Northumbria Research Link

Citation: Spencer-Jones, Charlotte, Wagner, Thomas, Dinga, Bienvenu, Schefuß, Enno, Mann, Paul, Poulsen, John, Spencer, Robert, Wabakanghanzi, Jose and Talbot, Helen (2015) Bacteriohopanepolyols in tropical soils and sediments from the Congo River catchment area. Organic Geochemistry, 89-90. pp. 1-13. ISSN 0146-6380

Published by: Elsevier

URL: http://dx.doi.org/10.1016/j.orggeochem.2015.09.003 <http://dx.doi.org/10.1016/j.orggeochem.2015.09.003>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/24134/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright \circ and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: <http://nrl.northumbria.ac.uk/policies.html>

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

www.northumbria.ac.uk/nrl

River catchment area

- 3 Charlotte L. Spencer-Jones^{a,*}, Thomas Wagner^a, Bienvenu J. Dinga^b, Enno Schefuß^c, Paul J.
- 4 Mann^d, John R. Poulsen^e, Robert G.M. Spencer^f, Jose N. Wabakanghanzi^g, Helen M. Talbot^a
- ^a *School of Civil Engineering and Geosciences, Drummond Building, Newcastle University,*
- *Newcastle upon Tyne, NE1 7RU, UK*
- ^b *Groupe de Recherche en Sciences Exactes et Naturelles (GRSEN/DGRST), Ministere de*
- *la Recherche Scientifique, Brazzaville, Congo*
- ^c *MARUM – Center for Marine Environmental Sciences, University of Bremen, D-28359*
- *Bremen, Germany*
- ^d *Department of Geography, Northumbria University, Newcastle upon Tyne, UK.*
- ^e *Nicholas School of the Environment, Duke University, P.O. Box 90328, Durham, NC 27708,*
- *USA*
- ^f *Department of Earth, Ocean and Atmospheric Science, Florida State University,*
- *Tallahassee, FL32306, USA*
- ^g *Department of Soil Physics and Hydrology, Congo Atomic Energy Commission, P.O. Box*
- *868, Kinshasa XI, Democratic Republic of Congo*
-
- * Corresponding author. Tel.: +44 (0)191 208 6605; fax: +44 (0)191 208 5322. *E mail*
- *address*: c.spencer-jones@ncl.ac.uk (C.L. Spencer-Jones).

ABSTRACT

- 22 The Congo River basin drains the second largest area of tropical rainforest in the world,
- including a large proportion of pristine wetlands. We present the full bacteriohopanepolyol
	-

2013). Only bacteria containing the gene encoding for squalene hopane cyclase (*sqhC*;

 Ochs et al., 1992) are able to biosynthesise hopanoids. Biosynthesis of BHPs is believed to be limited to < 10% of all bacterial species in most communities (Pearson et al., 2007). The initial step in BHP synthesis is the cyclisation of squalene (controlled via the *sqhC* gene) with the addition of the hopanoid side chain (via the *hpnH* gene) and leading to the production of 30-(5'-adenosyl)hopane (adenosylhopane; **1a**; Fig. 1; Bradley et al., 2010). It is believed that all hopanoid producing bacteria synthesise adenosylhopane as a BHP precursor compound, however, few hopanoid producers have been observed accumulating adenosylhopane and only one species has been found to contain the related compound adenosylhopane type 2 (**1c**) (e.g. Talbot et al., 2007 and references therein; van Winden et al., 2012a). All species in which adenosylhopane has been identified were also found to contain a range of other BHPs including bacteriohopane-32,33,34,35-tetrol (BHT), 35-aminobacteriohopane-32,33,34-triol (aminotriol) or both (Talbot et al., 2007a, 2008; van Winden et al., 2012b). These and other BHPs are formed following cleavage of the adenine moiety (Bradley et al., 2010; Liu et al., 2014), however, it is currently unknown, why accumulation of adenosylhopane only occurs in terrestrial systems (soils in particular), and not in marine sediments. This suggests that the function of adenosylhopane is not restricted to that of a biosynthetic precursor or it would likely accumulate in all settings.

 While many BHPs have been identified as having multiple bacterial sources, for example BHT (**1b**; Fig 1; e.g. Talbot et al., 2008 and references therein), some have only a few sources and can be linked to specific biogeochemical processes. Adenosylhopane (**1a**) and related compounds, including C-2 methylated homologues (**2a**, **1c**, **2c**, **1d** and **2d**), have been suggested to be biomarkers for soil organic carbon (OC) transport (Cooke et al., 2008b, 2009; Zhu et al., 2011; Doğrul Selver et al., 2012, 2015). Another group of diagnostic markers are those produced by aerobic methane oxidising bacteria (methanotrophs) including 35-aminobacteriohopane-31,32,33,34–tetrol (aminotetrol; **1e**); 35- aminobacteriohopane-30,31,32,33,34-pentol (aminopentol; **1f**), unsaturated aminopentol

 (**4/5f**) and aminopentol isomer (**1f'**; e.g. Talbot and Farrimond, 2007; Zhu et al., 2010; van Winden et al., 2012b; Berndmeyer et al., 2013; Talbot et al., 2014).

 BHP signatures in the geological record are thought to reflect changes in microbial communities at the time of deposition, with multiple factors controlling their distribution. For example, Wagner et al. (2014) suggests aminopentol in sediments dating back 30 Ka from the Amazon fan, are derived from the Amazon catchment with fluctuations in concentration reflecting persistent export of biomarkers from wetlands followed by reworking of sediments within the marine environment. An investigation of suspended particulate matter (SPM) 82 along a tropical river-ocean water column transect also suggested that terrigenous organic matter (OM) exported to marine sediments could provide a significant contribution to the marine sedimentary hopanoid inventory (Sáenz et al., 2011). Therefore in coastal marine environments well constrained modern terrestrial BHP end members are required to facilitate 86 reliable interpretation of sedimentary BHP profiles.

 Studies of soil BHP distributions have focussed mainly on Northern Hemisphere sites (Cooke et al., 2008a; Xu et al., 2009; Cooke, 2010; Rethemeyer et al., 2010; Kim et al., 2011) and found high concentrations of BHT (**1b**), aminotriol (**1g**) and bacteriohopanetetrol carbopseudopentose ether (BHT cyclitol ether; **1h**), together with adenosylhopane (**1a**) and some or all of the related compounds **2a**, **1c**, **2c**, **1d**, **2d**. In comparison, few studies detail the distribution of BHPs in modern tropical soils (Pearson et al., 2009; Wagner et al., 2014). Soils generally contain higher BHP concentration and greater structural diversity than lacustrine and marine sediments (Cooke et al., 2008b; Talbot and Farrimond, 2007; Coolen et al., 2008; Blumenberg et al., 2010; Zhu et al., 2011), with the exception of deep sea-fan sediments with very high terrestrial input (Handley et al., 2010; Wagner et al., 2014). For example Cooke et al., (2008a) reported high structural diversity and concentration of hopanoids in soils (up to 20 BHPs identified in two of four surface soils from the Northern UK), and Zhu et al. (2011) identified up to 20 BHP compounds in a soil from the Yangtze

 River catchment. However, a recent study of two surface soils and three surface wetland sediments from the Amazon found the highest BHP concentrations and greatest structural diversity within wetland sediments (18 BHPs in sediments vs. 13 in the soils; Wagner et al., 2014), suggesting wetlands as possibly a significant source of BHPs to shelf and fan systems. As tropical wetlands and soils are largely understudied, large uncertainty in BHP end members likely exists.

 The Congo basin consists of a large contrast in tropical environments with humid tropical rainforest, extensive wetlands and savannah environments (Spencer et al., 2012, 2014). Previous work on sediments from the Congo fan suggests terrigenous OC input as an important source of BHPs in these coastal marine sediments (Cooke et al., 2008b; Talbot et al., 2014). In this study we have determined the BHP inventory of 22 soils and 6 wetland sediments (Malebo pool) from the Congo hinterland and 1 estuarine sediment from the mouth of the Congo River (Fig. 2). We discuss the application of BHPs as biomarkers for soil OC transport and biogeochemical cycling and review the significance of the distributions in the context of reported soil BHP data.

2. Material and methods

2.1. Site location and sample description

 The sediment from the estuary of the Congo River ('Anker 24') was taken as a grab sample (Eisma et al., 1978) and stored as dried sediment before analysis. Additional lipid data have been published (Schefuß et al., 2004).

Details of the soil and Malebo pool sample collection have been reported (Talbot et al.,

2014). Briefly, soil samples were collected from 22 sites spanning a wide range of land cover

types, ranging from scrub savannah and grasslands, secondary forest and pristine tropical

mixed forest, to seasonally flooded and swamp forest environments within the Congo Basin

 (Fig. 2). Surface soil samples (0-5 cm) were collected in November 2010 and August 2011.

 Sites were ca. 5-30 m from nearby streams and rivers. Samples were wrapped in clean Al foil, shipped to Newcastle University (UK) within three weeks of collection and, stored frozen on arrival and freeze dried and ground prior to lipid extraction.

 Malebo Pool floodplain wetland sediments were collected along a transect at three sites encompassing permanently flooded sediment, sediment inundated during high discharge months only and sediment from above the seasonal high water point (Fig. 2). At each of the sites sediment was collected at two distinct depths (0-5 cm and 5-15 cm), i.e. a surface and sub-surface sample. Samples were immediately frozen and shipped to Newcastle University (U.K.).

2.2. pH

 The pH was measured following the standard method described in BS ISO 10390 (2005). Briefly 5 ml soil were shaken with 25 ml water for 1 h and the resulting soil-water suspension left to equilibrate for 1 to 3 h. The pH of the suspension was measured using a pH electrode (VWR 662-1761; combination double junction with BNC connector ATC temperature probe, Dutscher Scientific, part no. 027-017) and meter (Jenway 3020, serial no. 2539), calibrated using standard buffer solutions of pH 4 and 7.

2.3. Total OC (TOC)

 TOC (%) of the soils and Malebo Pool samples was measured at Newcastle University. 144 Approximately 0.1 g of sample was treated with 4 mol/L HCl (60-70 °C) for removal of inorganic carbon. Following which, HCl was allowed to drain from each sample. Deionised water was added to each sample to neutralise the acid and allowed to drain. The samples were then dried in an oven at 65 °C for between 16 and 24 hours. TOC was measured using a LECO CS244 Carbon/Sulfur Analyser. Precision based on repeat sample analysis was 4.5 % (relative standard deviation). Accuracy based on repeated measurements of a standard reference material (Chinese stream sediment, NCS DC 73307; LGC, Teddington, 151 UK) was within the permissible \pm 0.05 % TOC. An instrument calibration standard (Carbon in

152 steel, part no 501-506, Leco) was analysed and was found to be within the nominal 0.8% 153 permissible range.

154 *2.4. Lipid extraction*

155 Freeze-dried samples (ca. 3 g) were extracted using a modified Bligh and Dyer method as 156 described by Cooke et al. (2008a). Material was extracted in a Teflon centrifuge tube with 157 addition of a monophasic solution of water/MeOH/CHCl₃ (4:10:5, v/v). The mixture was 158 sonicated at 40 °C for 1 h followed by shaking at room temperature for 2-4 h. The mixture 159 was then centrifuged at 12,000 rpm for 15 min and the supernatant transferred to a second 160 centrifuge tube. This process was repeated 3 times. The decanted supernatant was phase 161 separated using CHCl₃ (5 ml) and water (5 ml). The tubes containing the supernatants were 162 centrifuged for 5 min to complete the separation of the organic (CHCl₃) and MeOH/water 163 phases. The combined organic $(CHCl₃)$ fraction was transferred to a round bottomed flask 164 and rotary evaporated to near dryness. The extract was transferred to a glass vial using a 165 solution of warm (ca. 50°C) CHCl₃/MeOH (2:1, v/v). The total lipid extract (TLE) was 166 evaporated to dryness under a stream of N₂. A 5α-pregnane-3β,20β-diol internal standard 167 was added (0.236 μ g/ μ I) and the TLE split into 3 equal aliquots following dilution with 5 mI 168 CHCl₃/MeOH (2:1, v/v; heated at 50 °C for 10 min).

169 *2.5. BHP analysis*

170 One third of the TLE was used for BHP analysis: the aliquot was evaporated to dryness 171 under N₂ and acetylated by adding Ac₂O (1 ml) and pyridine (1 ml). This aliquot was then 172 heated for 1 h (50 °C) and left at room temperature overnight. The Ac₂O and pyridine were 173 removed under a stream of N_2 and the resulting acetylated extract was dissolved in 1 ml 174 MeOH/propan-2-ol (3:2, v/v).

175 BHP analysis was performed by reversed phase high performance liquid chromatography-176 atmospheric pressure chemical ionisation-mass spectrometry (HPLC-APCI-MSⁿ) using a 177 ThermoFinnigan surveyor HPLC system fitted with a Phenomenex Gemini C_{18} column (150 7

 mm; 3.0 mm i.d.; 5 μm particle size) and a security guard column cartridge of the same material coupled to a Finnigan LCQ ion-trap mass spectrometer equipped with an APCI source operated in positive ion mode. Chromatographic separation was accomplished at 181 30 °C at 0.5 ml/min with the following solvent gradient: 90% MeOH, 10% H₂O (0 min); 59% 182 MeOH, 1% H₂O, 40% propan-2-ol (at 25 min); isocratic to 45 min returning to the starting conditions in 5 min and stabilising for 10 min. APCI was achieved at 155 °C capillary 184 temperature and 490 °C APCI vaporiser temperature with a corona discharge current of 8 μ A, and sheath and auxiliary gas flow of 40 and 10, respectively (arbitrary units). MSⁿ analysis was carried out in data-dependent mode with three scan events: SCAN 1: full 187 spectrum, m/z 300–1300; SCAN 2: data-dependent MS² spectrum of most intense ion from 188 SCAN 1; SCAN 3: data-dependent MS³ spectrum of most intense ion from SCAN 2. Detection was achieved at an isolation width of *m/z* 5.0 and fragmentation with normalised collision dissociation energy of 35% and an activation Q value (parameter determining the *m/z* range of the observed fragment ions) of 0.15. Semi-quantitative estimation of BHP concentration was achieved employing the characteristic base peak ion areas of individual BHPs in mass chromatograms (from SCAN 1) relative to the *m/z* 345 mass chromatogram base peak area of the acetylated 5α-pregnane-3β,20β-diol internal standard. Averaged relative response factors relative to the internal standard, determined from a suite of acetylated BHP standards, were used to adjust the BHP peak areas (see van Winden et al., 197 2012b). Typical error in absolute quantification was ± 20%, based on selected replicate analyses and BHP standards of known concentration (Cooke, 2010; van Winden et al., 2012b).

2.6. Compound classification and statistics

 The abbreviated names of the compounds, characteristic base peak ions (*m/z*) and structure numbers are given in Table 1. The term tetrafunctionalised compounds refers to BHPs with four functional groups at the C-32, C-33, C-34 and C-35 positions (Fig. 1).

 Pentafunctionalised compounds have an additional fifth functional group at C-31 and hexafunctionalised compounds have 2 additional functional groups at C-30 and C-31.

 BHPs diagnostic for soil OC input (hereafter "soil marker BHPs") include adenosylhopane (**1a**), C-2 methylated adenosylhopane (**2a**), adenosylhopane type 2 (**1c**) C-2 methylated adenosylhopane type 2 (**2c**), adenosylhopane type 3 (**1d**) and its C-2 methylated homologue (**2d**). The structure of the terminal functional groups in adenosylhopane type 2 and type 3 remain to be elucidated, so assignment of these compounds is based on retention time and comparison of APCI mass spectra with published data (Cooke et al., 2008a; Rethemeyer et al., 2010).

213 The R_{soil} index (as defined by Zhu et al., 2011) was calculated according to the relative 214 concentrations of BHT (1b) and all soil marker BHPs. The R'_{sol} index was later proposed as an alternative index excluding methylated homologues for settings where the C-2 methylated soil marker BHPs were infrequently/intermittently present (Doğrul Selver et al., 2012) and is calculated according to the relative concentrations of BHT (**1b**) and adenosylhopane (**1a**), adenosylhopane type 2 (**1c**) and adenosylhopane type 3 (**1d**).

219 R_{soil} index = (**1a** + **2a** + **1c** + **2c** + **1d** + **2d**)/(**1a**+ **2a**+ **1c** + **2c** + **1d**+ **2d**+ **1b**)

220 R'_{soil} index = $(1a + 1c + 1d)/(1a + 1c + 1d + 1b)$

 AminoBHPs include aminotriol (**1g**), unsaturated (**4/5g**) and methylated aminotriol (**2/3g**), aminotetrol (**1e**) and unsaturated aminotetrol (**4/5e**), and aminopentol (**1f**), unsaturated (**4/5f**) and aminopentol isomer (**1f'**; van Winden et al., 2012a). BHPs diagnostic for aerobic methane oxidation (hereafter referred to as "CH4 oxidation markers") include aminotetrol (**1e**), aminopentol (**1f**), unsaturated (**4/5f**) and aminopentol isomer (**1f'**; van Winden et al., 2012a). The data were found to have a non-parametric distribution and were not mathematically 227 transformed prior to statistical analysis. Spearmans rho (r_s) was calculated using IBM SPSS 228 statistics version 21 software. Strong correlation between two variables would result in an r_s

 value of 0.9 and above. Subsurface sediment samples (PS 5-15; RE 5-15; EF 5-15) were excluded from statistical analysis as all other samples were surface samples. The estuary sample and one surface wetland sample (RE 0-5) were also excluded from statistical analysis due to the small sample size, so pH data could not be obtained for either sample.

3. Results

3.1. TOC and soil pH

 TOC and soil pH values are presented in Table 2. TOC ranged from 0.23-6.11% in the soils and 1.10-2.68 % in wetland sediment samples; pH ranged from 3.09-5.75 for soils and 4.27- 4.8 for wetland sediments (not measured for recently exposed sediment 0-5 and the estuary sample due to insufficient sample material).

3.2. BHPs in Congo soils

A total of 35 BHPs were detected within 22 tropical soils from the Congo hinterland,

including tetra-, penta- and hexafunctionalised compounds as well as those with a cyclised

side chain (Table 3 and 4). Aminotriol (**1g**) and BHT cyclitol ether (**1h**) are the dominant

compounds in most of the soil samples (36-68% of aminotriol and BHT cyclitol ether in total

BHPs). C-2 and C-3 methylated BHpentol cylitol ethers (**2i** and **3i**) and BHhexol cyclitol (**2j**

and **3j**) ethers were also found in the soil samples, though present as minor components

(Table 3 and 4).

 Aminopentol (**1f**) was present as a minor component of the BHP suite, with a concentration 249 ranging from 0.92-47 μ g/g TOC within six soils. However, aminopentol was found in high 250 concentration (260 μ g/g TOC) and high relative abundance (8.8% of total BHPs) in one outlier soil (closed evergreen lowland forest sample (CELF) C18B).

The distribution of individual soil marker BHPs varied across the 22 soils, with

adenosylhopane (**1a**) consistently being the most abundant of the soil marker BHPs with a

254 concentration ranging from 33-800 μ g/g TOC. Mosaic forest/ cropland (MF) C8B was the only soil where 'adenosylhopane type 2' (**1c**) was the most abundant soil marker BHP. C-2 methylated adenosylhopane (**2a**), 'adenosylhopane type 2' and C-2 methylated 'adenosylhopane type 2' (**2c**) were present in all the soils with 'adenosylhopane type 3' (**1d**) found in all samples except swamp bushland and grassland C38B (SB C38B), CELF C27B and Gilbertiodendron forest (GF 9-1). C-2 methylated 'adenosylhopane type 3' (**2d**) was found only intermittently (Table 3 and 4). Soil marker BHPs ranged from 10-36% within the forest soils (n=16) and 7.9-36% of total BHPs within the savannah/grassland samples (n=6). *R_{soil}* and *R*[']_{soil} indices were calculated for the 22 Congo soils (see Section 2.6 for definition). *R*soil and *R'*soil indices ranged from 0.58-0.92 (avg. 0.77) and 0.48-0.91 (avg. 0.74) respectively (Table 2).

3.3. BHPs in wetland sediments

 A total of 19 BHPs were found in the 6 wetland sediments. BHP concentration within the wetland samples ranged between 4300 µg/g TOC (recently exposed surface and sub-268 surface sample, RE 0-5 and RE 5-15) and 7500 $\mu q/q$ TOC (permanently submerged sub surface sample, PS 5-15). Aminopentol (**1f**) and adenosylhopane (**1a**) were the dominant BHPs along with BHT cyclitol ether (**1h**) and aminotriol (**1g**) (Table 3). The wetland sediments also contained other CH4 oxidation markers, including aminotetrol (**1e**), aminopentol isomer (**1f'**) and unsaturated aminopentol (**4/5f**: reported by Talbot et al., 2014; Table 5).

 Concentration of soil marker BHPs ranged from 620 µg/g TOC (exposed with occasional 275 flooding sub surface sample; EF 5-15) to 1100 μ g/g TOC (PS 5-15). Relative abundance of 276 soil marker BHPs ranged from 11-17% of total BHPs. R_{sol} index ranged from 0.61-0.66 (avg. 277 0.63; Fig. 3) and the *R*'_{soil} index from 0.59-0.62 (avg. 0.60) (Table 2).

3.4. Estuarine sediment

 The estuarine sample had low BHP diversity, with only 12 BHP compounds and a total BHP concentration of 1400 µg/g TOC (Table 5). Aminopentol and adenosylhopane were 281 dominant (Table 5). Adenosylhopane was the only soil marker BHP, at 81 µg/g TOC (relative 282 abundance 6% of total BHPs); R_{solid} index was 0.20.

4. Discussion

4.1. BHP distributions

 The soils were dominated by non-source specific BHPs (Tables 3-5). Greater BHP diversity was found within soils vs. the wetland and estuarine samples, consistent with other studies (e.g. Pearson et al., 2009; Zhu et al., 2011). BHT cyclitol ether (**1h**) was one of the most dominant BHPs in the soils, wetlands and the estuarine sediments. Studies have shown that, within surface soils where aerobic methane oxidation (AMO; as indicated by aminopentol; **1f**) is not a dominant process, aminotriol (**1g**), BHT cyclitol ether, BHT (**1b**) and adenosylhopane (**1a**) are usually the dominant compounds (Cooke et al., 2008a; Pearson et al., 2009; Cooke, 2010; Zhu et al., 2011). Low concentrations of anhydroBHT (**1m**), ribonylhopane (**1k**) and BHT-pseudopentose (methylated, **2l** and non-methylated, **1l**) were also present in the soils (Tables 3 and 4); however, these compounds are not discussed further due to their intermittent occurrence and typically low concentration.

4.2. Soil marker BHPs

 A range of soil marker BHP relative abundance was observed for soils (7.9-36% of total BHPs) and wetland sediments (11-17% of total BHPs; Fig. 4). However, the Congo soils had a low mean soil marker BHP abundance of 16% for forest soils (n=16) and 19% for savannah/field soils (n=6) compared with samples from other studies (Table 6). Surface soils from temperate regions show a wider range of soil marker BHP relative abundance (0-66%; Cooke et al., 2008; Xu et al., 2009; Rethemeyer et al., 2010; Kim et al., 2011; Zhu et al.,

 2011; n = 28) than that for tropical surface soils (7.9-36%; Pearson et al., 2009; Wagner et al., 2014; this study; n = 25) and tropical wetlands (2.6-17%; surface and subsurface samples; Wagner et al., 2014; this study; n = 11; Table 6). The difference could be due to local environmental parameters. For example, pH is known to affect BHP distributions (concentration normalised to TOC and relative abundance) in environmental samples (Kim et al., 2011) and in laboratory culture experiments where changes in the amount and/or type of BHPs produced are reported (Poralla et al., 1984; Welander et al., 2009; Schmerk et al., 311 2011). pH did not correlate with soil marker BHP concentration (μ g/g TOC; r_s -0.600, p 0.002), *R*soil (rs -0.203, p 0.341) or *R'*soil (rs -0.266, p 0.209). This suggests pH is not a key factor influencing soil marker BHP distributions in our samples; however, it should be noted that the soils here were from a narrower pH range (3.09-5.75) than those in the Kim et al. (2011; pH 4.6-8.9) study.

4.2.1. Rsoil and R'soil

 These indices have been proposed as soil OM input proxies that use adenosylhopane and related compounds as indicators of soil OC and BHT as a pseudo marine end member as it is found in both soils and open marine sediments (Zhu et al., 2011; Doğrul Selver et al., 320 2012, 2015). As the relative changes in R_{soil} vs R_{soil} are the same within the Congo soils and 321 sediments, only R_{solid} will be discussed. There was a wide range of R_{solid} values for the Congo forest and savannah/field soils, with a smaller range for the wetland samples (Fig. 3). While 323 there was a clear difference in R_{solid} index between the catchment and the estuary, R_{solid} did not distinguish between the catchment sub-environments (Fig. 3). Data collated from 325 previous tropical BHP studies show R_{soil} ranging from 0.43-0.83 for tropical soils (Pearson et al., 2009; Wagner et al., 2014; n = 3) and 0.27-0.68 (*R*soil) for Amazon wetlands (Wagner et 327 al., 2014; Table 4; Fig. 3; $n = 5$). Arctic and temperate surface soils also show a wide range 328 of *R_{soil}* values from 0-0.85 (n = 28; Cooke et al., 2008a; Xu et al., 2009; Kim et al., 2011; Rethemeyer et al., 2010; Zhu et al., 2011; Table 6; Fig. 3). These results suggest that there 330 is no globally consistent pattern in the R_{soil} index, application of this proxy being strongly

331 dependent on local end members (Zhu et al., 2011). The R_{soil} index for the Congo samples 332 correlated weakly with the concentration of BHT (R_{sol} r_s -0.616, p 0.001; µg/g TOC) but not 333 with total soil marker BHP concentration $(R_{\text{solid}} r_s - 0.092, p \ 0.671; \mu g/g \ TOC)$.

334 The R_{soil} (Zhu et al., 2011; Doğrul Selver et al., 2012) and GDGT based BIT (Hopmans et al., 2004) indices have both been proposed as proxies for soil OC transport. Previous analysis of surface sediments from river-estuary-shelf/ocean transects have identified correlation 337 between R_{soil} and BIT indices (Zhu et al., 2011; Doğrul Selver et al., 2012; 2015. Other studies, however, have not found any correlation between soil marker BHP concentrations or 339 the *R_{soil}* /*R*'_{soil} and BIT indices (Kim et al., 2011; Wagner et al., 2014). The absence of correlation between these two proxies in terrestrial sources materials (soils, peat) is not unexpected, however, as it is well established that soil BHP distributions contain variable concentrations of the pseudo-marine endmember BHT (e.g. Cooke et al., 2008; Xu et al., 2009; Rethemeyer et al., 2010; Kim et al., 2011) whilst most soils contain little if any crenarchaeol (the marine endmember for the BIT index; Schouten et al., 2013). This is a prominent issue with using BHT as a marine end member in soil OM proxies. Furthermore, relatively little is known about possible marine sources of BHT other than some species of sulfate reducing bacteria (e.g. Blumenberg et al., 2006). Lack of correlation between these two proxies in certain environments could be due to (1) terrestrial end member biomarkers synthesised by microbial organisms living in different environmental niches, for example at different depths in the soil profile (Kim et al., 2011); and (2) variation in (post-depositional) degradation of terrestrial end member biomarkers due to the differences in compound reactivities (e.g. Zhu et al., 2013). As BHT and adenosylhopane have different reactivity and therefore may degrade at different rates upon deposition (e.g. Cooke et al., 2008; Handley et 354 al., 2010), this suggests, at least in some settings, that the R_{soil} could instead be used to describe relative rates of degradation.

4.3. Biomarkers for aerobic methane oxidation

 Aminopentol (**1f**) is a biomarker for type I methanotrophs (Neunlist and Rohmer, 1985; Rohmer et al., 1984; Cvejic et al., 2000; Talbot et al., 2001; Coolen et al., 2008; van Winden et al., 2012a) with only one report of a non-methanotroph source, a species of *Desulfovibrio* sulfate reducing bacterium which had an extremely low concentration of aminopentol when 361 grown in pure culture (Blumenberg et al., 2012). Concentrations of $CH₄$ oxidation markers (see Section 2.6 for definition; **1e, 1f**, **4/5f**, **1f'**) varied throughout the samples here. High concentrations and relative abundances were present in the wetland samples, where aminopentol was the second most dominant BHP after BHT cyclitol ether (**1h**), confirming 365 the occurrence of AMO (Table 6). The presence of $CH₄$ oxidation marker signatures suggests wetland environments as likely sources of these biomarkers in Congo fan sediments (Talbot et al., 2014) and therefore as sites of intense AMO within both modern and past climate phases. The data also agree with recent investigations of BHP signatures within the Amazon where Wagner et al. (2014) suggest wetland type environments as 370 source areas for BHP $CH₄$ oxidation marker signatures. Thus, our Congo study is the second to document such a high abundance of $CH₄$ oxidation markers within tropical wetland samples (Fig. 4), suggesting that this might be a more general feature of tropical, and possibly other wetlands. This contrasts with the soil samples where aminotetrol was the most dominant CH4 oxidation marker, but only a minor compound in the BHP suite overall (Table 3, 4 and 6). This was unexpected as 2 soils were sampled within an area of methane producing land cover (Fig. 2; swamp forest 11-1; tropical mixed forest 12-1), suggesting AMO should be a significant and readily identifiable from the BHP biomarker suite. Low levels of aminopentol and/or aminotetrol in soil samples could be due to low AMO activity in such samples. Alternatively, soil samples could have been collected when the oxic-anoxic 380 boundary was shallowest. A study by van Winden et al. (2012a) found $CH₄$ oxidation markers in peatlands, specifically at the oxic-anoxic boundary where AMO is thought to occur. Additionally, Henckel et al. (2001) found that AMO increases during the drying out of

 methane-producing wetland type environments, presumably due to the extension of the oxic-384 anoxic boundary. Lastly, the apparent lack of $CH₄$ oxidation markers in the soil samples could be due to a lack in our understanding of the source organisms of aminopentol and related compounds. Although many Type I methanotrophs make aminopentol as a dominant membrane component, followed by minor amounts of aminotetrol and aminotriol, other Type II methanotroph and at least one Type I methanotroph, *Methylomicrobium album,* membranes are dominated by aminotetrol and aminotriol (e.g. Talbot et al., 2001; van Winden et al., 2012b and references therein).

4.4. BHP reservoirs

392 The Congo River drains the second largest basin in the world $(-3.7 \times 10^6 \text{ Km}^2)$. Soil derived OM is an important component of sediments deposited on the Congo fan (Holtvoeth et al., 2005). The organic fraction of ODP 1075 sediments relates to strongly degraded SOM of old highly developed, Kaolinite-rich feralitic soils (Oxisols) that cover large areas of the Congo river basin (Holtvoeth et al., 2005). The OC from the soils analysed in this study is transported through the Congo River and deposited in Malebo pool (Hughes et al., 2011; Spencer et al., 2012). Previous work has shown that OM exported from Malebo Pool is geochemically similar to OM at the head of the estuary (ca. 350 km downstream) and no major tributaries join the Congo River between this site and the Atlantic Ocean (Spencer et 401 al., 2012). Similarity between the spread in R_{coll} indices for the soils and Malebo pool (Fig. 3) further suggests that BHPs are also subject to this transport mechanism. Due to the position of Malebo pool in the Congo River, OM and therefore BHPs signatures in the wetlands are representative of BHPs from the Congo watershed (Hughes et al., 2011; Spencer et al., 405 2012). Therefore, a terrestrial R_{sol} endmember of 0.63 (Malebo pool mean; Table 6) is representative of fluvially transported soils within the Congo watershed in combination with BHPs produced in Malebo Pool. Sediments deposited at Malebo pool are flushed into the estuary and then on to the Congo shelf and fan. As only one grab sample from the estuary 409 was analysed in this study, the reported R_{soil} value of 0.2 (Table 6) may not represent the

 true mean of the Congo estuary. However, BHT and adenosylhopane concentrations for 411 ODP 1075 have previously been reported by Handley et al. (2010). Calculation of the R_{soil} 412 index for sediments between 10 and 100 Ka (n = 27; Appendix II) show the R_{coll} index for the estuary is within the range of 0.16-0.54 (interglacial 0.16-0.54; glacial 0.21-0.52) for ODP 114 1075 sediments (Fig. 3). The mean R_{soil} index for ODP 1075 is 0.37 which is approximately half of the terrestrial end-member of Malebo pool, suggesting, that soil OM is a significant contributor to marine OM. This is in accordance with other studies from the Congo deep-sea fan. Holtvoeth et al. (2003) used a binary mixing model approach to determine that between 18 and 61% of bulk OM in ODP 1075 is of continental origin. Similarly, Weijers et al. (2009) used a 3 end-member mixing model to determine that between 38 and 52 % of OC within GeoB 6518-1 is of terrestrial (soil) origin.

 Furthermore, strong similarities are found between the distribution of BHPs identified in the soils, wetlands, estuarine and ODP 1075 samples (Fig. 5 a,b). A suite of common BHPs are identified in the forest and savannah/field soils, and the wetlands, with more than half of the BHPs identified in the hinterland soils also identified in the wetlands. In addition, the common BHPs identified in the hinterland soils and the wetlands represent a major component of the soil BHP profile, contributing an average of 88% (forests) and 94% (savannah/field) of total BHPs (based on concentration; Fig. 5a). Lower BHP diversity is reported for samples from the Congo fan (Handley et al., 2010; Talbot et al., 2014) with many of the methylated and pentose compounds below detection limit. Between 7 and 10 of the 12 BHP compounds identified in ODP 1075 are also found in the wetlands and soils, and are again a major component of all of the BHP profiles representing over 90% of the total BHPs found in the wetland and estuary samples (Fig. 5b). Strong similarities between BHPs identified in the Congo hinterland and wetland samples and those identified in ODP 1075 suggests a link between BHP reservoirs. High concentrations of aminotetrol and aminopentol (including aminopentol isomer and unsaturated aminopentol) found in ODP 1075 sediments have previously been linked to fluvial transport of these biomarkers to the

 Congo fan from Malebo pool and potentially similar wetlands (Talbot et al., 2014) with similar mechanisms also reported in the Amazon (Wagner et al., 2014). Due to the ubiquitous nature of BHT, aminotriol, BHT-, BHpentol and BHhexol cyclitol ether it is likely that the source of these compounds in the Congo fan will be both marine and terrestrial derived. The notable absence of methylated and unsaturated BHPs from ODP 1075 which represent no more than 18% of total BHPs in the soils and wetland sediments, is likely due to a dilution effect.

4.5. Trends in global BHP distribution

 The data presented here suggest that BHP relative abundance may be controlled by large scale climate trends. Within the soils and wetlands from the Congo Basin, a narrow range in soil marker BHP relative abundance (7.9-36% of total BHPs) and tetrafunctionalised BHP relative abundance (52-81% of total BHPs) was observed (Fig. 4). The range is much smaller in comparison with studies from other less stable climatic zones, where surface soil marker BHP relative abundance varies between 0% and 66% of total BHPs and tetrafunctionalised BHP relative abundance varies between 34% and 100% of total BHPs (Cooke et al., 2008; Xu et al., 2009; Rethemeyer et al., 2010; Kim et al., 2011; Fig. 4). Additionally, the mean soil marker BHP relative abundance for Congo soils (17%) is lower than that for temperate soils from northern and eastern Europe (28%; Cooke et al., 2008; Redshaw et al., 2008). High relative abundance of soil marker BHPs are found in soils from polar climates, with values between 27% and 55% of total BHPs for Svalbard (Rethemeyer et al., 2010) and 69-82% for surface and subsurface Yedoma permafrost from Siberia (Doğrul Selver et al., 2015). Xu et al. (2009) also observed abundances ranging from 35-52% of total BHPs in Alberta (Canada).

The differences may suggest that the main factors controlling BHP distributions in tropical

climate zones are different from those from temperate and polar climate zones. Kim et al.

(2011) found mean annual air temperature (MAAT) and precipitation to influence soil marker

 BHP distribution in samples from the Mediterranean Têt watershed. Soils from the watershed were collected along a transect with strong environmental contrasts in altitude, MAAT, precipitation and a wide pH range, including some low pH peat samples. Kim et al. (2011) found that the lowest relative abundance of adenosylhopane (the dominant soil marker BHP) occurred at low altitude where MAAT was high, pH more alkaline and precipitation lowest. This could suggest that, during BHP synthesis, adenosylhopane (an intermediate in hopanoid biosynthesis; Bradley et al., 2010) is converted to other BHPs when environmental conditions are favourable for microbial activity (e.g. warmer).

 The relationship between the structural diversity of BHPs and the role of these compounds within bacterial cells has not been fully elucidated. However, Poger and Mark (2013) suggest that BHPs may have a broader range in functionality within cell membranes than sterols within eukaryotes. Additionally, BHPs may be involved in a response to environmental stress (e.g. Kulkarni et al., 2013). The difference in BHP distributions between climate zones (Fig. 4) could suggest that, in addition to pH, environmental parameters such as seasonal temperature and precipitation may be important factors influencing BHP synthesis.

5. Conclusions

 Up to 35 different BHPs were identified within 22 soils, 6 wetland and one estuarine sediment sample from the Congo. Dominant compounds in the soil and wetland samples were typically BHT, aminotriol and BHT cyclitol ether. However, BHP signatures produced by aerobic methane oxidising bacteria (including aminopentol and aminotetrol) were important within Malebo pool sediments and represented up to 26% of total BHPs. This indicates that taxonomic controls, in particular determining type and activity of aerobic methanotrophs, can be an important source of variability within the Congo samples.

Soil marker BHP relative abundances in the soils and wetland sediments were very similar.

 However, their relative proportion in the Congo soils (mean, 16% of total BHPs in forest soils;

 19% of total BHPs in savannah/field soils) was lower than values for temperate and Arctic 490 surface soils calculated from the available literature data. R_{sol} and R'_{sol} indices for the soils show a large range of 0.58-0.92 and 0.48-0.91, respectively, with savannah/field samples typically showing greater variation than forest soils. This is in accord with other *R*soil and *R'*soil values calculated from the literature and reinforces the need for local end members to be determined before any interpretation of the index values is undertaken.

Acknowledgments

 We are grateful for funding from the European Research Council for a starting grant (258734) awarded to H.M.T. for project AMOPROX, the UK Natural Environment Research Council (NERC) (NE/E017088/1) and to the US National Science Foundation (NSF 0851101). We also thank F. Sidgwick, K. Osborne and P. Green for technical support. We also thank G. J. Fiske (Woods Hole Research Centre) for assistance with the preparation of Figure 2. We thank the associate editor and two anonymous reviewers for constructive comments. We thank the Science Research Investment Fund (SRIF) from the UK HEFCE for funding the purchase of the ThermoFinnigan LCQ ion trap mass spectrometer. We would also like to thank the Wildlife Conservation Society of Congo (WCS-Congo) for logistical support and invaluable local knowledge.

References

 Berndmeyer, C., Thiel, V., Schmale, O., Blumenberg, M., 2013. Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea). Organic Geochemistry 55, 103-111.

 Blumenberg, M., Hoppert, M., Krüger, M., Dreier, A.,Thiel, V., 2012. Novel findings on hopanoid occurrences among sulfate reducing bacteria: Is there a direct link to nitrogen fixation? Organic Geochemistry 49, 1-5.

- Blumenberg, M., Krüger, M., Nauhaus, K., Talbot, H.M., Oppermann, B.I., Seifert, R., Pape, T., Michaelis, W., 2006. Biosynthesis of hopanoids by sulphate-reducing bacteria (genus *Desulfovibrio*). Environmental Microbiology 8, 1220-1227.
- Blumenberg, M., Mollenhauer, G., Zabel, M., Reimer, A., Thiel, V., 2010. Decoupling of bio and geohopanoids in sediments of the Benguela Upwelling System (BUS). Organic Geochemistry 41, 1119-1129.
- Bradley, A.S., Pearson, A., Sáenz, J.P., Marx, C.J., 2010. Adenosylhopane: The first intermediate in hopanoid side chain biosynthesis. Organic Geochemistry 41, 1075- 1081.
- BS ISO 10390., 2005. Soil quality. Determination of pH. BSI, ISBN 0 580 45659 5.
- Cooke, M.P., 2010. The Role of Bacteriohopanepolyols as Biomarkers For Soil Bacterial
- Communities and Soil Derived Organic Matter. PhD Thesis, Newcastle University.
- Cooke, M.P., Talbot, H.M., Farrimond, P., 2008a. Bacterial populations recorded in bacteriohopanepolyol distributions in soils from Northern England. Organic Geochemistry 39, 1347-1358.
- Cooke, M.P., Talbot, H.M., Wagner, T., 2008b. Tracking soil organic carbon transport to continental margin sediments using soil-specific hopanoid biomarkers: A case study from the Congo fan (ODP site 1075). Organic Geochemistry 39, 965-971.
- Cooke, M.P., van Dongen, B.E., Talbot, H.M., Semiletov, I., Shakhova, N., Guo, L.,
- Gustafsson, Ö., 2009. Bacteriohopanepolyol biomarker composition of organic matter
- exported to the Arctic Ocean by seven of the major Arctic rivers. Organic
- Geochemistry 40, 1151-1159.
- Coolen, M.J.L., Talbot, H.M., Abbas, B.A., Ward, C., Schouten, S., Volkman, J.K., Sinninghe Damsté, J.S., 2008. Sources for sedimentary bacteriohopanepolyols as revealed by 16S rDNA stratigraphy. Environmental Microbiology 10, 1783-1803.
	-

- Doğrul Selver, A., Talbot, H.M., Gustafsson, Ö., Boult, S., van Dongen, B.E., 2012. Soil organic matter transport along an sub-Arctic river-sea transect. Organic Geochemistry 51, 63-72.
- Doğrul Selver, A., Sparkes, R.B., Bischoff, J., Talbot, H.M., Gustafsson, Ö., Semilitov, I.,

 Dudarev, O., Boult, S., van Dongen, B.E., 2015. Distributions of bacterial and archaeal membrane lipids in surface sediments reflect differences in input and loss of terrestrial organic carbon along a cross-shelf Arctic transect. Organic Geochemistry 83-84, 16-26.

- Eickhoff, M., Birgel, D., Talbot, H.M., Peckmann, J., Kappler, A., 2013. Bacteriohopanoid inventory of *Geobacter sulfurreducens* and *Geobacter metallireducens*. Organic Geochemistry 58, 107-114.
- Eisma, D., Kalf, J., van Der Gaast, S.J., 1978. Suspended matter in the Zaire estuary and the adjacent Atlantic Ocean. Netherlands Journal of Sea Research 12, 382-406.
- Handley, L., Talbot, H.M., Cooke, M.P., Anderson, K.E., Wagner, T., 2010.

Bacteriohopanepolyols as tracers for continental and marine organic matter supply

- and phases of enhanced nitrogen cycling on the late Quaternary Congo deep sea fan.
- Organic Geochemistry 41, 910-914.
- Henckel, T., Jackel, U., Conrad, R., 2001. Vertical distribution of the methanotrophic
- community after drainage of rice field soil. FEMS Microbiology Ecology 34, 279-291.

Holtvoeth, J., Wagner, T., Schubert, C.J., 2003. Organic matter in river-influenced

continental margin sediments: The land-ocean and climate linkage at the Late

Quaternary Congo fan (ODP Site 1075). Geochemistry Geophysics Geosystems.

Hopmans, E.C., Weijers, J.W.H., Schefuß, E., Herfort, L., Sinninghe Damsté, J.S., Schouten,

 S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters 224, 107-116.

Hughes, H.J., Sondag, F., Cocquyt, C., Laraque, A., Pandi, A., Andre, L., Cardinal, D., 2011.

 Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River. Limnology and Oceanography 56, 551-561.

 Kim, J.H., Talbot, H.M., Zarzycka, B., Bauersachs, T., Wagner, T., 2011. Occurrence and abundance of soil-specific bacterial membrane lipid markers in the Têt watershed (southern France): Soil-specific BHPs and branched GDGTs. Geochemistry

Geophysics Geosystems 12, DOI 10.1029/2010gc003364.

 Kulkarni, G., Wu, C.H., Newman, D.K., 2013. The general stress response factor EcfG regulates expression of the C-2 hopanoid methylase HpnP in *Rhodopseudomonas palustris* TIE-1. Journal of Bacteriology 195, 2490-2498.

 Liu, W., Sakr, E., Schaeffer, P., Talbot, H.M., Kannenberg, E., Donisi, J., Poralla, K., Takano, E., Rohmer, M., 2014. Ribosylhopane, a novel bacterial hopanoid, as precursor of C35 bacteriohopanepolyols in *Streptomyces coelicolor* A3(2). ChemBiochem. 15, 2156-2161.

 Neunlist, S., Rohmer, M., 1985. Novel hopanoids from the methylotrophic bacteria *Methylococcus capsulatus* and *Methylomonas methanica* - (22*S*)-35-

- Aminobacteriohopane-30,31,32,33,34-pentol and (22*S*)-35-amino-3-β-
- methylbacteriohopane-30,31,32,33,34-pentol. Biochemical Journal 231, 635-639.
- Ochs, D., Kaletta, C., Entian, K.D., Beck-Sickinger, A., Poralla, K., 1992. Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism. Journal of Bacteriology 174, 298-302.
- Pearson, A., Leavitt, W.D., Sáenz, J.P., Summons, R.E., Tam, M.C.M., Close, H.G., 2009.
- Diversity of hopanoids and squalene-hopene cyclases across a tropical land-sea gradient. Environmental Microbiology 11, 1208-1223.
- Pearson, A., Page, S.R.F., Jorgenson, T.L., Fischer, W.W., Higgins, M.B., 2007. Novel
- hopanoid cyclases from the environment. Environmental Microbiology 9, 2175-2188.
- Poger, D., Mark, A.E., 2013. The relative effect of sterols and hopanoids on lipid bilayers:
- When comparable is not identical. Journal of Physical Chemistry B 117, 16129- 16140.
- Poralla, K., Hartner, T., Kannenberg, E., 1984. Effect of temperature and pH on the
- hopanoid content of *Bacillus acidocaldarius*. FEMS Microbiology Letters 23, 253-256.
- Redshaw, S.E., Cooke, M.P., Talbot, H.M., McGrath, S., Rowland, S.J., 2008. Low
- biodegradability of fluoxetine HCl, diazepam and their human metabolites in sewage sludge-amended soil. Journal of Soils and Sediment 8, 217-230.
- Rethemeyer, J., Schubotz, F., Talbot, H.M., Cooke, M.P., Hinrichs, K.U., Mollenhauer, G.,
- 2010. Distribution of polar membrane lipids in permafrost soils and sediments of a small high Arctic catchment. Organic Geochemistry 41, 1130-1145.
- Rohmer, M., Bouviernave, P., Ourisson, G., 1984. Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology 130, 1137-1150.

- Rohmer, M., Knani, M., Simonin, P., Sahm, H., 1993. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal 295, 517-524.
- Sáenz, J.P., Eglinton, T.I., Summons, R.E., 2011. Abundance and structural diversity of bacteriohopanepolyols in suspended particulate matter along a river to ocean transect. Organic Geochemistry 42, 774-780.
- Schefuß, E., Versteegh, G.J.H., Jansen, J.H.F., Sinninghe Damsté, J.S., 2004. Lipid biomarkers as major source and preservation indicators in SE Atlantic surface sediments. Deep-Sea Research Part I: Oceanographic Research Papers 51, 1199- 1228.
- Schmerk, C.L., Bernards, M.A., Valvano, M.A., 2011. Hopanoid production is required for low-pH tolerance, antimicrobial resistance and motility in *Burkholderia cenocepacia.* Journal of Bacteriology 193, 6712-6723
- Schouten, S., Hopmans, E. C., Sinninghe Damsté, J.S., 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry 54, 19-61.

Sinninghe Damsté, J.S., Rijpstra, W.I.C., Schouten, S., Fuerst, J.A., Jetten, M.S.M., Strous,

- M., 2004. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Organic Geochemistry 35, 561-566.
- Sparkes, R.B., Doğrul Selver, A., Bischoff, J., Talbot, H.M., Gustafsson, Ö., Semiletov, I.P.,
- Dudarev, O.V., van Dongen, B.E., 2015. GDGT distributions on the East Siberian
- Arctic Shelf: implications for organic carbon export, burial and degradation.
- Biogeosciences 12, 3753-3768.
- Spencer, R.G.M., Hernes, P.J., Aufdenkampe, A.K., Baker, A., Gulliver, P., Stubbins, A., Aiken, G.R., Dyda, R.Y., Butler, K.D., Mwamba, V.L., Mangangu, A.M.,

- van Winden, J.F., Talbot,H.M., De Vleeschouwer, F., Reichart, G.J., Sinninghe Damsté, J.S., 2012a. Variation in methanotroph-related proxies in peat deposits from Misten Bog, Hautes-Fagnes, Belgium. Organic Geochemistry 53, 73-79.
- van Winden, J.F., Talbot, H.M., Kip, N., Reichart, G.J., Pol, A., McNamara, N.P., Jetten,

M.S.M., den Camp, H., Sinninghe Damsté, J.S., 2012b. Bacteriohopanepolyol

 signatures as markers for methanotrophic bacteria in peat moss. Geochimica et Cosmochimica Acta 77, 52-61.

Weijers, J.W.H., Schouten, S., Schefuss, E., Schneider, R.R., Sinninghe Damsté, J.S., 2009.

Disentangling marine, soil and plant organic carbon contributions to continental

margin sediments: A multi-proxy approach in a 20 000 year sediment record from the

Congo deep-sea fan. Geochimica et Cosmochimica Acta 73, 119-132.

 Welander, P.V., Hunter, R.C., Zhang, L., Sessions, A.L., Summons, R.E., Newman, D.K., 2009. Hopanoids play a role in membrane integrity and pH homeostasis in *Rhodopseudomonas palustris* TIE-1. Journal of Bacteriology 191, 6145-6156.

Wagner, T., Kallweit, W., Talbot, H.M., Mollenhauer, G., Boom, A., Zabel, M., 2014.

- Microbial biomarkers support organic carbon transport from methane-rich Amazon
- wetlands to the shelf and deep sea fan during recent and glacial climate conditions.
- Organic Geochemistry 67, 85-98.
- Xu, Y.P., Cooke, M.P., Talbot, H.M., Simpson, M.J., 2009. Bacteriohopanepolyol signatures of bacterial populations in Western Canadian soils. Organic Geochemistry 40, 79-86.
- Zhu, C., Talbot, H.M., Wagner, T., Pan, J.M., Pancost, R.D., 2010. Intense aerobic methane oxidation in the Yangtze Estuary: A record from 35-aminobacterophopanepolyols in surface sediments. Organic Geochemistry 41, 1056-1059.

Figure Legends

Fig. 1. Structures of BHPs in Congo samples.

 Fig. 2. Geographical locations of the study site in the Congo, showing the locations of 22 soil samples (circles), 6 floodplain wetland sediment samples (Malebo pool; triangle), the Congo estuary sediment sample (square) and ODP 1075 (star). The map is modified from Talbot et al. (2014) and was generated using the planiglobe beta online plotting service [\(http://www.planiglobe.com\)](http://www.planiglobe.com/).

 Fig. 3. Box plots showing range of *R*soil values for soils and sediments including: forest soil 697 (this study; n=16); savanna/Field soil (this study; n=6); estuary (this study; n = 1); Congo fan (ODP 1075) paleo sediments (Handley et al., 2010; n=27); wetland surface and subsurface sediment (this study; n=6); Amazon wetlands (surface and subsurface; Wagner et al., 2014; n=5); Amazon soil (Wagner et al., 2014; n = 2) San Salvador soils (Pearson et al., 2009; n=1); Têt watershed surface soils (Kim et al., 2011; n=12); East China soil (Zhu et al., 2011; n=3) Canadian surface soils (Xu et al., 2009; n=5); surface Permafrost (Rethemeyer et al., 2010; n=6); Surface soils from Northern UK (Cooke et al., 2008; n=4). Further sample information can be found in the supplementary data I.

 Fig. 4. Ternary plot with relative abundance of tetrafunctionalised BHPs (%), sum of penta-706 and hexafunctionalised BHPs (%) and soil marker BHPs (%) in Congo soils (this study; $n =$ 707 22), Congo wetlands (this study; $n = 6$), Congo estuary sediment (this study; $n = 1$), Amazon wetlands (surface and subsurface; Wagner et al., 2014; n = 5); Amazon soil (Wagner et al., 2014; n = 2) San Salvador soils (Pearson et al., 2009; n = 1); Têt watershed surface soils 710 (Kim et al., 2011; $n = 12$); East China soil (Zhu et al., 2011; $n = 3$); Canadian surface soils 711 (Xu et al., 2009; $n = 5$); surface Permafrost (Rethemeyer et al., 2010; $n = 6$); Surface soils 712 from Northern UK (Cooke et al., 2008; $n = 4$). Further sample information can be found in the supplementary data I.

725 **Table 1** Compounds in the samples and abbreviated names, structures and base peak (*m/z*) values.

726

727

728 **Table 2**

730 and R'_{soil} (nm, not measured).

734 below detection limit).

⁷³³ Concentration (µg/g TOC) of bacteriohopanepolyols in 16 forest soils from the Congo (bdl,

738 Concentration (µg/g TOC) of bacteriohopanepolyols in 6 Savannah/field soils from the

739 Congo (bdl, below detection limit).

- 741 Concentration (µg/g TOC) of bacteriohopanepolyols in 6 Malebo pool wetland and 1
- 742 estuarine sediment from the Congo (bdl, below detection limit).

Summary of CH₄ oxidation markers and soil marker BHPs (%, relative total BHPs), R_{soil} and *R'*soil plus literature data on surface soil and peat BHP composition.

