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ABSTRACT
We present updated analytical solutions of continuity equations for power-law beam electrons
precipitating in (a) purely collisional losses and (b) purely ohmic losses. The solutions of
continuity equation (CE) normalized on electron density presented in Dobranskis & Zharkova
are found by method of characteristics eliminating a mistake in the density characteristic
pointed out by Emslie et al. The corrected electron beam differential densities (DD) for
collisions are shown to have energy spectra with the index of −(γ + 1)/2, coinciding with
the one derived from the inverse problem solution by Brown, while being lower by 1/2 than
the index of −γ /2 obtained from CE for electron flux. This leads to a decrease of the index of
mean electron spectra from −(γ − 2.5) (CE for flux) to −(γ − 2.0) (CE for electron density).
The similar method is applied to CE for electrons precipitating in electric field induced by
the beam itself. For the first time, the electron energy spectra are calculated for both constant
and variable electric fields by using CE for electron density. We derive electron DD for
precipitating electrons (moving towards the photosphere, μ = +1) and ‘returning’ electrons
(moving towards the corona, μ = −1). The indices of DD energy spectra are reduced from
−γ − 1 (CE for flux) to −γ (CE for electron density). While the index of mean electron spectra
is increased by 0.5, from −γ + 0.5 (CE for flux) to −γ + 1(CE for electron density). Hard
X-ray intensities are also calculated for relativistic cross-section for the updated differential
spectra revealing closer resemblance to numerical Fokker–Planck (FP) solutions.

Key words: plasmas – Sun: atmosphere – Sun: flares – Sun: particle emission – Sun: X-rays,
gamma rays.

1 IN T RO D U C T I O N

The first interpretation of the power-law energy spectra observed in
hard X-ray (HXR) emission from solar flares was derived from the
inverse problem solution (Brown 1971) that formed the foundation
of high-energy physics in the Sun. Later the analytical solutions for
electron precipitation in flaring atmosphere described by continu-
ity equation (CE) for electron flux were also derived (Syrovatskii &
Shmeleva 1972) providing an effective way for observers to link the
measured HXR photon counts and their power-law energy spectra
to the distributions of precipitating electrons scattered on the am-
bient plasma particles. Both approaches agreed on the power-law
energy spectra of precipitating electron flux with a spectral index
−γ leading to mean electron spectra (MES) having the spectral in-
dices of −(γ − 2.0). A number of authors calculated HXR emission
from Fokker–Planck (FP) simulations considering collisional losses
and magnetic mirroring effect also using relativistic bremsstrahlung
cross-sections of bremsstrahlung emission produced by beam elec-
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trons (see for example Bai & Ramaty 1978; Leach & Petrosian
1981) that in some events could account better for the observational
features that the analytical approach.

Although, purely collisional approach highlighted the problem of
a large number of beam electrons (1036–1037 particles s−1) required
to produce the observed HXR photons from a single flare (Brown
1972). These numbers would imply that any acceleration mecha-
nism producing these electrons in flares needs to energize to high
sub-relativistic energies the whole population of the ambient elec-
trons at the coronal level, which is rather difficult to achieve. This
introduced the so-called particle number problem (Brown 1972),
which puzzled researchers for a few decades.

Later it was established that electron beams precipitating into flar-
ing atmosphere induce an electrostatic electric field, which slows
down precipitating electrons and produces a return current lead-
ing to substantial ohmic losses (Knight & Sturrock 1977; Emslie
1980; Diakonov & Somov 1988; Haydock et al. 2001). This al-
lowed us to extend interpretation of the observed HXR emission
produced by precipitating electron beams from the approach consid-
ering only purely Coulomb collisions (Brown 1971; Syrovatskii &
Shmeleva 1972) to consideration of ohmic losses of electrons in the
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electrostatic electric field (Emslie 1980; McClements 1992) by con-
sidering a return current formed by the ambient electrons only, as
suggested by Knight & Sturrock (1977).

Further progress with high-resolution observations, made by the
RHESSI payload, have provided a significant amount of accurate
data that allowed the scientists to understand better the evolution of
photon and electron spectra during solar flares and to provide loca-
tions and shapes of the HXR sources on the solar disc (Holman et al.
2003, 2011; Lin et al. 2003; Brown et al. 2006; Krucker et al. 2008).
It was revealed that many powerful flares produce the elbow-type
HXR photon spectra with double power-law energy distributions
(Kontar, Brown & McArthur 2002; Conway et al. 2003; Holman
et al. 2003). The investigation of various aspects of the photospheric
albedo effects has shown that reflection of HXR emission from the
photosphere can be important in the interpretation of HXR energy
spectra (Brown et al. 2006; Kontar & Brown 2006).

Moreover, MES, obtained by the inversion of photon spectra
measured from the RHESSI payload (Piana et al. 2003) revealed
noticeable dips at lower energies between 20 and 40 keV with
the maximum occurring at higher energies (50–80 keV). The dips
occur at the same energies where the corresponding HXR photon
spectra have noticeable flattening towards lower energies. Initially,
the flattening of HXR photon spectra was attempted to be explained
by purely collisional model with an increased lower cut-off energy
by shifting it to the turning point where HXR emission flattens (Sui,
Holman & Dennis 2005). However, in some case the lower cut-off
energy should be shifted to 60–80 keV that raises some doubts about
this interpretation.

These new puzzles required to extend the interpretation of ob-
served HXR emission produced by precipitating electron beams
from the purely collisional approach to consideration of ohmic
losses by beam electrons in a self-induced electrostatic electric field
(Diakonov & Somov 1988; Zharkova, Brown & Syniavskii 1995;
Zharkova & Gordovskyy 2005, 2006; Sui, Holman & Dennis 2007).
Since the energy losses in electric field are found to substantially
decrease a precipitation depth of energetic electrons (Zharkova &
Gordovskyy 2006), then the number of low-energy (<100 keV)
precipitating electrons is also substantially decreased, when ohmic
losses are considered in addition to collisions.

This can lead to electron beams with greater initial energy flux
to induce a stronger electric field and, thus, to have higher ohmic
losses, which lead to a greater flattening of their photon spectra at
lower energies (Zharkova & Gordovskyy 2006; Sui et al. 2007).
Also, ohmic losses of beam electrons (Zharkova & Gordovskyy
2006) combined with the HXR albedo effect at its reflection from
the photosphere (Massone et al. 2004) can be successfully deployed
for the explanation of a full drop of MES in the dips reported by
Piana et al. (2003).

However, full understanding of the role of a self-induced electric
field on electron beam dynamics came only from the simulation
in the Fokker–Planck approach of the time-dependent injection of
power-law electrons (Siversky & Zharkova 2009). The authors de-
rived for the first time from the Fokker–Planck simulations that
during a steady injection of power-law electrons into a flaring at-
mosphere the main part of returning electrons is formed from the
precipitating electrons scattered to pitch angles with negative pitch
angle cosines (or returning beam electrons). This approach is es-
sentially different from the earlier one (Knight & Sturrock 1977)
considering a return current formed by the ambient electrons.

In the other words, precipitating and returning beam electrons
form an electric circuit from the corona to the photosphere where
beam electrons are recycled, or, while the injection exists, they

travel many times up and down (Siversky & Zharkova 2009). The
characteristic time-scale for creation of this electric circuit ranges
from 0.07 to 0.1 s, while the travel time of relativistic beam electrons
from the corona to the photosphere is about 0.01–0.1 s. This means
that after the first 0.07–0.1 s when the circuit is established the beam
electrons can make up to 10–100 journeys downwards and upwards.
This resolves the particle number problem because in this case only
(1–10) per cent of the ambient electrons is required to account for
the observed HXR photon numbers.

Therefore, the aim of this paper is to continue the research pre-
sented in Dobranskis & Zharkova (2014) by correcting the ana-
lytical solution found from CE for the electron density following
the correction proposed by Emslie, Holman & Litvinenko (2014)
and finding in the same approach the analytical solutions of CE
for electron precipitation in ohmic losses. We will explore sepa-
rate effects of energy loss mechanisms on resulting electron energy
spectra, mean electrons spectra and their HXR emission that allows
us to derive a future possibility to find joint analytical solutions for
a quick fit of observational data to model calculations with mixed
energy losses that is a scope of the forthcoming Paper II.

2 TH E C O R R E C T E D S O L U T I O N S
FOR COLLISIONAL LOSSES

2.1 The original CE for electron flux

The flux of precipitating electron beams F = v × N can be derived
from a CE for an electron beam flux (Syrovatskii & Shmeleva 1972)

∂

∂s
[vN (E, s)] + ∂

∂E

[(
dE

ds

)
vN (E, s)

]
= 0, (1)

where v is the beam electron velocity and N defines the density of
the beam electrons with the velocity v, while the term dE

ds
defines

the energy losses. To simplify equation (1) Syrovatskii & Shmeleva
(1972) introduce a new function

ϕ(E, ξ ) = 1

n(s)

(
dE

ds

)
vN (E, s) =

(
dE

dξ

)
vN (E, ξ ), (2)

where n defines ambient plasma density and ξ is a column depth:

ξ (s) =
∫ s

0
n (t) dt, (3)

which defines a total number of particles in the line of sight within
an area of one square centimetre.

Equation (2) is used to rewrite the CE (1) in the following way:

∂

∂s

[
n(s)ϕ(E, ξ )

dE/ds

]
+ ∂

∂E
[n(s)ϕ(E, ξ )] = 0. (4)

Then substituting the expression for collisional energy losses

dE

ds
= −an

E
(5)

into equation (4) and multiplying the result by − a
En

produces the
first-order partial differential equation (PDE) for the function ϕ:

∂

∂ξ
ϕ(E, ξ ) − a

E

∂

∂E
ϕ(E, ξ ) = 0. (6)

The CE is a PDE with two independent variables: a linear elec-
tron precipitation depth s (cm) and an electron kinetic energy
E (eV), which is solved using the method of characteristics
(Courant & Hilbert 1962), producing characteristic equations ξ = t,
E0 =

√
E2 + 2aξ and general solution for the function ϕ:

ϕ(E, ξ ) = �(
√

E2 + 2aξ ), (7)
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Updated solutions of CE for electron beams 231

where � is an arbitrary function. Then the general solution for elec-
tron differential density N is obtained by inverting equation (2) and
substituting it with general solution for ϕ (equation 7), expression
for collisional energy losses (equation 5), and v = √

2E/m (where√
2/m is recalled in normalization constant):

N = ϕ

(dE/ds) v
= �(

√
E2 + 2aξ )

|−a/E0|
√

E0

= �(
√

E2 + 2aξ ) ×
√

E0

= �(
√

E2 + 2aξ ) × (
E2 + 2aξ

)1/4
. (8)

To obtain the final (original) solution of PDE, let us use the
boundary condition, which defines the initial power-law energy
spectrum of electrons at the upper boundary, where ξ = 0 cm−2

(Syrovatskii & Shmeleva 1972):

N (E, 0) = KE
−

(
γ+ 1

2

)

× � (E − Elow) � (Eupp − E), (9)

where γ is a spectral index of the electron flux F = vN(E, s).
Hence, in order to keep the spectral index for flux equal to γ ,
the initial electron density has to be reduced by E−1/2); Elow and
Eupp are the lower and upper energy cut-offs, respectively; � is the
Heavyside step function and K is the scaling factor, found from
normalization of the distribution function on electron flux (for CE
for flux, equation 1) or on electron density (for CE for density, see
Section 2.2).

The solution of CE (6) after a substitution of initial condition (9)
above yields the following form of differential density for precipi-
tating beam electrons:

N (E, ξ ) = K
(
E2 + 2aξ

)−γ /2

× �
(√

E2 + 2aξ − Elow

)

× �
(
Eupp −

√
E2 + 2aξ

)
. (10)

Where spectral index is obtained as − γ

2 = − γ+0.5
2 + 1

4 , and the
constant of integration K is defined from the initial energy flux
F0 = vN(E, 0) of beam electrons at the top boundary (ξ = 0) as
follows (Syrovatskii & Shmeleva 1972):

F0 =
∫ Eupp

Elow

EvN (E, 0) dE

= K

(
2

m

)1/2 ∫ Eupp

Elow

E1−γ dE

= K

(
2

m

)1/2
⎧⎨
⎩

E
γ−2
upp −E

γ−2
low

2−γ
, γ �= 2,

ln
(

Eupp

Elow

)
, γ = 2.

(11)

Then the scaling factor K is calculated from equation (11) with
the initial energy flux, spectral index and cut-off energies to be
considered as free parameters set up by a modeller or derived from
the observation (Syrovatskii & Shmeleva 1972).

The solution (10), found from CE for electron flux presented in
the paper by Syrovatskii & Shmeleva (1972, equation 1 and 6), has
a different spectral index for the energy spectra with the argument
E2 + 2aξ . In fact, the index in solution (10) is lower by 1/2 than
one reported by Syrovatskii & Shmeleva (1972, their equation 9)
and from index derived by Brown (1971) from the inverse problem

solution. The reason for this difference is discussed in the section
below.

2.2 The updated CE approach for electron density

2.2.1 General modification of CE

In order to obtain the accurate solutions normalized on the electron
density of precipitating electrons, one needs to obtain CE for the
electron density N, and not for its flux F (Dobranskis & Zharkova
2014). In order to obtain this equation, let us substitute into original
CE (1) a classic link between velocity v and energy E, v = √

2E/m.
Then the updated CE can be written in the following form:

∂

∂s

[√
2E

me

N (E, s)

]
+ ∂

∂E

[(
dE

ds

) √
2E

me

N (E, s)

]
= 0. (12)

This equation can be transformed (similar to Dobranskis &
Zharkova 2014) to

√
E

∂N

∂s
+

[
∂

∂E

(
∂E

∂s

) √
EN

]

+
(

∂E

∂s

) (√
E

∂N

∂E
+ 1

2
E−1/2N

)
= 0. (13)

2.2.2 The corrected solutions of CE for electron density

The corrected first-order PDE for density N, derived by
Dobranskis & Zharkova (2014, their equation 13), can be obtained
from equation (13) by substituting into it energy loss equation (5):

∂N

∂ξ
− a

E

∂N

∂E
= − aN

2E2
. (14)

It is assumed that the values of all variables ξ , E and N are known
on some initial curve (the boundary condition):

ξ (0) = ξ0, E(0) = E0, N (0) = N0, (15)

where E and N are given as a functions of ξ . Then the original CE
equation can be replaced with its characteristics (Courant & Hilbert
1962) for each variable: ξ , E and N.

Let us now correct the solution of CE for the electron density de-
rived in Dobranskis & Zharkova (2014, or normalized on electron
density, similar to Diakonov & Somov 1988) following the correc-
tion proposed by Emslie et al. (2014). The solution of CE for the
electron density presented by Dobranskis & Zharkova (2014) had
a mistake pointed out by Emslie et al. (2014), which occurred dur-
ing the application of the method of characteristics for differential
density N.

The characteristic equations are solved as follows:

dξ

dt
= 1 → ξ (0) = 0 → ξ = t . . . (+ξ0), (16)

dE

dt
= − a

E
→ E(0) = E0

→ E2

2
= −at + E2

0

2
→ E0 =

√
E2 + 2aξ, (17)

dN

N
= −1

2

a

E2
dt → dN

N
= −1

2

a

E2
0 − 2at

dt . (18)

In the last characteristic equation (18), we used the correction
proposed by Emslie et al. (2014), e.g. the energy E is substituted
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232 R. R. Dobranskis and V. V. Zharkova

with the expression E2 = E2
0 − 2at obtained from the characteristic

equation (17) for E.
The characteristic equation for N (18) can then be integrated, to

produce solution:

ln (N )NN0
= 1

4
ln (u) |uu0

→ N = N0 × (u)1/4 × (u0)−1/4 . (19)

Then, after making relevant substitutions:

u(t) = E2
0 − 2at,

u0(t = 0) = E2
0 . (20)

By substituting the expressions (20) for u(t) and u0(t) into the solu-
tion (19) one can easily obtain the general solution in the following
form:

N (E, ξ ) = �(
√

E2 + 2aξ ) × E1/2 × (
E2 + 2aξ

)−1/4
. (21)

Equation (21) still has an additional factor of (E2 + 2aξ )−1/4 (the last
term in equation 21) appearing in the CE for N. While the solution
(equation 10) of CE for electron flux Nv has the two different factors:
�(

√
E2 + 2aξ ) × (E2 + 2aξ )1/4.

Verification of the solution: an alternative method (Ruderman,
private communication) can be used to verify the general solution
of CE for purely collisional losses (21) as follows.

The characteristics of equation (14) are defined by energy loss
equation (5), which has a solution in form of E2 + 2aξ = constant.
As a result, a new variable η =

√
E2 + 2aξ is introduced instead

of column depth ξ .
Then using the relations:

∂N

∂ξ
= a

η

∂N

∂η
,

∂N

∂E

∣∣∣∣
ξ

= ∂N

∂E

∣∣∣∣
η

+ ∂N

∂η

∂η

∂E
= ∂N

∂E

∣∣∣∣
η

+ E

η

∂N

∂η
,

(22)

where the subscripts ξ and η indicate that the derivative is calculated
at constant ξ and constant η, respectively, then equation (14) is
effectively reduced to

dN

dE

∣∣∣∣
η

= N

2E
. (23)

The general solution to equation (23) is N = E1/2F(η), where F is
an arbitrary functions. Introducing function �(η) = η1/2F(η), and
rescaling the definition of η, we eventually arrive at

N (E, ξ ) = �(
√

E2 + 2aξ ) × E1/2 × (
E2 + 2aξ

)−1/4
, (24)

which is essentially the same general CE solution (21), presented
above.

Final solution for differential densities: finally, substitution of
the initial condition (equation 9) into the solution (21) produces the
corrected solution of CE for N:

N (E, ξ ) = KE1/2
(
E2 + 2aξ

)− γ+0.5
2 − 1

4

× �
(√

E2 + 2aξ − Elow

)
× �

(
Eupp −

√
E2 + 2aξ

)

= KE1/2
(
E2 + 2aξ

)− γ+1
2

× �
(√

E2 + 2aξ − Elow

)
×�

(
Eupp −

√
E2 + 2aξ

)
.

(25)

Here, the scaling factor K is estimated through normalization
of this function on a beam density N0 at the top boundary

by equating it to the ambient plasma density or its fraction
(see Section 3.1).

In fact, the corrected solution (25) for differential density N is
exactly the solution reported by (Syrovatskii & Shmeleva 1972)
and Brown (1971), with the power index of the term E2 + 2aξ

being equal to − γ+1
2 and not to − γ

2 as appears from the CE for
electron flux Nv (see equation 10). The solution for flux does not
contain the

√
E term, which is present in corrected solution for

density.
Of course, this corrected solution still has an additional expo-

nential term of the argument E2 + 2aξ with a power of −1/4, as
indicated by Emslie et al. (2014) and not the exponent of the ratio
between E and 2aξ , mistakenly reported by Dobranskis & Zharkova
(2014). This exponential correction still means that, in order to ob-
tain the index reported in the paper by Syrovatskii & Shmeleva
(1972) one has to solve the equation for the electron density (equa-
tion 14) and not the CE for electron flux (equation 6) claimed in the
paper.

To stay in line with the proposed correction, the scaling factor K,
estimated through normalization on electron flux, must be normal-
ized on an electron beam density at the top boundary (ξ = 0). The
normalization is done by integration of the boundary condition for
energy E (equation 9) as follows:

N0 (ξ0 = 0) = KN

∫ Eupp

Elow

E−γ−1/2dE

= KN

⎧⎪⎨
⎪⎩

E
−γ+0.5
upp −E

−γ+0.5
low

0.5−γ
, γ �= 0.5,

1

ln
(

Eupp
Elow

) , γ = 0.5,
(26)

where KN is the scaling factor from normalization on a beam density.
By using N0 as a free parameter one can calculate KN for accepted (or
derived from observations) lower and upper energy cut-offs, spectral
index and some assumptions about how many beam electrons are
injected into a flaring atmosphere (see the last two paragraphs in
Section 1).

The updated energy spectra found from the CE for the elec-
tron density and from the original CE for electron flux are plot-
ted for a few column depths in Fig. 1. It can be seen that the
updated solutions for electron densities corrected as proposed by
Emslie et al. (2014) still have a steeper decrease at lower energies
than the solutions found from the electron flux equation, although
this decrease is not as sharp as reported earlier by Dobranskis &
Zharkova (2014).

Hence, with the joint efforts of Dobranskis & Zharkova (2014)
and Emslie et al. (2014), we have proven that the solution for
the electron density N reported by Syrovatskii & Shmeleva (1972)
can be only obtained from the CE for the electron density (equa-
tion 14) and not from the CE for flux reported in their paper. Fur-
thermore, the resulting spectral index of − γ+1

2 obtained from the
CE for the electron density is confirmed by the inverse problem
solutions (Brown 1971), which reflects correctly the variations
of electron density during their precipitation in Coulomb colli-
sions. Therefore, initial equation (1) from Syrovatskii & Shmel-
eva (1972) has to be converted to the equation for the electron
density described by equation (14) as proposed by Dobranskis &
Zharkova (2014).

The effects of these updated solutions on MES is discussed in
Section 4.1 and on HXR emission in Section 5.
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Updated solutions of CE for electron beams 233

Figure 1. The variation of electron differential density spectra versus energy plotted for column depths of 1.4 × 1020 (blue), 1.2 × 1021 (green), 4.5 × 1021

(magenta), 1.1 × 1022 (red) and energy range from 10 keV to 1000 keV. The solid lines represent the electron densities N (equation 25) found from the CE for
the electron density (equation 14) with correction by Emslie et al. (2014) and the dashed lines are the electron densities (equation 10 derived in Dobranskis &
Zharkova 2014) from CE for electron flux.

3 SO L U T I O N S O F C E F O R O H M I C L O S S E S

3.1 Self-induced electric field and returning beam electrons

Since electron beams carry a substantial electrostatic electric field
(Knight & Sturrock 1977; Emslie 1980; Diakonov & Somov 1988),
let us now consider precipitation of beam electrons in this self-
induced electric field, which is kept steadily distributed over depth
for stationary injection of beam electrons (Zharkova & Gordovskyy
2006; Siversky & Zharkova 2009). Hence, let us investigate electron
beams steadily injected into a flaring atmosphere from its top with
power-law energy distributions and precipitating into denser atmo-
spheric layers while losing their energy in ohmic losses (Zharkova
& Gordovskyy 2006).

In this case there are two populations of electrons to be consid-
ered: those which continue to precipitate downwards while being
braked by the electric field (pitch angle cosine μ > 0 and those,
which return back to the corona by this self-induced electric field of
the beam (returning electrons with μ < 0). This approach is applied
to beam electrons only similar to the one applied by Zharkova &
Gordovskyy (2006) and Siversky & Zharkova (2009) that essen-
tially differs from the early approach considering the return current
formed from the ambient electrons only (see for example Knight &
Sturrock 1977).

With this approach one can notice that an electron beam forms a
close electric circuit of electrons moving downwards and upwards
10–100 times per second (Siversky & Zharkova 2009), thus, re-
solving the long-standing problem of electron number required to
account for the number of observed HXR photons. Since a beam
electron can make up to 10–100 HXR photons per second while
travelling in the electric circuit, then the number of precipitating
electrons can be reduced by the factor of 10–100. This means that
only about 1–10 per cent of the ambient electrons needs to be ac-
celerated to high energies and injected into a flaring atmosphere
(Siversky & Zharkova 2009) to account for HXR emission, in-
stead of the entire ambient plasma of a flaring loop assumed earlier
(Brown 1972).

For this model, beam electrons are assumed to lose their energy
in ohmic losses (Emslie 1980), and the energy losses are expressed
by formula:

dE

μds
= −eE, (27)

where E (V cm−1) is the magnitude of the self-induced electrostatic
electric field induced by the precipitating electron beams, the pitch
angle cosine μ defines a direction of beam electron propagation. For
the sake of simplicity, it is assumed that the electron beams injected
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234 R. R. Dobranskis and V. V. Zharkova

at the upper boundary and precipitating downwards (‘precipitating’
electrons) are described by μ = +1, while the electrons, which are
accelerated back to the source in the corona by the self-induced
electric field (‘returning’ electrons) are represented by μ = −1.

3.2 CE for electron flux

By substituting the ohmic energy loss term (equation 27) into the
CE (equation 1) one can solve it again analytically by using the
method of characteristics (Courant & Hilbert 1962). The resulting
general solution obtained for electron flux F = vN(E, s) can be
again inverted to obtain the electron density N = F

v
, in which one

can substitute the upper boundary condition (equation 9) to produce
the solutions for electron beam differential densities:

N (E, s) = K (E + eEs)−γ−1

×� (E − Elow + eEs) � (Eupp − eEs − E),

μ = +1, (28)

with power-law energy spectra being constrained within the range
of Elow < E < Eupp and the index at the argument (E + eEs) be-
ing higher by 0.5 than in the solutions presented by Zharkova &
Gordovskyy (2006).

The same applies to the ‘returning’ electrons:

N (E, s) = K (E + eEsr )−γ−1

× � [Eupp − E − eEsr ],

μ = −1, (29)

where sr is the distance traversed by ‘returning’ electrons (described
in details in Sections 3.3.1 and 3.4.2).

In general, the differential spectra presented by the equations
above are asymmetric for precipitating (28) and ‘returning’ (29)
beam electrons as defined by the Heavyside function �.

3.3 CE for electron density

3.3.1 Analytical CE solutions for a constant electric field

We assume that E = constant, then equation (13) can be used to find
direct analytical solutions for electron density N precipitating in
purely ohmic losses for both precipitating (μ = +1) and ‘returning’
(μ = −1) electrons and to compare them with the solutions found
from the original CE in Section 3.2.

Let us substitute into the updated CE (equation 13) the expression
for ohmic energy losses (equation 27) taking into account that the
derivative by E of the term with energy losses (the first term) is equal
to zero, since the ohmic energy losses are the same for the electrons
with any energies. In result, one can easily obtain the updated CE
for ohmic losses in the following form:

∂N

∂s
− eE ∂N

∂E
= eEN

2E
. (30)

The equation (30) is a linear inhomogeneous equation PDE, which,
contrary to the initial CE, has a free term on the right-hand side,
similarly to the collisional case (Dobranskis & Zharkova 2014).
Assuming that the values of N are known on some initial curve, the
CE (30) can be solved by the method of characteristics (Courant &
Hilbert 1962), allowing to derive differential electron density N as
a function of linear precipitation depth s and electron energy E for
the initial conditions:

s(0) = s0, E(0) = E0, N (0) = N0, (31)

where E and N are functions of s. Then one can derive the charac-
teristic equations for each variable s, E and N obtaining a system of
three ordinary differential equations, which are solved as follows:

ds

dt
= 1 → s(0) = s0 → s = t . . . (+s0), (32)

dE

dt
= −eE → E(0) = E0 →

E = −eE t + E0 → E0 = E − eE t, (33)

dN

N
= eE

2E
dt . → u = E0 − eE t

du = −eE dt
→ dN

N
= du

2u
(34)

For solution of the equation for N the expression for E has to
be substituted from equation (33), i.e. E = E0 − eE t (where the
energy E is treated as a variable and not as a constant, follow-
ing the correction by Emslie et al. 2014) so that the integration
gives the characteristics for N as follows:

ln (N )NN0
= −1

2
ln (u) |uu0

→

N = N0 × (u)−1/2 × (u0)1/2 , (35)

using the variables:

u(t) = E0 − eE t

u0(t = 0) = E0. (36)

Hence, by substituting u and u0 into equation (35) the general solu-
tion for N of the CE for ohmic losses can be written as follows:

N (E, s) = � (E + eEs) × E−1/2 × (E + eEs)1/2 . (37)

Verification of the solution: similarly to the case for purely colli-
sional energy losses, the general solution of CE for ohmic energy
losses can be obtained using the alternative method (Ruderman,
private communication). The characteristics of equation (30) are
defined by equation (27) with simple solution E + eEs = constant.
Then, following method presented in Section 2.2.2, and making the
substitution ζ = E + eEs reduces equation (30) to

dN

dE
|ζ = − N

2E
. (38)

The general solution to equation (38) is N = E1/2F(ζ ), where F is
an arbitrary function. Introducing �(ζ ) = ζ 1/2Fζ and recalling the
definition of ζ , the general solution of CE for ohmic energy losses
is produced:

N (E, s) = � (E + eEs) × E−1/2 × (E + eEs)1/2 , (39)

which is exactly the same as general solution (37).
The final solution for differential densities: let us now substitute

the initial energy spectrum at the top boundary (equation 9) into the
general solution (equation 37). This results in the following differ-
ential density of precipitating electron beams losing their energy in
purely ohmic losses:

N (E, s) = KNE−1/2(E + eEsi)
−γ

×� [E + eEsi − Elow] �
[
Eupp − E − eEsi

]
,

μ = +1, (40)

where the scaling factor KN is estimated through normalization on
a beam density N0 (equation 26) at the top boundary by equating it
to the ambient plasma density or its fraction.
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Updated solutions of CE for electron beams 235

The CE solution (40) is similar to the one obtained by Zharkova
& Gordovskyy (2006, their equation 11), however it can be only
obtained by solving the CE for electron density N (using the same
analytical approach as proposed by Dobranskis & Zharkova 2014).
As a result, the spectral index γ obtained from solution for the
electron density (equation 40), will differ by 1 from the solution
presented in equation (28) found from CE solution for electron
flux, and it does not have a factor of E−1/2.

The solution for returning beam electrons (μ = −1) moving back
to the corona by a constant electric field induced by a precipitating
beam can be written as follows:

N (E, s) = KNE−1/2(E + eEsr )−γ

×�
[
Eupp − E − eEsr

]
, μ = −1, (41)

where sr is expressed as follows:

sr = sE − si . (42)

Here, sE = E
eE is the electric stopping depth of electron with energy

E (Zharkova & Gordovskyy 2006) and sr is the distance travelled by
returning electrons from their stopping depth upwards to the corona
to a distance si measured from the top.

In the case of continuous injection of precipitating electrons they
will keep producing their electrostatic electric field, so that the
beam electrons, which stopped become accelerated back to the
source. During the motion upwards they can gain the energy as
Ei = E0 + eEsr , where E0 refers to the initial energy (which is 0
for ‘returning’ electron with energy E) and eEsr is the energy gain
term.

It can be noted that equation (41) does not have the lower energy
restriction, since it is assumed that the beam electrons lose their
energy completely before starting moving by their self-induced
electric field back to the injection point in the corona.

Since precipitating beam electrons stop at their individual stop-
ping depths defined by their initial energies, it is important to look at
a range of stopping depths (or energies) of the whole set of ‘return-
ing’ electrons present at a given depth si rather than a single one, in
order to obtain the correct differential density spectra or returning
electrons.

3.3.2 Analytical solutions of CE for a variable electric field

As shown by the earlier numerical simulations (Zharkova & Gor-
dovskyy 2006), the self-induced electric field varies significantly
through a flaring atmosphere, being nearly constant in the corona
and dropping sharply with depth at deeper atmospheric depths
in the chromosphere (Zharkova & Gordovskyy 2006; Siversky &
Zharkova 2009). In order to account for these complex depth vari-
ations of the self-induced electric field, let us use the following
formula from Zharkova & Gordovskyy (2006):

E = E0

(
s

st

)−k

, (43)

where E0 – the magnitude of a constant electric field, s – a linear
precipitation depth associated with the column depth and ambient
plasma density as s � ξ\n, the st is a turning depth, after which
the self-induced electric field starts decreasing (s ≥ st) and k is the
index of electric field distribution, which defines the slope of the
electric field drop with depth.

In this case of the variable electric field the ohmic energy losses
can be found by integrating equation (43) by a precipitation depth
s by taking into account that the electric field is constant until some

precipitation depth st, called a ‘turning depth’, after which the field
starts to decrease as per equation (43). Then, the losses in a variable
electric field can be expressed in the following way:

eE0st +
∫ si

st

eE0

(
s

st

)−k

ds

= eEst ×
⎧⎨
⎩

[1 + ln (si/st )] , k = 1,[
1 + s1−k

i
−s1−k

t

s1−k
t (k−1)

]
, k �= 1.

The first term on the right-hand side represents the losses in a
constant electric field before the turning depth st and the second
term – in the variable electric field at the depths beyond st. By
substituting these losses into the formula for differential density
(equation 41), the updated CE solutions for electrons precipitating
in the variable electric field can be written as follows:

N (E, s) = KN

√
E [E + eEst + eEst ln(si/st )]

−γ

×� [E + eEst + eEst ln(si/st ) − Elow]

×�
[
Eupp − E − eEst − eEst ln(si/st )

]
, k = 1. (45)

N (E, s) = KN

√
E

[
E + eEst

(
1 + s1−k

i − s1−k
t

s1−k
t (k − 1)

)]−γ

×�

[
E + eEst

(
1 + s1−k

i − s1−k
t

s1−k
t (k − 1)

)
− Elow

]

×�

[
Eupp − E − eEst

(
1 + s1−k

i − s1−k
t

s1−k
t (k − 1)

)]
, k �= 1.

(46)

3.4 Differential energy spectra

3.4.1 Precipitating electrons

The differential spectra of beam electrons losing their energy in
purely ohmic losses (equation 40) obtained from the CE solutions
for the electron density are presented in Fig. 2 for a moderately
intense and hard beams (F0 = 1010 erg cm−2 s−1, γ = 3, top row),
for soft beams (F0 = 1010 erg cm−2 s−1, γ = 7, bottom row). The
electron energies range within Elow = 16 and Eupp = 384 keV.
The results presented in Figs 2(a) and (c) are obtained for the
constant electric field of E0 = 3.0 × 10−6 V cm−1 for γ = 3 and
E0 = 1.0 × 10−5 V cm−1 for γ = 7. The plots in Figs 2(b) and (d)
are calculated for a variable electric field having at upper atmo-
sphere levels the same initial values as above and falling with depth
parabolically (k = 2) after the turning depth st = 6.4 × 108 cm.

As expected, the solution (equation 37) found from CE for the
electron density has an additional term (E + eEs)1/2 compared to
the solution of CE for electron flux, which results in the increase of
differential density of precipitating electrons at a given depth. Sim-
ilarly to the collisional losses, hard beams (Figs 2a and b) keep flat-
ter distribution than softer ones (Figs 2a and b), thus, having larger
differential densities at the similar precipitation depths and thus
reaching deeper layers. Indeed, for variable electric field the ‘elec-
tric’ stopping depth sE = E \ eE , at which lower energy electrons
lose their energy completely, occurs at higher atmospheric levels in
the corona or upper chromosphere (Zharkova & Gordovskyy 2006,
Table 1), often exceeding the collisional ones for more powerful
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236 R. R. Dobranskis and V. V. Zharkova

Figure 2. The variations of beam electron differential density versus energy calculated, at the precipitation depths (s) of 1.6 × 108 cm (blue), 4.8 × 108 cm
(green), 9.6 × 108 cm (magenta) and 16.0 × 108 cm (red). The solid lines represent the results of the updated CE (equation 40) and the dashed lines correspond
to the original approach (equation 28) by Zharkova & Gordovskyy (2006).

Table 1. Variation of the spectral indices for F0 = 1012 erg cm−2 s−1, for
Fokker–Planck, original CE and updated CE for Coulomb collisions.

Initial electron index γ = 3 γ = 7

Approach
Energy < 40keV > 40keV < 40keV > 40keV

MES γ MES = 1 γ MES = 5
HXR (Fokker–Planck) δ1 = 1.7 δ2 = 2.5 δ1 = 5.3 δ2 = 5.4
HXR (Original CE) δ1 = 1.5 δ2 = 2.4 δ1 = 5.1 δ2 = 5.2
HXR (Updated CE) δ1 = 1.8 δ2 = 2.6 δ1 = 5.3 δ2 = 5.2

electron beams. This leads to an increase of the electron density at
lower energies. The comparison of differential densities (Fig. 2a)
at 1 keV energy, showed that the updated CE densities at the pre-
cipitation depth s = 16.0 × 108 cm are approximately three times
higher, while at the depth s = 4.8 × 108 cm it is 1.7 times higher.

Furthermore, softer beams (Fig. 2c) induce a higher electrostatic
electric field than the hard ones (Fig. 2a), thus shifting up elec-
tron stopping depths closer to the injection point. Slightly different
scenario occurs when the variable electric field starts to decrease
after the turning depth located at s = 6.4 × 108 cm (Figs 2b and
d). By comparing Figs 2(a) and (b), one can see that the differen-
tial density spectra for precipitation depths 9.6 × 108 cm (magenta)
and 16.0 × 108 cm (red), obtained for variable electric field, have
become steeper. Therefore, due to a decrease of the electric field at
these depths, precipitating electrons have smaller energy losses and

less steep flattening. At the same time, for harder beams the electric
stopping depth is shifted deeper into the atmosphere, because they
induce a lower electric field, thus, revealing a smaller flattening
towards lower energies (Figs 2a and b).

3.4.2 Returning electrons

The plots of differential densities versus energies for ‘returning’
electrons formed by a constant (left-hand column, k = 0) and vari-
able (right-hand column, k = 2) electric fields are presented in Fig. 3.
The differential spectra of ‘returning’ electrons presented in Fig. 3
are obtained for the same parameters as for precipitating electrons
in Section 3.4.1. It was assumed that the electrons become return-
ing (and accelerated) from the precipitation depths ranging from
16.0 × 108 cm to 40.0 × 108 cm, which are the stopping ‘elec-
tric’ depths for electrons with the lower and upper cut-off energies,
respectively.

It is evident that in the presence of self-induced electric field,
the beam electrons precipitate to some layer in the atmosphere
before losing all their energy, and higher energy electrons reach
deeper layers than the lower energy ones. Then, because of the
action of electrostatic electric field, these stopped electrons begin
to move upwards to the source, while gaining the energy from
this electric field by traversing the distances between sE and sr.
The maximum energy gains at given depth sr is limited to the
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Updated solutions of CE for electron beams 237

Figure 3. The variations of differential densities of ‘returning’ electrons for the updated (solid line) and original (dashed line) solutions (Zharkova &
Gordovskyy 2006), respectively. Simulation parameters not stated in the legend are as follows: constant or initial electric field E0 value – 5 × 10−5 V cm−1,
differential densities are shown at the same precipitation depths as in Fig. 2. The lowest precipitation depth, from which electrons, begin to accelerate back
towards the source is 40 × 108 cm (where 200 keV electrons precipitating in a constant electric field lose all energy).

Eupp = eEsr (equation 41). Thus, the energy gained by returning
electrons, depends on the ‘electric’ stopping depth sE , which is
associated with the initial electron energy.

The updated solution of CE for ‘returning’ electrons (equation 41)
has harder spectral index −γ , compared to −γ − 1 derived from the
original solution (equation 29). The differential density distribution
follows a negative slope with a flattening at energies below 10 keV,
which becomes more pronounced at lower atmospheric depths.

The energy gained by returning electrons is proportional to the
traversed distance travelled by electrons from their electrical stop-
ping depth for a given electric field magnitude. As a result, the
number of returning electrons accelerated in the constant electric
field (Figs 3a and c), increases significantly at any precipitation
depth, reaching the maximum at the upper boundary. However, in
case of a variable electric field (Figs 3b and d), only a small number
of electrons are accelerated at the lower column depths. Returning
electrons gain more energy with every precipitation depth having
smaller gains in a variable electric field and larger gains in a higher
constant electric field.

4 M E A N E L E C T RO N S P E C T R A

Let us explore the effect of the proposed CE updates for collisional
and ohmic losses on MES.

4.1 MES for collisional losses

MES for collisional losses can be calculated by using the corrected
(25) and compared with the original (10) solutions for CE equation
for the electron density in the following way:

F̄ (E) = K

√
2E

m

∫ ∞

0

(
E2 + 2aξ

)− γ+1
2 × E1/2dξ

= KE

√
2

m

∫ ∞

0

(
E2 + 2aξ

)− γ+1
2 dξ

= KE

2a

√
2

m

∫ E2
upp

E2
u−ndu

= KE

2a

√
2

m

E2−2n

n − 1
, for E 	 Eupp, (47)

F̄ (E) = K

√
2E

m

∫ ∞

0

(
E2 + 2aξ

)−γ /2
dξ

= K

2a

√
2E

m

∫ E2
upp

E2
u−n1 du

= K

2a

√
2E

m

E2−2n1

n1 − 1
, for E 	 Eupp, (48)
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238 R. R. Dobranskis and V. V. Zharkova

where u = E2 + 2aξ . Meanwhile the integration limits E and Eupp

originate from the lower and upper energy cut-off’s imposed on the
solved CE via Heavyside step functions (�(

√
E2 + 2aξ − Elow)

and �(Eupp −
√

E2 + 2aξ )). The energy of precipitating electrons
E is constrained between two limits as Elow ≤ E ≤ Eupp, where E is
a variable energy, while Elow and Eupp have constant value.

The correct lower integration limit is obtained from the first
Heavyside step function, which will produce 1 for all positive out-
comes, or, if relation below

E2 + 2aξ ≥ E2
low, (49)

is true. This relation can be further simplified by setting the column
depth ξ to 0, resulting in E2 ≥ E2

low, which implies that lower
integration limit should be variable energy E2.

Similar approach is used to find the upper integration limit. This
time second Heavyside step function is investigated, and produce
the relation

E2
upp ≥ E2 + 2aξ, (50)

which implies that the upper integration limit should be E2
upp.

Once integration limits are set correctly, integration for column
depth is done, producing solutions (47) and (48), where the spectral
index n for the corrected solution (25) is defined as

n = γ + 1

2
, (51)

while for the original solution it is equal to

n1 = γ

2
. (52)

The substitution of n and n1 into the formulas (47) and (48) for
MES results in the following dependence of MES on energy:

(i) for the updated solution (25) from CE (14) for electron den-
sity,

F̄ (E) = KNE

2a

√
2

m

E2−(γ+1)

(γ + 1)/2 − 1

= KNE

2a

√
2

m

E−(γ−1)

(γ − 1)/2
= CE−(γ−2); (53)

(ii) for the original solution (10) from CE for electron flux,

F̄ (E) = K

2a

√
2E

m

E2−γ

γ /2 − 1

= K

2a

√
2E

m

E−(γ−2)

(γ − 2)/2
= C1E

−(γ−2.5). (54)

4.2 MES for ohmic losses

4.2.1 The original CE for electron flux

The differential spectra for purely ohmic losses discussed in the
previous Section 3.4 can be used to derive the MES, which were
previously estimated from the original CE solution for electron
flux by Zharkova & Gordovskyy (2006). The MES of an electron
beams precipitating in the constant electric field can be derived by
integration of the corresponding differential densities (equation 28)
for precipitation depths in the range from 0 to infinity (in the case
of ohmic energy losses, the lower and upper integration limits are
replaced with E and Eupp, respectively, using the same method as

described in the previous Section 4.1) as follows:

F̄ (E) =
∫ ∞

0
vN (E, s)ds

=
√

2

m
× K

eE (γ − 0.5)
E−γ+0.5. (55)

4.2.2 The updated MES solutions for ohmic losses

The updated CE solutions for differential density (equation 40) of
precipitating electron beams, presented in Section 3.3.1, can also be
integrated over a linear precipitation depth to produce the updated
MES solutions for ohmic losses (equation 40) as follows:

F̄ (E) = KN

√
2

m

∫ ∞

0
(E + eEs)−γ ds. (56)

Therefore, after successful integration, solution for ohmic MES at
energies above Elow is obtained:

F̄ (E) = KN

eE

√
2

m

(
E1−γ

upp

1 − γ
− E1−γ

1 − γ

)
for E 	 Eupp, (57)

The solution above can be further simplified to the following form:

F̄ (E) = KN

eE (γ − 1)

√
2

m
E−γ+1 for E 	 Eupp. (58)

As a result, the MES solution obtained by integration of the updated
CE for ohmic losses (equation 40) for linear precipitation depth, has
a harder spectral index −γ + 1 (equation 58) compared to the index
of −γ + 0.5 derived from the original CE solutions for electron
flux (equation 55).

5 H XR INTENSITY

The updated CE for purely collisions (Section 2.2.2) can be used
to evaluate the resulting HXR bremsstrahlung emission. Similarly
to Dobranskis & Zharkova (2014), the differential densities, ob-
tained for purely collisional loss are used to define the distribution
function f (E, ξ ) = N(E,ξ )

N(E,0) . For comparison, the similar distribution
functions fN(E, ξ ) integrated over pitch angle cosines are obtained
for the same beam parameters from the numerical Fokker–Planck
approach (Siversky & Zharkova 2009).

In order to estimate HXR intensity I, the corresponding distri-
bution functions fN are integrated by azimuthal angles, pitch angle
cosines, photon energy and column depth as follows:

I (ε) = 2πAxK

∫ ξmax

ξmin

∫ ∞

ε

∫ 1

−1
f (ξ, η, μ) ησH (η, ε) dμdηdξ,

(59)

where ξ is column depth, η is the photon energy, μ is the pitch angle
cosine, ε is a dimensionless photon energy hv/E0 and Ax = S

4πR
2E
me

,
where S defines area of a flare and R is a distance to the observer
(≈ 1 au). In equation (59), the relativistic cross-sections defined
by Bai & Ramaty (1978) and updated by Zharkova, Kuznetsov &
Siversky (2010) are used.

Now let us use the updated differential densities of precipitating
beam electrons derived for purely Coulomb collisions in Section 2.2
to calculate the intensities of HXR bremsstrahlung emission pre-
sented in Fig. 4. The HXR intensities of precipitating electrons are
compared for the three following approaches: (1) the original CE
for electron flux (red lines), (2) the updated CE for purely Coulomb
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Updated solutions of CE for electron beams 239

Figure 4. HXR intensity in relative units, obtained from the original CE (red lines), the updated CE (green lines) solution for purely Coulomb collisions and
the numerical Fokker–Planck solution (blue lines).

collisions (Dobranskis & Zharkova 2014, green lines) and (3) the
numerical FP solution for Coulomb collisions with pitch angle scat-
tering (Siversky & Zharkova 2009, blue crosses). The parameters of
electron beams are as follows: the initial energy fluxes of F0 = 1010

(top plots) and 1012 erg cm−2 s−1 (bottom plots), the spectral indices
γ = 3 (left-hand column plots) and 7 (right-hand column plots); the
lower and upper energy cut-offs Elow = 12 keV and Eupp = 12 MeV,
respectively.

In the case of harder electron beams (γ = 3, Figs 4a and c),
at the energies below 40 keV, the updated CE solution produce a
slightly harder distribution, comparing to FP solution. This can be
explained by partial pitch angle scattering of lower energy electrons
considered in FP approach while in the CE approach the contribution
of pitch angle scattering was calculated as a full integral giving
higher electron densities and higher HXR emission at lower energies
where the pitch angle scattering is the most significant (Siversky &
Zharkova 2009).

Although, it can be seen that almost identical distributions are
obtained for softer electron beams (γ = 7, Figs 4b and d), while
for lower spectral indices δ1 (at energies <40 keV) are practically
identical and certainly correlate with FP results better than the re-
sults produced by the original CE, which differ by 0.2, being harder
δ1 = 5.1 in original case comparing to softer δ1 = 5.3 for FP solu-
tion (Table 1). This better fit is likely to be a consequence of larger
energy losses in each process of electron scattering on the ambient
particles when pitch angle scattering becomes less essential.

Therefore, the results presented in Fig. 4 and Table 1 reveal that
the HXR intensities for electron beams obtained from the updated

CE solution for the electron density (green line) have a closer fit to
the ones obtained from the numerical Fokker–Planck solution (blue
line) than those derived from the CE for electron flux. Given the
fact that only the updated solutions are used by the RHESSI users
utilizing the classic collisional solutions(Brown 1971; Syrovatskii
& Shmeleva 1972), this finding confirms acceptable approximation
of analytical approach for purely collisional losses derived from the
updated CE equation.

However, here we do not compare the HXR photon spectra with
those observed because for a correct comparison the effect of ohmic
losses should be considered simultaneously with collisional losses
as proven by numerous FP simulations of HXR intensity and polar-
ization (Zharkova et al. 1995, 2010, 2011; Zharkova & Gordovskyy
2006; Siversky & Zharkova 2009). This will be a scope of the
forthcoming paper.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this study, we corrected the previous analytical solutions
(Dobranskis & Zharkova 2014) for electron densities (normalized
on electron density) for purely collisional losses found from the up-
dated CE following the correction proposed by Emslie et al. (2014)
and derived the updated analytical solutions for purely ohmic losses
for both precipitating and returning electrons.

The solutions of CE for the electron density presented in Do-
branskis & Zharkova (2014) are corrected by eliminating a mistake
in the density characteristic pointed out by Emslie et al. (2014).
The corrected solutions for purely collisions result in the electron
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beam differential densities having energy spectra with the index of
−(γ + 1)/2 at the argument (E2 + 2aξ ) depending on both energy
E and column density ξ that coincides with the index derived from
the inverse problem solution by Brown (1971). It is evident that this
index is lower by 1/2 than index of −γ /2 obtained from CE for
electron flux. This correction, in turn, leads to a change in the index
of MES from −(γ − 2, 5) (for CE for flux) to −(γ − 2.0) (for CE
for electron density).

This correction highlighted the fact that for obtaining the energy
spectra of electron precipitating in purely collisions used by the
RHESSI community for the past four decades one needs to use the
updated CE for the electron density and not the one for electron
flux.

The similar characteristics approach is applied for solution of the
CE for the electron density for the case of purely ohmic losses in an
electric field induced by the electron beam itself. We consider the
two populations of electrons: those which continue to precipitate
downwards and those of return current, which are returned by this
self-induced electric field of the beam back to the top. This is the
approach similar to Zharkova & Gordovskyy (2006) and Siversky &
Zharkova (2009) that essentially differs from the early approaches
considering a return current to be formed from the ambient electrons
only (see for example Knight & Sturrock 1977).

The approach considering returning electrons as a fraction of
the population of precipitating electrons which are turned to pitch
angles above 90◦ was suggested earlier by Siversky & Zharkova
(2009), who established from the time-dependent Fokker–Planck
simulations that an electron beam forms a close electric circuit from
the electrons moving downwards to the photosphere and upwards
to the corona; and each electron can make about 10–100 journeys
per second.

This approach of the return current formed by high-energy elec-
trons themselves, resolves the long-standing problem of the electron
number required to account for number of the observed HXR pho-
tons in flares. Since the beam electron can make up to 10–100 HXR
photons per second while travelling in the circuit, then the num-
ber of precipitating electrons can be reduced by the factor 10–100
meaning that only up to 10 per cent of the ambient electrons needs
to be accelerated and injected in a flaring atmosphere (Siversky &
Zharkova 2009).

The updated CE solution for electron beams precipitating in
purely ohmic losses, is shown to have the additional exponential
term of E + eEs with power of 1/2, compared to the original CE
for electron flux, resulting in a decrease of spectral index from
−γ − 1 (for CE for flux) to −γ (for CE for electron density) lead-
ing to flattening of differential density spectra. The effect varies with
a linear precipitation depth, being minimal closer to the injection
source at the upper boundary in the corona, while deviating much
stronger from the original CE results at the deeper atmospheric lev-
els. For example, a comparison of differential densities at 1 keV
energy showed that at the precipitation depth s = 16.0 × 108 cm the
updated CE results will be approximately three times higher, while
at depth s = 4.8 × 108 cm it will be 1.7 times higher, than from
original CE solution.

For returning electrons, in a constant electric field occurring at the
coronal and upper chromosphere levels (Zharkova & Gordovskyy
2006), the updated CE also produces an additional term with a
positive power of E leading to the differential density distributions
becoming flatter; this effect increases at greater atmospheric depths.
The energy gained by returning electrons is proportional to the
traversed distance upwards from a bottom of the atmosphere and
the electric field magnitude at a given depth. As a result, the number

of returning electrons accelerated in a constant electric field, would
increase significantly with every reverse precipitation depth (from
the bottom to the top), reaching its maximum at the upper boundary.
While in the case of variable electric field, electrons are found to gain
much less energy in this electric field and, as a consequence, their
differential density at all precipitation depths becomes consistently
smaller than for a constant electric field.

MES derived from the updated CE for electrons with ohmic
losses are found to have spectral indices −γ + 1, which are higher
by 0.5 than for the original CE solutions (−γ + 0.5) for electron
flux, similar to those found for collisional losses (Dobranskis &
Zharkova 2014). This evidently leads to mean electron densities
with higher magnitudes at every precipitation depth found from the
CE for electron density compared to the CE for electron flux.

Also the electron energy spectra obtained from the updated CE
solution for Coulomb collisions are shown to produce softer HXR
photon spectra than the original CE for electron flux which inci-
dentally fit closer the calculated HXR spectra obtained from the
numerical Fokker–Planck solution. Slight discrepancies occur for
electrons at lower energies for harder electron beams, and at higher
energies for softer electron beams that can be a consequence of
partial pitch angle scattering considered in FP approach (Siversky
& Zharkova 2009) also pointed by Emslie et al. (2014).

However, for a more accurate comparison of HXR photon spectra
with those observed by RHESSI the effect of ohmic losses should
be considered simultaneously with collisional losses that will be a
scope of the forthcoming paper.
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