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ABSTRACT 21 

The Congo River basin drains the second largest area of tropical rainforest in the world, 22 

including a large proportion of pristine wetlands. We present the full bacteriohopanepolyol 23 
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(BHP) inventory from a suite of tropical soils and, by comparison with other published data, 24 

propose some initial ideas on BHP distribution controls. Strong taxonomic controls on BHP 25 

production are evident in wetland sediments. 35-aminobacteriohopane-31,32,33,34-tetrol 26 

(aminotetrol) and 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) were 27 

dominant within the BHP suite, indicating aerobic methanotrophy. A small range and low 28 

mean relative abundance of 30-(5’-adenosyl)hopane (adenosylhopane) and related 29 

compounds collectively termed “soil marker” BHPs was observed in Congo soils (mean 17%, 30 

range 7.9-36% of total BHPs, n = 22) compared with literature data from temperate surface 31 

soils and Arctic surface soils (mean 36%, range 0-66% of total BHPs, n = 28) suggesting a 32 

greater rate of conversion of these BHP precursors to other structures.  33 

 34 
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1. Introduction 43 

Bacteriohopanepolyols (BHPs) are highly functionalised pentacyclic triterpenoids produced 44 

by many aerobic bacteria, as well as a number of obligate and facultative anaerobic bacteria 45 

(e.g. Rohmer et al., 1984; Sinninghe Damsté et al., 2004; Talbot et al., 2008; Eickhoff et al., 46 

2013). Only bacteria containing the gene encoding for squalene hopane cyclase (sqhC; 47 
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Ochs et al., 1992) are able to biosynthesise hopanoids. Biosynthesis of BHPs is believed to 48 

be limited to < 10% of all bacterial species in most communities (Pearson et al., 2007). The 49 

initial step in BHP synthesis is the cyclisation of squalene (controlled via the sqhC gene) with 50 

the addition of the hopanoid side chain (via the hpnH gene) and leading to the production of 51 

30-(5’-adenosyl)hopane (adenosylhopane; 1a; Fig. 1; Bradley et al., 2010). It is believed that 52 

all hopanoid producing bacteria synthesise adenosylhopane as a BHP precursor compound, 53 

however, few hopanoid producers have been observed accumulating adenosylhopane and 54 

only one species has been found to contain the related compound adenosylhopane type 2 55 

(1c) (e.g. Talbot et al., 2007 and references therein; van Winden et al., 2012a). All species in 56 

which adenosylhopane has been identified were also found to contain a range of other BHPs 57 

including bacteriohopane-32,33,34,35-tetrol (BHT), 35-aminobacteriohopane-32,33,34-triol 58 

(aminotriol) or both (Talbot et al., 2007a, 2008; van Winden et al., 2012b). These and other 59 

BHPs are formed following cleavage of the adenine moiety (Bradley et al., 2010; Liu et al., 60 

2014), however, it is currently unknown, why accumulation of adenosylhopane only occurs in 61 

terrestrial systems (soils in particular), and not in marine sediments. This suggests that the 62 

function of adenosylhopane is not restricted to that of a biosynthetic precursor or it would 63 

likely accumulate in all settings. 64 

While many BHPs have been identified as having multiple bacterial sources, for example 65 

BHT (1b; Fig 1; e.g. Talbot et al., 2008 and references therein), some have only a few 66 

sources and can be linked to specific biogeochemical processes. Adenosylhopane (1a) and 67 

related compounds, including C-2 methylated homologues (2a, 1c, 2c, 1d and 2d), have 68 

been suggested to be biomarkers for soil organic carbon (OC) transport (Cooke et al., 2008b, 69 

2009; Zhu et al., 2011; Doğrul Selver et al., 2012, 2015). Another group of diagnostic 70 

markers are those produced by aerobic methane oxidising bacteria (methanotrophs) 71 

including 35-aminobacteriohopane-31,32,33,34–tetrol (aminotetrol; 1e); 35-72 

aminobacteriohopane-30,31,32,33,34-pentol (aminopentol; 1f), unsaturated aminopentol 73 
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(4/5f) and aminopentol isomer (1f’; e.g. Talbot and Farrimond, 2007; Zhu et al., 2010; van 74 

Winden et al., 2012b; Berndmeyer et al., 2013; Talbot et al., 2014). 75 

BHP signatures in the geological record are thought to reflect changes in microbial 76 

communities at the time of deposition, with multiple factors controlling their distribution. For 77 

example, Wagner et al. (2014) suggests aminopentol in sediments dating back 30 Ka from 78 

the Amazon fan, are derived from the Amazon catchment with fluctuations in concentration 79 

reflecting persistent export of biomarkers from wetlands followed by reworking of sediments 80 

within the marine environment. An investigation of suspended particulate matter (SPM) 81 

along a tropical river-ocean water column transect also suggested that terrigenous organic 82 

matter (OM) exported to marine sediments could provide a significant contribution to the 83 

marine sedimentary hopanoid inventory (Sáenz et al., 2011). Therefore in coastal marine 84 

environments well constrained modern terrestrial BHP end members are required to facilitate 85 

reliable interpretation of sedimentary BHP profiles. 86 

Studies of soil BHP distributions have focussed mainly on Northern Hemisphere sites 87 

(Cooke et al., 2008a; Xu et al., 2009; Cooke, 2010; Rethemeyer et al., 2010; Kim et al., 2011) 88 

and found high concentrations of BHT (1b), aminotriol (1g) and bacteriohopanetetrol 89 

carbopseudopentose ether (BHT cyclitol ether; 1h), together with adenosylhopane (1a) and 90 

some or all of the related compounds 2a, 1c, 2c, 1d, 2d. In comparison, few studies detail 91 

the distribution of BHPs in modern tropical soils (Pearson et al., 2009; Wagner et al., 2014). 92 

Soils generally contain higher BHP concentration and greater structural diversity than 93 

lacustrine and marine sediments (Cooke et al., 2008b; Talbot and Farrimond, 2007; Coolen 94 

et al., 2008; Blumenberg et al., 2010; Zhu et al., 2011), with the exception of deep sea-fan 95 

sediments with very high terrestrial input (Handley et al., 2010; Wagner et al., 2014). For 96 

example Cooke et al., (2008a) reported high structural diversity and concentration of 97 

hopanoids in soils (up to 20 BHPs identified in two of four surface soils from the Northern 98 

UK), and Zhu et al. (2011) identified up to 20 BHP compounds in a soil from the Yangtze 99 
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River catchment. However, a recent study of two surface soils and three surface wetland 100 

sediments from the Amazon found the highest BHP concentrations and greatest structural 101 

diversity within wetland sediments (18 BHPs in sediments vs. 13 in the soils; Wagner et al., 102 

2014), suggesting wetlands as possibly a significant source of BHPs to shelf and fan 103 

systems. As tropical wetlands and soils are largely understudied, large uncertainty in BHP 104 

end members likely exists.  105 

The Congo basin consists of a large contrast in tropical environments with humid tropical 106 

rainforest, extensive wetlands and savannah environments (Spencer et al., 2012, 2014). 107 

Previous work on sediments from the Congo fan suggests terrigenous OC input as an 108 

important source of BHPs in these coastal marine sediments (Cooke et al., 2008b; Talbot et 109 

al., 2014). In this study we have determined the BHP inventory of 22 soils and 6 wetland 110 

sediments (Malebo pool) from the Congo hinterland and 1 estuarine sediment from the 111 

mouth of the Congo River (Fig. 2). We discuss the application of BHPs as biomarkers for soil 112 

OC transport and biogeochemical cycling and review the significance of the distributions in 113 

the context of reported soil BHP data. 114 

 115 

2. Material and methods 116 

2.1. Site location and sample description 117 

The sediment from the estuary of the Congo River (‘Anker 24’) was taken as a grab sample 118 

(Eisma et al., 1978) and stored as dried sediment before analysis. Additional lipid data have 119 

been published (Schefuß et al., 2004). 120 

Details of the soil and Malebo pool sample collection have been reported (Talbot et al., 121 

2014). Briefly, soil samples were collected from 22 sites spanning a wide range of land cover 122 

types, ranging from scrub savannah and grasslands, secondary forest and pristine tropical 123 

mixed forest, to seasonally flooded and swamp forest environments within the Congo Basin 124 

(Fig. 2). Surface soil samples (0-5 cm) were collected in November 2010 and August 2011. 125 
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Sites were ca. 5-30 m from nearby streams and rivers. Samples were wrapped in clean Al 126 

foil, shipped to Newcastle University (UK) within three weeks of collection and, stored frozen 127 

on arrival and freeze dried and ground prior to lipid extraction. 128 

Malebo Pool floodplain wetland sediments were collected along a transect at three sites 129 

encompassing permanently flooded sediment, sediment inundated during high discharge 130 

months only and sediment from above the seasonal high water point (Fig. 2). At each of the 131 

sites sediment was collected at two distinct depths (0-5 cm and 5-15 cm), i.e. a surface and 132 

sub-surface sample. Samples were immediately frozen and shipped to Newcastle University 133 

(U.K.).  134 

2.2. pH 135 

The pH was measured following the standard method described in BS ISO 10390 (2005). 136 

Briefly 5 ml soil were shaken with 25 ml water for 1 h and the resulting soil-water suspension 137 

left to equilibrate for 1 to 3 h. The pH of the suspension was measured using a pH electrode 138 

(VWR 662-1761; combination double junction with BNC connector ATC temperature probe, 139 

Dutscher Scientific, part no. 027-017) and meter (Jenway 3020, serial no. 2539), calibrated 140 

using standard buffer solutions of pH 4 and 7. 141 

2.3. Total OC (TOC) 142 

TOC (%) of the soils and Malebo Pool samples was measured at Newcastle University. 143 

Approximately 0.1 g of sample was treated with 4 mol/L HCl (60-70 °C) for removal of 144 

inorganic carbon. Following which, HCl was allowed to drain from each sample. Deionised 145 

water was added to each sample to neutralise the acid and allowed to drain. The samples 146 

were then dried in an oven at 65 °C for between 16 and 24 hours. TOC was measured using 147 

a LECO CS244 Carbon/Sulfur Analyser. Precision based on repeat sample analysis was 148 

4.5 % (relative standard deviation). Accuracy based on repeated measurements of a 149 

standard reference material (Chinese stream sediment, NCS DC 73307; LGC, Teddington, 150 

UK) was within the permissible ± 0.05 % TOC. An instrument calibration standard (Carbon in 151 
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steel, part no 501-506, Leco) was analysed and was found to be within the nominal 0.8% 152 

permissible range.  153 

2.4. Lipid extraction 154 

Freeze-dried samples (ca. 3 g) were extracted using a modified Bligh and Dyer method as 155 

described by Cooke et al. (2008a). Material was extracted in a Teflon centrifuge tube with 156 

addition of a monophasic solution of water/MeOH/CHCl3 (4:10:5, v/v). The mixture was 157 

sonicated at 40 °C for 1 h followed by shaking at room temperature for 2-4 h. The mixture 158 

was then centrifuged at 12,000 rpm for 15 min and the supernatant transferred to a second 159 

centrifuge tube. This process was repeated 3 times. The decanted supernatant was phase 160 

separated using CHCl3 (5 ml) and water (5 ml). The tubes containing the supernatants were 161 

centrifuged for 5 min to complete the separation of the organic (CHCl3) and MeOH/water 162 

phases. The combined organic (CHCl3) fraction was transferred to a round bottomed flask 163 

and rotary evaporated to near dryness. The extract was transferred to a glass vial using a 164 

solution of warm (ca. 50°C) CHCl3/MeOH (2:1, v/v). The total lipid extract (TLE) was 165 

evaporated to dryness under a stream of N2. A 5α-pregnane-3β,20β-diol internal standard 166 

was added (0.236 µg/µl) and the TLE split into 3 equal aliquots following dilution with 5 ml 167 

CHCl3/MeOH (2:1, v/v; heated at 50 °C for 10 min). 168 

2.5. BHP analysis 169 

One third of the TLE was used for BHP analysis: the aliquot was evaporated to dryness 170 

under N2 and acetylated by adding Ac2O (1 ml) and pyridine (1 ml). This aliquot was then 171 

heated for 1 h (50 °C) and left at room temperature overnight. The Ac2O and pyridine were 172 

removed under a stream of N2 and the resulting acetylated extract was dissolved in 1 ml 173 

MeOH/propan-2-ol (3:2, v/v). 174 

BHP analysis was performed by reversed phase high performance liquid chromatography-175 

atmospheric pressure chemical ionisation-mass spectrometry (HPLC-APCI-MSn) using a 176 

ThermoFinnigan surveyor HPLC system fitted with a Phenomenex Gemini C18 column (150 177 
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mm; 3.0 mm i.d.; 5 μm particle size) and a security guard column cartridge of the same 178 

material coupled to a Finnigan LCQ ion-trap mass spectrometer equipped with an APCI 179 

source operated in positive ion mode. Chromatographic separation was accomplished at 180 

30 °C at 0.5 ml/min with the following solvent gradient: 90% MeOH, 10% H2O (0 min); 59% 181 

MeOH, 1% H2O, 40% propan-2-ol (at 25 min); isocratic to 45 min returning to the starting 182 

conditions in 5 min and stabilising for 10 min. APCI was achieved at 155 °C capillary 183 

temperature and 490 °C APCI vaporiser temperature with a corona discharge current of 8 184 

μA, and sheath and auxiliary gas flow of 40 and 10, respectively (arbitrary units). MSn 185 

analysis was carried out in data-dependent mode with three scan events: SCAN 1: full 186 

spectrum, m/z 300–1300; SCAN 2: data-dependent MS2 spectrum of most intense ion from 187 

SCAN 1; SCAN 3: data-dependent MS3 spectrum of most intense ion from SCAN 2. 188 

Detection was achieved at an isolation width of m/z 5.0 and fragmentation with normalised 189 

collision dissociation energy of 35% and an activation Q value (parameter determining the 190 

m/z range of the observed fragment ions) of 0.15. Semi-quantitative estimation of BHP 191 

concentration was achieved employing the characteristic base peak ion areas of individual 192 

BHPs in mass chromatograms (from SCAN 1) relative to the m/z 345 mass chromatogram 193 

base peak area of the acetylated 5α-pregnane-3β,20β-diol internal standard. Averaged 194 

relative response factors relative to the internal standard, determined from a suite of 195 

acetylated BHP standards, were used to adjust the BHP peak areas (see van Winden et al., 196 

2012b). Typical error in absolute quantification was ± 20%, based on selected replicate 197 

analyses and BHP standards of known concentration (Cooke, 2010; van Winden et al., 198 

2012b). 199 

2.6. Compound classification and statistics 200 

The abbreviated names of the compounds, characteristic base peak ions (m/z) and structure 201 

numbers are given in Table 1. The term tetrafunctionalised compounds refers to BHPs with 202 

four functional groups at the C-32, C-33, C-34 and C-35 positions (Fig. 1). 203 
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Pentafunctionalised compounds have an additional fifth functional group at C-31 and 204 

hexafunctionalised compounds have 2 additional functional groups at C-30 and C-31. 205 

BHPs diagnostic for soil OC input (hereafter “soil marker BHPs”) include adenosylhopane 206 

(1a), C-2 methylated adenosylhopane (2a), adenosylhopane type 2 (1c) C-2 methylated 207 

adenosylhopane type 2 (2c), adenosylhopane type 3 (1d) and its C-2 methylated homologue 208 

(2d). The structure of the terminal functional groups in adenosylhopane type 2 and type 3 209 

remain to be elucidated, so assignment of these compounds is based on retention time and 210 

comparison of APCI mass spectra with published data (Cooke et al., 2008a; Rethemeyer et 211 

al., 2010). 212 

The Rsoil index (as defined by Zhu et al., 2011) was calculated according to the relative 213 

concentrations of BHT (1b) and all soil marker BHPs. The R’soil index was later proposed as 214 

an alternative index excluding methylated homologues for settings where the C-2 methylated 215 

soil marker BHPs were infrequently/intermittently present (Doğrul Selver et al., 2012) and is 216 

calculated according to the relative concentrations of BHT (1b) and adenosylhopane (1a), 217 

adenosylhopane type 2 (1c) and adenosylhopane type 3 (1d).  218 

Rsoil index = (1a + 2a + 1c + 2c + 1d + 2d)/(1a+ 2a+ 1c + 2c + 1d+ 2d+ 1b) 219 

R’soil index = (1a + 1c + 1d)/(1a + 1c + 1d + 1b) 220 

AminoBHPs include aminotriol (1g), unsaturated (4/5g) and methylated aminotriol (2/3g),  221 

aminotetrol (1e) and unsaturated aminotetrol (4/5e), and aminopentol (1f), unsaturated (4/5f) 222 

and aminopentol isomer (1f’; van Winden et al., 2012a). BHPs diagnostic for aerobic 223 

methane oxidation (hereafter referred to as “CH4 oxidation markers”) include aminotetrol (1e), 224 

aminopentol (1f), unsaturated (4/5f) and aminopentol isomer (1f’; van Winden et al., 2012a). 225 

The data were found to have a non-parametric distribution and were not mathematically 226 

transformed prior to statistical analysis. Spearmans rho (rs) was calculated using IBM SPSS 227 

statistics version 21 software. Strong correlation between two variables would result in an rs 228 
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value of 0.9 and above. Subsurface sediment samples (PS 5-15; RE 5-15; EF 5-15) were 229 

excluded from statistical analysis as all other samples were surface samples. The estuary 230 

sample and one surface wetland sample (RE 0-5) were also excluded from statistical 231 

analysis due to the small sample size, so pH data could not be obtained for either sample. 232 

 233 

3. Results  234 

3.1. TOC and soil pH 235 

TOC and soil pH values are presented in Table 2. TOC ranged from 0.23-6.11% in the soils 236 

and 1.10-2.68 % in wetland sediment samples; pH ranged from 3.09-5.75 for soils and 4.27-237 

4.8 for wetland sediments (not measured for recently exposed sediment 0-5 and the estuary 238 

sample due to insufficient sample material). 239 

3.2. BHPs in Congo soils 240 

A total of 35 BHPs were detected within 22 tropical soils from the Congo hinterland, 241 

including tetra-, penta- and hexafunctionalised compounds as well as those with a cyclised 242 

side chain (Table 3 and 4). Aminotriol (1g) and BHT cyclitol ether (1h) are the dominant 243 

compounds in most of the soil samples (36-68% of aminotriol and BHT cyclitol ether in total 244 

BHPs). C-2 and C-3 methylated BHpentol cylitol ethers (2i and 3i) and BHhexol cyclitol (2j 245 

and 3j) ethers were also found in the soil samples, though present as minor components 246 

(Table 3 and 4).  247 

Aminopentol (1f) was present as a minor component of the BHP suite, with a concentration 248 

ranging from 0.92-47µg/g TOC within six soils. However, aminopentol was found in high 249 

concentration (260 µg/g TOC) and high relative abundance (8.8% of total BHPs) in one 250 

outlier soil (closed evergreen lowland forest sample (CELF) C18B). 251 

The distribution of individual soil marker BHPs varied across the 22 soils, with 252 

adenosylhopane (1a) consistently being the most abundant of the soil marker BHPs with a 253 
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concentration ranging from 33-800 µg/g TOC. Mosaic forest/ cropland (MF) C8B was the 254 

only soil where ‘adenosylhopane type 2’ (1c) was the most abundant soil marker BHP. C-2 255 

methylated adenosylhopane (2a), ‘adenosylhopane type 2’ and C-2 methylated 256 

‘adenosylhopane type 2’ (2c) were present in all the soils with ‘adenosylhopane type 3’ (1d) 257 

found in all samples except swamp bushland and grassland C38B (SB C38B), CELF C27B 258 

and Gilbertiodendron forest (GF 9-1). C-2 methylated ‘adenosylhopane type 3’ (2d) was 259 

found only intermittently (Table 3 and 4). Soil marker BHPs ranged from 10-36% within the 260 

forest soils (n=16) and 7.9-36% of total BHPs within the savannah/grassland samples (n=6). 261 

Rsoil and R’soil indices were calculated for the 22 Congo soils (see Section 2.6 for definition). 262 

Rsoil and R’soil indices ranged from 0.58-0.92 (avg. 0.77) and 0.48-0.91 (avg. 0.74) 263 

respectively (Table 2). 264 

3.3. BHPs in wetland sediments 265 

A total of 19 BHPs were found in the 6 wetland sediments. BHP concentration within the 266 

wetland samples ranged between 4300 µg/g TOC (recently exposed surface and sub-267 

surface sample, RE 0-5 and RE 5-15) and 7500 µg/g TOC (permanently submerged sub 268 

surface sample, PS 5-15). Aminopentol (1f) and adenosylhopane (1a) were the dominant 269 

BHPs along with BHT cyclitol ether (1h) and aminotriol (1g) (Table 3). The wetland 270 

sediments also contained other CH4 oxidation markers, including aminotetrol (1e), 271 

aminopentol isomer (1f’) and unsaturated aminopentol (4/5f: reported by Talbot et al., 2014; 272 

Table 5). 273 

Concentration of soil marker BHPs ranged from 620 µg/g TOC (exposed with occasional 274 

flooding sub surface sample; EF 5-15) to 1100 µg/g TOC (PS 5-15). Relative abundance of 275 

soil marker BHPs ranged from 11-17% of total BHPs. Rsoil index ranged from 0.61-0.66 (avg. 276 

0.63; Fig. 3) and the R’soil index from 0.59-0.62 (avg. 0.60) (Table 2). 277 
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3.4. Estuarine sediment 278 

The estuarine sample had low BHP diversity, with only 12 BHP compounds and a total BHP 279 

concentration of 1400 µg/g TOC (Table 5). Aminopentol and adenosylhopane were 280 

dominant (Table 5). Adenosylhopane was the only soil marker BHP, at 81 µg/g TOC (relative 281 

abundance 6% of total BHPs); Rsoil index was 0.20. 282 

 283 

4. Discussion 284 

4.1. BHP distributions  285 

The soils were dominated by non-source specific BHPs (Tables 3-5). Greater BHP diversity 286 

was found within soils vs. the wetland and estuarine samples, consistent with other studies 287 

(e.g. Pearson et al., 2009; Zhu et al., 2011). BHT cyclitol ether (1h) was one of the most 288 

dominant BHPs in the soils, wetlands and the estuarine sediments. Studies have shown that, 289 

within surface soils where aerobic methane oxidation (AMO; as indicated by aminopentol; 1f) 290 

is not a dominant process, aminotriol (1g), BHT cyclitol ether, BHT (1b) and adenosylhopane 291 

(1a) are usually the dominant compounds (Cooke et al., 2008a; Pearson et al., 2009; Cooke, 292 

2010; Zhu et al., 2011). Low concentrations of anhydroBHT (1m), ribonylhopane (1k) and 293 

BHT-pseudopentose (methylated, 2l and non-methylated, 1l) were also present in the soils 294 

(Tables 3 and 4); however, these compounds are not discussed further due to their 295 

intermittent occurrence and typically low concentration. 296 

4.2. Soil marker BHPs 297 

A range of soil marker BHP relative abundance was observed for soils (7.9-36% of total 298 

BHPs) and wetland sediments (11-17% of total BHPs; Fig. 4). However, the Congo soils had 299 

a low mean soil marker BHP abundance of 16% for forest soils (n=16) and 19% for 300 

savannah/field soils (n=6) compared with samples from other studies (Table 6). Surface soils 301 

from temperate regions show a wider range of soil marker BHP relative abundance (0-66%; 302 

Cooke et al., 2008; Xu et al., 2009; Rethemeyer et al., 2010; Kim et al., 2011; Zhu et al., 303 
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2011; n = 28) than that for tropical surface soils (7.9-36%; Pearson et al., 2009; Wagner et 304 

al., 2014; this study; n = 25) and tropical wetlands (2.6-17%; surface and subsurface 305 

samples; Wagner et al., 2014; this study; n = 11; Table 6). The difference could be due to 306 

local environmental parameters. For example, pH is known to affect BHP distributions 307 

(concentration normalised to TOC and relative abundance) in environmental samples (Kim 308 

et al., 2011) and in laboratory culture experiments where changes in the amount and/or type 309 

of BHPs produced are reported (Poralla et al., 1984; Welander et al., 2009; Schmerk et al., 310 

2011). pH did not correlate with soil marker BHP concentration (µg/g TOC; rs -0.600, p 311 

0.002), Rsoil (rs -0.203, p 0.341) or R’soil (rs -0.266, p 0.209). This suggests pH is not a key 312 

factor influencing soil marker BHP distributions in our samples; however, it should be noted 313 

that the soils here were from a narrower pH range (3.09-5.75) than those in the Kim et al. 314 

(2011; pH 4.6-8.9) study. 315 

4.2.1. Rsoil and R’soil 316 

These indices have been proposed as soil OM input proxies that use adenosylhopane and 317 

related compounds as indicators of soil OC and BHT as a pseudo marine end member as it 318 

is found in both soils and open marine sediments (Zhu et al., 2011; Doğrul Selver et al., 319 

2012, 2015). As the relative changes in Rsoil vs R’soil are the same within the Congo soils and 320 

sediments, only Rsoil will be discussed. There was a wide range of Rsoil values for the Congo 321 

forest and savannah/field soils, with a smaller range for the wetland samples (Fig. 3). While 322 

there was a clear difference in Rsoil index between the catchment and the estuary, Rsoil did 323 

not distinguish between the catchment sub-environments (Fig. 3). Data collated from 324 

previous tropical BHP studies show Rsoil ranging from 0.43-0.83 for tropical soils (Pearson et 325 

al., 2009; Wagner et al., 2014; n = 3) and 0.27-0.68 (Rsoil) for Amazon wetlands (Wagner et 326 

al., 2014; Table 4; Fig. 3; n = 5). Arctic and temperate surface soils also show a wide range 327 

of Rsoil values from 0-0.85 (n = 28; Cooke et al., 2008a; Xu et al., 2009; Kim et al., 2011; 328 

Rethemeyer et al., 2010; Zhu et al., 2011; Table 6; Fig. 3). These results suggest that there 329 

is no globally consistent pattern in the Rsoil index, application of this proxy being strongly 330 
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dependent on local end members (Zhu et al., 2011). The Rsoil index for the Congo samples 331 

correlated weakly with the concentration of BHT (Rsoil rs -0.616, p 0.001; µg/g TOC) but not 332 

with total soil marker BHP concentration (Rsoil rs -0.092, p 0.671; µg/g TOC).  333 

The Rsoil (Zhu et al., 2011; Doğrul Selver et al., 2012) and GDGT based BIT (Hopmans et al., 334 

2004) indices have both been proposed as proxies for soil OC transport. Previous analysis 335 

of surface sediments from river-estuary-shelf/ocean transects have identified correlation 336 

between Rsoil and BIT indices (Zhu et al., 2011; Doğrul Selver et al., 2012; 2015. Other 337 

studies, however, have not found any correlation between soil marker BHP concentrations or 338 

the Rsoil /R’soil and BIT indices (Kim et al., 2011; Wagner et al., 2014). The absence of 339 

correlation between these two proxies in terrestrial sources materials (soils, peat) is not 340 

unexpected, however, as it is well established that soil BHP distributions contain variable 341 

concentrations of the pseudo-marine endmember BHT (e.g. Cooke et al., 2008; Xu et al., 342 

2009; Rethemeyer et al., 2010; Kim et al., 2011) whilst most soils contain little if any 343 

crenarchaeol (the marine endmember for the BIT index; Schouten et al., 2013). This is a 344 

prominent issue with using BHT as a marine end member in soil OM proxies. Furthermore, 345 

relatively little is known about possible marine sources of BHT other than some species of 346 

sulfate reducing bacteria (e.g. Blumenberg et al., 2006). Lack of correlation between these 347 

two proxies in certain environments could be due to (1) terrestrial end member biomarkers 348 

synthesised by microbial organisms living in different environmental niches, for example at 349 

different depths in the soil profile (Kim et al., 2011); and (2) variation in (post-depositional) 350 

degradation of terrestrial end member biomarkers due to the differences in compound 351 

reactivities (e.g. Zhu et al., 2013). As BHT and adenosylhopane have different reactivity and 352 

therefore may degrade at different rates upon deposition (e.g. Cooke et al., 2008; Handley et 353 

al., 2010), this suggests, at least in some settings, that the Rsoil could instead be used to 354 

describe relative rates of degradation. 355 
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4.3. Biomarkers for aerobic methane oxidation  356 

Aminopentol (1f) is a biomarker for type I methanotrophs (Neunlist and Rohmer, 1985; 357 

Rohmer et al., 1984; Cvejic et al., 2000; Talbot et al., 2001; Coolen et al., 2008; van Winden 358 

et al., 2012a) with only one report of a non-methanotroph source, a species of Desulfovibrio 359 

sulfate reducing bacterium which had an extremely low concentration of aminopentol when 360 

grown in pure culture (Blumenberg et al., 2012). Concentrations of CH4 oxidation markers 361 

(see Section 2.6 for definition; 1e, 1f, 4/5f, 1f’) varied throughout the samples here. High 362 

concentrations and relative abundances were present in the wetland samples, where 363 

aminopentol was the second most dominant BHP after BHT cyclitol ether (1h), confirming 364 

the occurrence of AMO (Table 6). The presence of CH4 oxidation marker signatures 365 

suggests wetland environments as likely sources of these biomarkers in Congo fan 366 

sediments (Talbot et al., 2014) and therefore as sites of intense AMO within both modern 367 

and past climate phases. The data also agree with recent investigations of BHP signatures 368 

within the Amazon where Wagner et al. (2014) suggest wetland type environments as 369 

source areas for BHP CH4 oxidation marker signatures. Thus, our Congo study is the 370 

second to document such a high abundance of CH4 oxidation markers within tropical 371 

wetland samples (Fig. 4), suggesting that this might be a more general feature of tropical, 372 

and possibly other wetlands. This contrasts with the soil samples where aminotetrol was the 373 

most dominant CH4 oxidation marker, but only a minor compound in the BHP suite overall 374 

(Table 3, 4 and 6). This was unexpected as 2 soils were sampled within an area of methane 375 

producing land cover (Fig. 2; swamp forest 11-1; tropical mixed forest 12-1), suggesting 376 

AMO should be a significant and readily identifiable from the BHP biomarker suite. Low 377 

levels of aminopentol and/or aminotetrol in soil samples could be due to low AMO activity in 378 

such samples. Alternatively, soil samples could have been collected when the oxic-anoxic 379 

boundary was shallowest. A study by van Winden et al. (2012a) found CH4 oxidation 380 

markers in peatlands, specifically at the oxic-anoxic boundary where AMO is thought to 381 

occur. Additionally, Henckel et al. (2001) found that AMO increases during the drying out of 382 
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methane-producing wetland type environments, presumably due to the extension of the oxic-383 

anoxic boundary. Lastly, the apparent lack of CH4 oxidation markers in the soil samples 384 

could be due to a lack in our understanding of the source organisms of aminopentol and 385 

related compounds. Although many Type I methanotrophs make aminopentol as a dominant 386 

membrane component, followed by minor amounts of aminotetrol and aminotriol, other Type 387 

II methanotroph and at least one Type I methanotroph, Methylomicrobium album, 388 

membranes are dominated by aminotetrol and aminotriol (e.g. Talbot et al., 2001; van 389 

Winden et al., 2012b and references therein).  390 

4.4. BHP reservoirs 391 
The Congo River drains the second largest basin in the world (~3.7 x 106 Km2). Soil derived 392 

OM is an important component of sediments deposited on the Congo fan (Holtvoeth et al., 393 

2005). The organic fraction of ODP 1075 sediments relates to strongly degraded SOM of old 394 

highly developed, Kaolinite-rich feralitic soils (Oxisols) that cover large areas of the Congo 395 

river basin (Holtvoeth et al., 2005). The OC from the soils analysed in this study is 396 

transported through the Congo River and deposited in Malebo pool (Hughes et al., 2011; 397 

Spencer et al., 2012). Previous work has shown that OM exported from Malebo Pool is 398 

geochemically similar to OM at the head of the estuary (ca. 350 km downstream) and no 399 

major tributaries join the Congo River between this site and the Atlantic Ocean (Spencer et 400 

al., 2012).Similarity between the spread in Rsoil indices for the soils and Malebo pool (Fig. 3) 401 

further suggests that BHPs are also subject to this transport mechanism. Due to the position 402 

of Malebo pool in the Congo River, OM and therefore BHPs signatures in the wetlands are 403 

representative of BHPs from the Congo watershed (Hughes et al., 2011; Spencer et al., 404 

2012). Therefore, a terrestrial Rsoil endmember of 0.63 (Malebo pool mean; Table 6) is 405 

representative of fluvially transported soils within the Congo watershed in combination with 406 

BHPs produced in Malebo Pool. Sediments deposited at Malebo pool are flushed into the 407 

estuary and then on to the Congo shelf and fan. As only one grab sample from the estuary 408 

was analysed in this study, the reported Rsoil value of 0.2 (Table 6) may not represent the 409 
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true mean of the Congo estuary. However, BHT and adenosylhopane concentrations for 410 

ODP 1075 have previously been reported by Handley et al. (2010). Calculation of the Rsoil 411 

index for sediments between 10 and 100 Ka (n = 27; Appendix II) show the Rsoil index for the 412 

estuary is within the range of 0.16-0.54 (interglacial 0.16-0.54; glacial 0.21-0.52) for ODP 413 

1075 sediments (Fig. 3). The mean Rsoil index for ODP 1075 is 0.37 which is approximately 414 

half of the terrestrial end-member of Malebo pool, suggesting, that soil OM is a significant 415 

contributor to marine OM. This is in accordance with other studies from the Congo deep-sea 416 

fan. Holtvoeth et al. (2003) used a binary mixing model approach to determine that between 417 

18 and 61% of bulk OM in ODP 1075 is of continental origin. Similarly, Weijers et al. (2009) 418 

used a 3 end-member mixing model to determine that between 38 and 52 % of OC within 419 

GeoB 6518-1 is of terrestrial (soil) origin.  420 

Furthermore, strong similarities are found between the distribution of BHPs identified in the 421 

soils, wetlands, estuarine and ODP 1075 samples (Fig. 5 a,b). A suite of common BHPs are 422 

identified in the forest and savannah/field soils, and the wetlands, with more than half of the 423 

BHPs identified in the hinterland soils also identified in the wetlands. In addition, the 424 

common BHPs identified in the hinterland soils and the wetlands represent a major 425 

component of the soil BHP profile, contributing an average of 88% (forests) and 94% 426 

(savannah/field) of total BHPs (based on concentration; Fig. 5a). Lower BHP diversity is 427 

reported for samples from the Congo fan (Handley et al., 2010; Talbot et al., 2014) with 428 

many of the methylated and pentose compounds below detection limit. Between 7 and 10 of 429 

the 12 BHP compounds identified in ODP 1075 are also found in the wetlands and soils, and 430 

are again a major component of all of the BHP profiles representing over 90% of the total 431 

BHPs found in the wetland and estuary samples (Fig. 5b). Strong similarities between BHPs 432 

identified in the Congo hinterland and wetland samples and those identified in ODP 1075 433 

suggests a link between BHP reservoirs. High concentrations of aminotetrol and 434 

aminopentol (including aminopentol isomer and unsaturated aminopentol) found in ODP 435 

1075 sediments have previously been linked to fluvial transport of these biomarkers to the 436 
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Congo fan from Malebo pool and potentially similar wetlands (Talbot et al., 2014) with similar 437 

mechanisms also reported in the Amazon (Wagner et al., 2014). Due to the ubiquitous 438 

nature of BHT, aminotriol, BHT-, BHpentol and BHhexol cyclitol ether it is likely that the 439 

source of these compounds in the Congo fan will be both marine and terrestrial derived. The 440 

notable absence of methylated and unsaturated BHPs from ODP 1075 which represent no 441 

more than 18% of total BHPs in the soils and wetland sediments, is likely due to a dilution 442 

effect. 443 

4.5. Trends in global BHP distribution 444 

The data presented here suggest that BHP relative abundance may be controlled by large 445 

scale climate trends. Within the soils and wetlands from the Congo Basin, a narrow range in 446 

soil marker BHP relative abundance (7.9-36% of total BHPs) and tetrafunctionalised BHP 447 

relative abundance (52-81% of total BHPs) was observed (Fig. 4). The range is much 448 

smaller in comparison with studies from other less stable climatic zones, where surface soil 449 

marker BHP relative abundance varies between 0% and 66% of total BHPs and 450 

tetrafunctionalised BHP relative abundance varies between 34% and 100% of total BHPs 451 

(Cooke et al., 2008; Xu et al., 2009; Rethemeyer et al., 2010; Kim et al., 2011; Fig. 4). 452 

Additionally, the mean soil marker BHP relative abundance for Congo soils (17%) is lower 453 

than that for temperate soils from northern and eastern Europe (28%; Cooke et al., 2008; 454 

Redshaw et al., 2008). High relative abundance of soil marker BHPs are found in soils from 455 

polar climates, with values between 27% and 55% of total BHPs for Svalbard (Rethemeyer 456 

et al., 2010) and 69-82% for surface and subsurface Yedoma permafrost from Siberia 457 

(Doğrul Selver et al., 2015). Xu et al. (2009) also observed abundances ranging from 35-52% 458 

of total BHPs in Alberta (Canada).  459 

The differences may suggest that the main factors controlling BHP distributions in tropical 460 

climate zones are different from those from temperate and polar climate zones. Kim et al. 461 

(2011) found mean annual air temperature (MAAT) and precipitation to influence soil marker 462 
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BHP distribution in samples from the Mediterranean Têt watershed. Soils from the 463 

watershed were collected along a transect with strong environmental contrasts in altitude, 464 

MAAT, precipitation and a wide pH range, including some low pH peat samples. Kim et al. 465 

(2011) found that the lowest relative abundance of adenosylhopane (the dominant soil 466 

marker BHP) occurred at low altitude where MAAT was high, pH more alkaline and 467 

precipitation lowest. This could suggest that, during BHP synthesis, adenosylhopane (an 468 

intermediate in hopanoid biosynthesis; Bradley et al., 2010) is converted to other BHPs 469 

when environmental conditions are favourable for microbial activity (e.g. warmer).  470 

The relationship between the structural diversity of BHPs and the role of these compounds 471 

within bacterial cells has not been fully elucidated. However, Poger and Mark (2013) suggest 472 

that BHPs may have a broader range in functionality within cell membranes than sterols 473 

within eukaryotes. Additionally, BHPs may be involved in a response to environmental stress 474 

(e.g. Kulkarni et al., 2013). The difference in BHP distributions between climate zones (Fig. 4) 475 

could suggest that, in addition to pH, environmental parameters such as seasonal 476 

temperature and precipitation may be important factors influencing BHP synthesis.  477 

 478 

5. Conclusions 479 

Up to 35 different BHPs were identified within 22 soils, 6 wetland and one estuarine 480 

sediment sample from the Congo. Dominant compounds in the soil and wetland samples 481 

were typically BHT, aminotriol and BHT cyclitol ether. However, BHP signatures produced by 482 

aerobic methane oxidising bacteria (including aminopentol and aminotetrol) were important 483 

within Malebo pool sediments and represented up to 26% of total BHPs. This indicates that 484 

taxonomic controls, in particular determining type and activity of aerobic methanotrophs, can 485 

be an important source of variability within the Congo samples.  486 

Soil marker BHP relative abundances in the soils and wetland sediments were very similar. 487 

However, their relative proportion in the Congo soils (mean, 16% of total BHPs in forest soils; 488 
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19% of total BHPs in savannah/field soils) was lower than values for temperate and Arctic 489 

surface soils calculated from the available literature data. Rsoil and R’soil indices for the soils 490 

show a large range of 0.58-0.92 and 0.48-0.91, respectively, with savannah/field samples 491 

typically showing greater variation than forest soils. This is in accord with other Rsoil and R’soil 492 

values calculated from the literature and reinforces the need for local end members to be 493 

determined before any interpretation of the index values is undertaken. 494 
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Figure Legends 689 

Fig. 1. Structures of BHPs in Congo samples. 690 

Fig. 2. Geographical locations of the study site in the Congo, showing the locations of 22 soil 691 

samples (circles), 6 floodplain wetland sediment samples (Malebo pool; triangle), the Congo 692 

estuary sediment sample (square) and ODP 1075 (star). The map is modified from Talbot et 693 

al. (2014) and was generated using the planiglobe beta online plotting service 694 

(http://www.planiglobe.com). 695 

Fig. 3. Box plots showing range of Rsoil values for soils and sediments including: forest soil 696 

(this study; n=16); savanna/Field soil (this study; n=6); estuary (this study; n = 1); Congo fan 697 

(ODP 1075) paleo sediments (Handley et al., 2010; n=27); wetland surface and subsurface 698 

sediment (this study; n=6); Amazon wetlands (surface and subsurface; Wagner et al., 2014; 699 

n=5); Amazon soil (Wagner et al., 2014; n = 2) San Salvador soils (Pearson et al., 2009; 700 

n=1); Têt watershed surface soils (Kim et al., 2011; n=12); East China soil (Zhu et al., 2011; 701 

n=3) Canadian surface soils (Xu et al., 2009; n=5); surface Permafrost (Rethemeyer et al., 702 

2010; n=6); Surface soils from Northern UK (Cooke et al., 2008; n=4). Further sample 703 

information can be found in the supplementary data I. 704 

Fig. 4. Ternary plot with relative abundance of tetrafunctionalised BHPs (%), sum of penta- 705 

and hexafunctionalised BHPs (%) and soil marker BHPs (%) in Congo soils (this study; n = 706 

22), Congo wetlands (this study; n = 6), Congo estuary sediment (this study; n = 1), Amazon 707 

wetlands (surface and subsurface; Wagner et al., 2014; n = 5); Amazon soil (Wagner et al., 708 

2014; n = 2) San Salvador soils (Pearson et al., 2009; n = 1); Têt watershed surface soils 709 

(Kim et al., 2011; n = 12); East China soil (Zhu et al., 2011; n = 3); Canadian surface soils 710 

(Xu et al., 2009; n = 5); surface Permafrost (Rethemeyer et al., 2010; n = 6); Surface soils 711 

from Northern UK (Cooke et al., 2008; n = 4). Further sample information can be found in the 712 

supplementary data I. 713 
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Fig. 5. a; Mean number of BHPs identified in forest and savannah/field samples in common 714 

with wetlands (presented as % of total number of BHPs present; error bar represents 1 715 

standard deviation) (white bars). Relative abundance of BHPs in forest and savannah/field 716 

samples in common with wetlands (black bars). b; Mean number of BHPs identified in forest, 717 

savannah/field, estuary and wetland samples in common with ODP 1075 (presented as % of 718 

total number of BHPs present; error bar represents 1 standard deviation) (white bars). 719 

Relative abundance of BHPs in forest, savannah/field, estuary and wetland samples in 720 

common with ODP 1075 (black bars).  721 

 722 

 723 

724 
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Table 1 Compounds in the samples and abbreviated names, structures and base peak (m/z) values. 725 

Compound Abbreviated name Structure Base peak 
m/z 

Assignment 

Anhydrobacteiohopanetetrol AnhdroBHT 1m 613 [M+H]+ 

Ribonylhopane Ribonylhopane 1k 627 [M+H]+ 

Bacteriohopane-32,33,34,35-tetrol BHT 1b 655 [M+H-CH3COOH]+ 

2-methylbacteriohopane-32,33,34,35-tetrol 2-methylBHT 2b 669 [M+H-CH3COOH]+ 

Bacteriohopane-30,31,32,33,34,35-hexol Bhhexol 1n 771 [M+H-CH3COOH]+ 

aminobacteriohopene-32,33,34-triol unsaturated aminotriol 4/5g 712 [M+H]+ 

aminobacteriohopane-32,33,34-triol aminotriol 1g 714 [M+H]+ 

2-methylaminobacteriohopane-32,33,34-triol 2-methylaminotriol 2g 728 [M+H]+ 

3-methylaminobacteriohopane-32,33,34-triol 3-methylaminotriol 3g 728 [M+H]+ 

35-aminobacteriohopene-31,32,33,34–tetrol unsaturated aminotetrol 4/5e 770 [M+H]+ 

35-aminobacteriohopane-31,32,33,34–tetrol aminotetrol 1e 772 [M+H]+ 

35-aminobacteriohopene-30,31,32,33,34-pentol unsaturated aminopentol 4/5f 828 [M+H]+ 

35-aminobacteriohopane-30,31,32,33,34-pentol aminopentol 1f 830 [M+H]+ 

35-aminobacteriohopane-30,31,32,33,34-pentol  isomer aminopentol isomer 1f’ 788 [M+H]+ 

30-(5’-adenosyl)hopane G1 1a 788 [M+H]+ 

2-methyl-30-(5’-adenosyl)hopane 2-Me G1 2a 802 [M+H]+ 

Adenosylhopane type 2 G2 1c 761 [M+H]+ 

2-methyladenosylhopane type 2 2-Me G2 2c 775 [M+H]+ 

Adenosylhopane type 3 G3 1d 802 [M+H]+ 

2-Methyladenosylhopane type 3 2-Me G3 2d 816 [M+H]+ 

Bacteriohopene-32,33,34,35-tetrol pseudopentose unsaturated BHTpentose 4/5l 941 [M+H-CH3COOH]+ 

Bacteriohopane-32,33,34,35-tetrol pseudopentose BHTpentose 1l 943 [M+H-CH3COOH]+ 

2-methylbacteriohopane-32,33,34,35-tetrol pseudopentose 2-methylBHTpentose 2l 957 [M+H-CH3COOH]+ 

Bacteriohopanetetrol carbopseudopentose ether BHT cyclitol ether 1h 1002 [M+H]+ 

2-methylbacteriohopanetetrol carbopseudopentose ether BHT cyclitol ether isomer 1h 1002 [M+H]+ 

Bacteriohopanetetrol carbopseudopentose ether 2-methylBHT cyclitol ether 2h 1016 [M+H]+ 

Bacteriohopanetetrol carbopseudopentose ether 3-methylBHT cyclitol ether 3h 1016 [M+H]+ 

Bacteriohopanetetrol carbopseudopentose ether glucosamine BHT glucosamine 1o 1002 [M+H]+ 

Bacteriohopanepentol carbopseudopentose ether BHpentol cyclitol ether 1i 1060 [M+H]+ 

Bacteriohopanepentol carbopseudopentose ether (isomer) BHpentol cyclitol ether (isomer) 1i 1060 [M+H]+ 

2-methylbacteriohopanepentol carbopseudopentose ether (isomer) 2-methylBHpentol cyclitol ether 2i 1074 [M+H]+ 

3-methylbacteriohopanepentol carbopseudopentose ether (isomer) 3-methylBHpentol cyclitol ether 3i 1074 [M+H]+ 

Bacteriohopane-30,31,32,33,34,35-hexol carbopseudopentose 
ether 

Bhhexol cyclitol ether 1j 1118 [M+H]+ 

Bacteriohopane-30,31,32,33,34,35-hexol carbopseudopentose 
ether (isomer) 

Bhhexol cyclitol ether (isomer) 1j 1118 [M+H]+ 

2-methylbacteriohopane-30,31,32,33,34,35-hexol 
carbopseudopentose ether 

2-methylBHhexol cyclitol ether 2j 1132 [M+H]+ 

3-methylbacteriohopane-30,31,32,33,34,35-hexol 
carbopseudopentose ether 

3-methylBHhexol cyclitol ether 3j 1132 [M+H]+ 
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 726 

 727 

Table 2 728 

Soil and sediment sample names, corresponding abbreviated names with TOC (%), pH, Rsoil 729 

and R’soil (nm, not measured). 730 

 
Sample Abbreviated name TOC 

(%) pH Rsoil R'soil 

Fo
re

st
 

Closed evergreen lowland forest CELF JP6 3.4 3.82 0.92 0.91 
Closed evergreen lowland forest CELF C6B 0.23 4.71 0.72 0.68 
Closed evergreen lowland forest CELF C17B 1.08 4.6 0.85 0.84 
Closed evergreen lowland forest CELF C18B 1.59 4.31 0.83 0.81 
Closed evergreen lowland forest CELF C19B 2.04 3.73 0.89 0.86 
Closed evergreen lowland forest CELF C27B 4.48 3.97 0.85 0.81 
Logged tropical mixed forest LTF 7-1 2.95 3.78 0.74 0.73 
Logged tropical mixed forest LTF 8-1 2.6 3.66 0.83 0.82 
Logged tropical mixed forest LTF 10-1 1.47 3.09 0.8 0.78 
Tropical mixed forest TMF 12-1 2.68 3.61 0.73 0.71 
Gilbertiodendron forest GF 9-1 6.11 3.81 0.7 0.69 
Swamp forest SF 11-1 2.51 3.72 0.8 0.78 
Tropical seasonally flooded forest TSFF 6-1 1.28 4.57 0.63 0.61 
Secondary forest in savanna-forest mosaic SFS 3-1 2.23 3.76 0.88 0.86 
Field in savanna-forest mosaic FSFM 4-1 1.23 4.72 0.64 0.6 
Mosaic Forest/Croplands MF C8B 0.71 4.74 0.84 0.82 
Swamp bushland and grassland SB C38B 1.26 5.21 0.87 0.83 

Sa
va

nn
ah

/F
ie

ld
 

Closed grassland CG C46B 2.05 5.07 0.8 0.73 
Savanna outside of BZV SBZV 1-1 0.36 5.75 0.65 0.6 
Scrub savanna SS 1-1 0.6 4.58 0.6 0.54 
Scrub savanna SS 5-1 1.17 3.98 0.58 0.48 
Field F 13-1 1.07 4.36 0.78 0.74 

W
et

la
nd

 

Permanently submerged sediment PS 0-5 1.34 4.27 0.63 0.59 
Permanently submerged sediment PS 5-15 1.32 4.53 0.65 0.62 
Recently exposed sediment RE 0-5 2.68 nm 0.63 0.59 
Recently exposed sediment RE 5-15 2.51 4.38 0.66 0.62 
Exposed floodplain with occasional submersion EF 0-5 1.1 4.47 0.63 0.6 
Exposed floodplain with occasional submersion EF 5-15 1.62 4.8 0.61 0.59 

 
Estuary Estuary 2.9 nm 0.2 0.2 
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Table 3 732 

Concentration (µg/g TOC) of bacteriohopanepolyols in 16 forest soils from the Congo (bdl, 733 

below detection limit). 734 

Structure 
CELF 
JP6 

CELF 
C6B 

CELF 
C17B 

CELF 
C18B 

CELF 
C19B 

CELF 
C27B 

LTF 
7-1 

LTF 
8-1 

LTF 
10-1 

TMF 
12-1 

GF 
9-1 

SF 
11-1 

TSFF 
6-1 

SFS 
3-1 

FSFM 
4-1 

MF 
C8B 

1m bdl bdl bdl bdl bdl bdl 10 5.0 6.1 8.7 5.3 10 20 bdl bdl bdl 
1k bdl bdl 8.0 6.1 6.2 2.0 11 19 15 8.6 20 16 12 5.6 5.4 bdl 
1b 22 34 55 64 71 30 230 190 210 130 270 210 390 79 180 55 
2b 13 4.1 18 24 42 11 81 130 130 45 160 63 52 46 26 15 
1n bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 

4/5g 96 28 92 55 270 69 70 66 110 35 21 240 110 16 22 240 
1g 940 270 740 720 1300 440 790 1600 1500 590 1300 770 730 340 540 1000 
2g 22 8.3 20 30 42 19 16 40 25 10 31 19 7.6 9 12 26 
3g 5.3 2.3 5.6 8.7 5.4 6.0 bdl 30 28 14 21 19 21 bdl 7.7 9.4 

4/5e bdl bdl bdl bdl 7.7 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 
1e 42 18 38 81 87 16 26 59 67 17 23 47 30 8.6 16 24 

4/5f 1.2 bdl bdl 13 1.9 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 
1f bdl 13 47 260 14 13 bdl bdl bdl bdl bdl bdl bdl bdl bdl 11 
1f’ bdl bdl bdl 55 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 
1a 200 59 180 170 300 69 570 800 700 290 540 580 520 380 230 120 
2a 19 8.0 13 15 37 2.9 35 69 52 17 34 53 37 52 25 13 
1c 20 8.7 95 100 130 56 35 28 44 22 48 130 55 91 20 130 
2c 4.8 4.8 17 24 60 37 5.9 8 10 5.8 12 48 15 19 15 10 
1d 5.5 5.1 10 6.1 16 bdl 17 27 19 12 bdl 22 24 16 22 8.9 
2d bdl 1.1 1.9 3.5 4.4 bdl 7.3 26 14 4.1 bdl bdl 12 6.9 14 5.6 
4/5l bdl bdl bdl bdl bdl bdl 33 57 68 19 35 27 58 15 38 bdl 
1l 24 10 26 28 20 15 86 100 120 44 130 30 110 16 30 27 
2l bdl bdl bdl bdl bdl bdl 30 100 26 26 96 bdl bdl bdl 35 bdl 
1h 260 250 270 970 740 400 870 1400 1500 530 1000 1400 1600 360 290 390 
1h 120 bdl 360 bdl 370 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 270 
2h 120 23 89 100 220 97 84 290 360 97 86 230 170 bdl bdl 120 
3h bdl 4.6 bdl 11 42 6.1 bdl bdl bdl bdl bdl bdl bdl bdl bdl 22 
1o bdl 9.2 25 24 23 7.5 23 25 48 13 24 bdl 25 11 bdl 14 
1i 76 54 120 95 190 53 170 180 270 95 210 180 340 43 55 110 
1i 20 12 77 18 44 14 bdl bdl bdl bdl bdl bdl bdl bdl bdl 38 
2i 10 3.2 12 5.4 12 5.9 40 71 73 24 35 32 56 19 bdl 5.9 
3i bdl bdl bdl bdl bdl bdl 23 57 40 6 18 22 10 21 41 bdl 
1j 92 26 41 54 100 37 150 280 280 100 190 240 340 25 42 55 
1j bdl 6.6 12 5.4 22 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 7.1 
2j bdl bdl bdl 4.5 3.3 bdl 14 57 bdl 12 bdl bdl bdl bdl bdl 3.1 
3j 19 bdl 3.0 4.2 8.8 1.7 bdl bdl bdl bdl bdl bdl bdl bdl bdl 2.8 
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Table 4 737 

Concentration (µg/g TOC) of bacteriohopanepolyols in 6 Savannah/field soils from the 738 

Congo (bdl, below detection limit). 739 

Structure 
SB 

C38B 
CG 

C46B 
SBZV 

1-1 
SS 
1-1 

SS 
5-1 

F  
13-1 

1m bdl bdl bdl bdl bdl bdl 
1k bdl bdl bdl bdl bdl bdl 
1b 14 30 160 160 76 220 
2b 4.2 5.0 24 32 24 74 
1n bdl bdl bdl bdl bdl bdl 

4/5g 11 38 9.1 20 42 31 
1g 300 550 210 410 480 360 
2g 17 15 10 bdl 20 11 
3g 2.0 7.3 bdl bdl bdl bdl 

4/5e 1.8 bdl bdl bdl bdl bdl 
1e 19 14 bdl 2.1 12 15 
4/5f bdl bdl bdl bdl bdl bdl 
1f 0.92 bdl bdl bdl bdl bdl 
1f’ bdl bdl bdl bdl bdl bdl 
1a 47 61 200 160 33 460 
2a 10 10 38 36 21 84 
1c 23 10 26 18 25 140 
2c 13 26 26 18 16 71 
1d bdl 8.2 13 13 11 16 
2d bdl 3.7 bdl bdl bdl bdl 
4/5l bdl bdl bdl bdl 22 49 
1l bdl 3.9 bdl bdl bdl bdl 
2l bdl bdl bdl bdl bdl bdl 
1h 50 200 97 250 370 900 
1h 47 bdl bdl bdl bdl bdl 
2h 3.3 29 bdl 45 bdl 130 
3h 2.6 9.2 bdl bdl bdl bdl 
1o bdl 2.1 bdl bdl bdl 19 
1i 39 42 12 23 55 140 
1i 7.0 11 bdl bdl bdl bdl 
2i 1.6 4.3 6.7 14 bdl 42 
3i bdl bdl 11 48 67 31 
1j 10 18 bdl bdl 70 120 
1j bdl 2.2 bdl bdl bdl bdl 
2j bdl 0.48 bdl bdl bdl 13 
3j 0.9 1.2 bdl bdl bdl bdl 
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Table 5 740 

Concentration (µg/g TOC) of bacteriohopanepolyols in 6 Malebo pool wetland and 1 741 

estuarine sediment from the Congo (bdl, below detection limit). 742 

Structure 
PS 
0-5 

PS 
5-10 

RE 
0-5 

RE 
5-10 

EF 
0-5 

EF 
5-10 Estuary 

1m bdl bdl bdl bdl bdl bdl bdl 
1k bdl bdl bdl bdl bdl bdl bdl 
1b 490 590 400 370 460 390 320 
2b 53 84 70 81 41 36 24 
1n 40 65 46 49 33 34 bdl 

4/5g bdl bdl bdl bdl bdl bdl bdl 
1g 960 1100 420 360 950 710 320 
2g bdl bdl bdl bdl bdl bdl bdl 
3g bdl bdl bdl bdl bdl bdl bdl 

4/5e bdl bdl bdl bdl bdl bdl bdl 
1e 270 270 110 89 230 200 82 
4/5f 58 56 31 27 58 52 12 
1f 1200 1100 640 500 1200 1100 180 
1f’ 69 86 64 51 70 86 68 
1a 640 910 520 560 640 520 81 
2a 100 110 100 91 64 50 bdl 
1c 45 48 31 33 37 29 bdl 
2c 17 19 22 13 11 5.6 bdl 
1d 16 23 14 13 18 14 bdl 
2d bdl bdl bdl bdl bdl bdl bdl 
4/5l bdl bdl bdl bdl bdl bdl bdl 
1l bdl bdl bdl bdl bdl bdl bdl 
2l bdl bdl bdl bdl bdl bdl bdl 
1h 2000 2200 1200 1300 1700 1700 230 
1h bdl bdl bdl bdl bdl bdl bdl 
2h 230 260 170 170 130 120 bdl 
3h bdl bdl bdl bdl bdl bdl bdl 
1o bdl bdl bdl bdl bdl bdl 12 
1i 280 250 190 220 170 220 33 
1i bdl bdl bdl bdl bdl bdl bdl 
2i 38 41 42 29 12 15 bdl 
3i 59 59 38 48 18 23 bdl 
1j 260 250 220 280 200 260 21 
1j bdl bdl bdl bdl bdl bdl bdl 
2j bdl bdl bdl bdl bdl bdl bdl 
3j bdl bdl bdl bdl bdl bdl bdl 
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Table 6 

Summary of CH4 oxidation markers and soil marker BHPs (%, relative total BHPs), Rsoil and 

R’soil plus literature data on surface soil and peat BHP composition. 

Location N CH4 oxidation markers (%) Soil marker BHPs 
(%) 

Rsoil (R'soil) Reference 

Mean Range Mean Range Mean Range  

Congo Forest soils 16 2.3 0.53 - 14 16 10 - 36 0.79 (0.77) 0.63 - 0.92 

(0.60 - 0.91) 

This study 

Congo savannah/fields 6 1.0 0 - 3.2 19 7.9 - 36 0.71 (0.65) 0.58 - 0.87 

(0.48 - 0.83) 

This study 

Congo wetlands  

(surface and subsurface) 

6 22 16 - 26 14 11 - 17 0.63 (0.60) 0.61 - 0.66 

(0.59 - 0.62) 

This study 

Amazon soils 2 4.3 0.94 - 7.7 23 18 - 28 0.64 (0.61) 0.44 - 0.84 

(0.41 - 0.81) 

Wagner et al., 2014  

Amazon wetlands  

(surface and subsurface) 

5 37 24 - 45 6.0 2.6 - 11 0.45 (0.43) 0.27 - 0.68  

(0.21 - 0.64) 

Wagner et al., 2014  

Tropical soil San Salvador 1 5.8  21  0.48 (0.48)  Pearson et al., 2009 

Têt  

(surface soils) 

12 1.0 0 - 5.8 41 0 - 66 0.54 (0.52)  0 - 0.87 

(0 - 0.85) 

Kim et al., 2010 

Têt peat  

(surface) 

2 1.3 0 - 2.5 27 24 - 31 0.62 (0.60) 0.53 - 0.71  

(0.51 - 0.68) 

Kim et al., 2010 

East China  

(Mid catchment surface 
soils) 

3 2.4 0.52 - 6.1 20 12 - 30 0.74 (0.70) 0.60 - 0.82  

(0.57 - 0.80) 

Zhu et al., 2011 

Canada 5 1.4 0.96 - 2.0 43 35 - 52 0.79 (0.76) 0.67 - 0.85 

(0.65 - 0.81) 

Xu et al., 2009 

Arctic permafrost 6 0 0 40 27 - 55 0.64 (0.60) 0.53 - 0.75 

(0.48 - 0.72) 

Rethemeyer et al., 2010 

Northern UK  

(surface) 

4 0.85 0 - 2.0 23 20 - 27 0.48 (0.42)  0.36 -0.64 

(0.30 - 0.58) 

Cooke et al., 2008 
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