other 

important factors: impact of oxygen concentrations, dynamics of solid tumor growth (Gerlee and 

Anderson, 2007) and the evolutionary aspects of glycolytic phenotype (Smallbone et al., 2007; Gerlee 



and Anderson, 2008; 2009) and emergence of the glycolytic phenotype which suggested that the oxygen 

concentration and matrix density have combined effects on the tumor morphology. Recently, a hybrid in 

silico model calculated tumor mass with consideration of oxygen, glucose, ECM, cell-cell adhesion and 

cell movement as key micro environmental parameters (Kazmi et al., 2012a). The model includes more 

microenvironment parameters such as protein expression, growth promoters/inhibitors and a bioreductive 

drug tirapazamine (TPZ) transport model for hypoxic tumor cells on top of the Anderson’s model 

(Anderson, 2005). In another study, the same authors showed that diminished drug transport is one of the 

key reasons for TPZ failure, which needs further optimization of the drug transport properties in the 

emerging TPZ generations (Kazmi et al., 2012b). To date, our previous model presented maspin effects 

on tumor growth dynamics using a hybrid computational framework where maspin was included to show 

its effects on proliferation, cell migration, invasion, and apoptosis (Al-Mamun et al., 2013b). The model 

suggested 10-40% cell migration reduction and 20-30% cell proliferation enhancement due to maspin in 

in silico environment. Later on, several in vitro experiments were presented to show the resemblances 

with the in silico results. 

Essentially, our previous model did not consider cell-matrix adhesion and cell-cell adhesion during the 

tumor growth simulation subcellularly. Moreover the data resemblances method was based on statistical t-

test, which can only present the variation of mean value of cell migration data. Particularly, this 

investigation introduces an extension where it considers the impacts of maspin on cell-cell adhesion and 

cell-ECM phenomenon. Also this model provides a new in silico data verification method to see the 

resemblances with a previous in vitro model (Ravenhill et al., 2010). The key objective of this paper is 

not only to provide support the extracellular presence of maspin in tumor cell and but also to provide a 

data resemblances method with in vitro lab data. More specifically, the assumptions taken into 

consideration for building model are maspin reduces cell migration while present exogenously (Bass et 

al., 2009 and Endsley et al., 2011), it increases cell-ECM adhesion while it reduces the cell migration 

(Ravenhill et al., 2010; Endsley et al., 2011) and it reduces the overall tumor growth (from Zou et al., 

1994; Zhang et al., 2000). 



The model presented here is investigating the complex interaction of maspin connection with the different 

microenvironment parameters but especially the cell-ECM components and cell-cell adhesion. For 

supporting our computational method, we presented a novel in vitro experiment of MCF7 breast cancer 

cell line adhesion assay to show maspin dynamics over different ECM components like collagen I, 

laminin and fibronectin. Results of our previous models showed various agreements with biological 

experiments: HT29 human colon carcinoma cell line growth on spheroids obtained from monolayer 

cultures (Kazmi et al., 2012a) and in vitro apoptosis assay for transiently transfected DU145 prostate 

cancer cell line (Al-Mamun et al., 2013b). Moreover, it is clear from the previous papers that maspin 

reduces cell migration and increase cell-cell adhesion where β1 integrin, ECM, E-cadherin, uPA-uPAR 

maspin complex have putative roles. These in vitro and in vivo results led us to build this model to show 

the cell-cell adhesion and cell-ECM interaction due to maspin effect on top of the previous computational 

models (Kazmi et al., 2012a; Anderson et al., 2013; Domschke et al., 2014).  The proposed model was 

implemented, tested and verified through a set of experiments to demonstrate the merits and capabilities 

of the scheme. Previous tumor growth models for maspin showed only the dynamics explaining the 

underlying mechanisms like cell migration, cell invasion, apoptosis (Al-Mamun et al., 2012;2013a), but 

no model provided any data analysis techniques to establish maspin impacts on tumor growth (Gerlee and 

Anderson, 2007; Kazmi et al., 2012a;2012b; Al -Mamun et al., 2013b).  This model proposed clustering 

methods to analyze the cell migration data attained from both in vitro and in silico experiments.  

 

3.  Tumor growth framework 

3.1. Tumor growth model construction 

Our extended model is hybrid in nature, where tumor cells are discrete individual entity and chemical 

fields are continuous. For modeling the basic tumor growth a tumor tissue was developed from four cells 

at the center of a 2D lattice grid. Each grid element was either occupied by an abnormal cell or was 

empty. The grid elements had local concentrations of oxygen and maspin. A set of PDEs have been used 

to demonstrate the interaction between cells and the local chemicals concentrations. Individual cell was 



influenced by different tumor microenvironment constraints and each cell can take its own decision 

during its life time. This complex decision mechanism was applied by using a feedforward neural network 

(FNN). The output of the FNN defines the individual cell’s behaviors: proliferation, quiescence, apoptosis 

and/ or cell movement. Depending on selected behaviors, then model performs cell cycle algorithm and 

nutrients consumption with time and space around the neighboring grid points. An abstraction of the 

model is given in figure 1. 

 

 

 

 

 

 

 

Fig. 1. Tumor growth model construction summary describes how a cell takes the microenvironment as 

an input and processed (genotype to phenotype) to the ultimate response of the cell. The resulting 

phenotypic changes have the potential to modify the microenvironment in CA grid which deals with all 

the parameters 

The model considered normal tumor growth with an oxygen supply as oxygen is one of the key nutrients 

for the tumor growth and progression. For picturing the maspin effect, we have not considered 

hypoglycemia (lack of glucose) or acidity (lack of hydrogen). The concentrations of glucose and 

hydrogen ions did not vary in the reported in vitro experiments (Ravenhill et al., 2010). The varying 

distance of cells from a blood vessel can cause heterogeneity in the tumor microenvironment and the 

tumor mass. The model introduced external blood vessel by stating boundary conditions to PDEs. The 

boundary conditions simulated such an environment where the surrounding blood vessel of the tumor 



supplied the nutrients and also removed the metabolic waste produced by the tumor cells. The evolution 

of oxygen and maspin with respect to time was maintained by the following second order PDEs ∂ܱଶሺݔ, ݐ∂ሻݐ = ,ݔைమΔܱଶሺܦ ሻݐ − ை݂మሺݔ,  ሻ ǻ1Ǽݐ

 
 

Where, ܦைమ  is the oxygen diffusion constant. For maspin, we have taken diffusion equation mentioned in 

(Gerlee and Anderson, 2007). ∂ܯሺݔ, ݐ∂ሻݐ = ,ݔሺܯெΔܦ ሻݐ − ெ݂ሺݔ,  ሻ (2)ݐ

 

Where, ܦெ is the maspin diffusion constant. The term ௟݂ሺݔ,  ሻ was the utilization or production functionݐ

of oxygen and maspin (l=ܱଶ,M), for each cell at a specific position x and at time t and is described in 

equation 2. 

௟݂ሺݔ, ሻݐ = { Ͳ no tu�o� ce�� at t�at g��d po�ntܿݎ௟ܨሺݔሻ g��d po�nt occup�ed by a tu�o� ce�� (3) 

 

Where, ܿ ௟ݎ  is the base consumption/production rates, F(x) is the modulated energy consumed by the cell 

located at the grid element x and calculated in equation 3. It was used to report the differences for the 

energy consumptions among different subclones. ܨሺݔሻ = �ሺ݇ሺݔܽ݉ − ��ሻ + ͳ,Ͳ.ʹͷሻ (4) 

Where, k is the strength of modulation, R is the response of FNN and �� is the target response. The term 

max(,0.25) shows that the cell’s metabolism was at least a quarter of the base line consumption rate as 

considered by Gerlee and Anderson (2008). This function also ensured that the cell with the greatest 

network response would consume more nutrients. As this modelling scheme is taken as a standard 

procedure for growing avascular tumor in many studies (Anderson, 2005; Gerlee and Anderson, 

2007;2008; Kazmi et al., 2012; Al-Mamun et al., 2013b). 

 

3.2. Cell signaling nodes 



Each cell behavior is defined by an intracellular signaling network which takes nutrient concentration 

inputs (oxygen and maspin) as a phenotype from the grid points. After signaling mechanism, it defines 

cells behavior as a genotypic response. A FNN mimicked this setup and normally it consists of number of 

nodes and it can take real number values as input. The nodes are constructed into three layers: input layer, 

hidden layer and output layers. The construction of proposed FNN is shown in figure 2. The functions of 

each layer 

• Input layer nodes take chemical values from a particular grid point and number of empty 

neighbors of that point 

• Hidden layer nodes take the input layer response and perform as an intermediate layer where 

there can be groups of co-regulated gene complex 

• Output layer determines the fate of each cell which can be proliferation, quiescent, dead 

and/or movement     

Different layer nodes are connected together with varying weights, determined by two matrices X and Y, 

and hidden layer nodes and output layer nodes consist of their internal threshold ϕ, θ (see figure 2). 

Further description of of X, Y, ϕ, and θ and the functional mechanism can be found in appendix A.1. 

 

 

 

 

 

 

 

 

 

Fig. 2. Cellular signaling response network. 



However, in case of real cells, the regulatory mechanisms are much more complex where hundreds of 

biochemical reactions take place; it has been shown in the literature that FNN with one hidden layer can 

approximate any continuous function (Bray, 1990; Kazmi et al., 2012b), if we add more intermediate 

layers nothing will change in the output. The presented network is able to calculate the output for an 

undetermined sample set that is not specified in the training set. This network was not trained, and instead 

the weights in the network were constructed by hand and were selected by an iterative process so that the 

network produced a predefined output. The network parameters have to be adjusted in such a manner that 

they summarize the behavior of actual cancer cells (Gerlee and Anderson, 2007). 

 

 3.3.  Cell cycle rules 

 The individual part of the model took the input vector (environment parameters) for each cell and 

sampled from the grid point. Cell behavior was determined as output from FNN calculation. There were 

four nodes in output: proliferation, quiescent, apoptosis and movement. Each cell consumed oxygen 

(considered constant exogenous maspin supply) or maspin (considered constant oxygen supply) according 

to its behaviour (FNN response) in automaton points. Then the amount of oxygen gets checked and if 

there is no sufficient oxygen present the cell dies from necrosis. If a cell dies once, it is no longer updated. 

The life-cycle action decided by the network is carried out: 

• If proliferation (P) is chosen, check if the cell has reached proliferation age and if there is 

space for a daughter cell or not. If both are true the cell divides and the daughter cell get 

placed in a neighboring grid point, if not the cell does nothing 

• If quiescence (Q) is chosen the cell becomes quiescent 

• If apoptosis (A) is chosen the cell dies and 

• If movement (M) is chosen the cell moves to the empty neighbors. Here we present two kinds 

of cell movement; each cell can move if FNN output is movement and movement is also 

depend on the ECM degradation and cell-cell adhesion (describes in section 3.5). 

 



3.4   Maspin as an ECM constraint 

In reality, cell-cell adhesion and cell-ECM interactions are responsible for the inside-out cellular signaling 

involving with different biological factors. The model takes into account tumor growth, ECM remodeling 

and mechanical interaction with host tissue. We consider ECM as a whole without distinguishing its 

components (collagen, laminin, fibronectin etc.) to reduce the complexity of the modeling method, though 

we are aware that they contribute differently to the mechanical and adhesive properties of the matrix and 

have different production mechanism. Normally, tumor cells make contact with the ECM proteins, release 

proteases including MMPs which degrade the ECM. In this model, ECM has been taken as a growth 

constraint for each cell. We formulated a set of equations to define cell-ECM interaction by relating 

maspin as a controlling factor. In the following equations, ܧሺݔ, ,ݔሺ�ܯ ,ሻ represents the ECM densityݐ  ሻݐ
is production of degrading enzyme, ܯሺݔ, ,ݔሺܣ ሻ is maspin value at particular grid point andݐ  ሻ is theݐ

density of degraded ECM. 

,ݔሺܧ∂ ݐ∂ሻݐ = ,ݔሺܯߚ− ,ݔሻܰሺݐ ሻݐ + ,ݔሺܣ ሻݐ ,ݔሺܯ− ௠ߚሻݐ + ,ݔሺܧ௙ߚ  ሻݐ
 

(5) 

,ݔሺ�ܯ∂ ݐ∂ሻݐ = ,ݔሺ�ܯெΔܦ ሻݐ + ,ݔ௠ܰሺߛ ሻݐ − ,ݔሺ�ܯ௠ߙ  ሻ (6)ݐ

 

,ݔሺܣ∂ ݐ∂ሻݐ = ,ݔሺ�ܯߛ ,ݔሺܧሻݐ ሻݐ + ߯�Δܣሺݔ, ሻݐ − ,ݔሺܣ��  ሻ (7)ݐ

 

ܰሺݔ, ሻݐ =∑ ௜=௡
௜=ଵ  ௜ሻ (8)ݔሺ�ሻሺ��ܫ

Where 

ሺ�ሻ��ܫ = {ͳ, �fݔ௜ א ,ሻͲݔሺ�ܤ Ot�e����e  



ECM digestion rate ߚ has got constant value equal to 1. ܰሺݔ,  ሻ represents the number of neighborsݐ

around the cell ݔ at specific time ܤ .ݐ�ሺݔሻ is a ball of radius � (approximately equal to the radius of a 

cancer cell) that is centered at ݔ. ܰ is the total number of tumor cells in the tumor tissue and ݔ௜ is the 

position of the ݅௧ℎ cell. A constant was introduced which is the production rate of attractants, ߯ � is the 

diffusion coefficient of the digested ECM and �� is the decay rate of the digested ECM. The ECM 

densities and degradation rates have not been measured in biological experiments. During the tumor 

growth, ECM density has assumed to be 1 with no degraded ECM, ܣሺݔ, Ͳሻ = Ͳ. Every proliferating cell 

had to degrade 7% of the ECM before the placement of a daughter cell in the available neighboring 

points. 

 

3.5    Cell-cell adhesion and cell movement 

For modeling cell-cell adhesion, model took cell-cell adhesive forces function which defines the cell 

movement called cadherin induced motion biologically. Cells attraction is mimicked as a pulling force or 

the potential function, ܲሺݔ,  ሻ during the solid tumor growth. At every time step model calculates theݐ

pooling force for each and every cell. The potential function and cell movement direction were calculated 

using equations (9) and (10) respectively (Conde et al., 2008). 

ܲሺݔ௜, ሻݐ = ሺ�೔ሻ��ܫ ቆ ͳ݀ሺݔ௜, ௝ሻݔ + ݁� − ℎ݁−ሺௗሺ�೔,�ೕሻ−�/ଶሻమቇ 
(9) 

ܦ = ,௜ݔሺܲ׏−  ሻ (10)ݐ

Where, ݀ ሺݔ௜ ,  ௜ሻ is a neighbourhood centred on xi with aݔሺ�ܤ ௝ሻ is the distance between two cells, whereݔ

radius �,  ݁ � is the maximum energy and ℎ is the cell’s capacity to bond. When the movement node value 

was greater than 0.5, the cell was allowed to move. After acquiring the required network response the 

model calculated the attraction forces of the other cells for the selected cell using equation 9. Each cell 

moved to the specified direction by following equation 10. The model compared each cell’s ܲ value to the 

surrounded cells ܲ values and moved towards the highest value cells. During the movement the cell was 



also allowed to proliferate only if it met the proliferation criteria. With the ECM involvement the cell took 

longer to divide because it could place its daughter cell in the available neighboring grid point only if the 

surrounding ECM had been degraded sufficiently.  

3.6 Model parameters 

CA is getting a famous modeling paradigm in different fields of research. Currently, its diversity spreads 

around the different multidisciplinary areas (Xiao, et al., 2008;2011). CA method has also been used 

successfully for different aspects of tumor growth modeling (explained in section 2). For this model, a 2D 

lattice grid has been taken into ܰ × ܰ. All presented PDEs were discritised using standard fivepoint finite 

central difference formula and used length scale Δ݀ = Ͳ.ͲͲʹͷ (the rescaling of the length gives each 

square cell an area of ͸.ʹͷ × ͳͲ−6ܿ݉ଶ (Casciari et al., 1988) and time scale Δݐ = ͷ × ͳͲ−4. Each time 

step the chemical concentrations are solved using the discretised equations and every one of the tumor 

cells is updated in a random order. The necrosis has been activated when oxygen concentration goes 

below certain threshold level ܥ .��ܥ�� is suggested 15% of the initial oxygen concentration (Gerlee and 

Anderson, 2007; Al-Mamun et al., 2013b). Cells should not divide if there is no sufficient space for the 

daughter cell; in this model the value of neighbors ݊ሺ⃗ݔ, ሻݐ > ͵. Previous models have shown different 

tumor dynamics for different oxygen concentration values (Gerlee and Anderson, 2007; Kazmi et al., 

2012; Al-Mamun et al., 2013b), but for the relatively small values we consider this effect is negligible. 

The parameters used for equation (1-4) are listed in table 1. Table 2 gives a list of parameters used in 

equations (5-10) to design the cell-cell adhesion and cell-ECM interaction due to maspin. The weights 

and thresholds of initial neural network setup is given in appendix A.2. 

 

3.7 In vitro Methods: Cell line, Plasmids, Transfection, Time Lapse Video Microscopy 

This paper includes an in vitro experiment to determine the adhesion of MCF7 breast cancer cell line 

which was stably transfected with wild type maspin. We formulated the in vitro hypothesis that maspin 



increases cell-cell adhesion to various ECM components like collagen I, laminin and fibronectin. MCF7 

cells were obtained from ATCC and grown in MEM supplemented with 10% (v/v) foetal calf serum 

(FCS), 1% (v/v) nonessential amino acids and 1% (v/v) sodium pyruvate. All cell culture reagents were 

from Life Technologies (Paisley, UK). Cell lines stably expressing different forms of maspin have been 

described previously (Ravenhill et al., 2010). 

Table 1: A list of parameters and values used during the tumor growth simulation 

 

Table 2: A list of parameter used cell-cell adhesion and cell-ECM interaction equations 

Parameters Definition Value References 
β Digestion rate of ECM 1 Model specific 
βm Maspin inhibition constant 400 mol1cm2 Bass et al., (2002) 
Βf ECM remodeling parameter for ECM (0,0.015) Conde et  al., (2008) 
Dm Diffusion constant of degrading enzyme 0.08 

 
Toma et al., (2012) ߙ௠ Decay coefficient  01 Toma et al., (2012) ߛ௠ Production constant for MDEs 1 Toma et al., (2012) ߛ Degradation rate of ECM by MDEs 

(plasmin) 
8.15 Andasari et al., (2011) 

χa Diffusion constant of digested ECM 0.01 Conde et  al., (2008) �� Decay rate of the digested ECM 0.01 Conde et  al., (2008) 

  

Parameters Definition Value References 

C0 Oxygen background conc. 1.7×108mol cm2 Anderson, (2005) 

DO2 Oxygen diffusion constant 1.8×105cm2s1 Grote et al., (1977) 

DM Maspin diffusion constant 1×106cm2s1 Young et al., (1980) 

no Cancer cell density 1.6×105cellscm2 Casciari et al., (1988) 

crO2 Base oxygen consumption rate 2.3×1016mol cells1 s1 Klieser et al., (1986) 

k Modulation strength 6 Model specific 

Tr Target response 0.675 Model specific 



4.  Data clustering 

The model was fed two datasets consisting with in vitro and in silico cell migration data. In vitro data set 

was composed of control (normal tumor growth without maspin) and maspin (growth with maspin) data 

set. In silico data set consists of normal tumor growth and tumor growth with maspin data. All the 

datasets were obtained from independent set of experiments from both in vitro and in silico models. The 

cell migration data was measured in both in vitro and in silico experiments via velocity. In in vitro model, 

the cell velocity was measured using cell tracking toolkit integrated in Axiovision 4.7.1 software and 

Zeiss Examiner 4.0.  In in silico model, the distance of each cell was tracked by saving the co-ordinate 

after every time point. Then in the same way like in vitro, the average velocity was measured for each 

cell. Normally, in biological experiments, the data from two different sources are analyzed via student t-

test or ANOVA test. But most of the time, the data patterns of these independent data samples get 

ignored, as a results not that much assumptions can be made through this hypothesis tests. In our previous 

attempt we presented resemblances between in vitro and in silico cell migration data using different 

statistical measurements (Al-Mamun et al., 2013b). But here we employed several clustering algorithm to 

reveal the hidden patterns of the datasets in order to see the similarity of our in silico model with in vitro 

model (Ravenhill et al., 2010). Clustering or data segmentation of unsupervised data is the process of 

grouping the data instances into clusters, so that instances within a cluster have high similarity in 

comparison to one another but are very dissimilar to instances in other clusters (Chen and Miao, 2011). 

Similarity of instances is based on the attribute values describing in the instances (Wang and Chan, 2013).  

 

Most of the existing clustering algorithms work well on small datasets containing fewer than several 

hundred data instances with few attributes; however, a large data set may contain millions of data 

instances with a large number of attributes (Lee and Olafsson, 2011). Generally, clustering methods 

structures the set of instances into groups based on their similarity, and then assign labels to the relatively 

small number of groups. It has been widely applied in numerous real world applications, including 

biology, medicine, anthropology, marketing, pattern recognition, and image processing (Wang and Chan, 



2013). For analyzing these unsupervised datasets, initially we calculated similarity and distance 

measurement and then implemented nearest neighbor clustering and k-Means clustering. As these 

methods are already well established, we described the methods in brief with algorithms in appendix 

section B.  After using the common clustering approached we proposed a density based clustering 

approach to solve the holes of the existing clustering algorithms for defining our experimental datasets. 

The main objective was to see that how much similar was our in silico model to the in vitro model in case 

of cell migration data.  

 

4.2 Proposed density based clustering 

After exploring the existing k-Means and NN clustering techniques, we formulated a density based 

clustering technique to identify similarity based on the number of links between instances. A pair of 

instances are said to be neighbors if their similarity exceeds some threshold. Our proposed clustering 

algorithm first finds the nearest neighbors of each instance, and then redefines the similarity between 

pairs of instances in terms of how many nearest neighbors the two instances share. This need not be 

defined based on a precise metric, but rather a more intuitive approach using domain experts knowledge. 

The number of links between two instances is defined as the number of common neighbors they have. 

The objective of our clustering algorithm is to group instances that have shared links. We used Jaccard 

coefficient instead of using euclidean distance to measure similarity that shown in equation 11. 

,௜ݔሺ݉݅ݏ ௝ሻݔ = ௜ݔ| ת ௜ݔ|/|௝ݔ ׫  ௝| (11)ݔ

A goodness measure was used to merge clusters which pair of instances is merged at each step that shown 

in equation 12. 

݃ሺ�௜, �௝ሻ = ݈݅݊݇ሺ�௜, �௝ሻሺݔ௜ +  ௝ሻଵ+ଶ௙ሺΘሻ−�೔భ+మ�ሺΘሻ−�ೕభ+మ�ሺΘሻ  (12)ݔ

In equation 12, ݈݅݊݇ሺ�௜, �௝ሻ is the number of links between the two clusters. Also, ݔ௜ and ݔ௝ are the 

number of instances in each cluster. ݔ௜ଵ+ଶ௙ሺΘሻ is an estimate for the number of links between pairs of 



points in �௜ when the threshold used for the similarity measure is Θ. The function ݂ ሺΘሻ depends on the 

data that each ݔ௜ א �௜ has approximately ݔ௜௙ሺΘሻ neighbors in the cluster. 

 

5. Computational Experimental Setup 

The in silico model was coded using custom way in MATLAB environment. The clustering experiments 

were conducted using a MacBook Pro with Retina display with 2.7 GHz quadcore Intel Core i7 Processor 

and 16 GB of RAM. We implement the clustering algorithm in Java. We use NetBeans IDE 7.3.1 for Java 

coding. NetBeans IDE is the first IDE providing support for JDK 7 and Java EE 6 (http://netbeans.org/ 

index.html). The code for the basic versions of NN and k-Means clustering are adopted from Weka 

version 3.0, which is open source data mining software (Hall et al., 2009). It is a collection of machine 

learning algorithms for data mining tasks. Weka 3.0 contains tools for data preprocessing, classification, 

regression, clustering, association rules, and visualization. The clustering algorithms in Weka 3.0 can be 

either applied directly to a dataset or called from our own coding. 

5.1 Adhesion Assays 

Adhesion assays were performed as described previously (Ravenhill et al., 2010). With the exception that 

here individual matrix components at 5μg/ml were used to coat the wells of tissue culture treated 96 well 

plates overnight at 4∘ C, prior to assay. 

6. Results and discussion 

6.1. Tumor growth dynamics due to maspin 

Tumor growth started from four cells in our simulation and grew spherically in layered structure 

consisting of dead region in the center and quiescent and proliferating cells surrounding the necrotic 

region respectively. At every time step each cell completed its own lifecycle actions depending on the NN 

response. Figure 3 shows compact spherical morphology for normal tumor growth and tumor growth with 

maspin respectively. This round morphology is matched with a basic study of multicellular tumor 



spheroids of EMT6/Ro model proposed by (Freyer and Sutherland, 1986). The growth dynamics showed 

three compartments at 20th day of growth: necrotic region is surrounded by quiescent and proliferating 

cells sequentially. For both case, the tumor size was almost same because during first few days the tissue 

was small in size and cells got sufficient amount of nutrients to survive. On 60th and 100th day, the 

apoptosis region appeared throughout the center area because decreased diffusion in the central region. 

Moreover, diameter of the maspin growth was smaller than the diameter of the normal growth on 60th and 

100th days and also the compactness and roundness on 60th and 100th days shows the effects of maspin in 

figure 3. It has to be noted that previous papers showed the experimental evidences that tumor shows 

round morphology in the presence of ECM in different circumstances (Härmä et al., 2010; Chan et al., 

2013). 

From the early age of maspin investigations, it has been suggested that maspin reduces cell migration 

while it enhances the cell adhesion to ECM components especially fibronectin (Seftor et al., 1998; Cella 

et al., 2006). The layered structures in figure 3b suggest the reduced cell migration and increased cell 

adhesion in an abstract format when maspin was present in the model. This indicates that maspin possibly 

enhanced the cell-ECM adhesion to show this compact layered structure. It corroborates the notion 

presented in previous literature (Al-Mamun et al., 2013b) about reduced proliferation, migration and 

invasion mechanism of maspin. 

 

 

 

 

 

   

 



 
(a) 

 
                    After 20th day After 60th  day         After 100th day 

(b) 
Fig. 3.a. Normal tumor growth morphology and b. Solid tumor growth morphology due to maspin, where 

red color represents dead regions, blue color represents quiescent cells, cyan color represents proliferating 

cells, and white color represents empty grid points during the growth evolution 

 

6.2. Maspin as an ECM Constraint  

For simulating the overall maspin impact, we calibrated the model to see whether our ECM equations (5-

8) present the real scenario or not. The microenvironment parameter of ECM density (E) evidently 

influenced tumor growth rate (or proliferation of tumor cell). The abnormal cells grow at a slower rate 

because they are not allowed to accommodate daughter cells unless their surrounding ECM is sufficiently 

degraded (shown in figure 4). We simulated the model where first, tumor grew without ECM and maspin 

and then compared the growth with the scenario while tumor grew with both ECM and maspin. The 

inclusion of the ECM and maspin constraint in the model causes a very low growth rate. This time the 

tumor takes more time to reach the same size as observed when no ECM was included in the model. It is 

also important to mention that this kind of behavior has been seen from  previous studies (Conde et al., 



2008; Kazmi et al., 2012b) which confirm the ECM inclusion in our extended model signifies that ECM 

itself has an impact on the tumor growth. The tumor growth rate without integrating ECM also quite 

similar to the rate mentioned in Al-Mamun et al., (2013b). 

 

Fig.  4. The tumor growth rate comparison in terms of abnormal cells before ECM inclusion and after 

ECM inclusion 

Normally, a tumor cell needs to invade the surrounding ECM in order to go to the metastasis stage. The 

model measured the ECM density for different maspin concentration during the tumor growth (figure 5). 

Initially, ECM density E(x,t) is taken zero and afterwards cells created the ECM layer surrounding them 

which restricted cells to move the neighboring cells. After every iteration ECM density has calculated 

from equation 5 which is related to MDEs/uPA production and amount of degrading parameters. ECM 

density is highest when maspin concentration has given 1.5uM. 



 

Fig. 5. ECM density measurements during the tumor growth for different maspin concentration 

0.5uM,1.0uM and 1.5uM. 

The model also measured the degraded ECM density during the tumor growth (figure 6). For showing the 

maspin impacts on ECM density, every proliferating cell degrades 7-10% of the ECM before the 

placement of a daughter cell in the available neighboring points. The model calculates amount of 

degrading ECM density from equation 7 which defines a complex biological where MDEs production, 

amount of created ECM density and maspin involved themselves. Degraded ECM density measurements 

are shown in figure 6 that when maspin has given in low concentration in the model, the ECM 

degradation increased whereas the high maspin concentration showed minimal ECM degradation. 
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Fig. 6. Degraded ECM density measurements during the tumor growth for different maspin concentration 

0.5uM,1.0uM and 1.5uM. 

Collectively, figure 5 and 6 suggest that maspin certainly has a role in regulating ECM concentration and 

also present in the supra-molecular structure of the adhesion plaque. This mechanism involves direct 

engagement of extracellular matrix ligands to mediate cell adhesion, which can be modulated by “inside-

out” signals to alter the affinity for these ligands, and also to transduce “outside-in” signals to the 

cytoplasm (Bass et al., 2009). Density of ECM at extracellular surface and amount of degraded density 

refines the hypothesis made earlier in (Seftor et al., 1998; Cella et al., 2006) that maspin enhances cell 

adhesion.  Though in both in vitro and in vivo studies, the ECM turnover has not been measured, the 

results presented here predict the possible impact of maspin over ECM turnover. 

 

6.3. Maspin effects on cell matrix components 

To support the maspin effects on cell-ECM enhancement, a novel in vitro experiment has been adopted to 

see the percentage of adhesion to the individual matrix component in the presence of maspin. Here we 

examined the effect on cell adhesion when cells were transfected with wild type pcDNA3.2maspin from 

the cell adhesion assay of MCF7 cell lines. Using an in vitro assay to measure cell adhesion, it was found 

that wild type maspin enhanced MCF7 cell adhesion to various ECM components (Figure 7). Specifically, 
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MCF7 cells stably expressing wild type maspin significantly increased cell adhesion by 113±5% on a 

laminin matrix and by 45±6% on either collagen I or fibronectin matrices, in comparison to cells 

expressing vector only. Figure 7 shows MCF7 cells stably transfected with pcDNA3.2 (open bars) or 

pcDNA3.2maspin (hatched bars), plated onto 5μg/ml matrix components. Adhered cells were stained with 

methylene Blue and absorbance was measured at 630 nm. 100% adhesion is defined by pcDNA3.2 cells; 

an average OD630 of 0.7, 0.25, 0.7 for collagen I, laminin or fibronectin respectively. Three independent 

experiments were performed in triplicate. Statistical significance was compared to cells transfected with 

pcDNA3.2 and measured by Students t-test (p*<0.05). These results confirm the undertaken hypothesis in 

our computational model that maspin has direct influence in enhancing the cell-ECM adhesion. The real 

dataset for this experiment has given supplementary file 1 . 

 

 

Fig. 7. Adhesion of MCF7 stable cells on matrix components. 

 

6.4. Experimental analysis 

The main motivation of implementing the clustering method was to establish the fact that maspin reduces 

cell migration. Another purpose was to see whether the produced cell migration data from our in silico 

model was really resemblance with the supplied in vitro data (Ravenhill et al., 2010) or not. For this 

purpose, we proposed several clustering algorithms in section 4. Table 3 presents the basic mean and 

standard deviation for both in vitro and in silico datasets. By using student t-test it has been shown in our 



previous attempt that in vitro result showed that maspin reduces the cell migration up to 70%, whereas in 

silico model reduced cell migration up to 73%. As the results produced from the raw data set for both 

models, it is clear that the scaling was not same for both models. Scaling is one of well discussed issue in 

previous models (Gerlee and Anderson, 2007; Kam et al., 2012; Anderson et al., 2013). 

Table 3: Basic statistical parameters of in vitro and in silico data 

Dataset Minimum Maximum Mean StdDev 

In vitro control 0.2 8.176 2.256 1.298 

In vitro maspin 0.104 5.899 1.576 1.071 

In silico control 0.234 3.087 1.996 1.019 

In silico maspin 0.126 2.774 1.457 0.707 

 

The experimental analysis in vitro and in silico data using clustering algorithms are shown in tables 4, 5, 

6, and 7.  k-Means clustering centroid result has been measured and it also supports our statistical 

hypothesis (shown in table 3). Three clusters also give the centroid variations between two datasets 

(shown in table 4). It is clearly seen that centroid of first cluster in case of  in vitro maspin and in silico 

maspin reduce cell migration significantly in compared with second cluster. We have seen, the shape of 

the clusters were circular in shape with overlapped data points for both in vitro and in silico datasets 

(shown in fig 8). This is one of the major problems of k-Means clustering, as it needs apriori specification 

of the number of clusters and does not work well with non-globular clusters. Another problem is that the 

intra and inter cluster distance vary in each iteration. One example is shown in figure 7 where the 

distribution of data points in each cluster is shown in case of in silico control and maspin datasets. 

Table 4: Cluster centroids of in vitro and in silico data using k-Means clustering 

Dataset Mean Cluster 1 Cluster2 Cluster 3 

In vitro control 2.2563 5.0825 2.6434 1.271 

In vitro maspin 1.5764 0.7858 3.5007  1.7996 

In silico control 1.9957 3.242 0.8545 2.089 

In silico maspin 1.4567 0.6798 2.3082  1.5279 

 



Table 5 tabulates the percentage of instances in each cluster. It shows that,  in vitro clusters have unequal 

distribution of instances because of their frequent nature values and it is 11%, 42% and 47% respectively, 

whereas  in silico clusters have almost equal distribution of instances, that is 30%, 35% and 35% 

respectively. In case of maspin data for both models also show the same assumptions which again specify 

that control data for both models are scattered in nature and spread more than maspin data.  

 

Table 5: In vitro and in silico data points in each cluster using k-Means clustering 

Dataset Full data Cluster 1 Cluster2 Cluster 3 

In vitro control 500 54 209 237 

In vitro maspin 500 246 81 173 

In silico control 500 148 176 176 

In silico maspin 500 180 150 170 

 

Table 6 and table 7 represent the centroid and data points distribution obtained from density based 

clustering algorithm respectively. Our algorithm produced two clusters for both datasets and show 

significant resemblances between both models. Proposed clustering algorithm finds the nearest neighbors 

for each instance and redefines the similarity between pairs of instances. The number of links showed the 

successive common neighbors they have. We can get the similarity measurement from equation 11 and 

we calculated that in silico control data points are almost 65% similar to in vitro data points and in silico 

maspin data points are almost 62% similar with in vitro data points. These specify that our computational 

model is mimicking the maspin effects with 60-65% similarity. The density based clustering algorithm 

normally does not need any apriori specification of number of clusters and has the ability to identify then 

noise. The main advantage of using density based clustering is that it can find arbitrarily sized and 

arbitrarily shaped clusters. 

 

 

 



Table 6: Cluster centroids of in vitro and in silico data using density based clustering 

Dataset Mean Cluster 1 Cluster2 

In vitro control 2.2563 4.3766 1.759 

In vitro maspin 1.5764 1.066 3.029 

In silico control 1.9957 2.8334 1.0736 

In silico maspin 1.4567 0.6149 2.0636 

 

Table 7 :In vitro and in silico data points in each cluster using density based clustering 

Dataset Full data Cluster 1 Cluster2 

In vitro control 500 95 405 

In vitro maspin 500 370 130 

In silico control 500 262 238 

In silico maspin 500 249 251 

 

  

(a) (b) 
Fig. 8. Distribution of data points in clusters using k-Means clustering approach for a) in vitro control and 

b) in silico control datasets.    

Previous computational models for maspin growth dynamics did not show any in vitro data verification 

(Al-Mamun et al., 2013b), but this paper provides a clustering approach to see the similarity among the 

unsupervised data collected from both models for the first instance. Our proposed density based clustering 



algorithm which provides the similarity measurement of both in vitro and in silico datasets. The proposed 

algorithm shows up to 60-65% similarity of the presented in silico model with in vitro data. It offers 

better agreement of both models that the other clustering algorithms like k-Means and nearest neighbor. It 

is worth to mention that clustering algorithm presented here has shown good agreement with our datasets 

obtained from Ravenhill et al., (2010); it can also work for the other databases of raw cell migration 

datasets. 

 

6.5. Discussion 

Tumor growth results (in section 6.1) suggest that maspin reduces cell movement and also increases cell-

cell adhesion. Figure 3 indicate compact circular morphology of avascular tumor when maspin is present 

in the growth model, where red color represents dead regions, blue color represents quiescent cells, cyan 

color represents proliferating cells, and white color represents empty grid points. It matches with the 

previous findings of (Kazmi et al., 2012a) where multicellular spheroids experiments of HT29 showed the 

solid tumor morphology. Moreover, the growth pattern depended on the ECM degradation for the 

presence of maspin. It has been suggested that maspin can use two proposed pathway for increasing cell-

ECM adhesion: regulating the plasminogen activation system (PAS) and ߚଵ integrin signaling pathway 

(Endsley et al., 2011). PAS is strictly maintained by uPA which is an extracellular serine protease. uPA 

binds to  uPAR and activates plasminogen which basically localized ECM degradation. ECM degradation 

is a crucial component in cancer invasion and metastasis. It has been presented that maspin has an active 

role to reduce invasion and migration by incorporation of cell surface maspin-uPA-uPAR complexes 

(Endsley et al., 2011). Maspin has been reported to bind to ߚଵ integrin cell adhesion receptors and maspin 

has a certain effects to ߚଵ integrin activation status. Al-Mamun et al., (2013b) developed a computational 

model which showed maspin effects computationally and simulation results were verified by in vitro raw 

data supplied by (Ravenhill et al., 2010).  

Results presented in section 6.2 also suggest that maspin increases the cell-ECM layer which restrict cell 

movement and increase cell-cell adhesion. Also the in vitro results presented in section 6.3 showed an 



evidence of increasing cell-cell adhesion for the individual components of ECM. It is also seen elswhere  

that collagen type I and II showed binding percentage to maspin 70% and 25% respectively 

(Ngamkitidechakul et al., 2001).Moreover, our current model also added the data verification method 

using clustering approach. The results showed in section 6.4 provide a density based clustering method 

which showed significant similarity between in vitro and in silico data pattern. These corroborate that 

maspin has a potential role in reducing cell migration and this might be happened via enhancement of 

cell-ECM adhesion. It is worth to mention that data clustering has been used in this study to see the 

similarity and dissimilarity between the datasets. The extended model is differs from our previous attempt 

is several ways, firstly, this model includes ECM in presence of maspin to see whether it regulates the 

tumor growth or not. The results suggest that tumor growth decreased in terms of round morphology in 

presence of ECM with maspin at extracellular environment. It is required to mention that our previous 

model gave the tumor suppressive features of maspin like proliferation, apoptosis, cell migration and 

invasion whether we did not consider microenvironment constraints ECM in the model. Secondly, this 

model concluded an important behavior of maspin that it might have impact on ECM turnover, though 

currently no study showed any potential engagement of ECM turnover with maspin. This can help us to 

build a new in vitro method to investigate this assumption. Thirdly, the computation result of the extended 

part of the model was supported by a novel in vitro experiment. Fourthly, the data verification method 

gives our model more confidence that our model resemblances the in vitro biologics of maspin.    

Overall, the paper contributes to the subtle maspin behavior in different ways; firstly, the results presented 

in figure 6.1 to 6.3 suggest that extracellular maspin has potential engagement with cell-ECM adhesion 

enhancement which again matches our previous lab results (Bass et al., 2009 and Ravenhill et al., 2010). 

It also indicates to develop new in vitro and in vivo studies for ECM turnover alteration due to maspin 

engagement. Secondly, in vitro results presented in figure 6 provides a direct resemblances with in silico 

results that maspin enhances cell-ECM components engagement by which it reduces cell migration 

(proposed in Endsley et al., 2011). It also provide clear indication that maspin resides exogenously in 

cellular environment to display its potential influences tumor metastasis suppression. Thirdly, the results 



presented in section 6.4 clearly showed a new data verification method using data clustering method. The 

results are plausible to show up to 60-65% similarities between both in vitro (Ravenhill et al., 2010) and 

in silico models. This leads this modeling framework one step closer to the reality where the real data 

from the wet lab experiments can be compared with in silico data. It is worth to mention that there are 

some limitations which need to be considered in case of data verification methods. The selection of 

clustering algorithms totally depends of the nature of the produced data, the density based clustering 

method is not a solely option for other problems.    

                                                                                                                                                                                                         

7. Conclusion 

This paper presents an in silico model composed of an in silico tumor growth model and a data 

verification method using clustering. First, the extended in silico model upgraded our previous model for 

maspin dynamics (Al-Mamun et al., 2013b) and added cell-ECM interactions, cell-cell adhesion and cell 

movement constraints in presence of maspin. Our results suggest that maspin has influence on 

microenvironment constraint including cell-ECM, cell-cell adhesion and cell movements which show 

good agreement with the previous in vitro model hypotheses (Ngamkitidechakul et al., 2003; Bass et al., 

2009; Ravenhill et al., 2010: Endsley et al., 2011). The model predicts that maspin can play an important 

role when ECM is present in the model. It can slow down the growth dynamics. More significantly, we 

presented a novel in vitro adhesion assay on matrix components (fibronectin, laminin and collagen I) of 

MCF7 cell line transfected with wild type pcDNA3.2maspin. Collectively, the results suggested the 

extracellular presence of maspin at the cell surface along with ECM components and MDEs.  

Second, the later part of the model showed similarity between in vitro and in silico cell migration datasets 

using clustering method. The model presented a density based clustering algorithm to find the similarity 

between two models. Results showed that our in silico model’s data matched about 60-65% with the in 

vitro data (Ravenhill et al., 2010). From our best knowledge, this is the first attempt of adopting clustering 

approach to show the resemblance of an in silico model with real in vitro experimental data. The 

implication of this data clustering attempt increases the fidelity and superiority of the computational 



model over the biological experiments. 

It is important to mention that although this hybrid model does not cover the whole range of maspin 

effects, but it informs the maspin mechanism on basic biological constraints like cell migration, cell-ECM 

interaction, and cell-cell adhesion. This model provides a justified subcellular investigation of maspin by 

supporting novel in vitro experiments. Also, introduction of clustering approach to data analysis can bring 

our effort to one step closer to the real experiments, as it is still far from being a precise model of the 

subcellular dynamics. The impact of this data verification would be to confirm more real data to see the 

similarity using this model as a tool in case of in vivo data. It is worth to mention that treatment with 

maspin has been investigated from the very beginning of its discovery. Re-expression of Maspin or 

treatment with rMaspin decreases tumor growth and metastasis using in vivo experiments (Zou et al., 

1994; Bodenstine et al., 2012; Berardi et al., 2013). Recently, a paper by Bodenstine et al., (2014) 

considered recombinant Maspin (rMaspin), which alters invasive properties when directly applied to 

cancer cells. This study indicates that cellular processing of rMaspin plays a key role by affecting its 

biologic activity and highlights the need for new approaches aimed at increasing the availability of 

rMaspin when used to treat cancer. These give us a new clue that our presented model can be usable from 

different aspects of experiments and treatments while maspin will be taken as a constraint.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A 

A.1.  Feedforwad Neural Network Construction and Mechansim 

The FNN consisted of a number of nodes which can take real numbe values. Thease nodes are organised 

intro three layers: Input layer (I), Hidden layer (H) and Output layer (O). The input parameters are 

transferred to the hidden layer and this layer does its processing using standard transfer function �ሺݔሻ, 
weight matrix ܺ  and threshold vector �. ௜ܺ௝ determines the conncetion strengh between node j in the the 

input layer (I) and i in the hidden layer (H). The hidden layer then passes the calculated values to the 

output layer that performs its calculation using �ሺݔሻ as a transfer function, ܻ matrix and threshold vector �. �௜௝ defines the connection strength between node j in the hidden layer (H) and node i in the output 

layer (O). Input nodes are summed together in equation 6 as ݆ܫ and output nodes are summed together as �௜. 
�ሺݔሻ = ͳͳ + ݁−ଶ� 

A.1 

�ሺݔሻ is the standard transfer fuction considered, as it gaurantees that the reuslting node values of hidden 

lyaer are the range of [0, 1]. 

௝ܪ = ௝ܫ =  � (∑ ௝ܺ௞௞ ௞ܫ − �௝) 
A.2 

 ௝ is the sum of the input nodes weighted with connection matrix X and the threshold �௝. In same way, theܫ

node  i of the output layer is given by 

௝ܱ =  �ቌ∑ ௜ܻ௝௝ ௝ܫ − �௝ቍ 
 

 

= �ቌ∑ ௝ ௜ܻ௝  � (∑ ௝ܺ௞௞ ௞ܫ − �௝) − �௝ቍ 
 

A.3 

A.2. Network Parameterisation  

X is the weight matrix between input (I) and hidden layer (H) 

 



  ܺ = {  
  −ͳ Ͳ ͲͲ −ʹ Ͳͳ Ͳ ͲͲ.ʹͷ Ͳ ͲͲ −ʹ ͲͲ −ͳ −ʹ}  

  
 

Y is the weight matrix between hidden layer and Output layer (O) 

 

  ܻ = {Ͳ.ʹͷ ͳ Ͳ Ͳ Ͳ ͲͲ Ͳ Ͳ.ͷ ͳ −Ͳ.ʹͷ ͲͲ Ͳ Ͳ Ͳ.ʹͷ −Ͳ.ͷ ͲͲ Ͳ Ͳ Ͳ ͳ ͳ} 

 � and � are two threshold vectors of hidden and output layer respectively 

 ߮ = ሺͲ.ʹͷ Ͳ Ͳ Ͳ Ͳሻ � = ሺͲ Ͳ Ͳ.ͷͷ Ͳ Ͳ.͹ −Ͳ.͹ͷሻ 
Therefore, the behavior of the network is determined by these parameters and during cell division, the 
model allowed these parameters to be copied to the daughter cells with the mutation. The number of 
parameters to be mutated is chosen from a Poisson distribution with parameter p. For all those parameters 
x the mutations are modelled by lettingݔ → ݔ +  where s is random number from the normal ,ݏ

distributionܰ ሺܰ, σሻ, where  σ determines the strength of the mutation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B 
 

 

B.1. Similarity and distance measures  

Given a data set, ݔ} = ܦଵ, ,ଶݔ ⋯ , ,௜ݔሺ݉݅ݏ ,௡}, of instances, a similarity measureݔ  ௟ሻ, defined between anyݔ

two instances, ݔ௜ , ௟ݔ א :݂ and an integer value ݇, the clustering problem is to define a mapping ,ܦ ܦ →ͳ,⋯ , ݇ where each ݔ௜ is assigned to one cluster �௝, ͳ ൑ ݆ ൑ ݇. Given a cluster, �௝, ௝௟ݔ∀ , ௝௠ݔ א �௝, and ݔ௜ ב �௝, ௝௟ݔሺ݉݅ݏ , ௝௠ሻݔ > ௝௟ݔሺ݉݅ݏ ,  ”௜ሻ. A good clustering is that instances in the same cluster are “closeݔ

or related to each other, whereas instances of different clusters are “far apart” or very different from one 

another, which together satisfy some requirements: (1) each cluster must contain at least one instance, and 

(2) each instance must belong to exactly one cluster. 

A distance measure,݀݅ݏሺݔ௜,  ௟ሻ, as opposed to similarity measure, is often used in clustering. Theݔ

clustering method then has the desirable property that given a cluster,�௝, ௝௟ݔ∀ , ௝௠ݔ א �௝, and ݔ௜ ,௝�ב ௝௟ݔሺݏ݅݀ , ௝௠ሻݔ > ௝௟ݔሺݏ݅݀ ,  ௜ሻ. Equations B.1 to B.3 are used to calculate centroid, radius, and diameterݔ

of a given cluster, �௠ of ܰ  data points {ݔ௠ଵ, ,௠ଶݔ ⋯ ,  .{௠ேݔ
݀݅݋ݎݐ݊݁ܿ = ௠ܥ = ∑  ே௜=ଵ ሺݔ௠௜ሻܰ  

B.1 

ݏݑ݅݀ܽݎ = �௠ = √∑  ே௜=ଵ ሺݔ௠௜ − ௠ሻଶܰܥ  

B.2 

ݎ݁ݐ݁݉ܽ݅݀ = ௠ܦ = √∑  ே௜=ଵ ∑  ே௝=ଵ ሺݔ௠௜ − ௠௝ሻଶሺܰሻሺ݊ݔ − ͳሻ  

B.3 

 

B.2. Nearest neighbor (NN) clustering 

The instances are iteratively merged into the existing clusters that are closest. In NN clustering a 

threshold, t, is used to determine if instances will be added to existing clusters or if a new cluster is 

created. The complexity of the NN clustering algorithm depends on the number of instances in the 



dataset. For each loop, each instance must be compared to each instance already in a cluster. Thus, the 

time complexity of NN clustering algorithm is O(n2). Since, we do need to calculate the distance between 

instances often, we assume that the space requirement is also O(n2). Algorithm 1 outlines the NN based 

clustering method. 

 
Algorithm 1 Nearest Neighbor Clustering 

Input:  ܦ = ,ଵݔ } ……ଶݔ ,   ௡  } // A set of instancesݔ

A// Adjacency matrix shows distance between instances. 

Output: A set of K clusters. 

Method: ͳ: �ଵ = �:ʹ {ଵݔ} = {�ଵ}; ͵: ݇ = ͳ; Ͷ: ࢘࢕ࢌ ݅ = ,௜ݔሺݏ݅݀             ݐℎܽݐ ݋ݏ � ݊݅ ௠� ݏݎ݁ݐݏݑ݈ܿ ݁݉݋ݏ ݅ ௠ݔ ݂݀݊݅        :ͷ ࢕ࢊ ݊ ݋ݐ ʹ ,௜ݔሺݏ݅݀ ࢌ࢏        :͸ ݐݏ݈݈݁ܽ݉ݏ ℎ݁ݐ ݏ௠ሻ݅ݔ ௠ሻݔ ൒ ,ݐ ͹:            �௠ ࢔ࢋࢎ࢚௩�௟௨௘݈݀݋ℎݏ݁ݎℎݐ = �௠ ݇             :ͻ  ࢋ࢙�ࢋ        :௜  ͺݔ ׫ = ݇ + ͳ; ͳͲ:          �௞ = :ʹͳ ܎� ܌�܍      :ͳͳ ;{௜ݔ}      ࢘࢕ࢌ ࢊ࢔ࢋ
 

 

B.3. k-Means clustering 

Given a data set, ݔ} = ܦଵ, ,ଶݔ ⋯ , ݊ ௡}, ofݔ  number of instances in euclidean space. Partitioning method 

distributes the ݔ௜ א ݇ into ܦ  clusters, {ܥଵ,⋯ , ௜ܥ ,௞}, that isܥ ⊂ ௜ܥ and ܦ ת ܦ = � for ͳ ൑ ݅, ݆ ൑ ݇. An 

objective function is used to assess the partitioning quality so that instances within a cluster are similar to 

one another but dissimilar to instances in other clusters. A high degree of similarity among instances in 

clusters is obtained, while a high degree of dissimilarity among instances is different clusters is achieved 

simultaneously. The cluster mean of �௜ = {ݔ௜ଵ, ,௜ଶݔ ⋯ ,  .௜௠} is defined in equation B.4ݔ



௜݉,݊ܽ݁ܯ = ͳ݉ ∑ ௠
௝=ଵ  ௜௝ B.4ݔ

The k-Means algorithm requires that some definition of cluster mean exists. Note that the initial values 

for the means are arbitrarily assigned. These could be assigned randomly. Algorithm 2 outlines the k-

Means clustering method. 

Algorithm 2 k-Means Clustering 

Input:  ܦ = ,ଵݔ } ……ଶݔ ,   ௡  } // A set of instancesݔ

k // the number of clusters 

Output: A set of K clusters. 

Method: ͳ: ܽݕ݈݅݅ݎܽݎݐܾ݅ݎ ܿℎݔ ݁ݏ݋݋௜௠ א :ʹ  ݏݎ݁ݐ݊݁ܿ      ݇ ݈ܽ݅ݐ݅݊݅ ℎ݁ݐ ݏܽ ݏ݁ܿ݊ܽݐݏ݊݅ ܦ :͵ ܜ�܍�܍� ሺ�܍ሻܽ݊݃݅ݏݏ ݁ܽܿℎ ݔ௜ → ,ݎ݈ܽ݅݉݅ݏ       ݐݏ݋݉ ℎ݁ݐ ݏ௜݅ݔ ℎ݁ݐ ℎ݅ܿℎݓ ݋ݐ ݇ ௜௠ݔ ℎ݁ݐ ݂݋ ݁ݑ݈ܽݒ ݊ܽ݁݉ ℎ݁ݐ ݊݋ ݀݁ݏܾܽ א ݇ ; Ͷ: ܍ܜ�܌�ܝ, ,ݏ݊ܽ݁݉ ݇ ℎ݁ݐ ,ݏ݅ ݐℎܽݐ ,��ܜ�ܝ     :ͷ ;ݏݎ݁ݐݏݑ݈ܿ ℎܿܽ݁ݎ݋݂ ݏ݁ܿ݊ܽݐݏ݊݅ ℎ݁ݐ ݂݋݁ݑ݈ܽݒ       ݊ܽ݁݉ ℎ݁ݐ ݁ݐ݈ܽݑ݈ܿܽܿ  ℎܽ݊݃݁ܿ ݋݊
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