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Abstract 
This research is focused on the performance evaluation of micro Combined Heat and Power 

(mCHP) systems based on modern prime mover technologies using both theoretical and 

experimental analysis. Estimations of the environmental and economic impact associated 

with their deployment in residential conditions were also carried out. 

Experimental work was performed on assessing the dynamic and steady-state performance of 

the 1 kWe Stirling based mCHP system (Whispergen), the 0.75 kWe Proton Exchange 

Membrane Fuel Cell (PEMFC, PA Hilton Ltd) and the 5.5 kWe Internal Combustion Engine 

(ICE) based mCHP (Dachs). Results obtained from experiments (such as partial efficiencies, 

nominal capacities etc.) were fed directly in a theoretical model. Primary energy requirements 

corresponding to average UK domestic conditions were simulated based on real life technical 

data. All theoretical work was conducted using EnergyPlus building simulation tool in which 

the operation of several hydronic heating systems was modelled. Furthermore, attained 

experimental data and previously published research results were used to validate the 

theoretical modelling process. 

Several operating strategies of the Stirling based mCHP unit were simulated in order to 

determine the regime which offers highest reduction in carbon emissions and household 

expenditures. In addition, variations in a number of parameters that significantly affect the 

performance of the system were investigated including energy consumption profiles, 

occupancy characteristics, dwelling thermal requirements, domestic hot water tank volume, 

etc). For the optimum performance strategy, several configurations of co-generation systems 

with nominal capacity in the range from 1 to 3 kWe were simulated. All simulated mCHP 

scenarios were compared against a conventional heating equipment. Finally, the advantages 

of a mass installation  on a district level, consisting of 60, 120 and 240 dwellings and utilising 

a mixture of different mCHP units (ICE, Stirling, PEMFC),  were estimated. 
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Chapter 1 Introduction 
 
 

1.1 Introduction 

 

Increased energy requirements that the modern lifestyle imposes have raised the greenhouse 

gases emissions with significant impact in global warming. The continuous decreasing of the 

fossil fuel reserves combined with the increasing prices of energy contribute to the global 

energy crisis. Governments with consciousness of the potential problem have a strong interest 

in renewable and low carbon technologies. Particularly in the UK, households contributes 

extensively to the net carbon footprint (approximately 74 %) [1]. Greenhouse emission have 

been increasing 3 % per annum between 1997 and 2004 and it is predicted to continuously 

increase by 2030 [2]. It has been recently introduced financial incentives when renewable 

power generation systems are implemented for residential applications such as "Feed-in 

tariff" and more recently the "renewable heat incentive". These incentives are aimed at 

increasing the number of installed units and reducing the carbon dioxide emission associated 

with the burn of fossil fuels as required by the climate change act. 

Micro scale Combine Heat and Power systems (mCHP) are an attractive alternative for onsite 

heat and power generation. Development of such systems was abandoned due to the central 

electricity generation and national grids, however at the start of the twenty first century the 

environmental awareness urged for utilisation of efficient technologies that could be used in 

CHP systems. Primary energy savings and carbon emission reduction could be attained if  

such systems replace conventional heating systems. Benefits are attributed to high overall 

efficiency and moderate electricity import from the national grid.  
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Technologies utilised in such co-generation systems include the Stirling engine, Internal 

combustion engines (ICE) and fuel cells. Although published research findings predicted 

significant advantages of proton exchange membrane (PEM) fuel cell based mCHP, 

technology is far from being commonly available. On the contrary, ICE and Stirling based 

units have reached commercialisation stage and some units have already been deployed in 

domestic sector. Systems that reached the commercial level are the Honda Ecowill, Baxi 

SenerTech Dachs ICE mCHPs and Baxi Ecogen and Whispergen Stirling engine MCHPs. 

This research is focused on assessment of the performance of mCHPs based on the three 

leading prime mover technologies by means of theoretical modelling and experimental work. 

Obtained results from test-rigs were used for validation of numerical process, whilst both key 

parameters and real life technical data were applied in theoretical modelling and improved 

the accuracy of heating systems simulations. This work is concluded by analysing the 

reduction in carbon emissions and utility expenditures in a mass installation scheme which 

utilised a mixture of different mCHP units (ICE, Stirling, PEMFC) on the small district 

(street) scale. 

In summary, mCHP systems could offer environmental and financial advantages compared to 

a convectional heating system. However the magnitudes of the potential benefits are highly 

depended on several parameters. This research aims to provide insights and to recommend 

the optimum technology and operational pattern to achieve the maximum benefits. 
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1.2 Research Aims 

 

The aims of this research are: 

1. To estimate environmental and economic impact of modern mCHP units in individual 

dwellings; 

2. To assess the effect of variation in energy consumption profiles, occupancy 

characteristics, dwelling thermal requirements, domestic hot water tank volume, etc.;  

3. To identify mCHP technologies which provide greatest benefits when deployed in 

individual dwellings; 

4. To estimate the ecological and financial impact of deployment of a mixture of 

different mCHP technologies (ICE, Stirling, and PEMFC) on a district level.   
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1.3 Research Objectives 

 

The objectives under investigation in this research are: 

1. To experimentally assess the performance of three mCHP units; namely 

Whispergen Mk Vb 1 kWe Stirling engine, PA Hilton PEM fuel cell 0.75 kWe and 

Baxi SenerTech Dachs 5.5 kWe ICE engine based mCHP units. 

2. To model the domestic thermal load of a generic semi-detached, detached and 

bungalow dwellings under different construction regulations. 

3. To model primary energy demand profiles (electricity, DHW) based on measured 

data. 

4. To simulate the operation of a residential hydronic heating system with the co-

generation systems. 

5. To assess the performance of various configuration and operating strategies of 

Whispergen Stirling engine based mCHP. 

6. To validate the theoretical modelling using obtained experimental data. 

7. To simulate a mass installation scheme that consists of a mixture of modern 

engine based mCHP technologies. 

 

 

 

 

 

 



  Chapter 1: Introduction 

  

5 
 

1.4 Research Methodology 

 

This research was conducted in several stages which are outlined: 

1. The performance of three leading technology based mCHP units (Whispergen Mk Vb 

1 kWe Stirling engine, Hilton PEM fuel cell 0.75 kWe and Baxi SenerTech Dachs 5.5 

kWe ICE) was experimentally investigated in respect to steady-state and dynamic 

operation. 

2. Obtained results from experimental set-up such as thermal and electrical output, 

partial and overall efficiencies, etc. were used in modelling of a hydronic heating 

systems based on the mentioned mCHP units using Energy Plus software. 

3. Real life technical data were used in theoretical modelling of primary energy 

requirements in three generic UK dwellings. 

4. A validation process was carried out in order to ensure the viability of the theoretical 

simulations. 

5. Modelling was expanded to mCHP systems based on three technologies (Stirling and 

ICE engines, PEMFC) with nominal electrical output in the range of 1-3 kWe.  The 

modelling was completed for different electrical and thermal requirements of 

buildings. 

6. A simulation of a mass installation scheme on a district level which utilised a mixture 

of different mCHP technologies (ICE, Stirling, and PEMFC) was finally performed. 

7. Annual reduction in both carbon emissions and household expenditures were 

estimated for all simulated scenarios. 

 

 

 



  Chapter 1: Introduction 

  

6 
 

1.5 Contribution to knowledge 

 

The novelty in this research can be summarised as follows: 

 Firstly, the modelling of the operation of different types of mCHP systems using 

measured technical data, including the effect of transitional regimes, considerably 

improved the accuracy of the simulating process over previous research in mCHP 

systems.  

 Secondly, an operating strategy and configuration of the Stirling engine based mCHP 

system was proposed that provided enhanced the economic and environmental 

benefits.  

 Thirdly, the comparison of all three technologies, namely PEMFC, ICE and Stirling, 

was carried out experimentally and theoretically whilst previous works mainly 

considered just two technologies. 

 Finally, for first time the primary energy consumption  and carbon emissions 

reduction were estimated on a district/street level with utilisation of a mixture of 

different mCHP units (ICE, Stirling, PEMFC) 

1.6 Thesis Structure 

 

The outline of this thesis and the investigation process are described in this section. The 

thesis is separated into the following eight chapters: 

Chapter 1 - Introduction: This chapter presents the aims of this research, the methodology 

followed and highlights the contribution to knowledge and the thesis structure. 

Chapter 2 - Literature review: In this chapter previous published research on mCHP systems 

based on various technologies is reviewed. Results from experimental and theoretical work 
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on co-generation units and research findings related to the prime mover engine technologies 

are presented. 

Chapter 3 - Theory and Application of mCHP systems: This chapter presents the theory 

behind the four major co-generation technologies. The fundamentals of operation, the 

advantages and the application of Stirling and IC engines, PEM fuel cell and Rankine cycle 

are described in this section.  

Chapter 4 - EnergyPlus software: This chapter describes the structure of the building 

simulating tool used for modelling. The outline of the simulation process and the governing 

equations followed in each stage of calculations are described here. 

Chapter 5 - Experimental results: In this chapter the results obtained from experimental set-

ups are analysed. Three cogeneration units (Whispergen Mk Vb 1 kWe Stirling engine, Hilton 

PEM fuel cell 0.75 kWe and Baxi SenerTech Dachs 5.5 kWe ICE) installed in the laboratory 

at Northumbria University in Newcastle were tested under steady-state and transitional 

regimes. Furthermore, the validation process of the theoretical results is presented here. 

Chapter 6 - Simulation results: In this chapter the results obtained from numerical modelling 

are presented and analysed. The discussion starts with the description of the energy demand 

modelling in a generic UK building in which a number of configurations and operating 

strategies of the Stirling base mCHP unit were considered. Moreover, simulation was 

expanded to alternative house types with different energy demands. Finally, the ecological 

and economic performances   of each unit were compared with reference to a conventional 

condenser boiler house heating scenario in order to identify the most feasible technology and 

operating regime.  

Chapter 7 - District Scheme: This chapter considers the investigation of the primary energy 

and carbon emissions reduction on a district level with utilisation of a mixture of different 
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mCHP units, namely ICE, Stirling and PEMFC. Moreover, it introduces the effect of 

electrical interaction between dwellings. 

Chapter 8 - Conclusion and recommendation of future work: The final chapter highlights   the 

main outcome of this research. It includes the summary of the findings and recommendations 

for further improvement in respect to the experimental and theoretical methodology followed 

throughout this work. 
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Chapter 2 Theory of mCHP technologies 
 

2.1 Introduction to micro-cogeneration systems 

 
The origins of combined heat and power (CHP) arise from the factories of the industrial 

revolution in the late nineteenth century, when engineers utilised the waste heat from power 

plants for both space heating in winter and facilitation in manufacturing processes. 

Development of such systems was abandoned due to central electricity generation and 

national grids, however at the start of the twenty first century environmental awareness issues 

urged a need for utilisation of efficient technologies that could be utilised in CHP systems. In 

addition the development of innovative prime movers such as fuel cells, Stirling engines, 

micro turbines and the necessity for energy decentralisation contributed to the renaissance of 

interest in CHP [3]. 

CHP systems can be classified according to their capacity. Large scale includes systems over 

2 MWe, small scale embraces systems with power capacities greater than 100 kWe and less 

than 2 MWe, and Micro scale (‗mCHP‘) refers to units that can be applied in small buildings 

with a nominal capacity smaller than 50 kWe [4]. Although 90 % of the units installed 

worldwide are in the range of large scale, the widest range of technologies is comprehended 

within the small scale category. 

2.1.1 Micro CHP technologies 

Micro scale cogeneration technologies are based on Stirling engines, internal combustion (IC) 

engines, fuel cells (FC), small gas turbines and the Rankine cycle using an organic working 

fluid (usually referred to as ‗organic Rankine cycles‘ (ORC)). These units are full packages 

and utilise the waste heat for space heating and domestic hot water applications, mainly 
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covering energy demands of small buildings and individual houses. Due to low power 

generation it is crucial to select the adequate technology which will match the application‘s 

energy requirements and heat to power ratio (HPR).   

Development of the detailed theoretical models of mCHP is beyond the framework of this 

research, therefore mCHPs operational principles are described only on the simple 

thermodynamic cycle level. 

2.2 Stirling engine based mCHPs 

2.2.1 The Stirling cycle 

In domestic micro-CHP applications a natural gas burner is used for supplying a high 

temperature heat at the hot end of a Stirling engine whilst water circulation in the primary 

hydronic space heating system is used for cooling its cold end. The pressure/volume (PV) 

diagram in Figure 2.1 shows the ideal thermodynamic cycle of a Stirling engine. The cycle is 

defined as a closed regenerative cycle with a gaseous working fluid. The working gas is 

sealed inside the engine, therefore heat is transferred by conduction through the cylinder 

walls. Due to limited surface areas of cylinder walls, the heat transfer is limited. However the 

use of a regenerator enhances the thermal performance. 

 

Figure 2.1 Theoretical thermodynamic Stirling cycle [5] 
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The four thermodynamic processes as evidenced in Figure 2.1are: 
 
1-2 Isothermal compression (compression occurs at constant temperature); 

2-3 Isochoric heat addition (heat supply to the gas at constant volume result in pressure and 

volume rise); 

3-4 Isothermal expansion (working gas expands at constant temperature, exerting a force on 

the working piston and producing useful work) 

4-1 Isochoric heat removal (working gas flows through regenerator dispensing heat which 

will be used in the next cycle)   

The PV diagram in Figure 2.2 shows the idealised Stirling cycle upon which the deviation 

from the ideal cycle due to practical design and material choices is superimposed. This 

divergence is also attributed to the omission of the volume of both regenerator and in-pipe 

heat exchangers of the engine (usually referred as dead volume) from the theoretical 

approach.  

 
Figure 2.2 Thermodynamic Stirling cycle constrains [5]  

 
In Figure 2.2 the actual cycle is represented by the elliptical shape in the middle of the graph. 

The gas gradually undergoes through changes in volume, pressure and temperature. As the 

dead volume is reduced, the cycle moves outwards the larger (light grey) ellipse. Efficiency 
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of any ideal heat engine is limited by the temperature differential at the hot and cold ends of 

the engine, as shown by the following equation: 

              (2.1) 

where η is the efficiency of Carnot cycle, W is the work done by the system, QH is the heating 

energy entering the system, TC is the absolute temperature of the cold reservoir and TH is the 

absolute temperature of the hot reservoir.  

The efficiency of the Stirling engines is depended on the temperature difference between the 

hot and the cold parts of the engine. The higher temperature difference results in the higher 

efficiency.  However, the upper temperature is limited by the metallurgical limit of materials 

used for manufacturing the hot side of the engine.  In order to avoid the efficiency reduction 

it is also necessary to minimise the heat losses from the hot to cold components of the engine 

due to heat conduction, the hot working fluid bypassing etc. Stirling engines operate with the 

elevated pressure of the working fluid with its level limited by both metallurgical 

considerations and wear of engine components due to high loads. Finally, further constraints 

which result in further deviation from the theoretical attainable efficiency are mechanical 

losses due to friction in the drive mechanism and in bearings, pumping losses, heat losses, 

etc. 

2.2.2 Fundamentals of operation 

Stirling engines operate on a closed regenerative thermodynamic cycle, with cyclic 

compression and expansion of the working fluid at different temperatures [5].  They are 

external combustion engines, the main advantages of which are that they can be supplied by 

any source of heat and they could achieve the theoretical thermal efficiency comparable to 

the maximum efficiency of the Carnot cycle (though in practice numerous losses contribute 

to lower efficiencies).  Other practical advantages include low pollutant emissions, low noise 



  Chapter 2:Theory of mCHP Technologies 

 

13 
 

and vibration levels during operation, long lifespan and service intervals, characteristics 

which are mainly due to the controlled combustion process that is used for the heat input. A 

constant heat supply is applied at the hot end of the engine whereas the cold end is cooled 

down by water circulation. The temperature differential in hot and cold end causes fluctuation 

in the working gas pressure and therefore forcing the piston to oscillate between the two 

temperatures zones. Figure 2.3 shows a free piston Stirling engine consisting of a cylinder, 

power piston displacer, and regenerator. The displacer has a very small mass compared to the 

power piston and acts to regulate the gas 

flow through the regenerator. In contrast the 

power piston's oscillation is maintained due 

to constant temperature difference across the 

displacer with a frequency close to the 

natural frequency of the system. Power in 

such engines is typically generated in a linear 

alternator. Although Stirling engines could 

utilise several types of fuel, in order to obtain maximum performance units are designed to 

operate with a single heat source. The higher thermal efficiency due to lower heat losses can 

be attained when a regenerator is applied in Stirling engines. This particular heat exchanger, 

which consists of a matrix of fine wires, has ability to store and retrieve heat as the working 

fluid oscillates between its cold and hot ends. Finally, in stationary applications (like mCHP) 

Stirling engines are designed to operate at the fixed speed of approximately 1200-1500 rpm. 

 
Mechanical configurations 
 
Stirling engines can be classified in two major categories: (a) single-acting and (b) double-

acting engines. Single-acting engines are an assembly of an expansion space, compression 

space and associated heat exchangers in one or two cylinders with two reciprocating elements 

 
Figure 2.3 Free piston Stirling engine [6] 
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one of which must be a piston [5]. The second category embraces engines of multiple 

cylinder arrangements where the expansion space of one cylinder is linked through the 

associated heat exchangers to the compression space of the adjacent cylinder. The main 

advantage of the double-acting engines is the number of moving parts which is half the 

number required in multiple arrangements of single-acting engines [5]. The latter can lead to 

simplified kinematic drives, therefore reducing the cost. 

Stirling engines can also have several alternative configurations. Figures 2.4-2.7 [6] show the 

schematics of Alpha, Beta, Gamma and wobble plate type Stirling engine configurations.  

 
Figure 2.4 Alpha type Stirling engine 

 

Figure 2.5 Beta Type Stirling engine 

  

 

Figure 2.6 Gamma type Stirling engine 

 

Figure 2.7 Wobble plate Stirling engine [6]  
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Alpha configured engines can be either single or double acting engines, whereas Gamma and 

Beta type engines are configured as single acting machines. It has been noticed that Beta type 

engines are more efficient than the others, however highest efficiency is not always a 

desirable goal [3]. The preference of the piston-displacer engines is down to the fact that 

those configurations have simpler reciprocating seals [5] mainly because the sealing around 

the displacer is smaller than around the piston. Another advantage is the reduced levels of 

vibrations and mechanical friction losses as a result of lighter reciprocating mass compared to 

multiple pistons machines. 

2.2.3 Applications 

The major advantage of external combustion engines, as mentioned, is the utilisation of a 

wide range of heat sources. In solar application the hot end of a Stirling engine can be placed 

at the focal point of a parabolic concentrating dish as shown in Figure 2.8. Heat generation 

from the combustion process of any biofuel can be used to drive a Stirling engine. Stirling 

engines could be used to convert radioactive-decay heat into electricity in space application 

for on-board power supply of the spacecraft as shown in Figure 2.9. 

 
 
 

Figure 2.8 A 25 kW tracking, concentrating 

solar power (CSP) dish collector [6] 

 
 

Figure 2.9 An advanced Stirling 

Radioisotope Generator (ASRG) 130-140 

Watts unit which utilises plutonium-238 as 

heat source developed by NASA [6] 
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Exhaust gases from the combustion process can be utilised for enhancing the production of 

bio-gas as shown in Figure 2.10. Finally Stirling engine based mCHP could replace 

conventional heating systems in domestic sector 

 
 

Figure 2.10 Small and micro Stirling engine systems powered by biofuels [4] 

 

2.2.4 Commercially available mCHP systems based on Stirling engines 

 
Micro scale CHP plants have been found to be an attractive option for residential 

applications. Replacing conventional heating systems based on gas-fired boilers can offer 

potential environmental and economic benefits in houses. Benefits are mainly attributed to 

increased energy utilisation and decreased power transmission losses compared to grid 

connected scenarios as well as reduced carbon emissions. 

The Microgen unit was developed by BG Group from US (Sunpower) design, it was taken 

over by a consortium of gas boiler (Viessmann, Baxi, Vaillant, Remeha) manufacturers. Mass 

production of engines takes places in China. The engine is based on a Beta type free piston 

engine with a nominal capacity of 1 kWe and 5 kWth electrical and thermal power, 

respectively. However, current models feature a higher thermal output by implementing an 

auxiliary burner of up to 18 kWth depending on the manufactures. Figure 2.11 shows an 1 

kWe mCHP unit by Baxi. The Disenco mCHP unit (see Figure 2.12) is based on a beta type 

kinematic design Stirling engine. The design features air-preheater and finned tube heater 

head both of which contribute to the high efficiency. The unit is characterised by modulation 
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capabilities and output varies in range of 0.5-3 kWe and 12-17.4 kWth. A 3 kWe electrical 

output mCHP was developed by Sunmachine. The engine utilises the heat from biofuel 

combustion using a finned tubular heater.  The unit is manufactured in Germany and claimed 

to have a 20 % electrical and 90 % cogeneration efficiency. The Infinia mCHP is based on a 

free piston engine and was originally developed for incorporation in micro CHP products 

manufactured by Ariston (formerly MTS) and Bosch in Europe as well as Rinnai in Japan [7].  

In 2013 Infinia was acquired by Qnergy which currently has two units available of 3.5 kWe 

and a 7.5 kWe. Thermal capacities are in the range of 3.5-10 kWth and 7.5-22 kWth, 

respectively. Figure 2.13 shows a 3.5 kWe mCHP system of Qnergy. 

 

Figure 2.11 BaxiEcogen 1 kWe Stirling 

engine based mCHP [8] 

 

Figure 2.12 Inspirit Energy Holdings plc [9] 

A unit which is capable to satisfy larger thermal requirements targeting commercial buildings 

rather than residential installations was manufactured by Cleanergy AB (formerly Solo). The 

Solo V160 engine is based on a two-cylinder alpha type Stirling engine and it was designed 

to operate on biogas. Nominal electrical capacity is in the range between 2 and 9 kWe which 

corresponds to 8 to 26 kWth. This unit features a claimed efficiency of 22 %. One of the 

major manufacturers of domestic mCHP units is Whispertech a company based in New 

Zealand. The unit is based on a four-cylinder double acting, alpha type engine with a 
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'wobble-yoke' kinematical mechanism to convert the reciprocating piston motions into the 

shaft‘s rotation. 

The latest MKV model unit has a nominal capacity of 1 kWe and 7 kWth which corresponds 

to the electrical efficiency of 12 % and thermal efficiency of 67 %. The mCHP incorporates 

an auxiliary burner of 5 kWth in order to meet higher thermal loads. The operation of the 

additional burner is controlled by an outdoor sensor which ensures that the heat primarily is 

delivered by the engine unless extremely low ambient temperatures are detected. Figure 2.14 

shows the design of a Whispergen mkV mCHP unit 

 

 
 

Figure 2.13 The Qnergy QB engine mCHP 

series; [10]. 

 
 

Figure 2.14 Whispergen MKV 1 kWe 

Stirling engine based unit mCHP [11] 

2.3 Internal Combustion and reciprocating engines based micro CHP 

2.3.1 Fundamentals of operation 

Internal combustion engines (ICE) convert the chemical energy contained in the fuel into 

mechanical power [12]. The term ―internal‖ refers to the fact that fuel oxidisation takes place 

within the engine. After a century of undergoing development ICE technology offers high 

fuel conversion efficiency and high power-to-weight ratios. Applications of internal 

combustion engines include transport, stationary power applications, combined heat and 
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power systems, etc [3]. Numerous criteria are used in the classification of ICE engines which   

could be presented according to   

i. Application: Transport, power generation, cogeneration; 

ii.  Basic engine design: Reciprocating engines, rotary engines; 

iii.  Working cycle: four-stroke, two-strokes engines; 

iv. Valve or port design and position: Overhead/ underhead valves, rotary valves etc. 

v. Fuel: Petrol, natural gas, alcohols, dual fuel, hydrogen, diesel, biodisel, biogas/syngas; 

vi. Method of mixture preparation: Carburetion, fuel injection etc. 

vii.  Method of ignition: Spark ignition, compression ignition; 

viii.  Method of cooling: Water cooled, air cooled. 

Although the above classification illustrates the range of configurations of engines, the 

method of ignition is commonly used for describing the fundamental operation characteristics 

of  IC engines [12]. Spark ignition engines (also referred as "Otto engines") use a spark plug 

to ignite the compressed pre-mixed charge in the cylinder. On the other hand, in Diesel 

engines (compression ignition engines), the ignition occurs when high pressure fuel is 

injected directly to the compressed air within the cylinder [3]. Both engines can use two-

stroke or four stroke cycles. Nevertheless, the four stroke cycle is the most common. 

However, in applications in which power density is crucial two stroke engines are preferable 

as they can provide higher power output for a given engine size. 

 Figure 2.15 shows a basic geometry of the internal combustion engine. In common 

reciprocating engines the piston moves up and down in a cylinder and transfers power 

through a connecting rod and crank mechanism to the drive shaft [12]. The piston passing 

periodically through the top centre crank position (TC) which corresponds to the minimum 



  Chapter 2:Theory of mCHP Technologies 

 

20 
 

cylinder volume and the bottom-centre crank position which corresponds to the maximum 

cylinder volume. 

 

Figure 2.15 Basic geometry of a single cylinder ICE engine [12] 

The minimum volume is called clearance volume Vc while the difference of the total volume 

Vt and the dead volume is referred as the displaced or swept volume Vd. The ratio of the 

maximum to the minimal volume is the compression ratio rc. The majority of IC engines 

operate with a four-stroke cycle, where a complete power stroke is produced when each 

piston undergoes a sequence of four events as shown in Figure 2.16 

 

Figure 2.16 The four stages of a four-stroke internal combustion engine [12] 

These four strokes could be described as follows: 



  Chapter 2:Theory of mCHP Technologies 

 

21 
 

a) Intake stroke; Mixture of air/fuel enters through the inlet valve into the cylinder while 

the piston is moving from TC to BC position 

b) Compression stroke; The mixture inside the cylinder is compressed to a small fraction 

of its original volume and ignited. Combustion occurs when the piston is at TC 

position which causes the temperature and pressure to rise rapidly in the cylinder. 

c) Expansion stroke; High pressure and temperature gases exert a force on the piston 

therefore producing mechanical work. 

d) Exhaust stroke; The burnt gases exit the cylinder through the exhaust valve due to 

pressure difference in the cylinder and ambient and due to piston movement towards 

TC. 

The cycle described is a sequence of processes in which the state of working fluid could be 

examined and provide quantitative information on engine operation [12].  

In the simplest types of two-stroke engines, valves are controlled by the piston motion and 

the cycle consists of a compression stroke and an expansion stroke only. 

2.3.2 Thermodynamic cycle 

Figure 2.17 shows an example of an ideal pressure-volume diagram based on a constant 

volume combustion process. 

 

Figure 2.17 Pressure-Volume diagram for an ideal constant volume combustion cycle [13] 

The processes in this cycle are described as follows: 
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 Intake stroke; Air/fuel mixture is drawn into engine (5-1); 

 Compression stroke; Pressure and temperature of mixture rises (1-2); 

 Combustion occurs over a short time period at the constant volume (2-3); 

 Power Stroke; Expansion of the burned mixture result in useful work generation (3-4); 

 Heat rejection: the bulk of combustion products leave though exhaust valves (4-1) 

 Exhaust stroke: The remains of the combustion products are swept out due to the 

piston‘s upward motion (1-5); 

A set of assumptions were applied in the analysis of ideal engine processes. These 

simplifications could be summarised as follows: adiabatic compression and expansion; 

combustion is considered adiabatic and at constant volume and combustion is complete, 

constant pressure at the mixture intake process, negligible velocity effects, etc [12].  Figure 

2.18 shows an actual engine cycle. 

 
Figure 2.18 Pressure volume diagram for an actual constant volume combustion cycle [13] 

 

As can be noticed in Figure 2.18 an actual engine cycle undergoes a gradual change in 

pressure, temperature and volumes. Deviation from the ideal cycle can be attributed to 

friction and mechanical losses and to the omission of all mentioned assumptions.  
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2.3.3 Commercially available mCHP units based on Internal Combustion engines 

Main advantage of the internal combustion engines is the rapid variation of the generated 

power as a result of the reaction to control. In the automotive application the mentioned 

characteristic makes them preferable over the external combustion engines. However in 

stationary applications, IC engines could be improved to reduce engine vibrations and noise 

levels, emissions, maintenances intervals and raise the reliability. Early mCHP products, 

based on automotive ICE technology, could not overcome those technical challenges, 

therefore ICE based mCHPs were not often considered for domestic applications. However, 

later units demonstrated the increased efficiency, lifespan and low maintenance cost. 

Available internal combustion engine based mCHP units can be classified according to their 

nominal capacity. For individual houses a power range of 1 kWe is considered whereas for 

multifamily applications and commercial buildings 5 kWe and 10 kWe power capacity units 

are available. In the range of multifamily applications SenerTech Dachs, a company based in 

Germany, is the market leader in Europe with more than 20000 units installed. Figure 2.19 

shows a 5 kWe ICE mCHP unit of SenerTech Dachs. The unit has a power nominal output of 

5 kWe and thermal output in the range of 10.5-14.9 kWth depending on the version of the unit. 

Engine  operates either with natural gas or diesel fuel, however electrical efficiency is above 

26 % for all versions [3]. The Ecopower units manufactured by Vaillant (Figure 2.20) are 

based on the Marathon gas engine. The manufacture offers two versions with a nominal 

capacity of 3 and 4.7 kWe. Both engines feature modulation capabilities which believed to 

offer significant advantages over competitors. MCHP units with electrical output of 1 kWe 

and approximately 3 kWth thermal are suited for individual house applications. The Honda 

Ecowill ICE engine based mCHP unit has an electrical efficiency of 22.5 % whilst the 

cogeneration efficiency is 86 %. 
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Figure 2.19 SenerTechDachs 5 kWe ICE 

engine based mCHP [14] 

 

Figure 2.20 The ecoPower 3 kWe by Vaillant 

offers modulation capabilities [15] 

 
Figure 2.21 shows the Honda Ecowill system. Its novel design with the incorporation of 

catalytic converters and acoustic attenuation system overcome the limitation of the IC 

engines with a drawback on the capital cost. More than 100,000 units have been installed 

since 2003 with most of the units have been deployed in Japan. The ecoPOWER 1 kWe 

mCHP unit from German based Vaillant (Figure 2.22) utilises the same IC engine by Honda 

but with enhanced performance. It features 3.5 % higher electrical efficiency than the Ecowill 

unit and its main advantage is that it can be installed indoors. 

 

Figure 2.21 The Honda Ecowill 1 kWe 

mCHP unit based on ICE engine [16] 

 

Figure 2.22 Vaillant ecoPOWER 1 kWe, 

shares the engine with Honda, with 

enhanced performance [15] 
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Figure 2.23 and Figure 2.24 show mCHP units that have been introduced to the European 

market in the last few years; namely Kirsch, Proenvis, RMB Energie and ESS. Their 

available capacity is not limited to micro installations (individual houses) but also expands to 

semi-commercial and commercial applications. 

 

Figure 2.23 The Proenvisprio 5.2 unit has 

capacity of 2 kWe and 5 kWth electrical and 

thermal respectively [17] 

 

Figure 2.24 The 1.9 kWe micro unit from 

Kirsch [7] 

 

2.4 Fuel cells 

2.4.1 Fundamentals of operation 

Fuel cells are electrochemical devices which converts the chemical energy of a fuel into 

electricity without involving combustion [3]. 

Figure 2.25 illustrates a simple fuel cell. The simplified diagram of the fuel cell consists of 

two electrodes at the anode and cathode side respectively and an electrolyte in-between them. 

Hydrogen flows onto the anode side and splits into electrons and protons. While protons can 

reach the cathode side electrode through the electrolyte, electrons reach the cathode electrode 

through a wire that interconnects both sides [18]. In a fuel cell there are two electrochemical 

reactions. 
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Figure 2.25  Simple Fuel cell [19] 

At the anode side: 

2H2      4H+ + 4e-                 (2.2)  

At the cathode side:  

4e-+ 4H++ O2 2H2O              (2.3)  

The electron‘s flow through the external circuit 

constitutes a current. At the cathode side electrons, 

protons and oxygen are recombined and produce water 

following reaction in Equation (2.3). It is worth 

noticing that efficient products removal ensures 

consistent performance during operation.  

The energy of the product bond configuration is lower than the energy of the reactants bond 

configuration, therefore the difference of the energy is released in the form of heat. 

2.4.2 Fuel cell performance 

The performance of a fuel cell can be graphically illustrated by means of a current and 

voltage characteristics curve. A polarisation curve is commonly used for this purpose in 

which the current output of the fuel cell for a given voltage is in the plot. Figure 2.26 shows a 

typical polarisation curve for a proton exchange membrane fuel cell (PEM FC). 

 

Figure 2.26 A typical polarisation curve (I-V) of a PEM FC [18] 

 

 

http://www.sciencedirect.com/science/article/pii/S0306261910003958
http://www.sciencedirect.com/science/article/pii/S0306261910003958
http://www.sciencedirect.com/science/article/pii/S0306261910003958
http://www.sciencedirect.com/science/article/pii/S0306261910003958
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The power output of the fuel cell is dependent on the reaction surface area. A normalised 

current with respect to that area (A/cm2) is used instead of the current on the polarisation 

curve in order to make results comparable. Thermodynamically, a fuel cell can generate any 

amount of current at constant voltage [3]. However, in a real fuel cell losses that occurring at 

particular ranges of current densities result in deviation from ideal fuel cell voltage. The real 

voltage output can be expressed in the following equation.  

Vreal=  Ethermo-ηact-ηohmic-ηconc   (2.4) 

where Vreal= real voltage output of fuel cell; Ethermo= the ideal (thermodynamically) predicted 

voltage; ηact= activation losses; ηohmic= ohmic losses; ηconc = concentration losses. 

The ideal voltage is predicted for a reference condition and is dependent on the free-energy 

change of the reaction (  ̂    ), and the number of moles of electrons transferred in the 

reaction (n) and the Faraday constant (F). It can by expressed as Equation (2.2)      

        ̂       
(2.5) 

 
The reactions occurring in the anode electrolyte in reality occurs at several stages including 

mass transport of H2 to the electrode, absorption of H2 in the electrodes, separation of H2, etc. 

The overall speed of reaction is determined by the slowest of the sub-reactions. Losses 

occurring in the first region of the polarisation curve are associated with the speed of the 

reaction. Voltage therefore decreases due to electrochemical reaction kinetics by a factor that 

corresponds to the voltage needed to overcome the reaction activation barrier. The transport 

of the charge in the cell results in an additional loss called ohmic losses which are attributed 

to the resistance of the fuel cell conductors. 
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Figure 2.27 Total Ohmic resistance in the Fuel cell [18] 

 
In a total ohmic resistance calculation the resistance of ion and electrons flow through 

individual components and interconnection within the fuel cell should be considered. The 

gross resistance is a combination of resistances each attributed to a different component. 

Figure 2.27 shows the total ohmic resistance as it is divided into interconnect, anode, cathode 

and electrolyte resistance components. The combination of Nernstian losses and reaction 

losses in the proximity of the electrodes is referred to as the cell's concentration loss. Both of 

these losses are a result of depletion and accumulation of the reactants and products in the 

catalyst layer which leads to reduce fuel cell performance. 

2.4.3 Types of fuel cells 

 
Fuel cell can be classified according to the type of electrolyte they use. There are five major 

types available: 

i. Polymer electrolyte membrane fuel cell (PEMFC); 

ii.  Phosphoric acid fuel cell (PAFC); 

iii.  Solid-oxide fuel cell (SOFC); 

iv. Alkaline fuel cell (AFC); 

v. Molten carbonate fuel cell (MCFC). 
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Although all the above mentioned types are based on the same electrochemical principles, 

operation characteristics differ from type to type by means of operating temperature, material 

selection and the supply of hydrogen which can be either direct or indirect (in the case of 

reforming natural gas). The main advantage of the PEMFC is the high current density and the 

low operating temperature which makes it attractive for automotive applications. These types 

use a polymer membrane for proton transport and the cell‘s performance is dependent on the 

humidification level of the membrane.  

Operating at constant humidification levels are preferable in order to avoid flooding and 

drying out issues which reduce performance. PAFC cells are at the most advanced state of 

development [18]. Numerous units have been installed in more than 300 locations worldwide 

mainly in building power generation applications. They use pure phosphoric acid as the 

electrolyte and operate at a temperature range of 150 °C – 200 °C. As in the PEM types in 

order to enhance the reaction for the given levels of operating temperatures noble metal 

catalyst layers are required.  

The need for precious metals in the catalyst is diminished in the case of SOFC due to high 

operating temperature; in the range of 800 °C to 1000 °C. The excess of generated heat from 

the electrochemical reaction could be utilised in internal reforming process, therefore 

hydrocarbons could be used as fuel. However, finding inexpensive materials capable of 

withstanding those thermal stresses is creating a challenge. Nevertheless, the advantage of 

these types is the elimination of corrosion issues associated with the PAFC and MCFC and 

the water management in PEMFC. MCFC operate at lower temperatures, approximately 650 

°C. Reactions that occur within the cells are different to those in PEMFC and PAFC as these 

evolve the transport of negative carbonate ions instead of protons.  
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One particular interest for MCFC applications is the power generation from gasified coal. 

However further development is needed in order to increase lifespan of units due to corrosion 

issues. Table 2.1 can summarise the operating characteristics of the main fuel cell types. 

Table 2.1 Operating characteristics of various fuel cell types [3] 

 
 

2.4.4 Commercial available mCHP systems based on fuel cell 

Of particular interest are mCHP-based fuel cells. The main advantages are considered to be 

the emission free operation when pure hydrogen is used as fuel and the high electrical 

efficiency due to the elimination of moving parts and mechanical losses. Stack sizes of such 

units are in the range of a few kWe with a heat to power ratio close to one. The main 

constraint on cogeneration applications is the transient response of the fuel cells. The pre-

heating time of a PEM type fuelled by natural gas (in units incorporating a fuel reformer) is 

approximately one hour whereas in SOFCs a 12 hour period is required in order for the 

system to reach nominal operation. Sophisticated control logic can be applied to compensate 

for the relatively long start-up period. While fuel cells have been under development for the 

last four decades they are still commercially immature. Lifespan of the units, corrosion, 

performance degrading, and capital cost due to noble metals usage are the major issues 
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attributing to the fact that fuel cells are the least commercially-available technology among 

mCHP. 

2.4.4.1 Available PEMFC based mCHP units 

PEMFC mCHP based systems are considered to be 

the leading fuel cell technology for domestic 

applications. The low operating temperatures 

combined with high power densities and efficiency 

has drawn also the interest in transport 

applications. Several thousand PEMFC co-

generations units have been installed in Japan 

residential conditions as part of the ENE Farm 

programme [20] in which the installation cost was 

heavily subsidised by the government and gas 

supplying companies. Figure 2.28 shows a 0.7 kWe mCHP incorporating an auxiliary burner 

for supplementary heat generation manufactured by Toshiba. The unit exhibit an electrical 

efficiency of 35 % and sales exceeded 4000 unit in Japanese market. Elcore GmbH company 

based in Munich, Germany has developed a PEM based mCHP unit (Figure 2.29) with a 

nominal capacity of 0.3 kWe and 0.6 kWth. The 0.3 kWe is considered unusual capacity for 

domestic application given that most commercial available mCHP units regardless the 

technology offers a minimum of 1 kWe electrical output. Nevertheless this particular unit is 

mainly aiming to cover domestic hot water requirements and therefore is designed to operate 

continuously and generate 2400 kWh electricity per annum. Figure 2.30 shows a PEMFC unit 

that was developed by Viessmann Group and Panasonic Corporation collaboration. The fuel 

cell unit was developed by Panasonic and has been used extensively in ERA FARM program 

while the incorporated auxiliary boiler system was developed by Viessmann. The unit 

 

Figure 2.28 Toshiba 0.7 kWe PEMFC 

based mCHP [123] 

http://www.microchap.info/pem_fu4.jpg
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features the electrical capacity of 0.75 kWe which correspond to 37 % efficiency; in respect 

to the thermal performance, the efficiency of the unit is rated as 53 % at 1 kWth. Finally, the 

incorporated gas fired boiler can produce supplementary 19 kWth. 

 

Figure 2.29 Elcore 2400 PEMFC based 

mCHP with nominal electrical output 0.3 

kWe [21] 

 

Figure 2.30 Viessman/Panasonic jointly 

developed 0.75 kWe PEMFC based mCHP 

[22] 

2.4.4.2 Available SOFC based mCHP units 

 
The major advantage of the SOFC mCHP systems is the flexibility in the fuel supply due to 

the high operating temperatures and the high potential efficiency. However, this particular 

type of cells exhibits stiffness in modulation of the power output. Galileo of Hexis company, 

has developed a 1 kWe SOFC based mCHP unit (Figure 2.31) with a heat to power ratio of 

two. The system uses an integrated gas fired burner that can generate up to 20 kWth heat in 

order to cover high thermal requirements buildings. The system can be fuelled either by 

natural gas or bio methane and features an overall efficiency of 90 % according to the 

manufacturer. Figure 2.32 shows a particular type of SOFC that has been developed by a UK 

company named Ceres Power. In their design they applied a metal support cell in order to 

overcome the thermal cycling issue, reported during operation in SOFC systems. In addition, 
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the low cost steel is used in the design, reducing the capital cost of the unit. The cell operates 

at approximately 500 °C to 600 °C and has a nominal capacity of 1 kWe electrical. 

 
 

Figure 2.31 Galileo from Hexis features is 

capable of generating 1 kWe and 2 kWth 

electrical and thermal power respectively 

[23] 

 
 

Figure 2.32 1 kWe SOFC based on steel 

technology cell mCHP system [7] 

Vaillant Group has developed a compact wall-mounted SOFC based mCHP system of the 1 

kWe electrical power output as shown in Figure 2.33.   

 
 

Figure 2.33 Vaillant 1 kWe SOFC based mCHP system [15] 

 

Operating temperatures higher than 800 °C enable the use of natural gas and the heat recovery 

is at the range of 2 kWth. Vaillant have several prototypes tested in the laboratory, and these 

completed more than 12000 hrs of continuous operation. Although electrical efficiency is 

considerably lower than of competition, the developers were focused on the reliability of the 

unit and long service intervals. 



  Chapter 2:Theory of mCHP Technologies 

 

34 
 

2.5 Rankine Cycle 

2.5.1 Fundamentals of operation 

Rankine cycle is a thermodynamic cycle which converts heat into mechanical work. Heat is 

supplied externally to the working fluid and operation of the cycle occurs in a closed circuit 

loop. In fossil fuel power plants heat is generated from the fuel combustion process, whereas 

in nuclear power plant a controlled fusion reaction generates useful thermal energy. Finally in 

solar power plants the vaporisation of the working fluid is carried out using solar radiation. 

Figure 2.34 illustrates a schematic of a simple vapour power plant. 

 

Figure 2.34 Components of a vapour power plant [24] 

 
Of the major issues related to the installation of these power plants are the thermal pollution 

of the environment and the accessibility to sufficient quantities of water used for cooling 

requirements. For the reasons mentioned above cooling towers have been employed in recent 

plants. Nevertheless, control of pollutant discharges and disposal of wastes, particularly in the 

case of nuclear power plants, are of significant importance in order to ensure operation within 

acceptable levels of the environmental impact [24]. Solar power plants are considered as non-

polluting and operation is classified as safe, however such plants are not yet widely used. 
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2.5.2 Thermodynamic cycle analysis 

The principal work and heat transfers of Subsystem (A) in Figure 2.34 is illustrated in Figure 

2.35. 

 

Figure 2.35 Subsystem of the power plant. Main components of the Rankine cycle [24] 

 

For simplicity, the heat exchange between components and surrounding is neglected and 

kinetic and potential energy changes are not taken into consideration. Arrows in the diagram 

indicate the positive energy flow and each component is assumed to operate at steady state 

conditions. Starting from state number 1, high temperature and pressure steam produced in 

the boiler, passes through the turbine. The steam expands in the turbine and is discharged to 

the condenser at state 2 at a relatively lower pressure. At this stage useful work (  ̇ ) is 

produced by the turbine:   ̇    ̇ሺ     ሻ  (2.6) 

where   ̇ is the mass flow rate of the working fluid and (h1-h2) is the enthalpy difference 

between the two stages.           

As the vapour passes through the condenser it is cooled down and is condensed into liquid. 

The heat dissipated into the cooling water (    ̇ ) is calculated as 

    ̇    ̇ሺ     ሻ  (2.7) 
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The condensed liquid enters the pump where its pressure is increased before entering   the 

high pressure boiler. Assuming that no heat interaction between the pump and surroundings 

takes place, the work of pump can be calculated as   ̇    ̇ሺ     ሻ  (2.8) 

Finally the cycle is complete as the working fluid is pumped to the boiler where it is heated to 

a saturation level and evaporated. The heat input in the boiler is    ̇    ̇ሺ     ሻ  (2.9) 

The ratio of the net work output over the heat input is the thermal efficiency of the cycle: 
     ̇  ̇⁄     ̇  ̇⁄   ̇  ̇⁄  

(2.10) 

2.5.3 Rankine cycle 

In an ideal thermodynamic Rankine cycle several simplifications are applied. These 

idealisations can be summarised as follows: the working fluid is considered to flow through 

components at a constant pressure; all pressure drops due to friction are neglected; there are 

no irreversibilities throughout the cycle and the thermal interaction with the surroundings is 

ignored. An ideal cycle in the temperature- entropy (T-s) diagram is shown in Figure 2.36. 

The following series of reversible processes could be described in this cycle. 

 

 
Figure 2.36 An ideal thermodynamic Rankine cycle in the T-s diagram [24] 
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1-2: Isentropic expansion of the working fluid through the turbine from the saturated vapour 

to condenser pressure; 

2-3:  Heat transfer from the working fluid as it passes through the condenser at constant 

pressure; 

3-4: Isentropic compression as the pump increases the working fluid pressure before entering 

the boiler; 

4-1:  Heat transfer to the working fluid in the boiler at a constant pressure. 

States 1‘ and 2‘ in Figure 2.36 exist if superheating of vapour is utilised and which increases 

the thermal efficiency. The enclosed area 1-2-3-4-a-1 corresponds to the net heat input or to 

the net work output. Figure 2.37 shows the T-s diagram of an actual Rankine cycle (shown in 

yellow lines). Deviation from the ideal process occurs due to neglecting the pump losses. 

Both mechanical and fluid friction within the pump reduces the pump efficiency and the 

irreversibilities of the processes result in the increase in entropy of the working fluid. 

 

Figure 2.37 Ideal vs real thermodynamic Rankine cycle in the T-s diagram [25]  

2.5.4 mCHPs based on the ORC technology 

Given the high effectiveness of the Rankine cycle, technology is extensively applied in large 

scale power plants. In mCHP applications however, a variation of the Rankine cycle is used.  
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While in conventional power plants water is   commonly used as a working fluid, the organic 

Rankine cycle uses an organic working fluid instead. Despite the fact that water displays 

exceptional thermal properties at high temperatures, in lower power capacity systems organic 

working fluids are preferable. At lower mean operating cycle temperatures organic fluids 

remain in the superheated vapour phase throughout the thermodynamic process. This 

particular behaviour of the organic working fluids eliminates the condensation issues reported 

in the low pressure stages of the steam turbine and the higher mean operating temperature 

result in the higher thermal efficiency. Co-generation units with nominal power output up to 

10 kWe are available in the market at the prototype level only. Figure 2.38 shows an ORC 

based mCHP system tested under laboratory conditions. The power output and electrical 

efficiency of this particular unit are noticeably low at 0.08 kWe and 1.66 %, respectively. The 

test-rig configuration and obtained experimental results could be used for further optimisation 

and improvement of ORC based mCHP systems. 

 

Figure 2.38 A prototype ORC based mCHP system [26]  

 

http://www.sciencedirect.com/science/article/pii/S1359431113008648
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An advantage of ORC based mCHPs is the flexibility in the fuel use. A cogeneration unit in 

which heat is supplied in a 50 kWth biomass-fired boiler has been designed and developed in 

[27]. The system could generate 0.86 kWe and 47.26 kWth of electrical and thermal power, 

respectively. The corresponding efficiencies were therefore calculated to be 1.41 % 

(electrical) and 78.69 % (cogeneration). 

Figure 2.39 a and b show an innovative ORC system developed at the University of Science 

and Technology of China (USTC). Collected solar irradiation has been used as a heat supply 

for the ORC. The prototype ORC mCHP system incorporates an innovative solution for the 

elimination of some reported issues related to the pump operation in conventional ORC 

cycles. The required operating pressure of this particular gravity driven system is generated 

by the height difference between the condenser and evaporator. Although there is no 

indication of the power capacity of the system the developers claim that the efficiency is  

approximately 10.2 % ( higher than the pump driven ORC systems) [28]. 

 

(a) (b) 

Figure 2.39 A gravity driven prototype installed in USTC with solar collectors supplying 

useful heat for the ORC operation: (a) solar collectors   (b) the engine set-up on the ground. 
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A major constraint on the development of micro scale ORC based systems is the lack of 

commercially-available micro-components such as expanders, turbines and alternators. The 

later result in excessive modification of components that have been primarily designed for 

various applications in order to be compatible with the ORC process with significant effects 

on the overall plant performance. 
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Chapter 3 Literature Review 
 
 

3.1 Introduction 

Published research work related to the theoretical and experimental analysis of mCHP 

systems based on a range of new technologies was reviewed. Furthermore, a review of 

building (energy) simulation tools is presented in this chapter.  

3.2 Stirling Engine Based mCHP 

3.2.1 Operation and modelling of Stirling based mCHP 

The operation of Stirling based mCHP units has been assessed in previous research works 

using various simulation tools. An experimental and numerical analysis of a commercially 

available Stirling engine based mCHP system was carried out by Valenti et al. [29]. 

Experimental results were used for validation and calibration of the engine's model. A net 

electrical efficiency of 9 % and 15 % was predicted from experimental and theoretical data 

respectively. It was commented that inlet water temperature significantly affects the thermal 

performance of the unit; thermal efficiency was measured at 90 % and 84 % at water inlet 

temperature of 30 °C and 70 °C, respectively. Finally, it was noticed a deviation of 4 % 

between experimental and numeric analysis. A fully dynamic model of a Stirling engine 

based mCHP incorporating with micro wind and photovoltaic modules was developed by 

Karmacharya et al. [30] using Matlab/Simulink. Experimental results from operation of a 1 

kWe Stirling based mCHP unit were used in model which was applied to a two typical 3 and 

4 bedroom UK houses. The research was to explore the interaction between the power 

generation modules and to identify the most feasible operating condition which could be used 

in energy control strategies. They found that the power generation system overall contributed 

to around 20 % of the domestic electrical demand regardless of the building type. In addition, 
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they concluded that the power contribution of the mCHP depended on the thermal 

requirements of the building, whilst the frequency of cycling operations significantly affected 

the fuel utilisation. Finally, they suggested that an analysis by means of both electrical and 

thermal optimal sizing was needed. Conory et al. [31] investigated the performance of the 

Whispergen mk-4 Stirling engine based mCHP.  Data from a field trial of the mCHP unit 

installed in a semi-detached house were used in a Matlab model based on empirical 

equations. Predicted simulations results were in good agreement with experimental data and 

the researchers concluded that their validated model could be used as a tool for installers. 

Kane and Newborough [32] compared Stirling engine based mCHP of various nominal 

electrical output. They suggested that if a cogeneration unit replaces convectional heating 

systems, carbon savings could be achieved. However, various parameters directly or 

indirectly affect the overall performance of the system. A wide range of factors including 

transient thermal and electrical demand, occupancy pattern, climate etc. significantly 

influence the primary savings and should be further investigated.  

3.2.2 Experimental studies on Stirling based mCHP systems 

Several physical tests have been conducted with Stirling based mCHP units. Research was 

focused on both steady state and dynamic behaviour of the systems. Thorsen et al. [33] 

designed, manufactured and tested under various load conditions a 3 kWe Beta type Stirling 

engine mCHP. The unit used natural gas as fuel and demonstrated 2.3 kWe power output with 

efficiency of around 23 %. If a custom made alternator had been used the overall efficiency 

was expected to reach or even exceed 85 %. In addition, exhaust gas analysis indicated 

reduced emission compared to ICE engines. Bell et al. [34] tested an actual Stirling engine 

mCHP under typical Canadian residential condition. They concluded that combining a mCHP 

with thermal storage tank caused prolonged operation and therefore higher power generation 

figures. Moreover, higher overall efficiency was noticed for this configuration. Results were 
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in agreement with previous theoretical research, however, further investigation should be 

carried out in order to determine the optimum capacity of the thermal storage. An interesting 

finding was the dependence of the efficiency on the thermal demand profile as a result of 

fluctuation in the return temperature in the hydronic circuit. Aliabadi et al. [35] examined the 

performance of the Whispergen Mk III DC Stirling engine mCHP. Although the unit was 

manufactured to run on diesel fuel, biodiesel was used in their energy balance tests. They 

found that overall performance in terms of partial efficiencies and emission was poorer when 

biodiesel was used as fuel. This was attributed to the lower fuel utilisation in combustion 

process, as fraction of the biodiesel was found in the exhaust. An interesting comment was 

that even if Stirling engine mCHP features poor electrical efficiency it is comparable with 

ICE mCHP due to the high engine heat recovery.  

Using a renewable fuel, Thiers et al. [36] investigated the performance of a 3 kWe Stirling 

engine mCHP. Physical tests of the engine were carried out using wood pellets as fuel and 

obtained results were applied in theoretical modelling under French residential conditions. 

Relatively low overall performance of the system was found and sizing of individual 

equipment should be taken in further consideration. Veitch and Mahkamov [37] investigated 

the performance of the Whispergen Mk III Stirling engine MCHP. The mCHP was compared 

to a reference scenario consisting of a non-condensing boiler, hot water tank and electricity 

from the national grid. More important is that obtained results from experiment had been 

used in the model. They performed steady-state and dynamic tests and results were used for 

estimation of overall and partial efficiencies; finally, an exhaust emissions analysis was 

carried out. Reduction of approximately 9 % in both annual expenditures and carbon 

emission were predicted. It was found that during the summer period, due to low thermal 

demand, mCHP is forced to operate in part load resulting in high cycling frequency and 
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decreasing the overall efficiency. They also recommend that electrical output should be 

increased in order to bring the heat to power ratio closer to the demand.  

3.3 Internal Combustion Engines (ICE) mCHP 

3.3.1 Simulation of ICE based mCHP 

ICE engine based mCHPs have been simulated over the past years using various theoretical 

tools. Simulations were based on obtained experimental results and empirical equations. A 

techno-economic analysis was carried out by Ehyaei et al. [38] in a 10 storey residential 

building in Tehran city. In their calculation they found that 5 modules were sufficient for 

meeting the heating and cooling loads of each building. In their model electricity surplus was 

directed to a heat pump for generating heat during the winter period. During the summer 

period, the heat recovered from engines was transferred to absorption chillers and used for 

covering the cooling loads. They found that the annual entropy generation was 2.903×104 

(GJ/year) and that the cost of electricity in 'CHP mode' could be reduced from 0.11 to 0.05 

US$/kWh.  

Caresana et al. [39] modelled under different operating modes a mCHP system based on an 

auto derived internal combustion engine of 28 kWe electrical nominal output. Buildings with 

various demands were simulated under Italian climate conditions and results indicated higher 

performance when variable speed operation of the micro-generator was selected. Both 

efficiency and economic performance were increased over the constant operation regime. 

However, it was suggested that financial incentives should be introduced in order to make the 

mCHP technology feasible. The feasibility of domestic applications of mCHP systems based 

on IC engines was investigated by Aussant et al. [40]. Several energy demand profiles were 

modelled using the ESP-r building simulation tool and results were compared with a 

conventional heating system. It was found that energy and fuel cost significantly affects the 
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economic viability of the system and that the surplus of heat during summer period operation 

resulted in higher fuel cost. An interesting comment was that such systems could reduce 

investments in power generation capacity and power distribution and also avoid transmission 

losses. Finally, simulation results indicated that carbon emission reduction could be achieved 

when a provincial electricity emission factor above 400 gCO2/kWh was considered in their 

calculation. Onovwiona et al. [41] developed a parametric model based on performance data 

which could be used on a techno-economic evaluation of a 6 kWe ICE based mCHP system. 

Sub-models which simulated the operation of auxiliary equipment (engine, generator thermal 

electrical storage etc.) were included in their analysis and the model was capable to predict 

the mCHP performance in 15-min intervals. Two operating scenarios were modelled and a 

sensitivity analysis carried out in respect to the sizing/capacity of the unit. The co-generation 

model was implemented in the building simulation program ESP-r which was used for 

generating thermal and electrical demand profiles. In their analysis they found that regardless 

of the operating scenario smaller capacity systems had higher overall efficiency. The latter 

was attributed to higher utilisation of generated heat 

 

3.3.2 Experimental studies on ICE based mCHP systems 

An IC engine based mCHP system was assessed in terms of performance by Rosato et al. 

[42]. The natural gas-fuelled unit featured 6 kWe and 11.7 kWth electrical and thermal 

capacity respectively. The engine was experimentally tested and obtained data were used for 

investigating the system performance during transient periods. It was found that the transient 

behaviour for both electrical and fuel consumption could be neglected. However, the 

relatively slow heat generation would lead to overestimation of thermal performance. In 

addition, experimental data were used for calibration of IEA/ECBCS Annex 42 [43] model 
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and theoretical predictions were in reasonable agreement with experimental data. Finally, it 

was commented that under low electrical generation regimes, simulation results 

overestimated performance compared to the experimental data. Antonio Rosato et al. [44] 

assessed experimentally the performance of a three cylinder ICE based mCHP system. The 

system had a nominal power output 6 kWe and 11.7 kWth electrical and thermal respectively. 

The unit was operated under electricity led regime and a realistic demand profile was 

simulated using halogen lamps. Results obtained during a 24 hours dynamic test were 

compared to a reference scenario; a grid connected building with a conventional heating 

system. Their exergy and environmental analysis predicted annual carbon emission saving of 

2 % in the case of Italian mix power plant technologies even if a higher primary energy 

consumption was considered. Finally, experimental data was used to calibrate mCHP model 

in the TRNSYS simulation tool.  

The same authors [45] used their experimental results to empirically calibrate and validate the 

micro-generator module in Annex 42 model [43]. The calibrated model found to exhibit a 

good agreement with obtained data, however modifications to the mathematical model were 

suggested due to deviation between the modelling results and experimental data. Results from 

a field trial with an ICE based hybrid mCHP system were demonstrated by Entchev et al. 

[46]. In their analysis they found that domestic heat demand was predominantly satisfied by 

the first stage of the system (ICE based mCHP) while the second stage (furnace) was 

occasionally in operation. The calculated electrical efficiency of 18.7 % was consistent 

throughout the trial as a result of the continuous steady-state operation; an overall efficiency 

between 73-76 % was also found. During the testing period, half of the power generation was 

consumed onsite (which corresponding to 65.5 % of average daily electrical demand) and the 

other half was exported to the grid. Finally, an economic analysis predicted savings on 



  Chapter 3:Literature  Review 

 

47 
 

expenditures for the hybrid system over a conventional furnace system during the heating 

season. 

3.4 Organic Rankine Cycle mCHP 

Rankine cycle is a type of thermodynamic cycles in which heat is converted into mechanical 

work. Although in large scale such cycles have proved their effectiveness, in small and micro 

scale the technology is considered immature. 

The energetic performance and the economic feasibility of a biomass-fired Organic Rankine 

Cycle (ORC) for domestic CHP application were assessed by Algieri et al. [47]. They used 

decane as the working fluid due to high operating temperature and low critical pressure. In 

their research better performance was obtained when an internal heat exchanger was applied 

in the cycle configuration. In addition, the evaporation temperature significantly affects the 

ORC electrical and overall performance regardless the configuration. Highest partial 

efficiencies were found at 337 °C: 17.6 % and 63.1 % electrical and thermal, respectively. 

The capacity of the unit was   Pel=0.76 kWe (electric power) and the thermal power of system 

was Qcog=2.35 kWth. Italian energy tariffs and incentives were taken into consideration in 

their economic analysis where it was estimated that the payback period was approximately 8 

years when a system specific cost of 10000 €/kWel was used. Finally a reduction of 50% on 

the payback period could be achieved if specific cost could be further reduced.  

Wood et al. [48] investigated the economic performance of various CHP systems including 

ORC. Five different operation strategies were investigated and the sensitivity of the results in 

various parameters was analysed. They found that the continuous operation for solid fuel 

systems resulted in higher performance due to cost difference between fuel and electricity. In 

addition energy sale and import prices, fuel feedstock, discount rates, demand profiles etc. 

were found to affect significantly the economic performance of such systems. Nonetheless, 
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they concluded that small scale biomass CHP could be feasible. Uris et al. [49] investigated a 

biomass-fuelled ORC mCHP system. Several configuration and working fluids were assessed 

and an economic analysis was carried out. They found that subcritical recuperative ORC 

systems are technically and economically feasible in Spain. Result obtained using sensitivity 

analysis indicated that capacity of the system depended on the energy demand and 

availability of the feedstock and that supercritical cycle should be avoided due to lower 

profitability. An ORC plan with nominal electric power of 1.25 MWe and 5.3 MWth thermal 

used for providing heat to the local district grid was investigated by Stoppato [50]. Various 

operating modes were assessed (heat led, max electricity etc.) and results from analyses 

indicated that, following the local incentives, it was feasible to aim at maximisation of power 

generation rather than utilise the cogeneration aspect of plant. A comprehensive 

thermodynamic model of a tri-generation system of an integrated organic Rankine cycle was 

developed by Ahmadi et al. [51]. Obtained results were used in an exergy, environmental and 

parametric analysis. They found that the gas turbine inlet temperature and compressor 

pressure ratio were among the major parameters that affect the performance of the system and 

increasing either of those parameters resulted in higher exergy efficiency. They concluded 

that a tri-generation system could achieve higher carbon emission reduction compared to 

conventional mCHP systems or gas turbine cycles.   

Liu et al. [52] investigated the performance of a 2 kWe biomass fired CHP system coupled 

with ORC. Three dry organic working fluids were used in their thermodynamic models. They 

found that the thermal efficiency of the ORC was well below the Carnot cycle efficiency. 

Nonetheless, the overall CHP efficiency of the ORC was in the order of 80 % with all 

working fluids. In addition the quantity and quality of heat generated from CHP was 

depended on the organic working fluid and on the modelling conditions. Hot water 

temperature from biomass burner, ORC fluid, condenser cooling temperature significantly 
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affect the electrical efficiency of the system which was found to be in the range of 7.5 % to 

13.5 %. They suggested that implementing a heat recuperating unit within the ORC could 

improve the overall efficiency. A small scale biomass fired ORC was experimentally tested 

by Qiu et al. [27]. The unit was coupled with 50 kWth pellet boiler and produced 861 We and 

47.26 kWth electrical and thermal power respectively. The corresponding efficiencies were 

calculated at 1.41 % with respect to the power generation whilst co-generation efficiency was 

estimated at 78.7 %. The relatively low electrical experimental efficiency (compared to 

thermodynamics model prediction) was attributed to the poor performance of auxiliary 

equipments such as micro-expander, alternator, heat exchangers, etc. They suggested that 

better heat exchangers should be considered in order to achieve the designed hot water 

temperature and improve the system efficiency and that the lack of commercially available 

micro scale expanders is one of the main constraints of mCHP ORC systems.  

Li et al. [28] assessed the performance of a novel gravity driven ORC mCHP system. In their 

analysis they used various working fluids with a wide range of pressurisation. The absence of 

a pump was found to reduce the noise pollution from the system and could eliminate the 

problems related to its operation. For a given evaporation temperature (120 °C) the gravity 

driven ORC exhibited higher power efficiency compared to a conventional ORC. Finally, in 

their required height analysis they found that among the five selected working fluids, PF5060 

offered the lowest required height which was estimated at 18.7 m. A small scale solar thermal 

CHP system based on ORC was modelled and optimised by Quoilin et al. [53]. The system 

consisted of parabolic though collectors, storage tank and was designed for a power supply in 

remote areas. The main advantage over the PV technology is the flexibility since such plants 

could be manufactured locally. Their thermodynamic analysis showed an overall electrical 

efficiency in steady state conditions between 7 %-8 %. An important comment was that 

calculations were based using custom made components of efficiency lower than 60 %.  
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3.5 Fuel cell based mCHP 

3.5.1 Fuel cell operation 

Fuel cells are electrochemical devices that convert chemical energy of fuels into electric 

power. Of particular interest are proton exchange membrane fuel cells (PEMFC) due to low 

operational temperature and high power density [18]. Such systems aim to replace existing 

power generation systems for stationary and transport applications. Various investigations 

have been conducted over the last years in order to increase the cells current density and 

therefore their performance and reduce the production cost. Material selection should also be 

taken into consideration so that commercial systems can achieve high reliability and ensure 

market penetration [54-57]. Yongping et al. [58] investigated the dynamic behaviour of a 45 

kWe PEM FC system. In their tests, the load of the 560 single cells system was gradually 

increased in order to analyse the response of the voltage. They found that although the 

response of the current was instantaneous, overshoot and undershoot behaviour were 

observed regarding the voltage response. These particular behaviours were attributed to the 

effect of electrochemical double layer discharging, gas transferring and membrane hydration 

or dehydration. They commented that, in all cases, voltage needs around 160 seconds to reach 

stable conditions. In addition, they found a correlation between the magnitude of change of 

load and the variation of voltage during the transient "undershoot" behaviour.  

Kunusch et al. [59] developed a static model of a PEMFC in which theoretical and semi-

empirical considerations were combined. Using experimental data from a 7 cell PEMFC 

system the authors were able to adjust the governing equations in order for the model to 

match the experimental performance. They concluded that this simulation methodology could 

be applied to several FC systems with minor adjustments, despite the fact that model is based 

on a particular specific PEMFC system. Tang et al. [60] investigated the dynamic 

performance of a commercially available PEMFC stack. During the regular load variation test 
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(step-up, step-down) undershoot and overshoot behaviour occurred in both current and 

voltage response. They concluded that voltage transient behaviour was due to temporary 

water and gas transport phenomena and that current overshoot accidentally occurred when the 

air stream was excessively humidified. Ferguson et al. [61] developed a steady state model of 

a generic PEM cogeneration fuel cell system that could be integrated into existing building 

simulation tools. Simulations results were validated using prediction data from various fuel 

cell models as well as experimental data. They found that the thermal model is in a good 

agreement with a physical GM fuel cell system but approximations used in activation loss 

formulations resulted in significant difference in the low voltage density region. The authors 

concluded that their model could be used with confidence.  

The performance of a PEMFC system was experimentally investigated by Wang et al. [62]. 

In their work several parameters, that affect the performance of the fuel cell stack, were 

evaluated. They found that the performance of the unit was mainly dependent on the 

reactants, humidification and operating temperature. Using polarisation curves they noticed 

improved performance of the cell during high operating temperatures, however, performance 

decreased when a low humidification temperature was applied either to the anode or the 

cathode side of the stack. They found that experimental results were in a good agreement 

with a 3-D model which was developed using an unified approach and utilised energy 

momentum and continuity equations. Iranzo et al. [63] assessed the performance of a 50 cm2 

PEM fuel cell system. In their work they produced polarization curves, Nyquist and Tafel 

plots for several combinations of operating conditions and bipolar plate design. In addition, 

an electrochemical impedance spectroscopy analysis was applied for determination of cell 

Ohmic resistance and charge transfer resistances. Better performance was observed using 

high humidification rates of reactants and when a serpentine flow bipolar plate was used. 
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They concluded that their methodology could be applied when model parameters for CFD 

simulations must be estimated. 

A large-effective-area (330 cm2) and a transparent PEMFC were tested from Junhyun Cho et 

al. [64]. In their research they assessed the transient response of the fuel cell's voltage to the 

current step change. They found that the voltage undershoot behaviour exhibits two different 

time delays until the stack reaches a new steady state. The first time delay (the order of 1 s) 

was related to the gas transport and the second (order of 10 s) was due to the recovery of 

membrane water content. Findings were validated using a transparent fuel cell for which the 

dependency between the transient response of the system and the two-phase flow was 

established. Finally, by analysing a series of channel images, they observed that the water or 

vapour production coincided with the voltage undershoot behaviour. Yan et al. [65] evaluated 

the steady-state performance and the transient response to the current change in a single PEM 

FC system. They found that among the factors that affect the performance, humidification 

level of the reactants, operating temperature and air stoichiometric rate significantly 

influenced the cell performance. Optimum operation was estimated at temperatures between 

65 °C -75 °C and pressure range from 1 to 4 atm. They suggested that the enhanced 

performance was attributed to better membrane humidification levels and water/gas transport 

in catalyst layer and Gas Diffusion Layer (GDL).  

The effect of fuel dilution and reservoirs on the dynamic behaviour of a PEMFC was studied 

from Kim et al. [66]. They particularly investigated the undershoot after overshoot behaviour 

of the current density in a fuel cell caused by limited fuel flow velocity. They suggested that 

diluted anode gas could eliminate the undershoot behaviour and increase the recovery time. 

In their second hypothesis, different volume fuel reservoirs were tested. They concluded that 

the geometrical characteristics of the reservoir had a strong influence on the performance of 
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the fuel cell. Jung et al. [67] investigated the performance of an ambient force-feed air 

PEMFC system that could be used in automotive applications. A variable flow fan was used 

for simulating a number of velocities, whilst a high stoichiometric flow rate of hydrogen was 

applied. They noticed that the environmental conditions such as humidity and temperature 

significantly affect the performance of the stack. An interesting comment was that low fan 

speed resulted in the high stack temperature which leads to dehydration of the membrane and 

degrades the performance. Finally, a humidification section was excluded from the design 

due to simplicity considerations, despite the fact that could control the water content of 

membrane.  

Kim et al. [68] assessed the dynamic behaviour of a PEMFC during load changes. Neither 

overshoot, nor undershoot behaviour were observed at excess stoichiometries. However low 

and normal stoichiometric ratios both resulted in transient behaviours which were attributed 

to hydrogen transport and utilisation. Finally, dynamic behaviours were modelled using 

parameters from obtained experimental data and were in good agreement with the test results. 

A 1 cm2 active area PEMFC was investigated under load change conditions and steady-state 

operation. Benziger et al. [69] in their long  term test (12000 hr of operation) observed 

consistency and reproducibly within the first 2500 hr of operation however after 3000 hr the 

fuel cell started to exhibit various and sundry complexities. Between the 5000 hr and 12000 

hr of operation, autonomous oscillation was observed in respect of the current and voltage of 

the cell. They suggested a simple mechanism based on the mechanical properties of the 

membrane to explain this chaotic behaviour, where Membrane-electrode Assembly (MEA) 

eventually became more elastic and permeable due to mechanical stressing and oxidation 

degradation reaction in both anode and cathode. 
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Chen et al. [70] experimentally investigated the performance of a commercial 10 cell 

PEMFC. The stack was tested under various operating conditions. They found a correlation 

between the stack voltage and the pressure drop using fast Fourier transformation and they 

suggested that this was due to water flooding removal cycle in the cathode. An interesting 

comment was that the pressure drop signal could be potentially used as a diagnostic tool for 

the stack voltage.  

The behaviour and the performance under fast load commutations of a PEMFC stack for 

stationary application was analysed by Hamelin et al. [71]. In addition, mathematical models 

were developed based on the experimental data in order to predict the voltage response. They 

commented that transient behaviour could significantly affect the performance of the system 

and if current or voltage exceeds certain limits, which could lead into shutting the unit down. 

Jiao et al. [72] assessed the water removal from the gas diffusion layer in a transparent 

PEMFC system. In their tests a speed Charge Couple Device (CCD) camera was used for 

recording images of the water flow for different levels of compression of the GDL and air 

flow rates. They found that under low air flow rate the thicker membrane exhibited better 

water removal performance due to higher porosity and permeability. At high air flow rate, 

fuel cell performance was decreased due to larger amount of water retained within 

membrane. Finally, high compression resulted in decreased membrane pore size and 

therefore to limited cross flow.  

The liquid water formation using visualisation techniques was also investigated by Spernjak 

et al. [73].  An untreated and a wet-proof membrane was used for a range of air flow rates in 

a single-serpentine channel transparent PEMFC. Higher performance was observed when the 

wet-proofed membrane was used due to the ability to expel a larger amount of water and 

therefore the majority of pores were available to the gas transport.  
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Yan et al. [74] conducted an experimental study in a commercial size PEMFC. They tested a 

256 cm2 of effective cell area under various humidification conditions and using 2 different 

thickness membranes. They noticed that the thinner membrane performed better due to 

smaller water content. An interesting comment regarding the thin membrane was that at low 

operating temperature (30 °C) cell performance improved using dry reactant gases, however 

findings were reversed at high operating temperatures (80 °C). The water discharge 

characteristic of a PEMFC was investigated by using a Neutron imaging technology by Kim 

et al. [75]. Using a compressed air supply they found increased water removal at the cathode 

channel however no significant difference was observed in respect to the water management 

of the membrane. The effect of operating temperature was assessed and it was noticed that 

decreased water removal performance occurred with an increase in the stack temperature. 

Although the combination of compressed air supply and heating was superior, the complexity 

of the system limited the application. They finally concluded that their method is suitable for 

water management investigations due to high sensitivity to small variations in local water 

content. Arsalis et al. [76] developed a detailed model of  high temperature PEM fuel cell that 

could be used for residential applications. Components of the mCHP including a gas reformer 

were modelled. They concluded that among others parameters, fuel cell operating 

temperature and heat exchanger input temperature caused high uncertainties and significantly 

affect the overall efficiency. However further validation of the model with experimental data 

is necessary.  

3.5.2 Self-Humidifying MEA 

 A novel self-humidified membrane for PEMFC application was developed by Wang et al. 

[77] and its performance was evaluated over a convectional Membrane-Electrode Assembly 

(MEA). The membrane was surrounded by an inactive Water Transfer Region (WTR) which 

enhanced the water management and improved the performance of the PEMFC system. The 
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proposed MEA with the WTR had double power density over the convectional MEA due to 

the better water transport. The enhanced water management was attributed to the elimination 

of the drying effect of the anode side and the flooding issue in the cathode catalyst layer. An 

interesting comment was that that environmental humidity had a small effect on the fuel cell 

performance however increased ambient temperature resulted in higher performance. Qi et al. 

[78] investigated the performance of a PEMFC operated under dry reactants. They used a 

particular flow field design which allowed hydration of the reactant gases by moisture 

recovered from the outlet gasses. In their tests they found that drying of the membrane at high 

current was due to electro-osmotic drag at the anode side, since back diffusion could not 

recover the water content of the membrane. An interesting comment was that flooding issues 

could not be ignored even if external humidification had not been used. The later was 

confirmed as performance improved at high air stoichiometries. Despite the fact that 

operation at the high stoichiometric ratio prevented flooding issues, it resulted in faster 

dehydration of the membrane. 

3.5.3 Mathematical modelling of fuel cells 

Several mathematical models have been developed during recent years. Researchers 

attempted to analyse the operation of fuel cell systems under various operating conditions 

(humidification levels, temperature, stoichiometries). The earliest models have been 

developed by Springer et al. [79]. In their isothermal, one dimensional FC model several 

coefficients (membrane conductivity, diffusion and electro-osmotic drag coefficient, etc) as a 

function of the membrane water content had been measured and were applied in the model. 

They found a net steady state molar water flux per H+ in a 50 cm2 cell of 0.2 H2O/H+ which 

was validated by measured data and an increase membrane resistance when the current 

density was increased. The model predicted better performance of a thinner membrane and a 

fully hydrated membrane was able to reduce the water management issues in PEMFC stacks. 
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Bernardi and Verburgge in their models [80, 81] investigated the factors that limited the cell 

performance and the gas/water transport mechanisms. In their mathematical work they 

applied porous-electrode equations and Stefan–Maxwell diffusion media and catalyst layers. 

Model predictions of the polarization behaviour were in a good agreement with experimental 

data. A simple pseudo two dimensional model of a high temperature PEMFC was developed 

by Shamardina et al. [82]. The isothermal mathematical model neglected the effect of liquid 

water in the membrane due to the high operating temperature however it accounted for the 

crossover of reactant gases. The model could be used for estimation of FC properties from the 

polarisation curve and can be applied in high temperature PEMFC fed with dry gases.  

The effect of the primary parameters on the performance of a PEMFC was investigated by 

Tohidi et al. [83]. Their investigation was carried out using a one dimensional steady state 

model. Theoretical calculations predicted high ionic conductivity at high operating 

temperature. The membrane resistance decreases when humidification of reactant gases 

increased but when a thicker membrane was used performance was limited due to lower 

membrane resistance. An interesting conclusion was that the bulk of the electrochemical 

reaction occurred in a thin layer close to the diffusion layer as the ionomer were unable to 

penetrate deep in the catalyst layer. It was suggested that this behaviour could underutilise the 

catalyst at normal operating conditions, therefore future efforts should be focused on 

improving the platinum utilisation.  

Rowe et al. [84] developed a non-isothermal, one dimensional model in order to assess the 

effect of the operating conditions on the PEMFC performance. They found that anode 

hydration should be ensured in order to achieve optimum performance. However, at high 

operating pressures and when reformed gases were applied in the model the membrane was 

unable to maintain adequate hydration due to a moderate water vapour coefficient. They 
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finally concluded that their model could be used for optimising PEMFC performance for a 

given operating condition. Water management significantly affects the performance of 

PEMFC systems. However the water and ion transport requires extensive knowledge of the 

membrane morphology. Karimi et al. [85] and  Das [86] developed mathematical models that 

could predict the physical liquid/gas transport through the membrane and its characteristics 

under a variety of operating conditions.  

A steady state and a dynamic model were developed by Sfarifi Asl et al. [87].  By taking into 

account the gases transport phenomena, the effect of the temperature on the stack 

performance and heat balance equation could to predict the behaviour of the stack under load 

change conditions. Small deviations from experimental results were observed however 

researchers concluded that the performance of the stack is highly dependent on the operating 

conditions. Philipps et al. [88] developed a dynamic model of a PEMFC stack based on non-

isothermal, mass and energy balance equations. In order to make the model computationally 

efficient authors neglected the GDL modelling and they assumed that the membrane is 

operating at steady state conditions. An operating time of 30 minutes was able to be 

simulated within 1 sec, and despite the simple approach model predictions of the 

characteristic stack temperature were in good agreement with experimental results. Yalcinoz 

et al. [89] assessed the performance of an air-breathing PEM fuel cell using dynamic 

modelling in Matlab. Their model was based in a steady state non isothermal 1-D model in 

which dynamic characteristics were introduced in order to predict the transient behaviour of 

the system. They noticed that the performance of the cell was highly affected by the stack 

temperature due to correlations between the Nernst voltage, membrane resistance and water 

concentration and the operating cell temperature.  Obtained results of the dynamic model 

were compared with the original steady-state model and small deviations were observed. A 

simulation scenario in which a laptop computer was powered by the proposed system was 
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conducted and it was concluded that an air breath PEM FC system could provide adequate 

power to cover the transient demand of a portable equipment. 

3.5.4 CFD-modelling of fuel cells 

Several studies have been conducted using detailed 3D computational fluid dynamic (CFD) 

models in order to provide a more detailed insight of the physical phenomena and behaviour 

of a PEMFC. Falcao et al. [90] developed a 1-D and a 3-D model using CFD for a PEM FC 

system.  The 1-D model over-predicted the performance of the fuel cell, whilst the 3-D model 

was able to reproduce the experimental results more accurately as a two phase flow effects 

were taken into consideration. They concluded that 3-D numerical calculations should be 

implemented only if more detailed predictions (such as the spatial distribution and 

visualization of various parameters) are needed as intensive computation was required. An 

interesting conclusion was that the simple analytical solution based on semi-empirical 

equations can always be used for quick prediction of fuel cell performance. 

3.5.5 Modelling of Micro CHP based on fuel cells 

The implementation of fuel cell technology in micro combined heat and power (micro CHP 

systems) had been of particular interest in recent years. Due to high efficiencies, fast start-up 

and zero emissions, fuel cells could replace convectional heating systems and provide 

economic and environmental benefits. Various operating scenarios of a High Temperature 

Proton Exchange Membrane Fuel Cell (HTPEMFC) system were modelled by Arsalis et al. 

[91]. Results from a conventional (for mCHP) operation heat-led regime were compared with 

an electricity-led scenario as authors attempted to optimise the operating pattern. Parameters 

that affect the operating regime's performance such as number of switching events, operation 

at low partial efficiencies, etc., were restricted in an improved scenario. A thermal storage 

tank was additionally implemented for avoiding the wasting of heat surplus and the highest 

performance was predicted on the improved scenario. The poor electrical efficiency was 
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observed with a heat-led strategy was selected and low thermal efficiency was recorded 

during an electricity-led operation. An interesting comment was that, despite the fact that the 

heat-led operation resulted in high fuel consumption; the highest power production rate was 

also predicted. The later could provide financial savings in the household, however 

economical and environmental performance of the system were not considered in the 

investigation.  

Barelli et al. [92] developed a dynamic model of a 3 kWe PEMFC system using Matlab 

Simulink. The model consisted of an auxiliary boiler providing additional heat when required 

and using onsite reformed hydrogen as a fuel. Primary energy requirements of typical 

residential conditions were used throughout the simulations whilst the dynamic behaviour of 

the plant‘s sub-models was validated with a step change in the electric load. They used a 

sensitivity analysis in which they found optimum performance when higher relative humidity 

(RH >70) was applied in the stack. They suggested that an additional heater had to be used in 

order to meet higher thermal requirements and that higher performance could be attained if 

the surplus of heat was to be restricted. Snevecan et al. [93] compared the power generation 

cost of several mCHP systems based on Swedish residential condition. Using current data 

they found that the cost of electricity when the fuel cell was used could be halved by 2020. 

They concluded that fuel cells should be further developed by means of capital cost and 

lifespan in order to compete with conventional systems. An interesting comment was that 

despite the fact that fuel cells are characterised as zero emission power plants, when a fuel 

reforming process was applied their ecological advantages were limited. Oh et al. [94] 

assessed the performance of a 1 kWe mCHP system based on a PEM fuel cell incorporating 

thermal storage. The operation of the system was simulated using demand profiles based on 

energy requirements in Korean residential conditions. In their thermo-economic analysis they 

found that 20% saving in operational cost of the system could be achieved over conventional 
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heating equipment. An interesting comment was that the heating capacity of the reservoir 

should be carefully selected as it significantly affects the overall performance. Finally they 

concluded that such mCHP systems could potentially offer greater savings when installed 

within a dwelling with higher electrical demand.  

Gigliucci et al. [95] investigated the performance of a residential mCHP system based on fuel 

cells. The unit featured a nominal electrical capacity of 4 kWe and used onsite reformed 

hydrogen as fuel. A mathematical model which simulated the operation of the system was 

developed and model estimations were in a good agreement with experimental data. They 

found the global electrical efficiency of 18 % and thermal efficiency of the order of 30 % and 

they concluded that improvements in fuel utilisation and in heat management could increase 

the cogeneration performance of the β-prototype unit around 27 %. A hybrid system that 

consisted of PV arrays, electrolyser and fuel cell system was investigated by Shabani et al. 

[96]. Such systems could be used for heat and power generation in remote areas. In their 

techno-economic study, based on experimental data and model prediction, researchers 

evaluate the feasibility of the system over conventional back-up generators. It was noticed 

that air stoichiometry and stack temperature significantly affect the co-generation 

performance. The benefits analysis demonstrated a 10 % reduction in the consumption of the 

LPG fuel. Finally, they concluded that the carbon footprint could be reduced by 1600 kg 

CO2/year compared with traditional diesel or petrol generator. 

 

3.5.6 Experimental results obtained using PEMFC 

Briguglio et al. [97] investigated the performance of a low temperature 5 kWe PEM fuel cell 

based mCHP for domestic applications. A heat exchanger was used in the experimental setup 

to remove the heat from the stack. Stack temperature was kept at 71 °C since manufacturers 
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suggested operation at moderate capacity in order to prevent possible damage. Maximum 

overall efficiency of 80 % was estimated, however further insulation of the stack was 

necessary in order to reduce thermal losses and therefore increase the thermal efficiency. 

Hwang et al. [98] developed a PEM fuel cell based mCHP system fuelled by pure hydrogen. 

Interestingly, they introduced an integrated thermal management to the unit that controlled 

the operating temperature of the stack and recovered the dissipated heat. They predicted 

maximum overall efficiency of 81 % (significantly higher compared to a mCHP system with 

reformer). Hamada et al. [99] investigated the performance of a prototype 1 kWe PEM fuel 

cell mCHP. The unit was used in domestic hot water applications and tests were for steady 

state and dynamic operation. A gas reformer was integrated into the mCHP converting 

natural gas in hydrogen ready to be used in the fuel cell. A prolonged start-up transient was 

highlighted especially when the unit performed from the cold state. A dependence on the 

temperature condition of the reformer with the start-up period and small variation of the 

overall efficiency of the system when operating in part load conditions were observed. 

Overall, a reduction in primary energy and carbon emissions were estimated. Using a natural 

gas reformer a 5 kWe PEM fuel cell co-generation system was analysed from Melo Furtado et 

al. [100]. Physical tests of the unit were conducted under various loads and a polarization 

curve of the fuel cell was produced. High electrical efficiency predicted in part load operation 

was found to be due to limited thermal losses. 

3.5.7 Fuel reforming effect   

 The effect of the gas reformer on the overall performance of the low temperature PEM fuel 

cell based mCHP was investigated by Radulescu et al. [101]. The operation of five identical 

units of 4.5 kWe and 6 kWth (at 60 °C) was analysed by means of partial and overall 

efficiencies. They found that the extended start-up transient resulted in poor cogeneration 

efficiency (38.2 %). They suggested that although the performance of the fuel cell stack was 
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adequate, poor reforming process and high electric losses significantly decreased the overall 

performance of the mCHP 

Nogare et al. [102] modelled a small scale hydrogen production unit coupled to a PEM fuel 

cell. The unit was based on a natural gas steam reforming process and a comparison on two 

different configurations in respect of the CO removal from the syngas was carried out. In 

their calculations, which were based on a presumed thermodynamic equilibrium, they found 

that the physical CO removal configuration (PSA) achieved slightly higher efficiency due to 

lower fuel requirements. However the chemical CO removal configuration (PROX) required 

the low operating pressure therefore the compressor could be avoided in this scenario. An 

interesting comment regarding the efficiencies was that higher efficiencies could be achieved 

using better hydrogen purification methods and recycling the hydrogen from the fuel cell 

exhaust. Calo et al. [103] tested and analysed two small stationary reformers for hydrogen 

production, used in domestic application PEM fuel cell systems. Experimental results of their 

first generation reformer highlighted the need for further development and improvements. In 

a second generation, reformer improvements were implemented in respect to the burner, 

combustion chamber, reactants, cylinders and the hydrogen purification. Analysis of the 

second unit demonstrated better transient performance, whereas the start-up time was 

significantly reduced. They found the steady state efficiency of the process (without counting 

the auxiliary electricity consumption) of 78.6 % however they commented that the unit 

should be further developed in order to reach the industrialisation stage. Heinzel et al. [104] 

assessed two reforming processes for hydrogen generation using natural gas. Steam 

reforming and auto-thermal reforming were thermodynamically analysed and experimental 

tests were conducted. They found that the higher hydrogen content makes the steam 

reforming process more feasible for domestic application fuel cell systems and it was 

estimated that a maximum efficiency of 71 % is achievable. An interesting comment 
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regarding the auto-thermal reforming process was that the produced syngas was found poor 

in hydrogen (30 %) however, the process itself offered more flexibility in terms of start-up 

time and load changes. 

Jahn et al. [105] modelled a steam reforming process as auxiliary equipment of a 5 kWe fuel 

cell system. Their model was based on simple reaction kinetics where transport delays and 

pressure drops were not included in calculations. Their model's estimations were in a good 

agreement with the experimental results in respect of the produced gas concentration and the 

dynamic behaviour of the process. Small deviations from experimental work were noticed in 

burner wall and evaporator temperatures; both were attributed to the simple approach of the 

model and to the assumption of chemical equilibrium used in the calculations. An innovative 

membrane natural gas reformer coupled with a PEM fuel cell system was assessed by 

Campanari et al. [106]. The authors modelled and compared membrane reforming process 

with conventional methods (steam reforming and auto-thermal). They found that higher 

efficiencies of net electricity could be achieved mainly due to the lower temperature heat 

recovery. An interesting comment was that the simplicity of the layout (1 stage process 

instead of 4) enhanced the heat transfer process and reduced the losses in the fuel processing 

reaction which lead to lower fuel consumption. 

Zuliani et al. [107] investigated the performance of a 1 kWe high temperature PEM fuel cell 

micro-generation system coupled with a natural gas reformer. Using in their calculations a 

fixed efficiency of the reforming process of 78 % they found better performance of the 

overall system at a low operating load. An interesting comment was that HTFC could easily 

be coupled with a natural gas reformer due to the increased tolerance in content of CO in the 

fuel mixture. The performance of HTFC predicted was lower compared with the low 

temperature FC, however the simplicity of its design resulted in the lower parasitic electricity 
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consumption and therefore overall efficiency could be comparable to the LTFC. Horng et al. 

[108] assessed the performance of a small methanol reformer for hydrogen production used 

in fuel cell systems. In their experimental work the cold start response of the reformer was 

assessed. They found that slow combustion led to reduction in the heat losses due to moderate 

temperature and also that the reaction temperature of the catalyst was reached faster. Similar 

findings were attained when a higher fuel rate was used, as a result of increased heat transfer 

to the catalyst. An interesting comment was that for a given rate of methanol an optimum air 

supply should be implemented. 

3.6 Comparison of mCHP technologies 

Several mCHP units based on different technologies (ICE, Stirling, fuel cell, ORC, mCHPs) 

have been compared over the past years. Researchers were focused on determining the 

technology that displayed the highest performance. However, results were contradicted as 

performance was highly depended on key parameters including primary demand 

requirements, modelling methodology, mCHP configuration, occupancy pattern, etc. The 

performance of two ICE based and a Stirling engine based mCHP systems were assessed by 

Rosato et al. [109]. The operation of the systems was modelled using TRNSYS software and 

a three storey multifamily building was selected for analysis. Simulation results predicted 

reduction up to 13.4 % and 18.9 % in primary energy consumption and in carbon emissions, 

respectively, over a conventional gas fired boiler and grid supplied electricity. In addition, the 

SenerTech mCHP offered the best performance. An interesting comment was that for a given 

mCHP unit the configuration which incorporates the smaller water tank volume offered 

greater both environmental and economic performance. Pineau et al. [110] investigated the 

energetic and environmental performance of six heating systems installed in a low energy 

requirement dwelling under various European climate conditions. They found that the lack of 

capacity size availability of mCHP systems reduced the performance of all units and 
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particularly of heat pumps. They highlighted the importance of mCHP sizing and they 

commented that the heating strategy did not affect the primary energy consumption. Finally, 

it was found that regardless the climate conditions, wood fuelled boilers could offer lower 

emissions over other technologies. Several mCHP systems for domestic application were 

analysed using the TRNSYS simulation tool by Cao et al. [111]. Units were based on various 

technologies including Stirling engine, ICE engine, fuel cell and ORC with nominal electrical 

output in the range 0-2 kWe. A family house in Helsinki residential conditions was used in 

modelling and annual results analysis was carried out using a 1h time-step. In addition, they 

used simplified mCHP models due to lack of detailed models for the commercial units. In the 

core of their methodology they introduced an interactive utilisation of the matching indices 

and overall matching criteria which provided a macroscopic view of matching capabilities.  

Arteconi et al. [112] developed a model for evaluation of the performance of various mCHP 

technologies. A detached house in Italy was used for testing the model and estimation of 

economic and CO2 emission savings. They concluded that Stirling engines were an 

interesting option when operating on heat demand; however high capital cost makes mCHP 

less free market competitive. Cockroft and Kelly [113] also compared fuel cell, ICE, Stirling 

engine and Air Source Heat Pump (ASHP) mCHP under several space heating requirements. 

ASHP found to offer the greatest potential in carbon savings. It was stressed that, if any of 

mCHP operated at overall efficiencies above 80 %, carbon savings could also be achieved. 

An important comment regarding the overall performance was that dwellings with improved 

insulations level (and thus moderate heating requirements) displayed reduced potential 

savings; the latest marks down the heat to power ratio (HPR) and affect the overall 

performance of Stirling engine mCHP which operate at high HPR. Peacock and Newborough 

[114] investigated the effect of deploying cogeneration systems in UK dwellings. A Stirling 

engine of 1 kWe and fuel cell based mCHP were compared to conventional condensing boiler 
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heating system and electricity from national grid. They found that Stirling engine mCHP 

increased the annual carbon emissions due to generation of excess heat. In order to improve 

the performance they suggested that applying a control logic in the unit not only would 

increase the lifespan of mCHP as a result of less cycling frequency but also would offer 

carbon savings up to 5 tonnes per year due to thermal surplus restriction. The restricted 

utilisation during the mild or low heat demand season, negatively affect the household energy 

bills mainly due to moderate power generation. Besides, economic performance was strongly 

depended on the utilisation of the produced electricity. An important comment was that the 

fuel cell is preferable due to high efficiencies even in part load operation, limited thermal 

surplus and low HPR. 

Donerand Weber [115] investigated the performance of various mCHP technologies using 

dynamic building simulation tool. In their simulation results a ground source heat pump 

offered highest energy savings and emission reduction in accordance with [113]. An 

interesting comment was that economic and environmental benefits could also be attained in 

all mCHP technologies. Kuhn et al. [116] made an overview of the mCHP technologies and 

summarised the features and advantages of each technology. They concluded that carbon 

emission reduction was achieved when high overall efficiency co-generation unit replaced 

convectional heating systems and network electricity. It was suggested that mCHP should 

further improve their performance to become competitive and widely accepted to a public not 

yet familiar with the technology. Roselli et al. [117] in their research summarised the 

technical specification of several alternatives mCHP systems. Bardieri et al. [118] also 

investigated the feasibility of deployment of various mCHP systems in two single-family 

dwellings. Stirling engine based mCHP was highlighted as the best technology with a 

primary energy saving in the range of 20 %- 28 %. It was stressed that savings are prime 

mover technology dependent. A particular suggestion, regarding the optimum sizing was that 
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cogeneration units with lowest electric capacity closest to the peak electric demand should be 

selected. Similar findings regarding the dependence of the efficiency on the supply 

temperature and thus the heat demand was noticed by Thomas [119]. Four mCHP units were 

tested under steady-state, dynamic and partial load (when applicable) operation conditions. 

Characteristics of the units including thermal and electrical outputs and partial efficiencies 

were estimated, in addition exhaust gas analysis was carried out. They stressed that when 

applying moderate return temperature condensation occurred and better overall performance 

was noticed.  

Dorer et al. [120] assessed the performance of several fuel cell based mCHP systems in 

residential conditions. They concluded that, compared to a boiler as reference configuration, 

fuel cells could provide up to 48 % reduction in energy demand. Combined fuel cell with 

back up boiler and thermal storage could improve the overall performance of the system. 

Interestingly, greater savings attained in buildings with high levels of insulation; this was in 

contrast with [121] where optimal CO2 emissions reduction were predicted for high thermal 

demand dwellings when Stirling engine based mCHP was used as the heating system. In their 

simulations, they also included fuel cell systems combined with solar collectors dimensioned 

to cover 65 % of the domestic hot water demand. They stressed that this particular 

configuration could offer even better performance and thus, greater environmental benefits. 

The Carbon Trust [122] reported field test results for domestic mCHP. For this, mCHP units 

were installed and tested in real domestic environments and results were compared with 

condensing boiler systems regarding carbon emission analysis and steady state performance. 

The results indicated that Stirling engine mCHP demonstrated average thermal efficiencies of 

71 % but poor average electricity production efficiency of 6 %. Both figures deviate from 

manufactures claims and are heat demand dependent. The same trend in lower part load 
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efficiencies was also found for ICE engine mCHP. A significant comment in respect to the 

operation of convectional heating systems was that, according to the Carbon Trust, a 

condensing boiler consumes electricity at up to 10 % of its rated power when operating. In 

addition, the average thermal efficiency of condensing boilers were indicated at 85 % which 

is lower than the claims of  >92 % by manufactures. This divergence occurred mainly due to 

the design and the set-up of the heating system, where operation at high return temperatures 

does not enhance condensation. Besides, significantly low efficiency was noticed in the non-

space heating season as a result of short operation periods. Although high losses from the 

casing of the Stirling based mCHP was noticed, it was concluded that this particular prime 

mover technology demonstrated better environmental performance than condensing boilers 

for dwellings with high thermal requirements (low levels of insulation). 

3.6.1 Operating strategies of mCHP 

Newborough et al. [123] in a preliminary investigation summarised the environmental 

performance requirements for mCHPs in order to reduce the UK national carbon footprint by 

the 2050. They also investigated several operating strategies of mCHP units and evaluated the 

feasibility of implementing mCHP systems in individual UK homes. They predicted annual 

savings in energy cost in the range of £100- £200 and carbon emission reductions of 1 tonne 

per home for a mCHP unit with around 1 kWe output. However, they concluded that these 

figures were achievable when electrical efficiency was 20 % or higher. Another interesting 

point was that the overall performance was influenced by number of factors including 

operation mode, energy tariffs, demand profiles, etc. Hawkes and Leach [124] investigated 

three hypothetical operation scenarios of several mCHP technologies in order to determine an 

optimal operating strategy. Heat-led and electricity-led operation were analysed for UK 

residential conditions. They particularly found that commonly applied strategies, such as 

heat-led, could not provide minimal operational cost.  In respect of fuel cell based units, it 
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was noticed that under the least-cost operating strategy, maximum carbon emission reduction 

could be achieved. Also, the high heat to power ratio in Stirling engine mCHP caused heat 

generation to exceed the demand and therefore the least-cost effective strategy did not 

coincide with decreased carbon emissions.  

Lin and Yi [125] investigated the performance of a CHP plant operating under an electricity-

led regime. Presuming that room temperatures in buildings slightly changed over the time due 

to the thermal mass of the building, they suggested that CHP could vary its electrical output 

and, consequently the thermal output, to meet the load fluctuations. Under this particular 

operation, power generation was highly utilised which improved the performance of the CHP. 

In contradiction with previous research findings, Stirling engine based mCHP found to be the 

most promising of cogeneration systems, among 5 other technologies, when operated under 

heat-led regime according to De Paepe et al. [126]. It was also noticed that only a small 

fraction of generated power was used on site and that condensing boilers should not be 

excluded when governments are aiming to achieve CO2 emissions reductions.  

3.6.2 mCHP configurations   

Combining mCHP with thermal storage was considered to be beneficial solution. Zhao et al. 

[127] investigated the optimal operation of CHP combined with a heat storage tank. They 

found that possible savings could be achieved. However various parameters such as supply 

temperatures, load profiles and system configuration strongly affect the savings. Under the 

same pattern, Haeseldonckx et al. [128] assessed the effect of thermal storage on the 

environmental performance of a mCHP system. They suggested that prolonged annual 

operation could be achieved either by using an additional boiler or thermal storage. In both 

configurations mCHP operated continuously and therefore decreased the switching 

frequency. When combined with an additional boiler, mCHP operated in order to cover an 
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'average' base heat demand whilst peaks were fulfilled by an additional burner. These 

operation strategies resulted in higher energy savings and emission reduction in accordance 

with [124]. It was stressed that incorporating a small thermal storage capacity resulted in an 

increase (by a factor of 3) in annual carbon savings and a further increase in storage capacity 

led to smaller increase in savings. Rolfsman [129] investigated the operation of CHP plants 

combined with boilers and heat storage. Due to daily variation of electricity prices heat 

storage (which was discharge at low electricity price periods) was used for maximising the 

power generation during peak-price periods and decreasing the operational cost. Storage in 

building fabrics and using a hot water accumulator were suggested as heat storage. Their 

study included electricity prediction models for feasibility investigation in following years.  

Peacock and Newborough [130] investigated the effect of heating saving measures on the 

carbon savings attributable to mCHP. The importance of the heat demands profiles and the 

effect on the environmental performance were stressed, in relation to with previous research 

[1]. They concluded that when a 1 kWe capacity (10 % electrical efficiency) mCHP was 

deployed on dwellings where heat saving measures had been implemented, marginal or 

negative emission savings were achieved. However, in high thermal demand dwellings 

mCHP could offer savings of up to 150 kg CO2 per annum.  

3.6.3 mCHP modelling approaches 

Hawkes and Leach [131] used an alternative approach for mCHP investigation. They 

measured the fraction of the electricity demand that could be displaced by a cogeneration unit 

and named the new parameter "capacity credit". Comparing three prime mover technologies 

systems they found that the heat to power ratio (HPR) significantly affects the capacity credit. 

Low HPR systems (such as fuel cell) are predicted to have the highest capacity credit of 

around 92 %; consequently Stirling engine based mCHP has a capacity credit of 33 %. They 



  Chapter 3:Literature  Review 

 

72 
 

suggested that the new parameter is an important indicator regarding cogeneration 

deployment mainly because it could provide information on the performance of the national 

electricity system. In addition, the same authors [132] investigated the effect of calculation 

time step used in mCHP performance analysis and concluded that using 10 minute intervals 

could provide vital information on the system performance. It was also commented that 

further increases of the intervals will give marginal or no improvements since changes of 

demand profiles occur over a minutes time period.  Using longer time intervals lead to over-

prediction in overall performance of the mCHP. 

Newborough et al. [133] analysed electricity demand profiles from UK households in order to 

evaluate possible ways of modulating these profiles. Reduction in peak power achieved using 

control algorithms in individual appliances of up to 60 % lead to smoother local and national 

electricity profiles. They concluded that mCHP deployment could provide significant savings 

in energy bills. Voorspools and D‘haeseleer [134] investigated the impact of deployment of 

cogeneration units using dynamic simulation rather than static methods to predict the annual 

performance. It was stressed that static method results were more optimistic due to neglecting 

the dynamic interaction between cogeneration and centralised electric system. They 

suggested reviewing individual cases within their own context as results from individual 

scenarios could not be generalised. Oda et al. [135] investigated a new methodology in 

calculating the efficiency of a CHP system. Using dynamic data where load fluctuations were 

taken into consideration their numerical model indicated smaller load fluctuation compared to 

steady state calculations.  

3.7 District Heating 

The benefits of the de-centralisation of power generation have been highlighted over the past 

several years. The effects of heat and electricity savings measures in district-heated buildings 
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were assessed by Le Truong et al. [136]. Their analysis suggested that switching to high 

efficiency appliances and lighting could provide electricity savings up to 44 %. In addition, 

heat-fed washing machines and dishwashers could replace conventional electricity driven 

units which could result in higher power production and increased heat utilisation. Duquette 

et al. [137] assessed the potential saving of primary energy and carbon emissions in 

widespread CHP district energy networks. In their analysis, three widespread district energy 

and a large-scale wind farms were investigated. Savings in carbon emission and primary fuel 

utilisation of around 32 % and 8.5 %, respectively, were predicted in the scenario of CHP 

based district energy compared to a reference case. In their sensitivity analysis, they 

concluded that combined cycle gas turbines offered greater savings potential compared to 

back pressure steam turbines due to higher electrical efficiency and lower heat to power ratio. 

The authors raised the importance of considering large scale CHP plant in district energy 

networks. Voorspools and D‘haeseleer [121] assessed the actual performance of mCHP and 

the impact of mass installation of mCHP in Belgium. In respect of the individual performance 

of the mCHP, experimental work was carried out. Poor transient performance and high 

frequency of switching events during low thermal demand regimes was found. This resulted 

in reduced economic and environmental performance and reduced lifespan of the system. It 

was stressed that investing in the development of both co-generation units and gas-fired plant 

could be beneficial for energy and emission reduction. They finally suggested that increasing 

the operating period of the co-generation systems could result in higher economic and 

environmental performance. 

3.8 Research conducted using EnergyPlus software 

EnergyPlus is well-known energy analysis software. It was introduced in 2000 and since it 

has been widely used in   research studies. 
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The potential energy saving in an office building at several locations across Europe were 

investigated using EnergyPlus software by Boyano et al. [138]. The distribution of the 

primary energy usage found to be 46 % for lighting applications, 23 % for heating and 20 % 

for cooling loads. Obtained simulation results were in good agreement with previous 

research. They assessed several energy saving measures in buildings by taking into 

consideration the residential location. They found that by introducing the total lighting 

control system the operating time period of the respective application could be reduced thus 

resulting in a 36 % energy savings. An interesting comment was that improvement in the 

buildings insulation should be carefully selected in accordance with the climate conditions. 

Combination of two or more energy savings measurements enhanced the potential savings 

and significantly reduced the utilities bills.  

Fumo et al. [139] developed a methodology to estimate primary energy consumption on an 

hourly basis. Their research was based on a series of predetermined coefficients. The energy 

requirements could be dynamically estimated when theses coefficients were applied to 

monthly consumption data (obtained from utility bills). Coefficients were calculated using 

EnergyPlus Benchmark Models simulation with a 15 minute data sampling time and the main 

advantage was that eliminated the need of time-consuming dynamic building simulations. 

The methodology described earlier was applied in two hypothetical buildings and an error 

within 10 % was found for both cases in regards the estimated partitions of energy. A 

validation study of a thermal simulation for a room connected to a naturally ventilated double 

skin facade was conducted by Mateus et al. [140]. Air and surface temperature were 

calculated using open source building thermal simulation tool in EnergyPlus. Although 

simulation results predicted an over-estimation on radiant temperature and under-estimation 

in respect of the air temperature, compared to experimental data errors were within 

acceptable limit. The latter contribute to increase the confidence in the use of EnergyPlus. 
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The average simulation error in air and the average daily maximum temperature error were 

found to be 1.4 °C  and 2.5 °C  respectively. Finally, a sensitivity analysis was performed by 

applying heat transfer methods in order to optimise the performance and minimise the 

predicted error of calculation.  

A significant review in regards the operating strategy and the structure of the EnergyPlus 

building simulation tool was given by the developers Crawley et al. [141]. They described in 

details the capabilities, characteristics and limitation of the software. The module-based 

structure of the simulations was characterised as more efficient since it enhanced data 

exchange with other software and allowed the integration of new function/modules. Further 

details are given in the EnergyPlus chapter. Stadler et al. [142] developed a distributed 

generation model in order to be implemented in EnergyPlus . Given the flexibility and the 

coupling ability of the EnergyPlus the development of a module simulating the operation of a 

co-generation system could be facilitated by SPARK [141]. The latter is a simulation tool 

capable of modelling building equipment as individual modules. The description of physical 

configuration and the dynamic characteristics of the system is performed using C++ based 

functions. Furthermore, SPARK allows for enclosing into the simulation process the effective 

control strategy based on simple and robust optimisation algorithms. The integration of 

additional simulation modules contribute to the flexibility and capabilities of EnergyPlus. Up-

to-dated HVAC libraries provide to end-user modern building design, renovation and 

improve the accessibility of the distributed generation systems. 
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Chapter 4 Theoretical background of 
EnergyPlus Software 

 

4.1 Introduction 

A building simulation tool is essential in order to model the buildings energy requirements 

and the operation of hydronic heating plants. Simulation results then can be used to calculate 

the economic and the environmental performance of each scenario. EnergyPlus software is a 

well-established building simulation tool and has been used in a number of research activities 

as described in Section (3.8). Despite the fact that several building tools have been developed 

in the last two-three decades, EnergyPlus offers the most flexibility in modelling and high 

accuracy as compared with other software, including TAS, ESP-r, TRACE and TRNSYS, as 

a result of the integrated solution manager and the heat balance algorithms that are deployed 

[141]. In addition, EnergyPlus offers modules for modelling both IC and Stirling engine 

based micro-co-generation systems reflecting their dynamic behaviour in each time-step.  

Currently EnergyPlus is software of an industrial standard for energy modelling of buildings 

with incorporation of main conventional and non-conventional heat and electricity production 

equipment and is widely used in both academia and industry. This software has extensive 

built-in data base on climatic conditions for different regions across the world and includes 

detailed information on a wide range of structures and fabrics for various types of buildings 

taking into account their key elements (roofs, walls, floors, doors, windows etc).  Detailed 

information for calculation of the heat transfer in elements of buildings is also provided as a 

part of this software. It has also the advantage of capacity to directly import building designs 

prepared in CAD packages.  Additionally, it allows the end user to more finely describe the 

modular HVAC equipment using available specific experimental parameters. Finally, by 
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deploying a reliable and fast prediction-correction approach for solving the system of 

governing equations results in accurate and time efficient numerical simulation. 

EnergyPlus [143] was first launched in 2001 and uses the simulation methodologies 

developed in two pre-existing programs: DOE-2 [144] and BLAST [145]. The most accurate 

subroutines and features of both DOE-2 and BLAST were further improved in order to 

capture the best features of both packages to create a new more powerful building simulation 

tool. The developers aimed to create a well-organised, modular-structured software with 

accessibility to data and capability to easily couple with other software.  

4.2 Structure 

The solution in EnergyPlus is obtained in several stages. Of a particular interest during 

development was the integrated simulation manager, which enables simultaneous solution of 

both loads and systems equations. This function, according to the design team offers a high 

accuracy for a given set of input parameters. Heat balance equations from a research version 

of BLAST are used to calculate loads at a time-step specified by the end user. Information is 

subsequently passed to the building simulation module in which the response of heating and 

cooling plant can be calculated. If the feedback from the building module does not meet the 

calculated loads, adjustments of the space temperatures are made at the next time step. The 

method described above has a major advantage over the sequential simulation techniques 

used in other programs. It provides feedback from the HVAC module to the load calculations 

which results in accurate space temperature calculations. In addition, the simultaneous 

solution method allows the user to evaluate a number of processes, including realistic system 

control, radiant heating and cooling systems and inter-zone air flow. Figure 4.1 shows the 

structure of the EnergyPlus software. 
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Figure 4.1 Overall structure of EnergyPlus [141] 

 
EnergyPlus incorporates three basic components, namely a simulation manager, heat and 

mass balance simulations module and building systems simulation tools. The whole 

simulation process is controlled by the simulation manager.  

The major functions of the simulation manager can be summarised as follows: 

 Control of loop interaction at the given time-step and over a simulation period; 

 Control of the individual modules on decision-making (such as initialisation, 

simulation, recording data, reports, etc); 

 Manipulation of the coupling procedure of EnergyPlus with other simulation 

software. 

The above described structure eliminates the 'spaghetti code' issue [141] reported in 

predecessor simulation tools. Furthermore, it provides self-contained modules which enhance 

the flexibility in editing existing modules and adding new features. 

http://www.sciencedirect.com/science/article/pii/S0378778800001146
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The heating and cooling requirements are calculated in the heat and mass balance module. 

Calculations are based on a fundamental assumption that the air enclosed in thermal zones 

has uniform temperature. This hypothesis certainly does not occur in realistic conditions, 

however, it decreases the computational time when compared with simulations including the 

detailed model of ventilation such as a Computational Fluid Dynamics (CFD) - based models 

or even less complex zonal network ventilation models. Additional assumptions that are 

applied in calculations with respect to the heat balance on the room surfaces throughout the 

simulations are: uniform surface temperatures; diffuse radiating surfaces; uniform long and 

short wave irradiation; 1-D heat conduction. Figure 4.2 shows the integrated simulation 

manager structure. The heat balance module consists of the surface heat balance manager 

which simulates the interior and exterior surfaces heat balance and takes into account the 

boundary surface conditions and heat transfer modes that occur at surfaces (conduction, 

convection and radiation). Secondly, the air heat balance manager carries out calculations of 

various air mass streams within the energy zones, caused by ventilation, infiltration, air 

exhaust, etc. 

 

 

Figure 4.2 Solution manager structure [141] 
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The surface heat balance module features a daylight sub-module which is capable of 

simulating interior daylight illumination including inter-reflections both within the zone and 

due to surrounding objects. A detailed fenestration module allows end users to describe a 

layer-by-layer window construction allowing implementation of U-values with: a) accurate 

angular dependence of absorption and transmission for both visible and solar radiation and b) 

temperature dependency.  Finally the implementation of an empirical model that accounts for 

non-isotropic irradiance as a function of both solar position and cloud cover resulting in 

improved solar diffuse calculations on tilted surfaces. 

The improved mass transfer module provides a detailed layer-by-layer calculation of the mass 

transfer through surfaces and mass balance in the air within the energy zone. Improved 

capabilities of the building system simulation manager are due to the additional radiant 

heating and cooling modules incorporating thermal comfort calculations.    

4.2.1 Building systems simulation manager 

The inter-communication between the heat balance algorithm module and the various heating 

and cooling equipment is carried out by the building system tool. The former not only enables 

the exchange of data between modules but determine the response of the HVAC systems. A 

dataset from the heat balance manager solution at the given time-step is passed to the 

building system simulation manager which is responsible for the simulation of the HVAC 

equipment and components. Energy zone air conditions are subsequently updated (see Figure 

4.3). Flexibility of the data input is granted due to the simultaneous solution regime. In 

contrast, the sequential solution method (building envelope requirements first, then air 

distribution system, then HVAC equipment) imposes rigid boundaries in software structure 

and lacks the major advantage of feedback within the modules.  
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Figure 4.3 Building simulation manager [141] 

 
The building simulation manager allows for fully integrated simulation of systems and plant 

and features modular and extensible characteristics. Integration functionality accounts for 

realistic and tight coupling of the air and water side of the system and plant respectively, 

whilst modularity at both system and equipment levels ensures flexibility when expanding the 

component library. The interconnection between the equipment and the systems is 

accomplished through the use of integrating loops within the simulation structure.  HVAC air 

and water loops reproducing the pipe network found in physical systems enable the 

calculation to include pressure and thermal losses occurred due to turbulent flow within the 

loops. Although there is no hardwired template system, input (example) files available from 

the developers offer the end-user an easy starting point in order to develop the desired system 

configuration. 

Air loops are capable of simulating: air transport; heat control and recovery for supply air 

temperature; outside air economiser; mixing and conditioning; supply and return fans; 

heating and cooling coils. 
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Energy zone equipment options are used for connecting the air loops with the zones. 

Equipment should be specified by users in a priority-based order as used to propagate 

calculated loads and includes heating and cooling coils, diffusers, supply air control, 

convection units, high and low temperature radiant/convective units, etc. Figure 4.4 shows 

the equipment configuration within an energy zone. 

 

Figure 4.4 Equipment connection to zones [141] 

 
Equipment connections within the loop are defined using nodes at relevant locations and are 

assigned for numeric identifiers as illustrated in Figure 4.5. Loop state variables and set-point 

input data are recorded from those identifiers, whereas the unknown state variables are 

calculated along with control equations variables using an iterative solution method.  

At a given node, control representation associates input set-points to a function describing 

zone equipment.  Eventually, the building module initiates calculations with loop components 
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and updates the control equations using an explicit finite difference method. Calculations 

carry on until the solution is converged.  

 

Figure 4.5 Schematic diagram of air loop node [141] 

4.2.2 Water loops 

A primary HVAC plant equipment loop, used for supply components, and a secondary loop, 

used for heat rejection equipment, is connecting the zone modules with the heat balance 

simulation manager. The characteristics of the equipment within the zones are used as criteria 

for classification purposes. Furthermore, the solution method described in the air loop section 

is applied for calculating the response of the HVAC plant water loops. A significant function 

of the nodes is the interconnection between water and air loops. However a distinct node 

structure should be applied through the input file. EnergyPlus has an integrated HVAC 

component library which can be expanded with new components as a consequence of the 

extendable nature of the building simulation module. This can be performed by expert users 

through a coupling process with an equation based simulation tool named SPARK [141]. 

Figure 4.6 shows a primary water HVAC plant loop. 
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Figure 4.6 Example of a solar collector plant loop connection diagram [146] 

4.2.3 Input-output and weather data files 

A plug-in module based on the Google sketch-up permits the design and creation of a 

building geometry in format manageable by the simulation modules. A further development 

of the file can be performed using the main interface of EnergyPlus either by text editor or 

the inbuilt ―idf" (input data file) editor. The input file consists of an object-based format in 

which the characteristics of both building and systems are specified in detail. In the text 

editor the basic system components are defined as ‗objects‘ (such as a building surface, coil, 

boiler) and the characteristic of the corresponding component are described with values (data) 

organised in particular order, namely object, data 1, data 2, data 3...., data N. 

In addition, the idf editor interface offers a less complicated alternative for editing the input 

data than is the case with generic text editor. Objects and characteristics are visible and well 

organised in tables whereas the end user can set the perspective values for the components 

that are applied in model. 

The simulation manager saves the results for the given time-step (and for a given simulation 

period) in an output file with a structure and methodology similar to the one described for the 

input files. Results follow the same syntax format, using a comma-separated values format 
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ready to be imported to a spreadsheet for further analysis. Of particular interest is the weather 

data. The file of input data includes basic location information: 

 Peak heating/cooling design  Location name  Data source 

 Daylight saving periods  Longitude  Latitude 

 Typical and extreme periods  Time zone  elevation 

EnergyPlus provides a library of climate data from weather stations all over the world using 

average values in the format of ‗typical meteorological year‘ (TMY) climate information. 

Although weather data includes information for every minute interval, EnergyPlus usually 

reads hourly data records. The self-contained format of all the files associated with energy as 

described in the previous section is retained throughout the simulation process. These results 

are in easy to access files and allow a smooth data exchange with other software such as 

databases and spreadsheets. However, a major drawback is the large size of these files due to 

data accumulation. 

4.2.4 Validation of EnergyPlus 

The performance of EnergyPlus has been validated by applying simultaneous paths, during 

the testing processes. An ASHRAE Standard 140P comparative testing process was applied 

in the load algorithms. Simulations were conducted on a box with windows and shading 

together with low and high mass constructions.  

Results were therefore compared against other simulation data provided by a classic semi-

empirical method. In addition, the heat conduction transfer through a variety of thicknesses 

and materials was analytically tested under several temperature conditions. The testing 

process indicated a good agreement between EnergyPlus predictions and those from other 

simulation tools. This also was confirmed in [140]. 
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4.3 EnergyPlus Mathematical Models Overview 

EnergyPlus is used for calculating heating or cooling loads in order to maintain the thermal 

control set-points specified by the user and the energy consumption of the primary plant 

equipment. The model utilises a domestic energy use profile through the use of input data that 

specify the nature and the timing of appliances, lighting, DHW usage and thermal comfort. 

During the simulation, software uses a heat balance-based solution technique for building 

thermal loads that allows for simultaneous calculation of radiant and convective effects at 

both the interior and exterior surfaces for each time step. It also takes into account the 

transient heat conduction through building elements (walls, roofs, floors, etc.) using 

conduction heat transfer functions, as well as many other parameter [141] so it is capable to 

simulate a defined ―designed day‖ or an extended period of time (up to and beyond a year). 

The mathematical model used in EnergyPlus software is based on energy balance equations 

in the form of 1-D time dependant ordinary differential equations. The temperature within the 

zone is calculated for each time-step using data on the energy stored within the zone, heat 

input from the heating equipment and heat losses. The heat requirement of the building is 

calculated by taking into account the dwelling materials characteristics, dimensions of walls, 

windows, rooms and climate conditions and energy transfer due to interzone interactions and 

ventilation/infiltration. The building simulation tool predicts the response of the heating 

equipment to maintain the pre-defined temperature in zones of the building by compensating 

heat losses due to convection, conduction and radiation from the building.    

EnergyPlus solves the equations for building, systems and plants simultaneously. The 

integrated solution manager, described in the previous section, links all the parameters in a 

simultaneous solution scheme. Figure 4.7 illustrates the representation of a series of 

functional elements connected by fluid loops. 
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Figure 4.7 Schematic of Simultaneous Solution Scheme [146] 

Solution starts with definition of a heat balance equation used for formulating the energy and 

moisture balance within the zones and is based on using predictor-corrector approach: 
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Here air is the zone air density, 
p

C  is the zone air specific heat, TC  is the sensible heat 

capacity multiplier. 

The energy output of the system can be formulated from the difference between the supply 

air enthalpy and the enthalpy of the air leaving the zone: 

  
supsys sys p z

Q m C T T  
 (4.3) 

Here 
sup
T is the temperature of the air system supply and z

T  is the zone air temperature. 

The result of substituting Equation (4.3) in the heat balance Equation (4.1) is   

plant system zone 

Air Water loop 
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(4.4) 

where the sum of zone loads and air system output now equals the rate of change in energy 

stored in the zone. The simulation manager uses a third order backward difference solution 

algorithm based on a finite difference approximation in order to solve the Equation (4.4). A 

3rd order Euler formula is used as it was predicted to provide good accuracy. 
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Equation 4.5 in the solution algorithm eliminates instabilities related to the time step selection 

and the zone temperature update equation becomes 
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The described algorithm requires zone air temperatures at three previous time steps and uses 

constant temperature coefficients. The numerical integration over long time simulations may 

cause a potential truncation error which could be accumulative over many time steps (in 

addition to the conventional truncation errors evident in the building simulation).  This results 

in zero net error accumulations during each daily cycle simulations. 

The heat balance equation without the air system term can be derived as a function of the 

desired temperature Tz (defined from the user's set points at each zone): 
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 (4.7) 

In order for the system to meet the zone conditioning requirements, load sysQ Q . If the 

system is not capable of meeting the energy requirements, it provides its maximum output 

and the zone temperature is allowed to 'float'. 

Equation 4.7 is used for sizing of the system as it calculates the capacity for each time step. 

The method used has predictor/corrector characteristics as the system output is first 

approximated based on the prediction of the zone temperature and then the change of the 

zone temperature is determined by the actual air system response. 

4.3.1 Summary of time-step model formulation 

Simulations are split into a series of discrete time periods commonly referred as time-steps, 

and software performs calculations for the each time-step. Figure 4.8 shows the basic concept 

of obtaining a solution through time-steps. 

 

Figure 4.8 Schematic of time-step formulation [146] 

The modules participating in a simulation process and predicting the condition for a given 

time-step, are based on quasi-steady balance equations. During calculations, input data and 
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time-dependent boundary conditions are taken into consideration at each time step and 

information is kept constant over that distinct time period. Output data which follows a 

successful simulation are average values for the respective result. In order for the simulation 

manager to simplify the solution and due to the simultaneous solution approach, data in some 

cases lag meaning that some values used in a current time-step were originates during the 

previous time step. 

4.3.2 Surfaces heat balance manager 

Conduction through walls 
 
The basic time series solution associates the flux at one surface of a wall to an infinite series 

of temperature histories at both sides of the wall in order to describe the heat conduction 

through the wall. The terms in the series decay rapidly, therefore an infinite number of terms 

only are required for a sufficiently accurate result prediction. The method can be simplified if 

the flux history is replaced by higher order terms only and by introducing a conduction 

transfer function (CTFs). The basic form of a conduction transfer function is 

, , , , ,
1 1 1

( ) Z
qznz nz

ko o i t j i t j o o t j i t j j ki t j
j j j

q t T Z T Y T Y T q      
            (4.8) 

for inside surface heat flux; 

, , , , ,
1 1 1

( )
qznz nz

ko o i t j i t j o o t j i t j j ki t j
j j j

q t Y T Y T X T X T q      
            (4.9) 

for the outside surface heat flux. 

Here 
j

X  is the outside CTF coefficient, j= 0,1,..,nz; 
j

Y
 

is the cross CTF coefficient, 

j= 0,1,..,nz; 
j

Z  is the inside CTF coefficient, j= 0,1,..,nz;   is the flux CTF coefficient, 

j= 0,1,..,nq;  
ko
q  is the conduction heat flux on the outside face; q  is the conduction heat flux 

on the inside face; 
o
T  is the outside face temperature; 

i
T  is the inside face temperature.  
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The part of subscript which follows the comma in Equations (4.8) and (4.9) indicates the time 

period for the quantity in terms of the time step δ. 

The default solution method in EnergyPlus is known as the state space method which is 

described by the following linear matrix equations: 

d x
A x B u

dt

                     (4.10) 

y C x D u                  (4.11) 

where x is the vector of the state variables, u is the vector of inputs, y is the output vectors 

and A,B,C and D are matrices of coefficients. 

In this case the state variables are the nodal temperatures, interior and exterior temperatures 

are the inputs and the resulting heat fluxes are the outputs:   

 [     ]   [ ] [     ]  [ ] [    ]  (4.12) 

[ i
q 
o
q  ]  [ ] [     ]  [ ] [    ] (4.13) 

where T1,...,Tn are the finite difference nodal temperatures, n is the number of nodes Ti and To 

are the interior and exterior environmental temperatures respectively and 
i
q  , 

o
q  are the 

calculated heat fluxes. Figure 4.9 shows a simple one layer slab with two interior nodes and 

convection on both sides. 
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Figure 4.9 Two node state space example 

 
Solutions therefore could be calculated as 
 

[          ]  [
                     ] [    ]  [

        ] [    ] (4.14) 

[ o
q 
i
q  ]  ቂ     ቃ [    ]  ቂ      ቃ [    ] (4.15) 

4.3.3 Interior/Exterior heat convection 

A basic formula describing the heat convection from the surface is used. In the case of an 

exterior surface:            (          )  (4.16) 

where Qc is the rate of exterior convective heat transfer, hc,ext is the exterior convection 

coefficient, Tsurf and Tair are the surface and outdoor air temperatures respectively. Similar 

equations are used to describe convection at interior surfaces. 

4.3.4 Water loop description 

A number of systems can be used for determination of heat requirements in an energy zone. 

For a conventional heating system, a hot water boiler could be selected and its simple model 

is used. The user then is required to provide only the nominal boiler capacity and thermal 

efficiency and the boiler model is based on the following three equations: 
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BoilerLoad
OperatingPartLoadRatio

BoilerNomCapacity
   (4.17) 

Nom

BoilerLoad
FuelUseTheory   

 (4.18) 

FuelUseTheory
FuelUsed

EfficiencyCurve
  

(4.19) 

4.3.5 Micro Co-generator Module 

The module responsible for the simulation of cogeneration systems is a direct implementation 

of a model developed by IEA Annex 42 [17]. A design group was formed within the 

International Energy Agency for the purpose of developing models of building cogeneration 

systems. The integrated module is capable of simulating combustion based cogeneration 

devices as well as fuel cell based devices. The operation of a micro CHP unit is simulated 

using an empirical model including transient periods such as warm up and cool down periods 

and heat recovery (when performance is a function of the engine temperature). Some of the 

relevant model equations are:         ( ̇                ) (4.20)     ( ̇                )  (4.21) 

                ⁄  (4.22) 

                   (4.23)  ̇                  ⁄   (4.24) 

 

 ̇         {  
   ̇                                                      ̇       ቆ  ̇      ቇ    ̇      (  ̇      ⁄ )                    ̇       ቆ  ̇      ቇ     (4.25) 
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 ̇     (       )  (4.26) 

         { 
                                                                (       )          ሺ       ⁄ ሻ                          (       )     (4.27) 

[  ]               (          )        (          )          (4.28) 

[  ]           [  ̇  ]  (           )      (          )  (4.29) 

Here    is the steady-state, part load electrical conversion efficiency of the engine;    is the 

steady-state, part load thermal conversion efficiency of the engine;  ̇   is the mass flow rate 

of plant fluid through the heat recovery section [kg/s];       is the bulk temperature of the 

plant fluid entering the heat recovery section (°C);       is the bulk temperature of the plant 

fluid leaving the heat recovery section (°C);         is the steady-state electrical output of the 

system (W);        is the gross heat input into the engine (W);         is the steady-state rate 

of heat generation within the engine (W);  ̇     is the molar fuel flow rate (kmol/s);  ̇     is 

the mass fuel flow rate (kg/s);  ̇    is the air mass flow rate through the engine (kg/s); [  ]    is the thermal capacitance of the engine control volume (W/K);       is the 

temperature of the engine control volume (°C);      is the effective thermal conductance 

between the engine control volume and the cooling water control volume (W/K),       is the 

effective thermal conductance between the engine control volume and the surrounding 

environment (W/K);       is the air temperature of surrounding environment (°C); [  ]   

is the thermal capacitance of encapsulated cooling water and heat exchanger shell immediate 

thermal contact (J/K);  [ ̇  ]  is the thermal capacity of the surrounding environment 

(W/K).  
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Both ηe and ηq are second order polynomials, the method of solution used for these values 

correlated to engine‘s mass temperature, Teng and the outlet plant node Tcw,o. The engine 

temperature at the given time-step is calculates as: 

               (4.30 ) 

where 
        [  ]                [  ]                 [  ]            (4.31) 

    ቆ     [  ]          [  ]   ቇ  (4.32) 

The plant node outlet fluid temperature is calculated using 

   [ ̇  ]  [  ]             [  ]         (4.33) 

    ([ ̇  ]  [  ]       [  ]  )  (4.34) 

An iteration procedure is used which alternates the calculations of Teng and Tcw,o and exits the 

loop once the energy balance satisfies the following criteria (       )                (          )        (          )         
 [  ]           

 (4.35) 

(       )            [ ̇  ]  (           )      (          )
 [  ]           

 (4.36) 

The simulation of a mCHP module is determined by several operating modes which are 

controlled by user defined operating modes at each time-step, namely off, standby, warm-up, 

cool-down and normal.  
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4.3.6 Fuel cell generator module 

The fuel cell module is used for simulating small scale fuel cell based co-generators systems. 

The module was originally developed by IEA and implemented in EnergyPlus. Detailed 

description can be found in IEA Annex 42 [17]. Two major types of fuel cell system can be 

simulated, a solid oxide fuel cell (SOFC) and proton exchange membrane (PEM) fuel cell. 

Given the recent integration of this module (which is very complex) into software, there are 

concerns about accuracy and additionally there are uncertainties concerning the input 

parameters. Input data is extremely difficult to obtain and some sub-systems are currently not 

widely implemented in practice though they are included in the description of the module. 

Large input data results are necessary to introduce separate subsystems within the fuel cell 

module and each one is responsible for a particular operation during the simulation process. 

A simulation can incorporate multiple FC generators and all input details are organised in a 

number of objects which correspond to functions of the FC operation. Figure 4.10 illustrates 

the structure of the fuel cell module and its separate subsystems. Most of the modules of 

EnergyPlus use the Higher Heating Value (HHV) of the fuel in the solution. Calculation of 

the FC model is based on use of the Lower Heating Value (LHV) of the fuel. The fuel cell 

module is based on the IEA Annex 42 [17] 'The simulation of building-integrated fuel cell 

and other cogeneration systems'. It is described as a 'grey box' empirical model which 

compromises a mixture of thermodynamics and empirical performance equations. The fuel 

cells module interacts with the rest of the model in different ways. The latter accounts for the 

complexity of the structure as the operation of individual components are assigned to 

numerous sub-systems. The utilisation of fuel, air and water is carried out within six separate 

streams. The module not only simulates the heat and power but also the convection and 

radiation heat transfer to the energy zones through the exhaust node. 
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Figure 4.10 Fuel cell module structure [146] 

An electric storage can also be applied in simulations when a FC operates as an electricity-led 

equipment. Such operation eliminates the modulation in power output. The structure of the 

module makes it possible to describe the interaction of sub-systems with the building's energy 

and comfort systems. 

A summary of relevant equations describing the operation of the module is presented below. 

Simulations start with solving the main energy balance equation in the fuel cell power 

module (this equation is used to model the enthalpy of the product gases that leave the FC 

power module): 

 ̇      ̇     ̇           ̇                                         ̇                            ̇                 
(4.37) 

where  ̇    is the total enthalpy multiplied by a flow rate of air introduced to the control 

volume (W);  ̇     is the total enthalpy multiplied by a flow rate of fuel introduced to the 

control volume (W);  ̇          is the total enthalpy multiplied by a flow rate of water 
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required  for steam reformation (W);   ̇     is the total enthalpy multiplied by a flow rate of 

produced gases exiting the control volume (W);         is the heat extracted from system in 

order to maintain its temperature (W);            are the parasitic thermal losses from the 

control volume (W);     is the DC net power generated by the FC (W);                    is 

the power draw of the auxiliaries included within the control volume (W);  ̇                

and  ̇                 are the total enthalpy multiplied by flow rates of air that is drawn 

through the cabinet for cooling purposes. 

In respect to the gas streams the total enthalpy can be substituted from the summation of the 

enthalpies of their constituent gases. For convenience the enthalpy of each reactant or product 

gases is expressed as a sum of a standard enthalpy of formation and the deviation between its 

enthalpy and that at the standard state:   ∑( ̇ [ ̂     ̂  ])      ∑( ̇ [ ̂     ̂  ])      ̇         ቀ[ ̂     ̂ ]           ̂       ቁ
   ̇                 ̇                                     ∑( ̇ [ ̂     ̂  ])                           
  ̇                 

(4.38) 

where  ̇  is the molar flow rate (kmol/s) of gas constituent i;   ̂  is the molar enthalpy of gas 

constituent i (J/kmol);    ̂   is the molar enthalpy of the gas i at the standard state (J/kmol);  ̇          is the molar flow rate of liquid water added for reformation purposes (kmol/s);    ̂        is the latent heat of vaporisation of water at the standard state (J/kmol). 

Electrochemical behaviour is commonly described by an empirical prediction of the cell 

voltage using the Nernst potential which accounts for activation, ohmic and concentration 
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losses. The electrochemical performance of the fuel cell can be expressed using parameters 

relating to the electrical efficiency and the net power generation.  

    [               ]  [         ]
 ቈ  ቆ    (∫                 )ቇ   ቉  (4.39) 

Here    are coefficients supplied by user;     is the DC net power generated by FC (W);            [         ] represents the degradation of fuel cell performance due to cycling operation;             is a user input value representing systems that exhibit no degradation for a given 

time period. 

The flow rate of the process air can be solved either using a power generation-dependent 

equation or as a function of the fuel flow rate: 

 ̇    [               ][        ]  (4.40) 

or  ̇    [      ̇        ̇     ][        ] (4.41) 

Here  ̇    is the air molar flow rate (kmol/s);      is the air supply temperature (°C);    are 

parameters based on empirical or manufacturer data. The term [        ] is used to 

describe the cooling process when the fuel cell utilises the ambient temperature. The air 

composition will be considered as constant during simulation period and consist of N2, O2, 

H2O, Ar and CO2. 

The parametric equation of the liquid water flow rate as a function of the fuel flow rate is 

given as follows:  ̇                ̇        ̇       (4.42) 
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Here    are coefficient based on empirical data;  ̇          is the water-liquid molar flow 

rate (kmol/s).  

The above equation accounts for the water-liquid requirements due to any reforming process. 

In the case of an internally reforming SOFC the inlet flow rate can be neglected. 

 
Product gases 
 
Both electrochemical reactions and combustion process result in gas production which is 

represented by the term  ∑ ( ̇ [ ̂     ̂  ])         in the equation. Given the operating 

conditions of the fuel cell the produced gasses mainly consist of hydrocarbons, CO, hydrogen 

and NOx. Based on previous research data, it is assumed that hydrocarbons and NOx 

emissions account for 0.2 % of the total gases while the CO and SOx levels are approximately 

the half of this (0.1 %). Throughout, it is assumed that reactants supplied in the fuel cell are 

fully react to CO2 and H2O. 

The parasitic thermal losses to the surroundings via radiation and convection can be 

calculated as losses at a constant rate, proportional to the temperature differential between the 

produced gasses and room temperature or as a function of the fuel flow rate as described from 

in the following equations: 

           ሺ  ሻ(              )  (4.43) 

Or                  ̇        ̇      ( 4.44) 

where UA is a heat loss coefficient (W/K) describing the sum of the convection and radiation 

loses from the FC surface (or skin) to the surrounding;        is the room temperature and    
are coefficients based on manufacturer data or analytic models.  
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A more detailed analysis of the fuel cell operation can be found in IEA Annex 42 [17]. The 

heat produced by the selected HVAC systems is directed either to the radiators or to the hot 

water tank for domestic application through a configuration of pipes and pumps. The 

simulation of the convective water "baseboard" (i.e. heating radiators) unit follows the 

standard effectiveness-NTU methodology. The calculation starts by determining the product 

of the specific heat and mass flow rate for both the air and water sides of the unit (heat 

exchanger). In the initialisation, the model assumes that the air mass flow rate is equal to 0.42 

times of the water mass flow rate. The purpose of this particular selection is to provide 

accuracy in the performance calculations by providing some reasonable estimate of the air 

mass flow rate. This rate is kept constant throughout the rest of the simulation. 

At each time step, the baseboard should meet any remaining heating requirement of the zone 

by implementing the following calculations: 

,water p water waterC c m  ( 4.45) 

,air p air airC c m   ( 4.46) 
Once the effectiveness is determined, the outlet conditions from the unit are determined using 

the following equations: 

 , , , ,
min
/air outlet air inlet water inlet air inlet

air
T T T T C C    ( 4.47)  , , , ,

air
/water outlet water inlet air outlet air inlet

water
T T T T C C    (4.48) 

 

The user can refer to the ASHRAE Handbook series for general information on different 

system types as needed. When produced heating energy is directed to the hot water tank, a 

well-mixed water tank is assumed in calculations. This assumption implies that the whole 

amount of water in the tank is at the same temperature and the model solves analytically the 

differential energy balance equation: 

p net
dT

mc q
dt

  (4.49) 
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Substituting the qnet in equation 4.49 by associated terms dependent on the temperature  

 
se

se

1
c c

1
c c

 
 

           
      

heater oncy offcyc oncyc amb offcyc amb

use u p use source source p sourcep

oncyc offcyc use u p source source p

p

q q q UA T UA TdT

m T m Tdt mc

UA UA m m T
mc

 (4.50) 

The temperature of the water tank T(t) at the instance of time t can calculated as  

  bt
i

a a
T t T e

b b

        (4.51) 

 where  Ti  is the  initial temperature at time t =  0 and  

se

1
c c 

           
heater oncy offcyc oncyc amb offcyc amb

use u p use source source p sourcep

q q q UA T UA T
a

m T m Tmc
  (4.52) 

 se
1

c concyc offcyc use u p source source p

p

b UA UA m m
mc

         (4.53) 

The equation can be rearranged to solve the time needed in order to reach a requested 

temperature Tf: 

1
ln

f

i

a b T
t

b a b T

       (4.54) 

All individual components are described as algorithmic models with fixed input and output. 

They are coupled using air or water loops and allowed to interact as outlined in a schematic 

approach. Calculations start with zone by zone heat balance simulations where the user‘s set 

points are taken into consideration. The solution manager calculates the response of the 

system for a particular condition of each zone and calculations continue with the component 

sizing algorithms. It is worth mentioning the importance of correct equipment sizing which is 

carried out by a solution sizing manager. When a component is called for the first time in 

simulations, a sizing subroutine is initiated for calculating the auto sizable parameters such as 

fluid flow rates, temperatures, power output, etc.  
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Chapter 5 Description of Experimental Work 
 

5.1 Introduction 

The performance of three mCHP systems based on IC and Stirling engine and PEM fuel cell 

technologies were experimentally assessed under both dynamic and steady-state operating 

conditions. Obtained results such as partial efficiencies, nominal capacities, transient start-up 

and shut-down periods, were fed directly into the numerical simulation process. The latter 

allowed to describe the realistic operating conditions. Finally, experimental and theoretical 

results from building simulations were compared in order to assess the accuracy of simulation 

methodology. Table 5.1 summarise the main features of the co-generation units that have 

been experimentally tested. The experimental results presented in this Chapter are 

representative ones from several tests. Parameters of other cycles were deviating by ± 5 % 

when compared to the representative curve.  

Table 5.1 Main features of the tested micro-cogeneration units based on manufacturer's 

information 

mCHP Technology 
Claimed Net 

efficiency 
Nominal Power 

(kW) 
Nominal Heat 

(kW) 

Whispergen Stirling Engine 96 % 1 7.5-14 

SenerTech Dach IC Engine 88 % 5.5 12.5 

Hilton PEM fuel cell / 0.75 / 

5.2 1 kWe Whispergen Stirling Engine Based mCHP 

5.2.1 Experimental Facility 

 
For evaluating the actual performance of the Whispergen mCHP, a domestic-scale unit 

previously installed as a test rig. Both the space heating and domestic hot water loads were 
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used as in real residential conditions. Figure 5.1 illustrates a schematic of the Whispergen 

Stirling engine based test rig.  

 

 
 

Figure 5.1 Schematic layout of the Whispergen 1 kWe Stirling engine-based mCHP test 

facility 

The Whispergen unit includes the main burner of 6 kWth thermal capacity which is also used 

for the cogeneration and the auxiliary burner of 5 kWth thermal capacity for use as a top-up 

heating system. The operation of the auxiliary burner is independent and controlled by a 

Honeywell Outside Temperature Compensator (OTC) sensor. Temperature readings by both 

the room sensor and integrated thermostat in the domestic hot water tank were used for 

controlling the direction of the hot water via a three-way valve. In addition, the operation for 
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either space heating, hot water production or both simultaneously could be selected using a 

programmable controller. 

The test rig consists of 

 A 150 L water tank for domestic hot water production with integrated thermostat; 

 A controller for independent signalling of space heating or hot water demand; 

 A room thermostat; 

 A three-way valve for controlling the direction of the hot water to either space heating 

radiators or the domestic hot water service (DHWS) storage cylinder; 

 Two Gyr & Landis heat meters, installed in both water circuits; 

 Data logging via a dedicated RS232- CHP- PC connection using for monitor main 

parameters. 

Figure 5.2 and Figure 5.3 (a-e) shows components of the experimental facility 

 
 

Figure 5.2 The Whispergen 1 kWe Stirling based mCHP installed in the Energy Lab 
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a) 150 L insulated hot water storage tank 
 

b) Pressurisation vessel to  maintain 
constant pressure in the hydronic circuit 

 

 

c) White arrow points to the 3 way valve. The 
operation of the valve is both temperature and 

manually controlled 
d) Timer/controller signals heat demand 

  
 

e) Heat meters measure and record the thermal energy supplied for both space heating and 
water tank. 

 

Figure 5.3 (a-e) Components of the experimental set-up 
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5.2.2 Experimental procedure 

The experimental investigation of the Whispergen mCHP unit considered dynamic (transient) 

and steady-state operation as well as measurements leading to operational power-generating 

and overall efficiencies. Two operating strategies were evaluated: 

1. The generation of space heating and DHW occurring simultaneously  

2. The DHW heat generation was separated from space heating generation and the mCHP 

was programmed to start prior to space heat demand event and direct all the heat first to 

the hot water tank and when it is charged, to the space heating equipment. 

This method could offer more information in respect to the interaction of the mCHP with the 

respective equipment (radiators and water tank). The heat meters integrated in two circuits 

provided both circuit temperature information and total energy generated. The latter can be 

used for efficiency calculations under steady state operation but was found to be 

insufficiently responsive for a dynamic performance logging. For this, monitored data from 

the mCHP engine was used for evaluation of the module operating characteristics in dynamic 

conditions. The fuel consumption rate measurement (from which the heat input to the unit 

throughout the operation can be calculated) was carried out using a gas meter. Finally, once 

heat and power generation values were measured, they were plotted against time using a 1-

minute time interval.  

The generated thermal energy (in kWhth) was calculated as  

 

0

( )( )

60

n

water flow return CH DHW
i

gen

Cp T T m m

Q 
 

  
 (5.1) 

 

where n  is the cycle duration in minutes; Tflow is  flow water  temperature in the circuit (°C); 
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Treturn is return water temperature in the circuit (°C); 
CH

m is the mass flow rate in the space 

heating circuit (kg/s); 
DHW

m is mass flow rate in the domestic hot water circuit (kg/s). 

 

Partial and overall efficiencies are calculated as 
 
 

gen

thermal

fuel

Q

Q
   (5.2) 

gen

electrical

fuel

E

Q
    (5.3) 

overall thermal electrical
      (5.4) 

  

where Qgen is the heat generated from the mCHP; Egen is the electricity generation; Qfuel is the 

energy content of the fuel. 

5.2.3 Start-up and Run-down phase   characteristics 

Figure 5.4 shows the start-up transition of the Stirling engine-based mCHP test unit. The 

Whispergen under test rig conditions displayed a quick start up.  

 

Figure 5.4 The 1 kWe Whispergen Stirling engine mCHP start-up characteristic 

There is an initial 1 minute of diagnostic delay and, if this is discounted, the unit would reach 

the nominal thermal capacity of the main burner within 7-8 minutes. A delay in power 
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generation was observed, which is a characteristic of the Stirling engine operation. A total of 

10 minutes were required in order to fully reach rated capacities. 

Figure 5.5 shows the run-down characteristic. For a period of approximately 6 minutes a 

significant amount of the thermal energy continued to be delivered to the heating circuit after 

the burner had been switched off with a beneficial impact on the thermal efficiency of the 

cycle. This is attributed to the heat transferred from the engine's walls to the hydronic loop. 

This characteristic operation of the Stirling engines is necessary in order to fully cool down 

the engine and prevent any thermal damage to engine components such as seals etc. It reflects 

the high thermal capacity of the engine walls. In addition, the power generation seizes within 

4 minute period.  

 

Figure 5.5 The 1 kWe Whispergen Stirling engine mCHP run down characteristic 

 

5.2.4 Steady state operation 

Simultaneous DHW and SH operation mode 
 
Using the installed controller, typical residential operational conditions were simulated on the 

test rig. The unit was tested under two different operating strategies (as described in Section 

(5.2.2)) in order to obtain information regarding interaction between the mCHP unit and hot 
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water tank during its charging and between the mCHP unit and space heating system. In 

addition, tests were carried out during a cold winter day and a mild autumn/spring day. 

During simultaneous heat generation mode (both DHW and CH), approximately 1.5-hr and 

3.5-hr (5-hr total) experimental runs were carried out for satisfying the morning and evening 

heat and hot water demands, respectively. Hot water consumption events were simulated by 

draining the hot water storage tank, however, the volume of water drained was not measured. 

The mCHP was expected to operate at the full capacity under this particular operating mode 

in both laboratory and actual domestic conditions. Figure 5.6 shows the heat generated from 

the mCHP on a winter day.  

 

 

Figure 5.6 Heat generation during the evening of a winter weekday during simultaneous heat 

generation mode 

As it can be noticed in Figure 5.6 the return water temperature fluctuations are due to hot 

water and heating demand events and resulted in increasing the heat load. The additional heat 

load was covered by the auxiliary burner which was operating at the beginning of the day for 

approximately one hour. Figure 5.7 shows the operation of the Stirling based mCHP during 

milder climatic conditions. 
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Figure 5.7 Heat generation during the evening of an autumn/spring weekday for 

simultaneous heat generation mode 

In Figure 5.7 it can be observed that the auxiliary burner was not on at the beginning of day 

as the water tank temperature was higher than in a winter day. However, the two heat 

generation peaks at approximately 50 and 100 minutes, totalling 11 kWth and 12 kWth, 

indicate that the auxiliary burner was on. The higher temperature differential during the start-

up period during autumn/spring weekdays resulted in the increased thermal efficiency of 70 

%. The operation of the auxiliary burner was related to the return temperature. Instantaneous 

hot water demand resulted in the increased heat load due to a sharp drop in the water tank 

temperature. When the hot water consumption events lasted longer and therefore the 

temperature inside the tank was continuously dropping, the operation of auxiliary burner was 

triggered. However, this was only evident during the first experimental runs in the winter 

season and when the water circuit had been filled with fresh cold water for the first time. In 

most tests the auxiliary burner had very little contribution to the heat output of the mCHP 

unit. The instantaneous rise in the hot water demand was balanced by the thermal inertia of 

hot water inside the tank thus reducing the impact of fresh cold water flowing into the tank 
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during the later stages of operation.  Finally, the effect of the increasing return temperature on 

the overall heat generation can be seen in both figures during the last hours of operation. As 

the return temperature increases, the generated heat decreases, indicating a less effective heat 

transfer in the engine cooling water jacket. These confirms the advantages of operating the 

mCHP in a way that the return temperature remains low at the early stages of operation which 

eliminates the effect of the reduced heat transfer once the unit reaches the steady state 

operation. The amount of heat generation during the winter and spring-autumn days was 

nearly the same for the simultaneous central heating and DHW heat generation mode. 

Split DHW and SH generation operation mode 

Under this operating strategy, extended operation of the mCHP was achieved which was 

presumed to be beneficial for the potential economic performance due to the increased power 

generation. The domestic hot water demand was signalled one hour prior to the 6 hours of 

space heating demand and Figure 5.8 shows the heat generation by the mCHP during a winter 

weekday. 

 
Figure 5.8 Heat generation during a winter weekday in split heat generation mode 
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In Figure 5.8 it can be seen that in the early stage of operation, when he thermal energy was 

directed into the water tank only, a slight deviation was noted from the rated thermal output 

of 6 kWth (approximately 5.7 kWth was generated during this phase). It was assumed that this 

was due to the limited heat transfer through the coil inside the water tank.  

Once the switching to the space heating was signalled, a significant drop in the return 

temperature occurred. The thermal energy was directed to the central heating circuit and 

consequently an increased heat transfer rate in the early stages of the space heating operation 

can been noticed. As the return temperature reached the design level, the thermal output of 

the Whispergen unit was stabilized at around 6 kWth.  

 
 

Figure 5.9 Heat generation during a spring–autumn weekdays for a split heat generation 

mode 

Interestingly, in almost all tests the auxiliary burner did not fire up for extended time. Its 

operation was limited to a few minutes and occurred only on a few occasions as noted in 

Figure 5.6 and 5.7. This suggests a stiffness in the control logic of the auxiliary burner, 

limiting the fire events in order to keep low fuel consumption as the auxiliary heat is not 

associated with additional power generation. Figure 5.9 shows the heat generation by the 
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mCHP during a mild weekdays. In Figure 5.9 it can be observed that the same trends exist 

during the operation of the unit during autumn/spring days as in Figure 5.8. Two additional 

cycling operations were noticed as the outdoor temperature was relatively higher during the 

tests. Although this mode of operation resulted in higher power generation and very limited 

auxiliary burner operation, cycling events were present. In actual residential conditions the 

cycling frequency is expected to be higher. The size and insulation of the laboratory building 

imposes a considerable heat load during even the autumn/spring period which limits the 

number of cycling events. 

5.2.5 Efficiencies 

The methodology used throughout the experimental work was aimed at attaining the most 

realistic efficiency values. Although the test-rig was designed for simulating domestic 

conditions the space heating system of the local laboratory environment is quite different to a 

residential house. The laboratory where the mCHP unit was installed has a large open space 

room with footprint area of approximately 30x10 m and height of approximately 5 m. This 

space will therefore have a much higher thermal capacity and higher thermal losses due to a 

low insulation level when compared with a modern house. Under these conditions, the 

Whispergen was considered as undersized equipment and consequently was operating 

constantly at the maximum thermal capacity. This could lead to over-prediction in efficiency 

calculations, since the number of cycling events (which significantly decrease the overall 

efficiency) might be expected to be higher in a residential house. The artificial way of 

triggering cycling operation using drainage of the water tank provided a realistic 'typical 

domestic conditions' performance.  

Figure 5.10 shows the partial efficiency estimations under steady state and transient 

operation. 
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Figure 5.10 Partial efficiencies estimation in dynamic and steady state operation modes for 

the Whispergen Stirling engine mCHP unit 

 
It can be seen in Figure 5.10 that the average thermal efficiency of 67 % and 12 % for the 

electrical efficiency were achieved in the dynamic mode of operation. The efficiencies are 

decreased when the whole cycle has been taken into consideration due to a poorer   

performance in transient phases. A thermal efficiency up to 75 % with electrical efficiency of 

13 % was recorded for steady state operation (without taking into account transient phases). 

Additional reduction in efficiencies will arise if cycling operation is taken into consideration. 

5.2.6 Validation of theoretical simulation results 

Obtained experimental results were used to compare these against the theoretical predictions 

under transient and steady-state operational conditions in order to ensure viability of the 

simulation process. The Stirling engine features were taken into account in theoretical 

modelling (the heat generation is dependent on the engine temperature). This method has the 

advantage of including the dynamic characteristics of real engines into the steady-state 

equation based solution and it was suggested as the adequate method for application in 

EnergyPlus for simulating the Stirling engine based mCHP. Such approach resulted in a 
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in the very early stage of operation; b) the normal operation which occurred once the engine‘s 

temperature has reached the nominal value. The power generation and therefore the heat 

generation of the mCHP unit was described with a coefficient (warm-up power coefficient) 

determined from the experimental results. The power generation as a function including this 

empirical coefficient is:  

eng room

, max

eng,nom room

net warm up p

T T
P P k

T T
   (5.5) 

where 
,net warm up

P   is the power produced during start-up period; 
max
P is the nominal 

(maximum) power produced; 
p

k is the warm-up power coefficient; 
eng
T  is the engine 

temperature; 
eng,nom
T is the engine temperature during steady state (nominal) operation and 

room
T is the room temperature. 

Finally, the distinct regions during transient operation are illustrated in Figure 5.11. 

 

Figure 5.11 Experimental and simulation results for heat and power generation during start-

up for the Whispergen Stirling engine mCHP. 

Figure 5.11 shows the experimental results against the model prediction for the first 14 

minutes of operation (until the engine reaches the steady-state operation). Figure 5.12 shows 

the validation results with respect to a full operating cycle. 
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Figure 5.12 Experimental and simulation results for heat and power generation by the 

Whispergen Stirling engine mCHP unit 

As it can be seen in Figure 5.12 there is no significant deviation between the experimental 

results and model predictions in respect of the heat output rate during the steady state mCHP 

operation. Constant heat dissipation was predicted by the theory using steady state equations. 

Fluctuations in experimental heating output were attributed to the change in the circuits water 

temperature differential. It also can be seen in the experimental curve that the heat is still 

recovered as result of the water pump running after the mCHP unit was switched-off. This 

feature is not reflected in the theoretical modelling was as a result of the model's stiffness. 

Furthermore, it can be seen in Figure 5.11 that there is a small deviation between theoretical 

and experimental results during the transient heat generation. The model displays a 

marginally faster response, however, the error is within acceptable limits. The areas under the 

theoretical and the experimental lines are approximately equal with a small net error. In 

respect to power generation a step increase in the electrical power generation was applied in 

the simulation process. The theoretical results deviate from the gradually increasing 

experimental electricity generation.  It addition, the time delay in the electricity production is 

excluded in theoretical simulations due to lack of software capabilities. Nevertheless, the 

errors of 3.7 % and 3.3 % are for a 3 hour and 5 hour runs, respectively. These errors are 

considered to be within acceptable limits, therefore simulations were thought to be in good 

agreement with experimental data. 
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The operation of the Stirling engine based mCHP was modelled using a power time delay 

approach (normally used in ICE mCHPs) as presented in Appendix A. The simulated heat 

generation in this modelling approach is significantly faster compared to the experimental 

results therefore the above approach was no longer deployed in further simulations in this 

work.  

5.3 Baxi SenerTech 5.5 kWe ICE Based mCHP 

5.3.1 Experimental setup 

The performance of the Baxi SenerTech Dachs Internal Combustion engine based mCHP was 

evaluated under laboratory conditions. The unit was installed in the Low Carbon Systems 

laboratory of the Faculty of Engineering and Environment and used for providing space 

heating and electricity to part of the campus estate. It has a nominal output of 5.5 kWe and 

12.5 kWth, respectively. The engine is single cylinder natural gas-fired four-stroke IC engine 

with displacement of 578 cm3. The unit has 72 cm x 107 cm x 100 cm dimensions (width x 

length x height) and weights about 530 kg. It has a cylinder bore and piston stroke of 90 and 

91 mm, respectively. The heat utilisation is carried out using a combined cooling system and 

a heat exchanger recovering thermal energy of the exhaust gases at the temperature of 150 

°C.  The manufacturer recommends the service interval of 3500 hours of operation for 

engines that use natural gas as fuel with the service life being 80000 hours.  The engines with 

natural gas as fuel models do not require a three-way catalyst due to deployment of the lean 

combustion process. The rated operating speed is 2400 rpm and the shaft is linked to an 

asynchronous generator. Net efficiency, in accordance with the manufacturer specification, is 

88 %. The operation of the unit was scheduled by the University campus services with some 

additional local control of the unit on a day-to-day basis.     

The experimental setup additionally consist of  
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 An Apator CQM-III -K compact type heat meter; 

 A Grant Squirrel SQ2020 data acquisition unit; 

 A gas meter;  

Figure 5.13 shows the schematic diagram of the experimental facility. 
 
 

 
 

Figure 5.13 Schematic diagram of the test rig of the Baxi SenerTech Dach mCHP unit 

Figure 5.14 and Figure 5.15 (a-d) show the components of the experimental facility 
 

 
 

Figure 5.14 The Baxi SenerTech Dach mCHP unit installed in the Energy Laboratory 
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a) The digital display of the unit to monitor   

key parameters of the mCHP operation 
 

b) The Apator heat meter installed in the 
hydronic circuit 

  
c) Gas meter d) Data acquisition  connected to a laptop 

 
Figure 5.15 (a-d) Components of the ICE mCHP experimental facility 

5.3.2 Experimental procedure 

The test rig is capable of providing results for the steady state operation and the transient 

phases of start-up and shut down. The integration of the heat meter into the hydronic circuit 

enables recording data on the thermal output and the gas meter provides information on the 

fuel consumption rate. This data is used for efficiency calculations. The power generated can 

be directly read off the mCHP control panel.   

5.3.3 Start-up and run-down characteristics 

Heat and power generated were plotted every 1 minute intervals during start-up transient 

operation from 15 November to 6 December 2013. Results obtained for several cycles are 
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presented in Figure 5.16 and Figure 5.17. The heat and power generation by the Seneretch 

Dach mCHP during the start-up period are shown below.  

 

Figure 5.16  Start-up transient regimes of the SenerTechDachs 5.5 kWe mCHP  

 
Figure 5.17 Start-up transient regimes of Baxi SenerTech Dachs 5.5 kWe mCHP  

 
It can be seen in Figure 5.16 and Figure 5.17 that heat generation during the transient start-up 

regime is very poor. Although after reaching the steady state the maximum thermal output 

stabilises, in the start-up period some irregular behaviour can be observed. As far as a power 

generation is concerned, no delays in reaching the nominal capacity were noticed – the 

mCHP unit reached the rated capacity within the first minutes of operation. 

The above mentioned significant fluctuations and sub-zero values in the thermal output of the 

unit in the early period of operation were noticed in all start-up sequences. This was 
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attributed to the fact that the unit was used as an additional heat source for the existing   

central space heating system of the building. This central heating circuit is already live when 

the mCHP is turned on. When the mCHP first starts, the heating pump draws hot water into 

the engine from the operating central heating system. In the initial temperature of the water 

entering the engine is higher than that of water leaving the engine. This irregular transient 

behaviour is observed in the first 6-7 minutes of operation. Measure data for such the 

operation produced a range of the heat generation curves. It can be seen that there is a time 

difference in the start-up sections (along X-axis) of different tests. The start-up operation 

selected for further analysis was considered to be a representative start-up sequence in which 

the irregular transient processes were discarded. Additionally, this start-up operation was 

selected as representative one in such a way that parameters of other cycles deviated by ± 5 

% when compared to the representative curve. As the mCHP warms up, it starts to generate 

heat for the central heating system. Therefore data in the first 6 minutes of the mCHP‘s 

operation was discarded, see Figure 5.18.   

 

Figure 5.18 Proposed start-up transient regime of Baxi SenerTech Dach mCHP 

 

Figure 5.19 shows the run-down regime characteristics of the SenerTech Dach mCHP unit. 

After the ―heat demand off‖ signal, thermal and electrical generations reduced to zero within 

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

k
W

 

Time (minutes) 

Power Generated Heat Generated



  Chapter 5: Description of Experimental Work 

 

123 
 

a 1 minute period. Since it was not necessary to cool down the IC engine, no circulation of 

the water was carried out by the mCHPs water pump after the unit was turned off. This is 

different from the run down transient operation of the Stirling based unit.    

 

Figure 5.19 Run down regime characteristics of the SenerTech mCHP unit 

5.3.4 Steady state performance 

Information from a number of runs between the 15th of November and 6th of December 2013 

were recorded with a 1-minute sampling interval.  Figure 5.20 shows a typical cycle from the 

recorded runs database. 

 

Figure 5.20 Typical cycle of operation of Baxi SenerTech Dach mCHP 

In Figure 5.20 it can be seen that the run took place between 10.00 am and 13.50 pm. Due to 

the increased heating demand in the building switching off during the above interval did not 
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take place.  Once the steady state regime of operation was reached the generated energy level 

was stable and close to the rated value with very small fluctuation throughout the run time.  

Output values between 12 kWth and 15.1 kWth and 5 kWe and 5.3 kWe were recorded. 

5.3.5 Efficiency calculations 

Steady state and dynamic regime efficiency calculations were carried out using information 

obtained during the experimental runs.  For the steady state an operating interval of 1 hour 

was considered, whereas for calculation of dynamic regime partial efficiencies the whole run 

cycle was analysed. Figure 5.21 shows the thermal and electrical efficiency value 

estimations. 

 
 

Figure 5.21 Partial efficiency calculations during the dynamic and steady-state regimes of 

operation for the ICE mCHP unit 

 
It can be seen in Figure 5.21 that during the steady state operating conditions partial 

efficiencies were estimated at 67.2 % and 26.4 % for thermal and electrical outputs, 

respectively. When the transitional regimes were taken into consideration, the value of 

efficiencies decreased – 64 % and 25.9 % for the thermal and electric outputs, respectively.   
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5.3.6 Validation of theoretical simulation results 

The obtained experimental results were compared with that of theoretical simulations. The 

validation process was focused on the cycle-basis operation and particularly on the start-up 

phase. Figure 5.22 shows the experimental results compared with the model predictions.  

 

Figure 5.22 Experimental versus theoretical results in a complete operating cycle for the 

Baxi SenerTech Dach mCHP 

It can be noticed in Figure 5.22 that the power generation prediction by the model is in a 

good agreement with experimental results in terms of the maximum electric output. The 

simulated heat output of the unit was also found to be close to the experimental data. Small 

deviations were found in 3 particular regions, in which the heat output from the test-rig was 

higher for a short period of time. These results can be attributed to the rise in the temperature 

difference in the hydronic loop due to fluctuations in the water flow in the main heating 

circuit. The simulated operation of the unit was based on solution of the steady state energy 

equations therefore a constant output was predicted for both heat and power generation. 

 Figure 5.23 shows the obtained experimental and simulation results for the start-up transient 

regime during the first 18 minutes of the unit‘s operation.  
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Figure 5.23 Experimental results and model predictions during the start-up for the ICE 

mCHP unit 

It can be seen in Figure 5.23 that model predictions are displaying a marginally faster 

response with respect to the actual heat generated. This process occurs for approximately 8 

minutes before the unit reaches the steady state operation. The same trend was observed for 

the power generated however in a smaller scale. This inaccuracy in modelling produces an 

error of approximately 2.77 % and 1.2 % for a 3 hour and 6 hour runs, respectively. It can be 

concluded that these errors are within the acceptable limits.    

5.4 PA. Hilton 0.75 kWe PEM fuel cell 

5.4.1 Experimental Apparatus 

Experimental data were obtained using a 0.75 kWe hydrogen/air PA HILTON Ltd proton 

exchange membrane (PEM) fuel cell stack. The module consists of 18 Ballard cells 

connected in series each with an effective area of 50 cm2. The system had integrated auxiliary 

subsystems including a bank of resistors for simulating a change of load, a hydrogen supply 

system with an additional gas regulator, oxidant air circulation system, air cooling supply and 

an electronic control and safety system with a sensor which can interrupt the operation in the 

event of leakage detection. Dry hydrogen was supplied from a pressurised cylinder and the 
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oxidant air was circulated using an electrical fan. The heat produced by the stack was 

dissipated to the surroundings using air fans on the top of the unit. An integrated data 

acquisition system was used to monitor and record parameters of the operation. Figure 5.24 

and Figure 5.25 show the schematic diagram of the Hilton R510 PEM fuel cell and the 

experimental set-up, respectively.  
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Figure 5.25 Front View of the P.A. Hilton RE510 PEM fuel cell test rig 

1. Main panel 
2. Moulded case circuit breaker 
3. Residual current device (RCD) 
4. External power outlet 
5. 15 Amp thermal circuit breaker 
6. Hydrogen integrity indicator LED 
7. USB interface port 
8. Perspex window 

 

9. Mass flow meter 
10. Pressure regulating gauge 
11. Hydrogen control valve 
12. Anemometer 
13. Air inlet plenum chamber 
14. Fuel cell stack 
15. Vent valve 
16. Air exit plenum 
17. External load 
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Parameters such as flow rates, current, voltage, temperatures, etc. were recorded and software 

provided by the fuel cell module supplier was used for its experimental observation and real 

time control. 

5.4.2 Experimental methodology 

 
Similar to the previous experiments, the experimental procedure implemented for the fuel cell 

assembly included dynamic performance and steady state performance analysis with 

efficiency calculations in accordance with [60]. The electric load was simulated using the 

integrated resistors and data was logged every 5 s. All variables during the operation of the 

stack were recorded using the integrated sensors, including the hydrogen flow rate, stack 

current, voltage and temperature, air inlet and outlet temperatures, air flow rate, blower 

voltage etc.  In calculations, all flow rates were converted into mol/s. The hydrogen flow was 

measured in standard litres per minute (SLM), and then was converted to a molar flow rate: 

 ̇       ̇ ሺ   ሻ                                (5.6) 

 

where 0.0224 m3 is the volume occupied by 1 mol of any gas at STP and 1.667*10-5 is the 

conversion factor from SLM to m3/s 

The flow rate required for a given power output was determined as 
 
  ̇                (5.7) 

where   ncells is the number of cells, I  is the stack current, F is the Faraday constant. 

The air molar volume at the air inlet temperature was determined as                  (              )    (5.8) 

where T is the air inlet temperature and P is the air inlet pressure. 
 
Thus the air molar flow rate can be calculated as 
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  ̇                   (5.9) 

where vair is the air flow rate (gauge reading) and D is the diameter of the effective area of the 

anemometer orifice.  

The stoichiometric oxygen molar flow rate required for the reaction was derived from the 

hydrogen flow rate using the reaction equation.  

  ሺ ሻ       ሺ ሻ     ሺ   ሻ       (5.10) 

Here Δhf  is the change of enthalpy and positive indicates an exothermic reaction. 

The heat generated by the stack was calculated as 

    ̇          ሺ        ሻ    ̇                   [ሺ          ሻ  ሺ    ሻ      ] (5.11) 

where Cpair, CpO2 are the molar constant pressure heat capacity of air and oxygen, 

respectively; Tstack is the temperature of the fuel cell stack; Tout is the air stack outlet 

temperature and QLHv is the molar latent heat of water evaporation. 

Finally efficiencies were calculated as  

                 (5.12) 

                       (5.13) 

where Efuel is the energy content of the fuel  and Egen is the electricity generated. 
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5.4.3 Start-up Characteristics 

The start-up sequence was triggered by clicking the ―start‖ button on the control panel 

window of the software. A few seconds later a ‗low load‘ state was activated as the default 

value and a number of hydrogen purges occurred to remove any water accumulated within 

the electrolyte membrane and for providing sufficient hydrogen for initialising the chemical 

reaction. The oxidant/coolant fan was ramped up to supply enough air for heat management 

and for oxidation processes on the cathode side of the fuel cell. The start-up procedure was 

repeated several times for both cold start (when the fuel cell was switched off for more than 

24 hr) and warm start conditions (the fuel cell was switched off for less than 2hr).   

5.4.3.1 Cold start-up 

 
Figure 5.26 to Figure 5.29 show the transient processes during the start-up stage. When the 

fuel cell is started a voltage of 5.48 V is supplied to the air fan, see Figure 5.26.  When the 

integrated load is switched on the air fan voltage is increased to 12 V, for this to provide 

sufficient oxygen for maintaining the chemical reaction. The other air components (nitrogen, 

carbon dioxide, water vapour etc.) can temporarily block the reaction layer and decrease 

instantly the cell performance. This resulted in an introduction of a measurement of the 

‗noise‘ in the electricity generation curve.  No flow rates for the reactants were measured for 

the first 30 seconds.  Flow rates of reactants were increased after 35 seconds of operation (see 

Figure 5.27) and the power generation recording was started. The control algorithm selects 

‗low load‘ as a default value during the start-up sequence, therefore an open voltage circuit 

cannot be not attained. Within 50 seconds the fuel cell reached the steady state condition 

where the voltage was stabilised at 13 V and the stack current was 12.5 A, see Figure 5.28.  

The stack temperature reached 27 °C after 100 seconds of operation from its original ambient 

temperature of 22.3 °C, see Figure 5.29. 
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Figure 5.26 Blower Voltage variation during start-up 

 

Figure 5.27 Reactants flow rates during start-up 

 

Figure 5.28 Stack voltage and current variations during the start-up 
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Figure 5.29 Stack temperature variation during start-up 

5.4.3.2 Warm start-up 
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investigated in a number of tests where the fuel cell operation was started after a maximum 
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Figure 5.30 Power generation during warm and cold start-ups 
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negligible later on. It was assumed that this deviation was due to limited kinetics of the 

reaction and proton transport due to lower stack temperature as shown in Figure 5.26.  

 
 

Figure 5.31 Heat dissipation and stack temperature during warm and cold start-ups 
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regime results in the current drainage from the stack and hydrogen removal from the anode 

side. After cutting off the hydrogen supply, the system operates for several seconds using the 

hydrogen stored within the gas supply pipe work and in the stack itself. Once the measured 

voltage drops below 5 VDC the internal controller terminates the operation of the fuel cell. 

Such the control logic was introduced in order to prevent the operation in low membrane 

humidification conditions which can occur at low current densities and significantly affects 

the performance of the unit due to the increased membrane resistance. This also leads to 

limitation of the lifespan of the fuel cells [60, 92]. Figure 5.32 to Figure 5.34 show the 

transient variation of several key variables during shut-down period in the fuel cell.   

 

Figure 5.32 Stack Voltage and current during shut-down 

 
Figure 5.33 Blower voltage variation during shut-down 
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Figure 5.34 Stack power and hydrogen flow rate variation during shut-down 

 
It can be seen in Figure 5.32 to Figure 5.34 that, once the shut-down sequence was initialised 

via the control panel, within 30 seconds the hydrogen flow rate drops to zero and, 
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Figure 5.35 Stack voltage and current fluctuations during regular load variation 

Purging events were triggered when no more than 2300 ampere-seconds had been delivered 
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Figure 5.36 Blower voltage and Stack power fluctuations during regular load variation 
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lead to a significant increase of air flow in the fuel cell beyond the level needed to maintain a 

stoichiometric oxygen balance. 

 

Figure 5.37 Fluctuation in key temperatures during regular load variation 

In Figure 5.37 it can be seen that the stack temperature increases with the rise of the current 

(and hence power) and this is similar to results presented in [60, 94]. The stack voltage 

experiences undershoot conditions which are triggered by the change in the load. Figure 5.38 

shows features of this particular behaviour if the fuel cell.   

 
Figure 5.38 Detailed voltage overshoot stack behaviour 
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From Figure 5.38 it can be seen that during an undershoot transient process, the voltage 

exhibits two time delays before it reaches a new steady state. It has been suggested in [64] 

that the first time delay (i.e. the time from the moment when the voltage is in its minimum) 

usually of the order of 1s is due to gas convection and diffusion processes. An increase in the 

membrane resistance can be attributed to a moderate water content in the electrolyte resulting 

in delayed recovery of the voltage. In addition, a higher variation was noticed during the first 

40-50 sec of the transient behaviour. Sudden changes in load caused temporary dehydration 

due to electro-osmotic drag on the anode side and oxidation starvation on the cathode side of 

the fuel cell. In order for the voltage to recover, the diffusion process had to be activated to 

restore the membranes humidification level. However, neither overshoot nor undershoot 

current phenomena were observed during the operation of the unit. 

5.4.6 Irregular voltage variation 

Further test were carried out to investigate effects of irregular and sudden changes in the load. 

Irregular voltage variations were result of random change in the load of the fuel cell. Figure 

5.39 and Figure 5.40 shows fluctuations of key variables in response to such changes in the 

load. 

 

Figure 5.39 Stack voltage and current fluctuation during irregular load variation 
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An arbitrary load variation pattern was imposed in which the load was switched suddenly 

from low to high level in several steps and then back to low load as shown in Figure 5.39.The 

sharp change in both the stack voltage and current were results with the voltage undershoot 

phenomena visible as discussed above.  

In Figure 5.40 it can be seen that the stack temperature increases and decreases with the 

corresponding change in the load. Heat that was released by the exothermic reaction within 

the cells can be utilised to improve the performance of the stack according to [65] since it has 

been established that an increase in stack temperature can improve the gas diffusion and 

membrane conductivity. 

 

Figure 5.40 Fluctuations in key temperatures during irregular load variation 
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Figure 5.41 Stack voltage undershoot behaviour during a change of load 

 
Figure 5.41 shows that the voltage drops during the following load changes: low-to-medium, 

medium-to-high and low-to-high. The voltage drops were measured to be 0.3 V, 0.5 V and 

0.6 V respectively. Identical trends were observed also in Figure 5.42 in respect of overshoot 

behaviour following the change in the load. For the load changes from medium to low, high 

to medium and high to low the voltage overshoot was measured to be 0.3 V, 0.5 V and 0.6 V, 

respectively.  

 

Figure 5.42 Stack voltage overshoot behaviour during a change in load 

 

10

10.5

11

11.5

12

12.5

13

13.5

14

0 10 20 30 40 50 60 70 80 90 100 110 120

V
o

lt
a

g
e

 (
V

) 

Time (x 5s) 

low-medium

medium-high

low-high

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

0 10 20 30 40 50 60 70 80 90 100

V
o

lt
a

g
e

 (
V

) 

Time (x 5s) 

high-medium
medium-low
high-low



  Chapter 5: Description of Experimental Work 

 

142 
 

The stack recovery times were found to be identical during both overshoot and undershoot 

transient behaviour. Previous research in the transient behaviour of fuel cells that operated 

with humidified reactants indicated that the stack voltage recovered faster when the load was 

changed from a higher to a lower level. The latter was attributed to sufficient hydration level 

of the membrane and to improved mass transport processes. It can be suggested that, when 

dry reactants were utilised in a self-humidified membrane of the fuel cell stack, the water 

content of the membrane may not be sufficient, particularly on the anode side. Therefore, 

recovery of the voltage after the overshoot usually follows the case of an undershoot transient 

behaviour.  It is worth mentioning that the lack of the current transient phenomena supports 

this hypothesis since an excess of the water content in the membrane increases the possibility 

of the current overshoot [60]. In addition, the back diffusion from the cathode was probably 

insufficient for a membrane re-hydration even during the operation at the high load. Although 

membrane flooding cannot be excluded from the consideration, operation at the high 

stoichiometric ratio prevents water flooding. 

Figure 5.43 shows the gravimetric air/fuel ratio variation during the transient regime caused 

by step rise in the load.   

 

Figure 5.43 Gravimetric air/fuel ratio of the stack during transient operation 

 

0

50

100

150

200

250

300

12:43:12 13:12:00 13:40:48 14:09:36 14:38:24 15:07:12 15:36:00 16:04:48

G
ra

v
im

e
tr

ic
 a

ir
/

fu
e

l 
 r

a
ti

o
 

Time 

Stoichiometric Ratio (Excess air)gravimetric air/fuel  ratio 



  Chapter 5: Description of Experimental Work 

 

143 
 

Figure 5.43 shows that the stack operated with an average the gravimetric air/fuel ratio of 114 

during low load however high fluctuations around the average value can be seen as a result of 

the unstable hydrogen flow rate. With an increase in the load, stoichiometric ratio was 

calculated to be 76 and 65 for the medium and high loads, respectively. The operation of the 

fan in the fuel cell system provides the air flow required for the reaction on the cathode side 

and stack cooling. For the above reasons the air mass flow rate provided is several times 

higher than that for the stoichiometric reaction. The high  oxidant flow  rate   possible 

contributed to faster drying of the membrane [78]. Performance could be improved and stack 

voltage can recover faster if the reactants side of the stack are fully humidified.  

5.4.7 Variation of heat generated during the transient operation 

The heat generated during the operation of the stack was calculated using equation 1.6. The 

cooling requirements controlled the operation of the blower and, as it has been noted, can 

lead to high stoichiometric ratios. Figure 5.44 shows the variation of heat generated during 

the   operation when the load is increased in steps. 

 

Figure 5.44 Heat dissipation from the fuel cell during the load variation 
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At the low load the mean value of the heat rejected from the stack was 73 W, at medium load 

it was measured to be 203 W and at high load it was 434 W as shown in Figure 5.44. Peak 

values of 102 W, 230 W and 479 W were recorded at low, medium and high loads 

respectively.  

In addition, the heat generation followed the load variation with a slight delay which was due 

to the time the stack needed to reach new steady state conditions at elevated temperatures. 

During several tests with the high load small fluctuations in the heat generated were 

observed. Figure 5.45 shows such a particular behaviour of the stack. 

 
Figure 5.45 Heat variation during operation with high load 
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maintain the stack temperature constant for the rest of the operation. Figure 5.46 shows this 

sequence during fuel cell operation. 

 

Figure 5.46 Blower performance variation occurring at high load operation 

5.4.8 Stack Performance 

Data obtained for the steady state operation during a number of tests were used to produce the 

polarisation curve of the fuel cell stack, see Figure 5.47.    

 
Figure 5.47 Stack polarisation curve 
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voltage circuit couldn't be attained. In addition, the integrated bank of load resistors proved to 

be insufficient for measuring the performance of the cells close to the maximum capacity and 

data for the concentrated regions on the diagram was not possible to be to be recorded. As 

expected, a linear correlation between the stack voltage and current is obtained within the 

standard operating limits of the unit. Both the membrane‘s resistance to protons transfer and 

the electrical resistance in electrodes and collectors resulted in a voltage drop which can be 

expressed as  Vohm= i*Rohm [59]. 

5.4.9 Efficiency calculations 

Figure 5.48 shows the average partial efficiencies calculated using data from all tests. 

Calculations were based on a standard operation regime in which the load on the fuel cell was 

increased as a step function followed by similar load decrease. The unit was running for a 

minimum of 20 minutes at each load level. 

 

Figure 5.48 Partial efficiency calculations during low/medium and high load operations 
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differences can be attributed to a faster change of the temperature towards the new steady 

state. In respect to the electrical efficiency, the operation of the stack prior to the sudden 

decrease in the load  increases the stack temperature which was found to be beneficial for the 

reactants utilisation due to a higher proton conductivity and improved mass transport [62]. In 

addition the extended operation resulted in better hydration of the self-humidified membrane, 

due to the high rate of water production at particularly high current densities.  

When the load suddenly changed from high to medium level the average stack temperature 

was 16% higher than the one recorded when the load changed from the low to medium level. 

This difference improved the thermal efficiency by 5 % during operation when the load 

suddenly was increased. No change was observed in performance when the unit was 

operating at the high load conditions. Figure 5.49 shows the individual and overall partial 

efficiencies during the whole cycle of operation. 

 

Figure 5.49 Partial and co-generation average efficiencies 
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exceeded the maximum measurable level by the integrated mass flow rate meter during these 

events. The manufacturer of the fuel cell assembly has estimated that the purging of the 

assembly can be expected to result in overestimating the measured efficiency by 2-5 %. 

5.4.10 Validation 

Experimental results were compared to the outputs of the theoretical model described in 

Chapter 3. The validation process was carried out for a single run operation. During 

experimental tests it was observed that the mCHP operated for few minutes in the low load 

mode before it was switched to the full capacity, in order to achieve the adequate hydration 

level of the membrane and to avoid performance degradation. However, the mCHP model 

assumes that the heat should be generated at the maxim output from the beginning of 

operation. For this reason in the modelling of the mCHP based on a PEM fuel cell it was 

arranged that the fuel cell assembly would operate at the maximum capacity once the module 

was switched on. Figure 5.50 shows the experimental results compared with the model 

predictions. It should be stressed that the operation at the low load mode, corresponding to 

the membrane hydration, was discarded.  

 

Figure 5.50 Experimental versus theoretical results in the operation of PEMFC 
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It can be seen in Figure 5.50 that the power generation prediction is in a good agreement with 

experimental results in terms of the maximum electric output. Marginally faster response of 

the power output was observed in the theoretical output. Small fluctuations around the 

nominal capacities can be seen for both the experimental electrical and thermal outputs. 

There is no significant difference between experimental results and model prediction for the 

heat output during the steady state operation but there is a significant deviation between the 

above curves in the early stage of operation. The transient response of the heat dissipated 

which was observed in physical tests was not captured in the modelling. Simulations 

predicted a particularly fast transitional regime in which the fuel cell reaches the nominal 

heating level within the first minutes of the operation. This deviation was partially attributed 

to the difference in the types of heat exchangers used in the model. Air heat exchanger was 

integrated into the real fuel cell whereas in simulations the water heat exchanger was 

incorporated. Overall, the modelling of a mCHP based on PEM fuel cell is a very challenging 

task. Some of the reasons behind the deviations in results are: 

1. The fuel cell module and sub-models still have been under development which 

restricted modelling flexibility. 

2. In the model the fuel cell was considered as a power generation device. Therefore 

only the electricity-led operation mode was available.  

3. The integrated sub-model responsible for the auxiliary heater although was formally 

available in software was not actually functional.   

Therefore the fuel cell was further simulated as a grey box which operates constantly at the 

steady state condition without accounting for the start-up transient processes but with 

averaged values of efficiencies, obtained during experiments for the whole cycle of operation 

(i.e. including transient processes).   
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Chapter 6 Theoretical Analysis of mCHP 
deployment in UK Dwellings 

 

6.1 Introduction 

The numerical modelling results on determination of economical and environmental impacts 

from deployment of various mCHP technologies in the range of UK dwellings are presented 

and analysed in this Chapter. Initially, the energy requirements in several UK buildings have 

been modelled using EnergyPlus. Then operation of a number of mCHP technologies based 

on ICE, Stirling engine and PEM fuel cell with various configurations and operating 

strategies has been simulated in order to assess the environmental and economic benefits for 

each scenario. Finally, the most feasible technology and operating strategy have been 

identified depending on the type of dwelling.   

6.2 Methodology description 

The evaluation of the deployment of mCHP systems in domestic environment initially 

requires the specification  of property features such as the house type, construction details, 

occupancy pattern and electrical and space heating demand characteristics. Then 

experimental data obtained on certain mCHP technologies such the nominal capacity, partial 

efficiencies etc. is used to describe their operation inside dwelling in the theoretical models of 

EnergyPlus to reflect their realistic operational characteristics. In order to assess the 

performance of the Whispergen Stirling engine based mCHP in the dwellings two main 

different operating strategies were simulated: 

 The generation of space heating and DHW occurs simultaneously (simultaneous 

heat generation); 
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 The DHW heat generation was separated from the space heating and the mCHP 

was programmed to start prior to each space heat demand event to fully charge a 

DHW tank before being switched to space heating mode (split heat generation). 

The mCHP systems are used in domestic applications with the aim to replace conventional 

heating equipment such as condensing boilers. Therefore mCHP systems are commonly 

operate in the heat demand-led regime with the main purpose being a satisfaction of the 

household thermal requirements. In the heat demand-led regime of operation the mCHP 

firstly covers the thermal demand with a high partial efficiency (in the range of 60 %-70 %).  

Meeting the electrical demand is the secondary aim and this part takes place with a lower 

efficiency (10 %-20 %). The power generation therefore is considered to be a by-product. 

The operating regimes simulated in this section are considered to be realistic and feasible 

operating strategies in which the end-user decides whether the MCHP works to charge the 

domestic water tank simultaneously with the space heating or these processes can be 

separated in time if it offers greater benefits.  

The experimental operational characteristics of the mCHP unit for simultaneous and split heat 

generations were determined previously and described in Chapter (5). Additionally, a range 

of hot water storage tank volumes were simulated to determine their effect on the system's 

performance. For the operating scenario, which offered best results, deployment of three 

alternative mCHP systems were compared to the reference case (conventional heating system 

with condensing boiler). The performance of a Honda Ecowill ICE based system, a 

Whispergen Stirling engine based mCHP and a PEM fuel cell based mCHP were compared in 

terms of the energy use and economics. Having established the validity of the theoretical 

results in the previous chapter, the modelling procedure was expanded to include mCHP 

systems with electrical capacities in the range of 1-3 kWe for both Stirling and IC engine 

systems.  
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Table 6.1 Energy demand profiles applied throughout modelling process 

Types of the houses and 
construction regulations 

Electricity 
Consumption 

DHW 
Consumption 

Occupancy 
pattern 

Semi-detached house    
(2006 Building 
Regulations) 

4.6 MWhe/annum   200 L/day 

Working Adults 

Semi-detached house    
(1996 Building 
Regulations) 

Detached house             
(2006 Building 
Regulations) 

Detached house             
(1996 Building 
Regulations) 

4.6 MWhe/annum   
5.5 MWhe/annum 

200 L/day 250 
L/day 

Bungalow house           
(2006 Building 
Regulations) 

3.8 MWhe/annum 100 L/day Retired Adults 

The effect of the construction standards and occupancy patterns on the primary energy 

consumption in several types of houses was investigated. Table 6.1 shows the construction 

standards together with the occupancy, electrical and hot water usage patterns used in 

simulations. Models describing a continuous operation of mCHP systems were also 

developed. Such operation can be achieved if  mCHPs with small heat capacities are deployed 

in houses with larger heat requirements. In these cases additional (auxiliary) burners should 

be included into the modelling process.  

6.3 Domestic energy demand modelling 

6.3.1 Space heating demand and dwelling characteristics 

The first selected building is a semi-detached two-storey dwelling with the overall floor area 

of 117 m2, including a 16 m2 garage, constructed under the UK's 2006 Building Regulations. 

Figure 6.1 and Figure 6.2 show the design of the semi-detached house used in simulations 

and the main features of the construction methods applied [147]. 
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Figure 6.1 Design of the semidetached house 

The dwelling has an overall window area of 16.3 m2 which corresponds to 7 % of the gross 

external wall area, and a floor height is 2.5 m. It was modelled with five individual energy 

zones and was assumed to be located in the area of the Gatwick airport near London. All the 

simulations were performed using weather file in the IWEC format (which includes the 

ambient temperature, diffuse and direct solar radiations, etc.). The construction details can be 

found in [148]. 

 

Figure 6.2 Main features of the construction (based on 2006 UK Building Regulations) 
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6.3.2 Occupancy characteristics 

The energy consumption strongly depends on the occupancy pattern in the dwelling. Three 

working adults and a child of school age were assumed to occupy the house. There are two 

distinct occupancy patterns, namely during weekdays and weekends. The weekday‘s pattern 

is characterised by active occupancy for 2 hour period in the morning, followed by 9 hours of 

inactivity in the dwelling and 5 hours of active occupancy in the evening time. In the 

weekend day a long active occupancy lasting 13 consecutive hours is presumed. Table 6.2 

shows the two heating system running schedules which have been simulated in accordance 

with the above occupancy patterns.   

Table 6.2 Heating plant operation schedule for a typical winter day 

Type of day On (21 °C) Off On (21 °C) Off 

Weekday 

(Monday-Friday) 
7:00 9:00 18:00 23:00 

Weekend 

(Saturday, Sunday) 
9:00   22:00 

 

6.3.3 Electricity demand profiles 

Two different electricity consumption profiles were derived for both weekday and weekend 

occupancy patterns. Typical electricity demand profiles, produced by the detailed analysis of 

all possible electricity events with their power consumption rates and lengths, were applied in 

modelling.  Such the electricity demand profiles were calibrated against the average annual 

electricity demands in UK households and profiles previously developed in other research 

projects. 

 Figure 6.3 and Figure 6.4 show the distribution of the electricity consumption during 

weekdays and weekends, respectively, which then was used in the modelling process. 



  Chapter 6: Analysis of Theoretical Results 

 

155 
 

 
Figure 6.3 Typical electrical consumption distribution in weekdays 

 
Figure 6.4 Typical electrical consumption in weekends 

 
The electricity profiles were based on the average annual domestic electricity usage in the  

UK which is 4.6 MWhe [37] and also on previous research data regarding the operation 

schedule and the type of appliances [37]. It can be seen in Figure 6.3 and in Figure 6.4 that 

the level of the electricity consumption coincides with the active occupancy periods with a 

small baseload at the periods when occupants are away. The electricity consumption is 

prolonged during weekends, whereas in a typical weekday it is concentrated in two distinct 

active periods in the morning and evening times. 

6.3.4 Domestic hot water demand profiles 

The modelled DHW system comprises a 150 litres insulated water tank with heat losses of 

0.843 W/K [146].  The total daily consumption was estimated at 200 litres based on a 50 

litres per person per day in accordance with [37]. The DHW tank in the model was controlled 
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by a thermostat which was set at 70 °C. The heat demand is signalled when the temperature 

inside the tank drops by 6 °C. The very modern energy saving measures have not been 

considered for the modelled house as this has been found to affect the carbon saving potential 

of mCHP [130]. Figure 6.5 and Figure 6.6 shows the hot water consumption profile during 

the weekdays and weekends.   

 

Figure 6.5 Typical hot water consumption distribution in weekdays 

 
It can be seen in Figure 6.5 and in Figure 6.6 that the hot water demand follows the  

occupancy profile in the house with the higher demand coinciding  with the active occupancy 

period (as was found for the electricity consumption).  

 

 
Figure 6.6 Typical hot water consumption distribution in weekends 
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6.4 Modelling conventional domestic heating system 

A convective radiator space heating system had been set in the model to cover the thermal 

requirements within 3 active zones in the house, namely kitchen, ground and first floors. The 

heating system was regulated in the model by setting thermostats in each active zone, all 

maintaining the temperature of 21 °C. The sizing of the radiators, pipe – work and space 

heating water tank was performed by the software internal procedures. The conventional 

heating system to satisfy the heat demand in the house consisted of a condensing gas boiler 

and a 150 litres hot water tank. An efficiency value of 85 % was used for the modelling of the 

condensing boiler [122]. Additionally, the electricity consumption by the boiler was taken 

into account when estimating the annual electricity consumption in the house [122].  

Initially, theoretical simulations were carried out using EnergyPlus to validate the 

applicability of the software. For this purpose, a real heating system with a non-condensing 

boiler with 75 % efficiency was modelled and the obtained results were compared against 

utility bills of the dwelling modelled and there was a satisfactory agreement between 

theoretical and real data. Hence EnergyPlus model was considered to be valid and it was 

modified to incorporate a condensing boiler with a higher efficiency (namely, 85 %). The 

annual heat demand predicted by the refined model, incorporating  the condensing boiler, was 

15 MWhth which is close to that of the average domestic UK heat demand figures as provided 

in [130]. The condensing boiler supplied the thermal energy for both central heating and 

DHW during the colder period between November and April. During the summer period, 

namely between May and October only DHW heating was considered.  

The electric demand in the house in the reference case throughout the year was assumed to be 

satisfied by importing the electric energy from the national grid. Figure 6.7 and Figure 6.8 

show the obtained results on the operation of the boiler and the air temperature within a 
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heating zone corresponding to the ground floor for a winter weekday and winter weekend 

day, respectively. 

 

Figure 6.7 Boiler heat generation and zone air temperature during a winter weekday 

It can be seen in Figure 6.7 and in Figure 6.8 that the conventional heating system was 

designed with the capability to modulate the thermal output in order to follow the heating 

requirement. The operation of the heating equipment was found to be consistent with the 

active occupancy patterns. The peaks in the heat generation on both design days can be 

attributed to the instantaneous domestic hot water demand. Hot water usage decreases the 

temperature in the hot water tank and results in the increased heat generation by the boiler. 

Space heating provides the adequate comfort temperature of 21 °C in all thermal zones.   

 

 
 

Figure 6.8 Boiler heat generation and zone air temperature during a winter weekend day 
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During the summer period the boiler generated heat in order to cover only the domestic hot 

water requirements. Figure 6.9 shows the boiler operation during such the summer day. It can 

be seen that the boiler cycles between ―on‖ and ―off‖ states more often on a typical summer 

day.  

 

Figure 6.9 Boiler heat generation and zone air temperature in a summer weekday 

6.5 Operating strategies for Whispergen 1 kWe Stirling engine base mCHP 

6.5.1 Simultaneous heat generation mode 

In the simultaneous heat generation mode the Stirling engine mCHP generates 

simultaneously heat for both space heating and domestic hot water circuits attempting to 
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Section 5.1.7 and, since some inflexibility was found in the operation of the auxiliary burner 

during tests, the additional burner was excluded from the current modelling procedure. Input 

parameters, requested in the modelling process, such as power and overall efficiencies in the 

steady state and transitional regimes of operation, were used from results obtained 

experimentally, as it was described in Chapter (5). Results of modelling the reference 
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scenario indicate that the thermal capacity of the Stirling engine unit might be just sufficient   

to cover the both space heating and hot water requirements. Figure 6.10 and Figure 6.11 show 

theoretical results on the operation of the Whispergen unit in simultaneous heat generation 

mode.  

 

Figure 6.10 Heat and power generation by Stirling engine mCHP in a winter weekday 

simultaneous heat generation mode 

 
It can be seen in Figure 6.10 that there is a delay in reaching the target thermal comfort level, 

particularly during the evening operation due to a need to supply heat to both radiators and 

DHW tank. However, it was found that during mild days there is a cyclic operation of the 

mCHP suggesting that the heat demand requirements were fully covered.  Power is generated 

at the maximum capacity of 1 kWe during mCHP‘s operation.  There are small fluctuations in 

heat generation during the evening operation due to the interaction of space heating and 

DHW demand at this particular time period. It can be seen that during relatively short runs 

during winter week days the space heating requirement is not fully satisfied with the air 

temperature within zones being  below the set point by approximately 2 K. Figure 6.11 shows 

that there is a constant operation at the rated output throughout the active occupancy period 

0

5

10

15

20

0

1

2

3

4

5

6

7

0:00 4:48 9:36 14:24 19:12 0:00

T
e

m
p

e
ra

tu
re

 (
°C

) 

k
W

 

Time Whispergen Power Generated (kW) Whispergen Heat Generated (kW)

Ground floor air temperature



  Chapter 6: Analysis of Theoretical Results 

 

161 
 

during weekend design days in a winter period with a small variation in the heat generation in 

the early stage of operation. 

 

Figure 6.11 Heat and power generation by Stirling mCHP in a winter weekend day under in 

simultaneous heat generation mode 

The continuous operation is due to significant continuous heat demand associated with both 

central heating and DHW requirements. The early fluctuation can be attributed to the start-up 

characteristics of the Whispergen system and to the variation of the return temperature in the 

system's circuit.  

 

Figure 6.12 Heat and power generation by Stirling mCHP in a summer weekday 
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Figure 6.12 shows the operation of the Stirling mCHP unit in a summer week day. During the 

summer period the heating requirements are limited to only DHW requirements and therefore 

the mCHP operates with high cycling frequency. It can be seen that there are the ―switch-off‖ 

events (when mCHP is switched off) and these were due to a lack of modulation capability of 

the mCHP unit: as soon as temperature in the hot water tank reaches the level of the 

thermostat setting the switch off sequence is triggered.  

6.5.2 Split heat generation mode 

A split heat generation mode strategy intended the prolonged mCHP operation which 

according to [18] could improve the operating performance and financial advantages of the 

Stirling engine mCHP system. In the theoretical simulations water in a 150 L hot water tank 

was warmed-up twice a day prior to the mCHP‘s morning and evening runs for satisfying the 

space heating demand. In simulations the mCHP operated for 45 minutes in the morning and 

another 30 minutes in the afternoon prior to heat demand periods. These additional operating 

periods were selected in the model based on the experimental results.  

 

Figure 6.13 Heat and power generation by Stirling mCHP in a winter weekday in split heat 

generation mode with a 150 L hot water tank 
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Figure 6.13 shows the operation of the Stirling engine based mCHP in split heat generation 

mode in a week day during a winter period and the temperature fluctuation of the air in the 

ground floor. The thermal energy generated prior to the main heating demand was utilised for 

charging the water tank with bringing the temperature of water up to the level pre-set by 

tank‘s thermostat.  A shorter time is needed to charge the water tank during the evening 

operation due to the higher initial water tank temperature. Once the zone comfort temperature 

was achieved, the mCHP is switched off during the evening space heating operation period. 

Figure 6.14 shows the variation of the water temperature in the hot water tank as well as the 

hot water consumption (from the tank) profile.  

In Figure 6.14 it can be observed that the DHW charging  prior to  the space heating  

increases the water  temperature in the tank  to 70 °C, while hot water consumption events 

and thermal losses from the tank result in the tank water temperature drop during the  both 

active occupancy and vacant periods, respectively. The hot water temperature at the user‘s 

end   (sink tap, shower, etc.) is 45 °C. It is worth noticing that before the last demand event (a 

shower at 21:15 pm) the temperature inside the tank is 50 °C which suggests that the selected 

operating strategy is adequate for covering both central heating and DHW requirements. 

 

Figure 6.14 Hot water usage profile (150 L hot water tank) and temperature variation inside 

the tank in a winter weekday in split heat generation mode 
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6.5.3 Deployment of water tanks with increased capacity and of an auxiliary burner  

6.5.3.1 Deployment of water tanks with increased capacity    

Possibilities of deployment of hot water tanks with increased capacity and of an auxiliary 

burner together with the Whispergen unit were additionally investigated in the split heat 

generation mode of operation.  

300L Domestic hot water tank 

The increased volume of the DHW tank requires considerably more time to reach the 

thermostat setting, however a single charge might be sufficient for covering the daily DHW 

requirements. The 300 L DHW tank was incorporated into the model instead of the 150 L one 

and Figure 6.15 and Figure 6.16 show the operation of the system during a winter weekday. 

 

Figure 6.15 Heat and power generation by Stirling mCHP in winter weekday in split heat 

generation mode with a 300 L water tank 

 
It can be seen in Figure 6.15 that a longer mCHP operation is required for charging a new hot 

water tank prior to the morning space heating. However, overall no significant variation in 

total tank charging time was observed compared to the case with 150 L water tank scenario.  
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Figure 6.16 shows the temperature variation of water in the new tank and the DHW 

consumption   profiles during a winter weekday. 

 

 

Figure 6.16 Hot water consumption from 300 L water tank and variation of the tank 

temperature in a winter weekday 

It can be seen in this diagram that the water temperature is higher even after the last 

consumption event which means that additional DHW demand could therefore be met, if 

required. 

380L Domestic hot water tank 

An attempt was made in simulations to optimise the volume of the water tank so that the 

temperature of the water is maintained at the 45 °C level after the last consumption event. A 

number of tanks with different capacities were simulated. The obtained results predicted that 

for the above purpose the volume of the water tank should be further increased to 380 L. 

Figure 6.17 shows the operation of the Stirling engine mCHP unit with the 380 L water tank 

during a winter weekday.  
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Figure 6.17 Heat and power generation by Stirling mCHP in a winter weekday in split heat 

generation mode with a 380 L water tank 

Figure 6.17 shows that an operation for approximately 2 hours was required in order to reach 

requested water temperature (70 °C) within the 380 L water tank. Such a long operation 

enhances the power generation by the mCHP but with a significant drawback, namely it 

increases the fuel consumption. Figure 6.18 shows the temperature fluctuations inside the 

tank and the hot water consumption events. The temperature in the tank after the last hot 

water demand is still on the required level, as shown in Figure 6.18.  

 

Figure 6.18 Hot water consumption events (with the 380 L water tank) and the temperature 

variation in the tank in a winter weekday 

 
The Whispergen mCHP was able to satisfy the central heating demand slightly better than in 
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0

5

10

15

20

25

0

1

2

3

4

5

6

7

0:00 4:48 9:36 14:24 19:12 0:00

T
e

m
p

e
ra

tu
re

 (
°C

) 

k
W

 

Time 

Whispergen Power Generated (kW) Whispergen Heat Generated (kW)

Ground floor air temperature (C)

0

10

20

30

40

50

60

70

80

0
5

10
15
20
25
30
35
40
45

0:15 4:45 9:15 13:45 18:15 22:45

T
e

m
p

e
ra

tu
re

 [
°C

] 

Li
tr

e
s 

Time 

Dhw consumption (Litres) Water Tank  Final  Temperature [C]



  Chapter 6: Analysis of Theoretical Results 

 

167 
 

The air temperature within the active zones reached the pre-determined 21 °C level, however, 

during the long period of operation there is a higher cycling frequency can be observed.  

6.5.3.2 1 kWe Whispergen mCHP combined with and auxiliary burner for production DHW 

In larger houses the capacity of the Whispergen mCHP will not be sufficient to satisfy both 

space heating and DHW demands. Therefore within the current model a further configuration 

where the Stirling engine mCHP is backed-up with an auxiliary boiler was modelled. The 

system consisted of a gas-fired DHW tank heating burner of the 5 kWth rated output and 

constant efficiency of 75 %. This additional burner was used for DHW only and the mCHP 

was used only for the space heating demand.  

Calculations show that such the supplementary heating equipment operates in frequent cycles 

to meet the DHW thermal requirements. Figure 6.19 and Figure 6.20 show the operating 

characteristics of both the Whispergen and the auxiliary equipment for designed days. 

 

Figure 6.19 Heat and power generation by Stirling mCHP in a winter weekday with a DHW 

auxiliary burner 

The space heating requirements were covered by the mCHP unit and its operation was 

identical to the split heat generation mode, as it can be seen in Figure 6.19 and in Figure 6.20. 

Hot water demand was satisfied using a 150 L gas-fired water tank.   
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Figure 6.20 Heat and power generation by Stirling mCHP in a winter weekday with a DHW 

auxiliary burner   

Figure 6.21 shows the operation of the gas-fired water tank during a summer period. 

 

Figure 6.21 Operating of the 150 L gas-fired water tank in a summer week day 
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summer period. Hence, the annual power generation is significantly decreased.  
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6.5.4 Power generation  

Daily electricity demand profiles derived in Section 6.3.3 were incorporated into the model in 

order to analyse the flow of power between the dwelling and the local electricity grid. As 

mentioned above, the Whispergen unit was always was operated in the heat demand-led 

manner and, therefore, the power generation is a by-product. 

Figure 6.22 and Figure 6.23 show the dynamics in the electricity generation, on site 

consumption and export to the grid for both simultaneous and split heat generation modes in 

the configuration  with a plain (not gas-fired) 150 L DHW tank. A relatively high electricity 

generation level can be observed for this particular scenario. The thermal capacity of the unit 

is just enough to cover the total heating requirements and therefore the system is undersized. 

The continuous operation throughout the heating season and limited cycling frequency has 

resulted in the high level annual power generation. 

 

Figure 6.22 Power generation and flows in the dwelling in case of simultaneous heat 

generation mode in a winter weekday 

Figure 6.22 shows that in average 12.25 kWhe of electricity is consumed in a typical winter 

weekday with 7 hours of operation of the mCHP. Over that period, the mCHP satisfies 43 % 

of the daily electricity demand while the remaining amount is imported from the grid. The 
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electricity generation rate was found to be 0.27 kWhe at the nominal capacity operation, 

consequently if consumption is above this rate, electricity was imported. It can be seen that 

there is a peak at 0.49 kWhe for the purchased electricity. Despite the moderate electrical 

capacity of the mCHP, overall 2.2 kWhe of electricity was exported during the off-peak 

demand period, which resulted in an electricity generation-to-onsite consumption ratio of 

1.42. If the all power generated by the mCHP were utilised onsite, then the Whispergen unit 

would cover approximately 61 % of the electrical demand in the house.   

 

Figure 6.23 Power generation and flows in the dwelling in case of split heat generation mode 

in a winter weekday 

It can be seen in Figure 6.23 that during the split heat generation mode of operation, the run 

of the Whispergen is extended by 45 minutes in the early morning and by 30 minutes in the 

early evening (prior to space heating). Therefore the power generated was increased by 

approximately 1.33 kWhe. However, this excess of electricity was exported to the grid since 

the power production did not coincide with the electricity demand. The ratio of electricity 

production-to-onsite consumption is 1.48 and this is nearly the same as for simultaneous heat 

generation mode (1.42). 
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6.5.5 Annual financial benefits and carbon savings  

6.5.5.1 Carbon emission reduction 

 
An annual operation of the mCHP was modelled for various scenarios with estimation of 

environmental performance based on the calculated natural gas consumption and imported 

and exported amount of electricity. Emissions factors of 0.43 kg CO2/kWhe and 0.19 kg 

CO2/kWhth were used in calculations [123]. Table 6.3 summarise the environmental impact 

of deployment of the Whispergen mCHP in the analysed 3-bed semi-detached house. 

 

Table 6.3 Annual carbon emissions 

Heating System Configurations 

Natural gas 

consumption 

related Carbon 

emissions (Kg) 

Electricity 

consumption 

related Carbon 

emissions (kg) 

Overall 

Annual 

Carbon 

emissions 

(Kg) 

CO2 

Emission 

Savings in 

kg 

CO2 

Emissions 

Savings in 

% 

Condensing Boiler & 150 L WT 2888.29 2038.58 4926.87 / / 
mCHP split generation  & 300 L WT 3747.01 1501.91 5248.92 -322.05 -6.54 

mCHP simultaneous generation &150 L WT 4389.54 1322.14 5711.68 -784.81 -15.93 
mCHP & gas-fired 150 L WT   3595.30 1559.75 5155.05 -228.17 -4.63 

mCHP split generation  & 150 L WT 3387.38 1507.77 4895.15 31.72 0.64 
mCHP split generation  & 380 L WT 3920.48 1493.65 5414.13 -165.21 -3.35 

 

It can be seen in Table 6.3 that, in the reference scenario (using conventional condensing 

boiler) due to the electricity consumption during the operation of the boiler, there is the 

highest carbon emissions of 2038.6 kg. A very small reduction in the overall carbon 

emissions (0.64 %) was found for the case of the split heat generation strategy in the system 

with the mCHP and 150 L DHW tank.  

For all other simulated cases the rise in the carbon emissions was predicted with the largest 

being almost 16 % for the simultaneous heat generation strategy in the system with the 

mCHP and 150 L DHW tank. In such the strategy the mCHP covers a bigger fraction of the 
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onsite electricity consumption resulting in the lower electricity related CO2 emissions. 

However, overall annual carbon emissions are the highest due to the elevated gas 

consumption as a result of the continuous operation. When using larger hot water tanks the 

rise of carbon emissions is attributed to the higher water tank thermal losses and also to the 

prolonged daily operation [109]. 

6.5.5.2 Financial benefits 

Implementation in the UK the feed-in-tariff rate of 10.5 p per kWhe  [149]  has made 

domestic micro-power generation economically viable technology regardless of whether the 

electricity is exported to the grid or used on-site. The extended operation period of the mCHP 

increases the annual power generation and consequently raises the financial benefits, though 

the elevated gas consumption affects the overall economic performance. In calculation of 

financial benefits the electricity and gas tariff prices were used in accordance with [150]. It 

should be noted that the economic savings discussed throughout this work refer to the utility 

bill reductions only. These estimates were carried out without taking into account the higher 

capital cost of mCHPs and potentially higher maintenance costs. Table 6.4 summarises the 

annual results in terms of utility bills reductions compared to the reference system (the 

condensing boiler and 150 L DHW tank). 

Table 6.4 Annual financial benefits 

Heating System Configurations 

Gas 

Consumption  

(₤) 

Electricity 

Consumption (₤) 

Feed-in Tariff 

(₤) 

Net Annual 

Expenses (₤) 
Savings (%) 

Condensing Boiler & 150 L WT 616.24 617.16 / 1233.40 
 

mCHP split generation  & 300 L WT 771.83 487.03 219.52 1258.86 15.73 
mCHP simultaneous generation &150 L WT 888.25 443.44 261.38 1331.68 13.22 

mCHP & gas-fired 150 L WT   744.34 501.05 147.31 1245.39 10.97 
mCHP split generation  & 150 L WT 706.67 488.45 198.35 1195.12 19.19 
mCHP split generation  & 380 L WT 803.26 485.03 229.90 1288.28 14.19 
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It can be seen in Table 6.4 that the deployment of the all systems with the Whispergen unit, 

as a replacement for the conventional condensing boiler, could provide savings from 10.97 % 

(the simultaneous heat generation mode with 150 L DHW tank) to 19.19 % (the simultaneous 

heat generation mode with 150 L DHW tank). In all cases gas bills are increased but overall 

saving are achieved due to implementation of the feed-in tariff.  It should be highlighted that 

all above calculations were carried out using electricity and gas prices provided in [44]. The 

additional electricity consumption rate in the condensing boiler was taken in accordance with 

[38] and this adds approximately 3 % (154 kWhe) to the electrical demand in the house. 

Calculation of annual financial benefits for the scenario of the reduced feed-in tariff 

Finally, hypothetical scenarios were investigated in which the feed-in-tariff is reduced to 75 

%, 50 %, 25 % and 0 % of the current level. Table 6.5 shows the obtained results for the 

above reductions in the feed-in tariff.   

Table 6.5 Effect of reduction in feed in tariff 

Heating System 

Configurations  

Annual 

Savings 

₤                          

(75 % of 

feed-in 

tariff) 

Annual 

Savings 

%         

(75 % of 

feed-in 

tariff) 

Annual 

Savings 

₤                          

(50 % of 

feed-in 

tariff) 

Annual 

Savings 

%         

(50 % of 

feed-in 

tariff) 

Annual 

Savings 

₤                          

(25 % of 

feed-in 

tariff) 

Annual 

Savings 

%         

(25 % of 

feed-in 

tariff) 

Annual 

Savings 

₤                          

(Without 

feed-in 

tariff) 

Annual 

Savings 

%         

(Without 

feed-in 

tariff) 

Condensing Boiler &150 L 

WT 
/ / / / / / / / 

mCHP split generation  & 

300 L WT 
183.26 14.35 128.37 10.05 73.49 5.75 -25.46 -1.99 

mCHP simultaneous 

generation & 150 L WT 
141.82 11.10 76.48 5.99 11.13 0.87 -98.28 -7.69 

mCHP & gas-fired 150 L 

WT   
142.56 11.16 105.73 8.28 68.90 5.39 -11.99 -0.94 

mCHP split generation  & 

150 L WT 
231.12 18.09 181.53 14.21 131.94 10.33 38.28 3.00 

mCHP split generation  & 

380 L WT 
161.61 12.65 -24.24 -1.90 -26.83 -2.10 -29.43 -2.30 
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Reductions in the current feed-in-tariff (this scheme presumes that austerity measures could 

be applied in case of economic recession) result in a decrease in the annual expenditure 

savings. For the case when  75 % of the current feed-in tariff is implemented only the system 

with the mCHP operating in the split heat generation mode and with 380L DHW tank start to 

generate financial losses. Only the system with the mCHP operating in the split heat 

generation mode and with 150 L DHW tank will still provide small savings when the feed-in 

tariff is withdrawn but pay-back period would become unfeasible for end-users.  

6.5.6 Conclusions 

The deployment of the Whispergen MkVb 1 kWe Stirling engine mCHP in a typical 3-bed 2 

storey semi-detached house was investigated in different configurations of the heating system 

and modes of operation. Two main operating modes were modelled, namely the simultaneous 

space heating and DHW generation and split space heating and DHW heat generation. The 

annual performance of the mCHP system was evaluated and compared to the reference 

scenario (the conventional condensing boiler-based heating system).  It was found that the 

rated output of the Whispergen unit was barely enough to fully satisfy space heating and 

DHW demands during the winter season (December-February) with delays in reaching the 

pre-set temperature of 21 °C in leaving zones. However, the unit demonstrated high cycling 

frequency during operation in winter weekends and in the spring-autumn periods.  

 During simultaneous heat generation regime the system with the mCHP and 150 L DHW 

tank operating in the mode of the simultaneous heat generation provides economic 

savings of ₤261 at the current level of the UK feed-in-tariff but increases  the carbon 

emissions by about 16 %; 

 During split heat generation mode the system with the mCHP and 150 L DHW tank 

operates for longer periods thus generating more electricity but also consuming more fuel 

at lower efficiency. The economic savings were predicted to be ₤244 when the current 
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feed-in tariff is applied with very small carbon savings (0.64 %). This configuration of 

the system and mode of operation is found to be the most feasible of all system 

configurations analysed.  

 If the feed-in tariff is withdrawn in future then using the Wispergen mCHP system will 

become fiscally unattractive.   

6.6 Comparison of deployment of various mCHP technologies in a typical 

3-bed semi-detached house 

The Stirling engine mCHP features relatively high thermal efficiency and therefore is 

considered to be an attractive alternative for replacing a conventional boiler in domestic 

heating systems. mCHP technologies based on ICE and PEM fuel cell have considerably 

higher electrical efficiencies (up to 50 % for the fuel cell) and shorter transients processes 

which will affect performance of the heating systems and annual financial savings and carbon 

emissions of the house. Deployment of the  commercially-available ICE based mCHP from 

Honda (Ecowill) [118] with the electrical output, identical to that of the Whispergen unit, but 

lower thermal output (2.8 kWth) with very short transient processes is consider in this section. 

However, the low thermal output of this ICE mCHP requires an additional boiler to operate in 

parallel in order to satisfy dwellings heating requirements.  

Furthermore, the deployment of the 1 kWe PEM fuel cell based mCHP is also simulated. A 

substantial advantage of the fuel cell is zero carbon emissions when it is fuelled with pure 

hydrogen. It can be also operated using natural gas but in this case the gas-to-hydrogen 

reformer should be included into the system. Since the PEM fuel cell mCHP has very high 

electrical efficiency and low thermal output then an additional burner is also necessary to be 

included to satisfy heating demands in the house. Table 6.6 shows the technical specifications 

of these two mCHP unit systems, compared to those of the Whispergen mCHP.  
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Table 6.6 Specifications of mCHP systems 

mCHP 
Electrical output 

(kWe) 
Thermal output 

(kWth) ηe ηth 

Honda Ecowill 1 2.8 22.5 63 
Whispergen 1 6 12 67 

Hilton PEM FC 1 0.8 43 37 

6.6.1 Deployment of the Honda Ecowill mCHP with the auxiliary boiler 

Previous simulation results for the heating system with the Whispergen mCHP predicted that 

better performance would be obtained in the split heat generation mode. Prolonged operation 

increases the energy savings due to the higher level power generation. Analysis of the 

deployment of the Honda Ecowill mCHP was also conducted for the split heat generation 

mode since the thermal output of the ICE mCHP is not sufficient for operation in the 

simultaneous heat generation mode. The ICE mCHP by Honda has approximately twice the 

electrical efficiency of the Stirling engine mCHP, but significantly lower rated thermal 

output. A 10 kWth auxiliary boiler (the efficiency of which is assumed to be 85 %) was used 

in simulations to cover the heating requirements. Figure 6.24 illustrate the schematic 

configuration of the domestic heating system with the ICE mCHP and auxiliary burner used 

for simulations. 

 
 
Figure 6.24 Schematic of the domestic heating system with the Honda mCHP and auxiliary 

boiler 

 

One hour prior to both morning and evening space heating periods, the mCHP unit was run 

without the additional back-up boiler to generate heat for charging the hot water tank only. 

Zone 3 Radiator

Back-Up Boiler
Zone 2 Radiator

Zone 1 Radiator

Hot Water Tank
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For covering space heating demand, the back-up boiler was used in parallel with the mCHP. 

Results show that during relatively warm days (i.e. in September) the heating output from the 

Honda Ecowill was found to be maintain the zone temperature on the pre-set level. Figure 

6.25 shows the operation of the ICE mCHP during a winter weekday. 

 

Figure 6.25 Operation of Honda Ecowill mCHP with auxiliary boiler on a winter weekday 

Figure 6.25 show that the operation of the ICE mCHP unit dynamically follows the active 

occupancy pattern throughout the day. Small fluctuations in both thermal and electrical 

outputs were obtained in simulations. When heat is required for hot water tank charging only, 

the operation of the mCHP at a steady level to meet the demand was observed. When space 

heating was required, the auxiliary boiler generated additional heat in the range of 5-5.5 kWth. 

Such the particular operation resulted in a faster warm-up of the circulating water. Once the 

space heating set point was approached, a sharp drop in the boiler heat production occurred. 

Fluctuations in the thermal output of the boiler can be seen during its evening operation. Such 

unstable operation lasted for approximately 1 hour. Further investigations into the flow and 

return temperatures of both space and DHW heating systems explained this variation. The 

ICE mCHP unit was operating at its maximum electrical and thermal capacity and when the 

return temperature of the water dropped (due to the decrease in the air temperature inside the 
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heating zones during a rapid increase in ventilation, etc.), the thermal output of the boiler was 

increased. Figure 6.26 shows the water temperature fluctuations in the space heating circuit 

and it can be seen that peaks in the flow temperature of the boiler and boiler thermal output 

occur simultaneously. 

 
Figure 6.26 Fluctuation in the water loop temperature during the Honda Ecowill mCHP 

operation 

However, the water flow temperature in the mCHP system remained constant during its 

operation and therefore fluctuations in the shared return water temperature mainly affected 

the boiler‘s heating output. Combining different heat supply equipment such as a boiler and   

mCHP or even different mCHP technologies may cause a prolonged transient start-up time 

period. Internal start-up diagnostic tools, individual capabilities of reaching the designed flow 

temperature, responses to changing in the thermal demand, could lead to a sharp decrease in 

the shared water return temperature and cause fluctuations in the thermal outputs. The precise 

pattern of output variations in a practical installation would depend on the plumbing and plant 

control. This was demonstrated in experimental results obtained on the Baxi SenerTec Dachs 

unit (presented in Section (5.3)). 
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6.6.2 Hilton PEM Fuel Cell and auxiliary burner 

The use of pure hydrogen in PEM fuel cell mCHPs is not currently a feasible option therefore 

they should be equipped with a natural gas reformer. If a gas reformer is used there will be a 

significant drop in the overall system efficiency due to losses in the reforming process. In 

simulations hydrogen was used as fuel for the fuel cell and the annual performance results 

were summarised in terms of hydrogen and natural gas consumption. The conversion factor 

used in annual performance calculations was taken from experimental data obtained in a 

PEM FC coupled with a reformer as described in the following Sub-Section (selection of 

efficiency). The PEM fuel cell used in simulations is considered to have partial thermal and 

electrical efficiencies equal to 31 % and 43 %, respectively, and a heat-to-power ratio close to 

1. The PEM fuel cell with a 1 kWth thermal output was combined with the auxiliary boiler 

identical to that used for the ICE mCHP simulations. Figure 6.27 shows the operation of the 

PEM fuel cell mCHP with the auxiliary burner in a winter weekday for space heating. 

 

Figure 6.27 Operation of PEM FC mCHP with additional boiler for space heating in a winter 

weekday 

Small fluctuations in heat produced by the boiler can be observed in Figure 6.27 because the 

heat generated by the FC mCHP does not cause sharp changes in the flow and return water 

temperatures. Simulations of the operation of the FC mCHP charging  only the 150 L hot 
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water tank also was carried out, indicating a continuous operation of the FC throughout the 

day in order to maintain the pre-set temperature in the domestic hot water. For this reason the 

split heat generation mode (which was used for previously considered mCHPs) could not be 

implemented and thus was excluded from the fuel cell mCHP simulations. The fuel cell based 

mCHP in conjunction with the auxiliary boiler was used only for space heating instead. The 

domestic hot water demand was covered by a gas-fi red water tank as described in Section 

(6.5.3.2) 

Reforming process: Selection of efficiency 

When PEM FC mCHPs are deployed domestic heating systems they normally should be 

coupled to a natural gas reformer. Several reforming processes in which natural gas is 

converted into hydrogen are available. The steam gas reforming process, auto thermal and 

membrane reforming processes are considered to have good market potential. The steam gas 

reforming process is commonly used in the PEM fuel cells for domestic applications.  The 

low temperature FCs that are used in mCHP systems have  a low tolerance for a CO content 

and only the steam reforming process can provide reach in hydrogen syngas.  

A number of research projects have been performed on the reforming process evaluations. 

Experimental results obtained indicate that in steady-state conditions the efficiency of 

reforming processes are between 70 and 83 % [102-104, 107]. However, a long time is 

required in order for a reformer to reach the operating temperature of more than 600 °C. 

During the start-up transient process which lasts for about 90-100 minutes there is no 

hydrogen production [101, 103, 105]. When the whole cycle is taken into consideration, the 

efficiency of the process is reduced to 55 % [101]. The heat released during the start-up time 

from the combustion of the natural gas could be used for space heating. The heat that could 

be recovered during the reforming process can increase the co-generating efficiency by 14.8-
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15.5 %, depending on the operating capacity of the reformer (20 %-100 %) [100]. Assuming 

that all the heat from the reforming process could be recovered and using the dynamic 

efficiency of 55 % [101], the overall efficiency of the reforming process can be taken as 70 

%. This reforming efficiency value   can be then used to convert the hydrogen consumption 

into natural gas consumption. 

6.6.3 Annual financial benefits and carbon savings  

6.6.3.1 Carbon emission reduction 

 
Table 6.7 presents obtained results on the environmental performance of the mCHP units 

based on different technologies including the fuel cell mCHP. The obtained annual hydrogen 

consumption was converted into the natural gas consumption using the conversion factor of 

0.70, as it was discussed above.  

Table 6.7 Carbon emissions reduction for different mCHPs   

mCHP system configurations 

Natural gas 

Related Carbon 

emissions (kg) 

Electricity 

Related Carbon 

emissions (kg) 

Annual Carbon 

emissions (Kg) 

Emission 

Savings (%) 

Boiler & 150 L DHW tank  2888.29 2038.58 4926.87 / 

1 kWe Whispergen  &  150 L DHW 
tank 3387.38 1507.77 4895.15 0.64 

1 kWe Honda Ecowill   with Back-
up Boiler & 150 L DHW tank 2949.06 1335.15 4284.21 13.04 
1 kWe Hilton PEM FC   with  

Back-up Boiler & 150 L DHW 
tank 3453.56 1443.51 4897.07 0.60 

 

It can be seen that from the range of mCHP technologies, only the 1 kWe Honda Ecowill   

unit with a back-up boiler and 150 L DHW tank in the domestic heating system provides 

noticeable carbon savings (about 13 %) with other two technologies making a negligible 

positive impact on the environment.    
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6.6.3.2 Financial benefits 

 
Table 6.8 shows results obtained the annual financial benefits calculated for different mCHP 

technologies deployed in a typical 3-bed 2 storey semi-detached house. The current UK feed-

in tariff rate was used in estimations. The natural gas and electricity prices are the same as 

used in Section 6.5.5.   

Table 6.8 Annual utility cost savings using different mCHPs 

mCHP system configurations 
Gas 

Consumption 
(₤) 

Electricity 
Consumption (₤) 

Feed-in tariff (₤) 

Annual Expenses 
with 

feed-in tariff 
included (₤) 

Savings 
(%) 

Boiler & 150 L DHW tank  616.24 617.16 / 1233.40 / 
1 kWe Whispergen  &  150 L 

DHW tank 
706.67 488.45 198.35 1195.12 19.19 

1 kWe Honda Ecowill   with 
Back-up Boiler & 150L DHW 

tank 
627.25 446.59 267.80 1073.85 34.65 

1 kWe Hilton PEM FC   with  
Back-up Boiler & 150 L DHW 

tank 
718.66 472.87 217.20 1191.53 21.00 

It can be seen in Table 6.8 that the highest amount of power generation is achieved using the 

Honda mCHP resulting in 34.65 % savings in gas and electricity bills compared to about 20 

% savings achieved by the PEM FC and Whispergen mCHPs. Lower saving are due to the 

longer start-up in the SE mCHP and the low conversion efficiency of the reforming process 

in the FC mCHP.   

6.7 Modelling of deployment of IC and Stirling engine mCHP technologies 

in dwellings with increased heat and electricity demands 

The advantages of replacing a conventional heating system with three mCHP technologies    

have been previously established in this work for a typical 3-bed 2-storey semi-detached 

house in the UK. There is a broad diversity of dwellings in the UK in terms of satisfying 

Building regulations and electricity and heat demands. In this section an attempt has been 

made to consider deployment of various IC and Stirling engine mCHP technologies in such 

different types of dwellings and evaluate economical and environmental impacts. A number 
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of cases in which the electricity demand is increased by 20 % and the hot water demand is 

increased by 50 L per day (i.e. incorporating a 200 L water tank) were analysed. The 

scenarios aimed to simulate a higher energy requirement in the buildings. Energy demand 

profiles were applied to two different dwellings, namely a detached house satisfying 2006 

construction regulations and a semi-detached house satisfying 1996 construction regulations. 

mCHP systems deployed in models are based either on Stirling or IC engines and featuring  a 

nominal electrical capacity in the range of 2-3 kWe. Table 6.9 shows the details of scenarios 

investigated in this section.   

Table 6.9 Matrix of scenarios of  mCHP deployment 

Electricity Demand Annual Electricity demand of  4.6 MWhe 
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Heat Demand 
Detached house, 2006 building  

regulations 
Semi-detached house,  1996 building 

regulations 

Heating system 
configuration 

Boiler Boiler 

2 kWe Stirling  mCHP 2 kWe Stirling mCHP 

3 kWe ICE  mCHP 3 kWe ICE  mCHP 

3 kWe Disenco Stirling mCHP 3 kWe Disenco Stirling mCHP 

 

Electricity Demand 20 % increase in Electricity demand 

Heat Demand 
Detached house, 2006 building  

regulations 
Semi-detached house, 1996 building 

regulations 

Heating system 
configuration 

2 kWe Stirling  mCHP 2 kWe Stirling  mCHP 

3 kWe ICE  mCHP 3 kWe ICE  mCHP 

3 kWe Disenco Stirling mCHP 3 kWe Disenco Stirling mCHP 

    

Electricity Demand Annual Electricity demand of  4.6 MWh 
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Heat Demand 
Detached house, 2006 building  

regulations 
Semi-detached house,  1996 building 

regulations 

Hot Water Demand 25 % increased Hot water profile 25 % Increased  Hot water profile 

Configuration 

2 kWe Stirling  mCHP 2 kWe Stirling  mCHP 

3 kWe ICE  mCHP 3 kWe ICE  mCHP 

3 kWe Disenco Stirling mCHP 3 kWe Disenco Stirling mCHP 
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6.7.1 Proposed Cogeneration units 

There are two commercially IC engine based mCHPs, namely 1kWe Honda Ecowill and 5.5 

kWe SenerTech Dachs. Two additional IC engine based mCHP were considered in the 

modelling process, namely with 2 and 3 kWe outputs, respectively (Proposed 1 and Proposed 

2 mCHPs in Table 6.10 with 5.3 kWth and 7.5 kWth thermal outputs). These proposed 

mCHPs, as 1 kWe Honda Ecowill, were assumed to have the same dynamic characteristics as 

experimentally tested 5.5 kWe SenerTech Dachs.   

There are two commercially available Stirling mCHPs, namely 1 kWe Whispergen and 3 kWe 

Disenco, see Table 6.10. An additional Stirling engine based mCHP was considered in 

simulations, namely with 2 kWe output (Proposed 3 mCHP in Table 6.10 with 10 kWth 

thermal output). Proposed 3 and Disenco mCHPs were assumed the same dynamic 

characteristics as the tested 1kWe Whispergen unit).   

Table 6.10 Specifications of available and proposed mCHP systems based on Stirling and IC  
engines 

ICE mCHP 
Electrical 

output (kW) 
Thermal 

output (kW) 
Electrical 
Efficiency 

Thermal 
Efficiency 

Heat/Power 

Honda Ecowill 1 2.8 22.5 63 2.8 

SenerTechDachs 5.5 12.3 27 66 2.3 

Proposed 1 2 5.3 23.7 63 2.68 

Proposed 2 3 7.5 24.5 64.7 2.57 

      

Stirling mCHP 
Electrical 

output (kW) 
Thermal 

output (kW) 
Electrical 
Efficiency 

Thermal 
Efficiency 

Heat/Power 

Whispergen 1 6 12 67 6 

Disenco 3 12 18.4 73.6 4 

Proposed 3 2 10 15.2 70.3 5 

 
The specifications of the market available units are shown in grey shaded cells in Table 6.10 

and the proposed mCHP capacities were determined using linearly interpolated capacities of 

the commercially-available equipment. 
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6.7.2 Simulations of the detached house with the annual electricity demand of 4.6 
MWhe and satisfying 2006 UK construction regulations 

A detached two-storey house with 160 m2 of total floor area and 6.1% glazing of the gross 

external wall area was used in simulations. Figure 6.28 shows the design of the building. It 

was modelled with five individual energy zones and insulation levels in accordance with the 

UK building regulation of 2006 [147]. The design was based on the  actual house for witch 

details can be found in [151]. The simulation results throughout a year of the house with the 

conventional heating system produced data on annual gas and electricity costs which were 

compared with the owners' utilities bills and results were found to be in good agreement. The 

alternative heating systems incorporating 2 kWe Stirling engine mCHP, 3 kWe ICE mCHP 

and 3 kWe Stirling mCHP (Disenco) theoretically modelled.  

 

 

Figure 6.28 Detached house satisfying 2006 UK construction regulation used for theoretical 

modelling 

 
Figure 6.29 shows results on the operation of the conventional heating system in the detached 

house. Simulations of a conventional heating system were conducted on both a daily and 

annual basis. In the average winter design day, 9 kWth of thermal output is required to satisfy 

the space heating demand. However, in colder winter days peaks between 13-14 kWth in the 
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thermal output of the boiler were necessary to maintain 21 °C air temperature in living 

spaces. These results are found to be in good agreement with the data presented in [151]. 

 

Figure 6.29 Boiler heat generation and ground floor air temperature in the detached building 

satisfying 2006 construction regulations 

6.7.3 Modelling of operation of mCHP units in the detached house with the annual 

electricity demand of 4.6 MWhe and satisfying 2006 UK construction regulations 

Using the details in the Table 6.10, the operation of cogeneration systems was modelled. 

Figures 6.30-6.32 show results of simulations during the heating season for all mCHP 

alternatives in Table 6.10. All simulations were conducted for operation in the split heat 

generation pattern mode in a winter week day.   

For the sake of simplicity and due to the fact that both buildings have the similar space 

heating requirement, the operation of the cogeneration units in  the detached house satisfying 

the 2006 building regulations are presented. The operation of the mCHP systems in the semi-

detached house satisfying the 1996 building regulations was found to be very close (the 

obtained results are presented in the Appendix (B)). 
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Figure 6.30 Operation of the 3 kWe IC engine mCHP in a winter weekday in split heat 

generation mode with a 150 L water tank and water consumption of 200 L per day 

 
It can be seen in Figure 6.30 that there is a continuous operation at nominal electrical and 

thermal capacities of 3 kWe and 7.8 kWth, respectively, in the winter design weekday.  

 

Figure 6.31 Operation of the 2 kWe Stirling engine mCHP in a winter weekday in split heat 

generation mode with a 150 L water tank and water consumption of 200 L per day 

 
It was also noted in Figure 6.31 that there is no switch-off events (excluding the switch off 

after tank was charged) and this suggests that the space heating requirements are not 
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completely covered because the thermal comfort within zones was not quite reached, 

especially during the evening period.  

 
 

Figure 6.32 Operation of the 3 kWe Disenco Stirling engine mCHP in a winter weekday in 

the  split heat generation mode in the  detached house with a 150 L water tank and water 

consumption of 200 L per day 

In Figure 6.31 and in Figure 6.32 it can be observed that both Stirling engine based mCHP 

systems feature the higher heat-to-power ratio. Approximately 10 kWth heat is generated by 

the 2 kWe Stirling mCHP, whereas the Disenco mCHP generates a 12 kWth heat output. Both 

units operate consistently following the occupancy period and there are no fluctuations in 

heat and power generation. One switching-off event can be seen at the end of evening space 

heating operation in Figure 6.32, suggesting that Disenco mCHP has a capacity to easily 

satisfy the heating requirement in the house.  

From results presented in Figure 6.30 to Figure 6.32 it is evident that all mCHP systems 

considered operate at the maximum capacity and switch-off events are avoided with the  

thermal demand fully covered in case of Stirling mCHPs.    
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6.7.3.1 Calculation of economical and ecological benefits from deployment of the mCHPs in 

the detached house with the annual electricity demand of 4.6 MWhe and satisfying 2006 UK 

construction regulations 

 
The energy demand profiles described in Sections (6.3.3) and (6.3.4) were applied for 

modelling in the previous section (i.e. the base house scenario – the 4.6 MWhe annual 

electricity demand and 200 L per day of the hot water demand). Simulations were performed 

in the split heat generation mode and for the heating system with the 150L DHW tank.  Table 

6.11 shows the annual reductions in the carbon emissions and natural gas and electricity cost 

savings for the considered mCHPs. The current feed-in-tariff scheme can be applied for 

mCHPs with the nominal electrical output of  2 kWe. Therefore, in calculations of the FIT 

payments for the 3 kWe mCHP units the summative power generation was 33 % decreased.  

Table 6.11 Prediction of the annual CO2 and fuel & electricity cost reductions for 
the base house scenario 

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW tank / / 
2 kWe  Stirling mCHP & 150 L 

DHW tank 20.99 -1.99 
3 kWe ICE  mCHP & 150 L DHW 

tank 33.05 -1.85 
3 kWe  Disenco  mCHP & 150L 

DHW tank 20.96 -0.059 
 
It can be seen in Table 6.11 that the prolonged operation of the 3 kWe IC engine mCHP 

resulted in the highest reduction in fuel & electricity costs (due to increased power 

generation). The higher thermal efficiency of the 3 kWe Disenco Stirling mCHP explains the 

lowest negative environmental impact.   

6.7.4 Simulations of the detached house with the increased electricity demand and 
satisfying 2006 UK construction regulations 

To simulate such the scenario the nature of the electricity demand distribution throughout a 

typical day was kept unchanged but the amplitude of energy consumption at each time-step 

was multiplied by a factor of 25 % to explore how economical and ecological impacts are 
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sensitive to the increase in the electrical consumption. Such procedure resulted in the increase 

in the annual electricity consumption to 5.5 MWhe. Figure 6.33 and Figure 6.34 show the 

increased electricity consumption graphs for weekdays and weekends, respectively.  

 

Figure 6.33 Increased electricity consumption profile during a weekday 

 
Figure 6.34 Increased electricity consumption profile during weekends 

 A new peak of consumption is approximately 0.94 kWhe (see Figure 6.33) whereas the 

maximum electricity consumption peak in the base scenario was 0.76 kWhe. In addition the 

base load is now increased by 0.01 kWhe for both design days. The operation of mCHP 

systems was unaffected by the increase in the electricity consumption since they are heat-

lead. However, the on-site electricity utilisation and the import and export of electricity were 

significantly affected. Figure 6.35 to Figure 6.37 show the variation in the on-site electricity 
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consumption and electricity imported and received from the grid for the 3 kWe Disenco, 3 

kWe ICE and 2 kWe Stirling engine mCHPs.   

 

 

Figure 6.35 Power generation and flows in the detached house satisfying 2006 building 

regulations and with increased electricity consumption in a winter weekday (Disenco mCHP) 

 
 

Figure 6.36 Power generation and flows in the detached house satisfying 2006 building 

regulations and with increased electricity consumption in a winter weekday (3 kWe ICE 

mCHP) 

It can be seen in Figure 6.35 to Figure 6.37 that the increased load resulted in a higher 

percentage of produced electricity on-site utilisation. This improves economical and 

ecological impacts from the deployment of the mCHPs. Table 6.12 shows the annual 
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reductions in both carbon emissions and fuel and electricity costs for the increased electricity 

demand in the house. 

 

Figure 6.37 Power generation and flows in the detached house satisfying 2006 building 

regulations and with increased electricity consumption in a winter weekday (2 kWe Stirling 

mCHP)  

Table 6.12 Annual CO2 and fuel & electricity cost savings for the detached 

house with the increased electricity consumption 

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW tank  / / 
2 kWe  Stirling mCHP & 150 L 

DHW tank 22.34 1.04 
3 kWe ICE  mCHP & 150 L DHW 

tank 34.57 2.03 
3 kWe  Disenco  mCHP & 150 L 

DHW tank 21.10 1.58 

 

It can be seen in Table 6.12 that the reduction in the energy cost is insignificant compared to 

the base scenario case (see Table 6.11). However, there is a noticeable improvement in the 

carbon emission reductions with all mCHP systems providing small carbon emission savings 

due to the higher on-site electricity utilisation. The 3 kWe ICE mCHP provides the highest 

reduction in carbon emissions of approximately 2 %. 
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6.7.5 Simulations of the detached house satisfying 2006 UK construction regulations 
with the annual electricity demand of 4.6 MWhe and increased domestic hot water 
demand 

In this case the daily domestic hot water consumption was increased to 250 L per day to 

assess the effect of this on both the fuel & electricity costs and emission savings. The 

increase in hot water consumption corresponds to an additional occupant in the house [29]. 

Figure 6.38 and Figure 6.39 show the increased DHW consumption profiles during weekdays 

and weekends.  

 

Figure 6.38 Distribution of the increased domestic hot water consumption in a typical 

weekday 

 

Figure 6.39 Distribution of the increased domestic hot water consumption in a typical 

weekend 

These diagrams (Figure 6.38 and Figure 6.39) include additional two (sink) and one (shower) 

consumption events during the active occupancy period to increase the hot water 

consumption by 50 litres a day. Finally, the capacity of the DHW tank was increased from 
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150 L to 200 L in the simulations. Figure 6.40 to Figure 6.42 show, as an example, the 

operation of the 3 kWe ICE, 2 kWe Stirling and 3 kWe Disenco mCHP units for the case of 

increased DHW consumption during winter weekdays. 

 

Figure 6.40 Operation of the 3 kWe ICE mCHP in a winter weekday in the detached house 

with a 200 L DHW tank 

 

Figure 6.41 Operation of the 2 kWe Stirling mCHP in a winter weekday in the detached 

house with a 200 L DHW tank 
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Figure 6.42 Operation of the 3 kWe Disenco mCHP in a winter weekday in the detached 

house with a 200 L DHW tank 

 
It can be seen in Figure 6.40 to Figure 6.42 that the mCHPs operate for a longer period during 

the DHW tank charging phase (prior to the space heating) since the tank has the larger 

capacity.  During the space heating operation phase, there are no differences compared to the 

system with a 150 L DHW tank. Table 6.13 summarises the annual economic and 

environmental impacts for this new scenario compared to the conventional heating system 

with condensing boiler and 200 L DHW tank satisfying the 200 L hot water demand a day  

Table 6.13 Annual CO2 and fuel & electricity cost reductions for the case of 

the detached house with the increased DHW consumption 

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 200 L DHW tank  / / 
2 kWe  Stirling mCHP & 200 L 

DHW tank 18.66 -9.88 
3 kWe ICE  mCHP & 200 L DHW 

tank 30.72 -11.25 
3 kWe  Disenco  mCHP & 200 L 

DHW tank 17.54 -6.97 
 
 

It can be seen in Table 6.13 that the increase in the DHW demand and installing a larger 

volume water tank results in increased carbon emissions for all the mCHP system options. 
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The annual carbon emissions are increased by approximately 7 to11 %. This is mainly 

attributed to the higher fuel consumption. At the same time, all co-generation units provide a 

reduction in the fuel & electricity costs with the 3 kWe ICE mCHP option offering the 

highest reduction of approximately 31 %. 

6.7.6 Simulations of the semi-detached house satisfying 1996 UK building regulations 
with deployment of 3 kWe ICE, 2 kWe Stirling and 3 kWe Disenco  mCHP units 

Two Stirling engine mCHPs (2 kWe and 3 kWe) and the 3 kWe ICE mCHP were deployed in 

the model to cover the space heating and DHW demands in the semi-detached house of the 

same design, as described in Section (6.2.1) but with its energy performance parameters to 

satisfy the 1996 UK building regulations. Figure 6.43 shows the characteristics of the 1996 

UK building regulations. Simulations were performed for the yearly period for the base 

scenario of the electricity consumption and then for cases with the increased domestic hot 

water and electricity consumptions.  

 

Figure 6.43 Main features of 1996 UK building regulations 
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6.7.6.1 Simulation of the base electricity consumption   scenario 

 
The base electricity consumption scenario considers the case of 4.6 MWhe of the annual 

electricity consumption and 200 L per day of the DHW and the heating system with a 150 L 

DHW tank and. A split generation strategy was used in the modelling Table 6.14 shows the 

results obtained on annual carbon emissions and fuel & electricity cost savings. 

Table 6.14 Annual CO2 and fuel & cost savings for the base scenario       

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW tank / / 
2 kWe  Stirling mCHP & 150 L 

DHW tank 23.03 0.07 
3 kWe ICE  mCHP & 150 L DHW 

tank 35.09 -0.10 
3 kWe  Disenco  mCHP & 200 L 

DHW tank 21.98 1.02 
 
Co-generation systems commonly work in the heat-led mode, in which they are controlled by 

the heat demand in much the same way as a conventional boiler with electricity surpluses 

exported to the grid and electricity shortfalls imported from the grid. Consequently, the heat 

capacity of the unit was used as criterion for coupling with the appropriate space heating 

requirements. Boiler simulation results suggested that approximately the 10 kWth rated 

output of the heating equipment would be sufficient for covering dwelling's requirements. 

The proposed 3 kWe ICE mCHP has a rated thermal output of 7.5 kWth (considerably lower 

than the required capacity).  

A delay in reaching the desirable thermal comfort threshold has been noted for the ICE 

mCHP option; in particularly during cold days when the room air temperature did not exceed 

19 °C. Thermostat settings with no apparent effort were attained within the energy zones due 

to high thermal capacity in the case of both the Stirling based mCHP. The operation of 

individual mCHP units are presented in the Appendix (B). From Table 6.14 it can be seen 

that the carbon saving with all options is marginal (in the range of 0.1 to1 %). The negative 
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impact of the 3 kWe ICE mCHP unit is due to the lowest thermal efficiency among the 

systems. The highest annual power generation and rapid transient response account for the 

highest reduction in the utility bills estimated for the same scenario. 

6.7.6.2 Simulation of the case with the increased electricity consumption   

 
The increased electricity consumption described in Section (6.7.4) was re-used throughout for 

the semi-detached house modelling. The operation of the various mCHP units was found to 

deviate little from that described in Section (6.7.4) for the detached house (however these 

results are presented graphically in Appendix (B)). Table 6.15 shows the annual simulation 

results in respect of the carbon emission and utility cost savings.  

Table 6.15 Annual CO2 and fuel & electricity costs reduction for the increased 

electricity consumption scenario 

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW tank / / 

2 kWe  Stirling mCHP & 150 L 
DHW tank 22.57 1.23 

3 kWe ICE  mCHP & 150 L DHW 
tank 35.88 3.10 

3 kWe  Disenco  mCHP & 200 L 
DHW tank 21.25 1.82 

 

The annual consumption in the electricity was increased from 4.6 MWhe based on [29] to 5.5 

MWhe which augmented the fraction of the power generation that was utilised onsite.  From 

Table 6.15 it is evident that the reduction in utility costs compared to the base scenario is 

negligible however greater savings in carbon emissions were found for all mCHP options. 

There was a lower import of electricity from national grid compared to the base scenario. The 

highest carbon reduction was estimated for the proposed 3 kWe ICE mCHP option.  

6.7.6.3 Simulations of the case with the increased hot water consumption   
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As described in Section (6.7.5) for the detached house the hot water consumption was again 

increased by 50 L per day for the semi-detached house. The operation of the various co-

generation units options did not deviate from those of the detached house presented in 

Section 6.6.3.3. Table 6.16 shows the annual results with respect to the emissions and utility 

costs. 

Table 6.16 Annual CO2 and fuel & electricity cost reductions for the case with 

the increased DHW consumption 

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW tank / / 
2 kWe  Stirling mCHP & 150 L 

DHW tank 19.47 -8.79 
3 kWe ICE  mCHP & 150 L DHW 

tank 31.44 -10.38 
3 kWe  Disenco  mCHP & 200 L 

DHW tank 18.93 -5.87 

Results in Table 6.16 show a significant saving in annual utility costs, however this is 

followed by the increase in carbon emission in the range of 6 % - 10 %.   

6.7.7 Conclusions 

 The following conclusions can be made from analysis of theoretical results obtained in 

Sections (6.2 to 6.7): 

  The condensing boiler efficiency can exceed 85 % whilst the efficiency of existing co-

generation systems is currently limited to approximately 75 %. Considering that carbon 

emissions are associated with both electricity and gas consumption, then equilibrium 

between nominal electrical and thermal capacities and efficiencies in mCHP systems 

must be achieved in order to deliver and maximise environmental benefits. 

 Simulation results predicted that if a cogeneration unit operates on its maximum capacity 

throughout the heating season, then significant utility cost savings can be achieved. The 

latter was observed in the case of undersized systems (the 3 kWe ICE in the semi-
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detached house satisfying the 1996 building regulation or detached house satisfying 2006 

building regulations).  

 Prolonged operation in the split heat generation operating strategy results in the higher 

power generation and consequently, in the higher financial savings (when FIT is taken 

into consideration) and lower electricity-related carbon savings.  

 The time delay in power generation that characterises the Stirling engine mCHP units 

constrains the annual electricity production, especially when an oversized unit is 

selected. The introduction of a regulated operation mode (modulation) can be beneficial 

for   oversized mCHPs. 

 Higher savings are obtained in cases in which mCHP units are deployed in dwellings 

with high thermal requirements. This conclusion very well agrees with [130]. Marginally 

better performance regarding CO2 emissions reduction  was demonstrated by  Stirling 

engine mCHPs due to the higher thermal efficiency; however further investigation 

should be conducted to confirm this. 

 The increased electricity consumption resulted in better performance of all mCHPs. 

However the increase by 25 % in the domestic hot water usage resulted in lower 

performance. This was attributed to increased natural gas consumption which negates the 

reduction of electricity-related carbon emission savings and marks down the overall 

performance.  

6.8 Modelling of deployment of small capacity mCHP systems with 
auxiliary burners in houses with increased heat demand 

 
Dwelling energy demand profiles and individual mCHP specification strongly affect the 

advantages of the mCHP deployment, which means that the sizing and selection of the 

system is of vital importance for achieving positive economical and ecological impacts. If the 

energy supply and demand balance is correctly considered, it should be possible to minimise 
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the cycling in the operation of the mCHP unit resulting in greater performance and decrease 

maintenance costs due to reduced wear.  

By incorporating an auxiliary burner into the mCHP system, as described in Section (6.6.1), it 

is possible to cover higher heating demands. The mCHPs can operate at nominal capacities 

throughout the heating season while the additional burner modulates the heating output when 

needed.  

Simulations were carried out using the 1 kWe Whispergen Stirling engine and the Honda 

Ecowill ICE mCHP systems, both equipped with an auxiliary burner. The houses considered 

were the detached house meeting 2006 and 1996 building regulations and a semi-detached 

house satisfying 1996 building regulations. With respect to the primary energy requirements, 

two electricity demand profiles were applied whereas the DHW consumption was kept 

constant at 200 L per day in all simulations.   

Table 6.17 shows all cases modelled in this section. 

Table 6.17 Matrix for theoretical simulations 

Electricity Demand Annual Electricity consumption at 4.6 MWhe  and 5.5 MWhe levels 

Space Heating 
Demand 

Detached house,  2006        
building regulations 

Semi-detached house, 1996      
building regulations 

Detached house, 1996       
building regulations 

Hot Water Demand 200 L/day 200 L/day 200 L/day 

mCHP 
configuration 

Whispergen & Additional 
burner 

Whispergen & Additional 
burner 

Whispergen & Additional 
burner 

Honda Ecowill & Additional 
burner 

Honda Ecowill & Additional 
burner 

Honda Ecowill & Additional 
burner 

 

 The control priority in the model is that the primary heating system is considered to be the 

mCHP unit whilst the additional heat demand is covered by the auxiliary boiler if needed.      
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6.8.1 Simulations of the detached house satisfying the 2006 construction regulations 

Figure 6.44 and Figure 6.45 show, as an example, the operation of the ICE and Stirling 

engine mCHPs fitted with the auxiliary burner.   

 
 
Figure 6.44 Heat generation by the Honda mCHP system with the back-up boiler in the split 

heat generation mode during a winter weekday 

 

Figure 6.45 Heat generation by the Whispergen   mCHP system with the back-up boiler in 

the split heat generation mode during a winter weekday 
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All simulations were conducted for the split heat generation mode, as being most 

advantageous. The operation of the mCHP systems prior to the space heating during which 

the hot water tank charged is present in all cases of modeling. From Figure 6.44 and Figure 

6.45 it can be seen that both the mCHP systems generate heat at their maximum thermal 

output during both the space heating and DHW operation. The operation of both units follows 

the active occupancy pattern with little to no variation in respect to the heat generated. The 

additional heating requirements for the living space zones are covered by the gas-fired boiler. 

The sharp rise in the output curve of the thermal output in both mCHPs occurs in the evening 

occupancy period and is attributed to an instantaneous space heating load caused by 

ventilation/ infiltration. It can be seen in Figure 6.45 that the higher thermal capacity of the 

Whispergen mCHP unit results in the lower heat generation rate of the auxiliary boiler. The 

respective boiler heat generation curve is shifted downwards by approximately 3 kWth. 

6.8.2 Simulations of the detached house satisfying the 1996 construction regulations 

The U-values of the building envelope corresponding to the 1996 building regulation, as 

described in Section 6.7.6 and presented in detail in Figure 6.43, together with the 

corresponding infiltration/ventilation parameters were applied in the modelling of the 

detached dwelling. These changes resulted in the increased space heating requirements. 

Figure 6.46 and Figure 6.47 show the operation of the ICE and Stirling engine mCHPs, 

respectively. The same trends can be observed in Figure 6.46 and Figure 6.47 as in Section 

(6.8.1). There is a consistent operation of both the mCHP units following the occupancy 

pattern and with small variations in respect of the heat generated. Any additional space 

heating demand is covered by the auxiliary boilers when needed. Nevertheless, in this 

particular scenario, the higher thermal demand during evening operation can be observed due 

to features in the evening occupancy period. This was attributed to the environmental 

conditions and to the infiltration/ventilation characteristics. 
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Figure 6.46 Heat generation by the Honda mCHP system with the back-up boiler in split heat 

generation mode during a winter weekday 

 

Figure 6.47 Heat generation by the Whispergen mCHP system with the back-up boiler in the 

split heat generation mode during a winter weekday 

6.8.3 Simulations of the semi-detached house satisfying the 1996 construction 
regulations   

The building‘s layout and construction details used for simulations in this scenario were 

described in Section (6.7.6). Figure 6.48 and Figure 6.49 show the operation of the ICE and 

Stirling engine mCHPs.   
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Figure 6.48 Heat generation by the Honda mCHP system with back-up boiler in split 

generation mode during a winter weekday 

 

Figure 6.49 Heat generation by the Whispergen mCHP system with back-up boiler in split 

generation mode during a winter weekday 
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operation it can be observed that the boiler maintains the heat generation at an average rate of 

8 kWth with small fluctuations around this value in the ICE mCHP (see Figure 6.48). For the 

same period much considerable fluctuations occur in the Stirling engine mCHP (see Figure 

6.49).  

6.8.4 Calculations of annual carbon emission and utility bill reductions 

 
Results on the annual economic and carbon emission savings are summarised and presented 

in this section for the two 1 kWe  mCHPs  equipped with the auxiliary boiler. Electricity and 

gas prices, the feed-in tariff rate and carbon emission factors as described in Section (6.5.5) 

were used in performing calculations.   

6.8.4.1 The detached house satisfying 2006 building regulations 

 

In the base scenario case the 4.6 MWhe annual electricity consumption and DHW 

consumption equal to 200 L per day were used with the heating system based on the 

condensing boiler and a 150 L DHW tank. Table 6.18 shows the summary on the annual 

utility bill and carbon emission savings. Table 6.19 shows the summary on the annual utility 

bill and carbon emission savings. The increased electricity consumption case considered in 

the earlier models was modelled whereas the domestic hot water consumption was kept 

unchanged at 200 L per day. 

Table 6.18 The annual utility bill and  carbon emission savings for the base 

scenario case 

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW / / 

Whispergen with the additional 
burner & 150 L DHW 

19.61 -0.34 

Honda Ecowill with the additional 
burner & 150 L DHW 

31.54 10.62 
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 Table 6.19 The annual utility bill and carbon emission savings for the increased 

electricity consumption case  

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW / / 

Whispergen with the additional 
burner & 150 L DHW 

19.24 0.67 

Honda Ecowill with the additional 
burner & 150 L DHW 

30.68 11.22 

 

The negative carbon saving in the case of the Stirling mCHP option (see Table 6.18) in the 

base scenario case becomes a marginal carbon saving in the case of the increased electricity 

consumption though the utility cost saving remains virtually the same. There is a little change 

in annual performance with regards to the ICE mCHP option due to the increased electrical 

demand.  

6.8.4.2 Detached house satisfying the 1996 building regulations 

 
The 1996 UK building regulation requirements were applied to the detached building 

resulting in the increased annual gas consumption by approximately 34 %. Table 6.20 shows 

the annual reduction in carbon emission and utility costs for the case of the base scenario. 

Table 6.21 shows the same information for the case when there is the increased electricity 

consumption in the house. 

Table 6.20 The annual utility bill and carbon emission savings for the base   

scenario case 

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW 
/ / 

Whispergen with the additional 
burner & 150 L DHW 

20.84 2.74 

Honda Ecowill with the additional 
burner & 150 L DHW 

29.29 10.35 
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Table 6.21 The annual utility bill and carbon emission savings for the 

increased electricity consumption case  

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW / / 

Whispergen with the additional 
burner & 150 L DHW 

19.78 2.84 

Honda Ecowill with the additional 
burner & 150 L DHW 

27.93 10.51 

 
Savings in case of both mCHPs and scenarios can be seen in Table 6.20 and in Table 6.21. 

The increased electricity consumption resulted in a small increase in the carbon emission and 

utility cost reduction compared with the base scenario. 

6.8.4.3 Semi-detached house satisfying the 1996 building regulations  

 
Space heating requirements of the semi-detached house satisfying the 1996 building 

regulations were found to be similar to those of the detached house constructed to 2006 

building regulations. Table 6.22 and Table 6.23 show the annual reduction in carbon emission 

and utility costs for the cases of the base scenario is the increased electricity consumption in 

the house. Results obtained for the above two cases are similar to estimations made for the 

detached house satisfying 2006 building regulations. However the higher electricity 

utilisation due to the increased electricity consumption had a little effect on the carbon 

emission savings in the case of the Stirling engine mCHP.  

Table 6.22 The annual utility bill and  carbon emission savings for the base 

scenario case 

Heating system configuration Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW 
/ / 

Whispergen with the additional 
burner & 150 L DHW 

18.85 -1.62 

Honda Ecowill with the additional 
burner & 150 L DHW 

31.07 9.37 
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Table 6.23 The annual utility bill and carbon emission savings for the 

increased electricity consumption case 

Heating system configuration   Savings in costs (%) 
Savings in carbon 

emissions (%) 

Boiler & 150 L DHW 
/ / 

Whispergen with the additional 
burner & 150 L DHW 

18.75 -0.32 

Honda Ecowill with the additional 
burner & 150 L DHW 

30.22 10.04 

 

6.8.5 Conclusions on modelling of deployment of small capacity mCHP systems with 
auxiliary burners in houses with increased heat demand 

 
The following conclusions were made from results obtained on modelling of deployment of 

small capacity mCHP systems with auxiliary burners in houses with increased heat demand: 

 The 1 kWe Honda Ecowill mCHP unit was found to provide greater better utility cost   

and carbon emission reductions over the 1 kWe Whispergen mCHP option. The ICE 

unit's auxiliary boiler provided a smaller fraction to the total heat generated rather 

than Whispergen mCHP‘s auxiliary burner and this resulted in the higher combined 

(mCHP/boiler) thermal efficiency, resulting in better performance.  

 Although savings in utility costs were found in all scenarios in respect of the Stirling 

engine mCHP system, the small carbon emission savings were predicted only in the 

half of the simulated scenarios.  

 In respect of the overall performance, the increased electricity consumption resulted 

in the higher carbon emission savings compared the base scenario case. This was 

attributed to the increased on-site utilisation of the electricity produced. 

6.9 Bungalow Simulations 

All previous simulations were conducted using an occupancy pattern matching working adult 

residents schedule. In respect to a weekday this profile was characterised by two active 
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occupancies periods in mornings and evenings respectively and a vacancy period in-between. 

The occupancy pattern was proved to affect significantly the performance of the mCHP 

systems. In this section retired resident‘s occupancy pattern was investigated in the bungalow 

type of buildings.   

6.9.1 Bungalow Design 

A bungalow building with the floor area of 66 m2 including a 17 m2 garage was used in 

simulations and this was constructed to the UK 2006 regulations. Figure 6.50 shows the 

design layout of the bungalow building. 

 

Figure 6.50 Design of the bungalow building 

The building envelope was designed with a 7.13 m2 glazing which corresponds to 4.2 % of 

the gross external surface area, and a floor height of 2.5 m. 

 It was modelled with five individual energy zones and was assumed to reside in the area of 

the Gatwick airport near London. The building matches requirements of retired residents due 

to a smaller size and lower energy requirements 
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6.9.2 Occupancy pattern 

Resident of the building is a retired couple with a single occupancy pattern throughout the 

whole week as shown in Table 6.24.    

 
Table 6.24 The heating plant‘s operation schedule for a typical winter day 

Design Day On  (21°C)   Off 

Monday to Sunday 9:00   22:00 

6.9.3 Electricity consumption profile 

A reduction by approximately 22 % in the annual electricity consumption was modelled in 

the bungalow compared to the basic scenario case so it matches the bungalow energy 

requirements. Since a single design day was simulated then the same electricity consumption 

distribution was used in the modelling throughout the year. Figure 6.51 shows the such 

electricity consumption distribution in the design day.  

 

Figure 6.51 Electricity consumption distribution during the design day 

6.9.4 Domestic hot water consumption distribution  

The domestic hot water system in the bungalow is equipped with a standard 150 L tank.  A 

100 L daily hot water demand was implemented in the model assuming that each of the 

occupant requires 50 L of hot water per day as described in Section (6.3.4). 
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 Figure 6.52 shows the hot water consumption distribution during the design day. 

 

Figure 6.52 DHW consumption profile during the design day 

It can be seen in Figure 6.52 that there are two peaks corresponding to showering and 6 

equally distributed events attributed to hot water consumption at the sink.   

6.9.5 Modelling of the operation of the heating systems 

6.9.5.1 The heating system with a conventional condensing boiler 

 
Due to the reduced heating requirements a 10 kWth condensing boiler with the 85 % thermal 

efficiency was used in the modelling process for the heating system of the house.  Figure 6.53 

shows the operation of the boiler and the air temperature variation within the lounge energy 

zone. 

 

Figure 6.53 Operation of the boiler during the winter design day 
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Details of the system were described in Section (6.4). The boiler operation is set to start at 

9.00 am and to switch off at 22.00 to follow the occupancy pattern presented in Table 6.24. 

The peaks in the boiler heat generation curve were attributed to the domestic hot water 

consumption events which trigger the boiler to switch to the higher heat generation rate. It 

can be seen that such heating system consistently maintains the air-temperature on pre-set 

level (21 °C). 

6.9.5.2 The heating system with 1kWe Whispergen Stirling Based mCHP 

Figure 6.54 shows the operation of the Whispergen mCHP in the bungalow in the split heat 

generation mode during a winter day. It can be seen that the operation of the Whispergen unit 

is characterised by a high frequency of switching events due to the to the low heat 

requirements of the dwelling.  

 

Figure 6.54 Heat and Power generation by the Whispergen mCHP during a winter design 

day 

Figure 6.55 shows the hot water consumption events and the temperature fluctuation inside 

the domestic hot water tank. 
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Figure 6.55 Hot water consumption events and the temperature fluctuations inside the tank 

during a winter weekday. 

It can be seen in Figure 6.55 that the 100 L daily consumption is covered by a single charging 

event and the water temperature is sufficient to even compensate for extra hot water 

consumption event. 

6.9.5.3 The heating system with the 1 kWe ICE based mCHP 

 
The 1kWe ICE based mCHP was simulated with incorporation of the auxiliary burner and 

Figure 6.56 shows the operation of such the system during the winter design day. 

 

Figure 6.56 Heat and Power generation by the Honda Ecowill mCHP during a winter design 

day 
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A longer operation for the warm-up of the DHW tank can be observed in Figure 6.56. The 

operation of the auxiliary boiler is limited to approximately 3 hours as afterwards the heat 

generated by the mCHP is sufficient to maintain the requested temperature within the living 

zones. There is the cycling in the operation of the mCHP which takes place later in the design 

day. 

6.9.5.4 The heating system with the 1 kWe PEM FC mCHP and auxiliary boiler 

 
The PEM fuel cell based mCHP unit which was described in Section (6.6.2) is used for 

modelling of the heating system of the bungalow. In simulations hydrogen was used as fuel 

whilst the calculations of the annual benefits were then carried out using the conversion 

factor to estimate the consumption of natural gas. Two configurations were investigated for 

the PEM fuel cell mCHP based heating system. In the first configuration the heat generated 

by the mCHP was used for space heating, whereas in the second configuration this heat was 

utilised to cover only the domestic hot water demand. 

The heat generated by the mCHP is used for space heating 

Figure 6.57 shows the operation of the 1 kWe PEM fuel cell based mCHP with the auxiliary 

burner. The space heating demand is covered by the mCHP together the auxiliary boiler 

whilst the DHW demand is covered by the auxiliary burner only. It can be seen in Figure 6.57 

that the fuel cell mCHP is operating at its maximum capacity throughout the day. The split 

heat generation operating strategy is not applicable in this scenario due to the fact that the 1 

kWth heat produced by mCHP is used only for space heating. The peaks in the heat 

generation by the auxiliary are due to the boiler covering heat demands both for space heating 

and DHW demands. 
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Figure 6.57 Heat and Power generation by the PEM FC unit during a winter design day 

 

The heat generated by the mCHP is used to cover the domestic hot water demand 

In this scenario the space heating demand was covered by the auxiliary boiler. Figure 6.58 

shows the operation of such the system. 

 

Figure 6.58 Heat and Power generation by the PEM FC unit during a winter design 
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fuel cell mCHP operates continuously for almost whole day. The system is switched off only 

for few hours before the space heating demand is triggered in the morning. Such type of 

operation of the mCHP should enhance the annual power generation and annual cost savings.  

The major advantage of this configuration is prolonged electricity generation even during the 

summer period. Nevertheless, the highest fuel consumption was calculated for this scenario 

of operation. 

6.9.6 Calculations of annual utility cost and carbon emission savings 

Results from calculations of the annual ecological and economic performance are 

summarised in Table 6.25.   

Table 6.25 Calculations of annual utility cost and carbon emission savings  

Heating system configuration Savings in costs (%) Savings in carbon emissions (%) 

Boiler & 150 L DHW / / 

Whispergen with the 
additional burner & 150 L 

DHW 
10.37 -13.01 

Honda Ecowill with the 
additional burner & 150 L 

DHW 
38.41 8.7 

FC (for CH) with the 
additional burner & 150 L 

DHW   
-44.18 -13.95 

FC (for DHW) with the 
additional burner & 150 L 

DHW   
-38.86 -89.45 

 

It can be seen in Table 6.25 that only the Honda ICE based mCHP performs well in the 

bungalow environment for the adapted occupancy pattern and energy and heating demand 

profiles. The ICE mCHP provides about 38 and 9 % savings in utility costs and carbon 

emissions, respectively. The high cycling frequency in the operation of the Whispergen unit 

resulted in the increased fuel consumption due to the long warm-up transient regime and, 

consequently, resulted in the rise in carbon emissions. In respect to the fuel cell mCHP 
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system deployment, the highest amount in the annual power generation was achieved at the 

cost of the highest fuel consumption due to low efficiency of the fuel reforming process.   

6.10 Analysis of the trend in variation of annual benefits with the thermal 
requirements of the house and size of mCHPs 

The simulation results obtained in Chapter (6) are summarised with reference to the 

economic (utility costs) and environmental (carbon emission) impact in relation to the 

thermal requirements of the house types analysed. An overall analysis was carried out in 

order to assess the performance trends of each mCHP technology considered in respect of the 

thermal demand.  

6.10.1 Cases when the house heating systems are based only on mCHPs as heating 
equipment 

This section considers cases in which mCHPs are used as the sole heating equipment in the 

houses (i.e. configurations with additional heating boilers are not included). 

Carbon savings summary 

The carbon savings values (as percentage) are plotted against the thermal demand of the two 

simulated buildings, namely the semi-detached house satisfying the 1996 building regulations 

and the detached house meeting the 2006 building regulations. Both cases are considered 

with two alternative DHW demand profiles, so in a total there are four domestic thermal 

demand patterns.  

Heat demands were met by the 3 kWe Stirling and IC mCHP systems and the 2 kWe Stirling 

based mCHP.  Figure 6.59 shows the reduction in the carbon emissions and the level of the 

electricity utilisation in the heating system with the 2 kWe Stirling based mCHP in respect of 

the above four heat demand requirements. 
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Figure 6.59 Carbon emission reduction and electricity utilisation versus thermal demand in 

houses 

It can be seen in Figure 6.59 that the emission savings decrease with increasing the thermal 

load. The electricity utilisation level is found to be almost independent on the thermal load.  

The sharp drop in the emissions (which occurs for thermal loads between 17,200 kWhth and 

17,500 kWhth) is attributed to the increased gas consumption and thermal losses in the larger 

water tanks. In respect of the carbon emissions, the Disenco mCHP demonstrates better 

performance due to its higher thermal efficiency and the highest (among other mCHPs) 

electricity utilisation. Overall, the above mCHPs provide only marginal carbon savings in 

houses with low thermal requirements.   

Economic summary 

Figure 6.60 shows the reduction in utility costs in respect to the four demand requirements. It 

can be seen in Figure 6.60 that utility cost savings are gradually decreasing with the rise in 

the thermal demand of the houses. The higher thermal requirements require the prolonged 

operation of the mCHP systems resulting in the higher power generation. However, the 

increased electricity generation does not compensate for the higher natural gas consumption. 
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All technologies provide the significant cost savings in the range between 17 and 35% with 3 

kWe ICE mCHP having advantages over Stirling engine mCHPs. 

 
 

Figure 6.60 Utility cost reductions versus thermal demand 

6.10.1.1 Individual mCHP systems 

Simulation results were also summarised in respect to Stirling and IC engine mCHPs and 

PEM fuel cell mCHPs. 

Stirling engine mCHPs 

The savings in utility costs and the reduction of carbon emissions as functions of the thermal 

load for all Stirling engine mCHP units are shown in Figure 6.61 and Figure 6.62. 

 

Figure 6.61 Utility costs reductions as a function of the thermal demand with Stirling based 

mCHPs 
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In general, in cases in which Stirling engine mCHPs are deployed then utility cost savings 

decrease as the thermal load increases.   

 

Figure 6.62 Carbon emission reduction as function of the thermal demand with Stirling based 

mCHPs 

Figure 6.62 shows that for very large and very small thermal demands Stirling mCHPs, with 

their current technical specifications, do not provide carbon savings compared to the 

conventional gas boiler heating system and grid-connected electricity supply in houses.  

However, it appears possible to obtain small carbon savings using Stirling mCHPs in houses 

with average thermal requirements on the 14,000 kWhth level.   

IC engine based mCHPs 

Figure 6.63 and Figure 6.64 show the utility costs reduction and carbon emissions variations 

as functions of the thermal load in cases in which ICE engine mCHPs were employed. From 

Figure 6.63 the utility cost savings decline with the rise in the thermal load. The increased gas 

consumption at the high thermal demands has a negative impact on the overall economic 

performance regardless of the increased power generation. Figure 6.64 shows that there are 

noticeable carbon savings for the thermal demands up to 15,000 kWh which exist in a 
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about 11,500 kWh.  For houses with large thermal demands, the ICE based mCHPs do not 

provide carbon savings.   

 

Figure 6.63 Utility cost reductions as a function of the thermal demand with ICE based 

mCHPs 

 
 
Figure 6.64 Carbon emission reductions as a function of the thermal demand with ICE based 

mCHPs 
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Figure 6.65 presents results on carbon emission and utility cost savings as a function of the 

thermal load for the PEM fuel cell mCHPs. Thermal requirements of two building only were 

used in simulations.   

 

Figure 6.65 Reduction in carbon emissions and utility costs as functions of the thermal 

demand with PEM fuel cell mCHPs 

It can be seen that the rise in the thermal loads increases both carbon emission and utility cost 

savings. This is attributed to the increase in both electricity utilisation and combined thermal 

efficiency of the fuel cell system. But overall, the PEM FC mCHP provides carbon savings 

for houses with small and medium thermal loads.  The utility savings are not achieved in the 

houses with the small thermal load. 

6.10.1.2 Carbon emission and utility cost savings in houses with full utilisation of electricity 

generated by mCHPs    

 
The electricity utilisation rate significantly affects both the economic and environmental 

performance of the mCHP systems. A hypothetical scenario, in which all the power generated 

by mCHPs is utilised inside the house, was investigated.  
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Stirling based mCHPs 

Figure 6.66 and Figure 6.67 show the utility cost and carbon emission savings as a function 

of the thermal load in the house for all cases in which the Stirling engine mCHPs were 

deployed. It can be seen that both types of savings are considerably improved when the all 

power produced by mCHPs is fully utilised in the house. The utility savings are provided in 

the range between 20 and 40 % for the whole range of thermal loads and carbon savings are 

achieved in houses with thermal loads starting at about 10,000 kWth. 

 
Figure 6.66 Utility cost reductions as a function of the thermal demand with Stirling engine 

mCHPs 

 
 

Figure 6.67 Carbon emission reductions as a function of the thermal demand with Stirling 

engine mCHPs 
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ICE based mCHPs 
 
Figure 6.68 and Figure 6.69 shows the results obtained on utility and carbon emission savings 

in cases in which the ICE mCHPs are deployed. As in the case with Stirling engine mCHPs, 

savings are significantly improved if all power generated by mCHPs is fully utilised in the 

house.  

 
 

Figure 6.68 Utility cost reductions as a function of the thermal demand with Stirling engine 

mCHPs 

Figure 6.68 shows that utility cost savings are now on the level of 42-55 % with greater 

savings being achieved for houses with the small and large thermal loads. The carbon savings 

decrease with the rise of the thermal load in the house, see Figure 6.69. 

 

Figure 6.69 Carbon emission reductions as a function of the thermal demand with ICE 

mCHPs 
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PEM Fuel cell based mCHPs 
 
Figure 6.70 shows the utility cost and carbon emission savings as functions of the thermal 

load for PEM fuel cell mCHPs.   

 
 

Figure 6.70 Reduction in carbon emissions and utility costs as functions of the thermal 

demand with PEM fuel cell mCHPs 

 

Assumming that all the electricity generated is consumed on site, Figure 6.70 show that the 
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achieved with the ICE mCHP, there are a very marginal carbon savings (or, indeed, a slight 

carbon emissions increase) with the Stirling engine mCHP deployed in the house with the 

high thermal demand.  

 

Figure 6.71 Carbon emissions reduction as a function of the thermal demand for Stirling 

engine and ICE mCHPs combined with the auxiliary boiler 

 

 

Figure 6.72 Utility cost reductions as a function of thermal load for Stirling engine and ICE 

mCHPs combined with the auxiliary boiler 

In respect of the ICE mCHP unit, it can be seen in Figure 6.72 that the utility cost savings are 

marginally increased with the thermal load. However for the detached house meeting 1996 
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power generation were observed and these compensated for the gas consumption. Therefore 

savings in utility bills increase linearly with the thermal load in the house.  

 

The effect of the Auxiliary Boiler/mCHP thermal outputs ratio 

Figure 6.73 shows the utility cost and carbon emission savings as functions of the auxiliary 

Boiler/mCHP thermal outputs ratio. 

 
For both utility costs and carbon emissions, an increase in savings with increasing of the 

auxiliary Boiler/mCHP thermal outputs ratio is evident, which can be attributed to an increase 

in the combined thermal efficiency of the auxiliary boiler/mCHP system. Maximum savings 

were predicted the auxiliary Boiler/mCHP thermal outputs ratios between 1 and 1.2.   
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Chapter 7 Deployment on a district/street 
level of a random set of mCHPs 
based on different technologies 

 
 
7.1 Introduction 

The advantages of replacing convectional heating system with mCHPs, with reference to 

energy cost and carbon emissions, in individual dwellings have been analysed in previous 

two Chapters. If mCHPs will reach the market and become commercially available, then it is 

most likely that a random mix of such technologies will be deployed. In this Chapter such the 

deployment on a district/street level of a random set of mCHPs based on different 

technologies is modelled and resulting annual economic and carbon emission savings are 

estimated.  In this modelling process it was assumed that the district/street will consist of a 

combination of different type houses with various thermal and power requirements.  

Table 7.1 and Table 7.2 show the details of various house heat and power demands 

considered in the modelling process. 

 Table 7.1 Simulated houses in which mCHPs are used as a single heating source 

House type 
Electricity 

requirements  
(MWhe) 

DHW 
requirements  

(L/Day) 
Deployed mCHP  

Bungalow 2006  3.7 150 1 kWe Whispergen 

Semi-Detached 2006 4.6 200 
1) 1 kWe Whispergen  
2) 2 kWe ICE 

  4.6 200 1) 3 kWe Disenco, 
2) 2 kWe Stirling 
3) 3 kWe ICE 

Semi-Detached 1996 5.5 200 
  4.6 250 
  4.6 200 1) 3 kWe Disenco, 

2) 2 kWe Stirling 
3) 3 kWe ICE 

Detached 2006 5.5 200 
  4.6 250 
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Table 7.2 Simulated houses in which mCHPs are combined with auxiliary burners   

House type 
Electricity 

requirements  
(MWhe) 

DHW 
requirements  

(L/Day) 
Deployed mCHP  

Bungalow 2006  3.7 150 
1) 1 kWe  Ecowill  
2) 1 kWe  PEM FC 

Semi-Detached 2006 4.6 200 
1) 1 kWe  Ecowill   
2) 1 kWe  PEM FC 

Semi-Detached 1996 
4.6 

200 
1) 1 kWe Whispergen 
2) 1 kWe Ecowill 5.5 

Detached 2006 
4.6 

200 
1) 1 kWe Whispergen 
2) 1 kWe Ecowill 5.5 

Detached 1996 
4.6 

200 
1) 1 kWe Whispergen 
2) 1 kWe Ecowill 5.5 

 

These demands are covered by the mCHP technologies in scenarios in which they are used as 

a single source of heat (Table 7.1) or used in combination with auxiliary boilers (Table 7.2).  

Additionally, these tables show the range of mCHP systems considered for each type of 

houses. In house with the 250 L per day DHW demand the heating system is equipped with a 

200 L DHW tank. All houses with other DHW demands were simulated with the heating 

system having the 150 L DHW tank 

7.2 Sizes of streets simulated 

7.2.1 The 61-house street 

A mixture of houses, including detached, semi-detached and bungalow buildings, was 

assumed to make up the street with a total of 61 dwellings. The generation  of houses and of 

their primary energy requirements could be performed randomly, however, the number of 

dwellings in the street was considered to be relatively small and therefore the even 

distribution in the street in respect to the energy demand (building) and supply (mCHP 

technology)  was selected. Thus, in half of the houses a mCHP was used as a single source of 

heat generation, whilst in the remaining half of houses mCHPs combined with auxiliary 
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burners were deployed. Table 7.3 shows the mixture of houses which was used in the 

modelling process of the 61-house street. 

Table 7.3 The mixture of houses and mCHP technologies which was used in the modelling 

process of the 61-house street 

Type of Dwelling Number of 
Dwellings 

mCHP # Dwellings mCHP & Back-up 
Boiler # Dwellings 

Bungalow 

  2 2 

4 
Whispegen Honda Ecowill & Boiler 

  PEMFC & Boiler 

Semi-Detached 2006 

  2 2 

4 
Whispegen Honda Ecowill & Boiler 

  2 kWe ICE   PEMFC & Boiler 

Detached 2006 

  6 4 

10 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Semi Detached 1996 

  6 4 

10 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Detached 2006; Increased   
Electricity consumption 

  3 6 

9 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Semi Detached 1996 Increased   
Electricity consumption 

  6 4 

10 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Detached 2006; Increased   
Electricity consumption 

  3   

3 

  3 kWe ICE   

/  2 kWe Stirling   

3 kWe Disenco  

Semi-Detached 1996 Increased   
Electricity consumption 

  3   

3 

  3 kWe ICE   

/  2 kWe Stirling   

3 kWe Disenco  

Detached 1996 

    4 

4 / 
Whispergen & Boiler 

Honda Ecowill & Boiler 

Detached 1996;  Increased   
Electricity consumption   

    4 

4 
  Whispergen & Boiler 

  Honda Ecowill & Boiler 

Total 61 31 30 
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After generating the above mixture of houses and mCHP technologies the whole street was 

simulated and results were compared with results from a street in which all houses are 

equipped with conventional heating systems and use grid-imported electricity. Table 7.4 

shows the results in respect of the economic and environmental performance of a mixture of 

mCHP technologies in such the 61-house street. 

Table 7.4 Annual CO2 emissions and utility costs for the 61-house street 

Configuration of the house heating 
system  CO2 emission (t) Annual Expenses (£k) 

Conventional  heating systems   364.6 74.4 

A mixture of mCHPs   346.5 68.2 

 

It can be seen in Table 7.4, that a reduction in both carbon emissions and utility costs of 

approximately 5 % and 32 %, respectively, is achieved when the street made of a mixture of 

61 houses is equipped with different mCHP technologies. The relatively low thermal 

efficiency in all cogeneration systems resulted in the increased gas consumption by the street 

residents. However, the power generated compensates for emissions related to the fuel usage. 

7.2.2 The 120-house street  

A Street consisting of 120 houses was considered. The selection of supply technologies and 

demand mix implemented for the 61-house street was scaled up for application in this case. 

Table 7.5 shows the mixture of houses which was used in the modelling process of the 120 

dwellings street. Half of the total number of houses was supplied from a single heating 

equipment while the remaining half was supplied by a mCHP combined with an auxiliary 

boiler.  
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Table 7.5 The mixture of houses and mCHP technologies which was used in the 

modelling process of the 120-house street. 

Type of Dwelling Number of 
Dwellings 

mCHP # Dwellings mCHP & Back-up Boiler # 
Dwellings 

Bungalow 

  2 4 

6 
Whispegen Honda Ecowill & Boiler 

  PEMFC & Boiler 

Semi-Detached 2006 

  4 4 

8 
Whispegen Honda Ecowill & Boiler 

2 kWe ICE   PEMFC & Boiler 

Detached 2006 

  12 8 

20 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Semi Detached 1996 

  12 8 

20 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Detached 2006; Increased   
Electricity consumption 

  6 12 

18 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill  & Boiler 

3 kWe Disenco    

Semi Detached 1996 Increased   
Electricity consumption 

  12 8 

20 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Detached 2006; Increased   
Electricity consumption 

  6   

6 

  3 kWe ICE   

/  2 kWe Stirling   

3 kWe Disenco  

Semi-Detached 1996 Increased   
Electricity consumption 

  6   

6 

  3 kWe ICE   

/  2 kWe Stirling   

3 kWe Disenco  

Detached 1996 

    8 

8 / 
Whispergen & Boiler 

Honda Ecowill & Boiler 

Detached 1996;  Increased   
Electricity consumption   

    8 

8 
  Whispergen & Boiler 

  Honda Ecowill & Boiler 

Total 120 60 60 

 



Chapter 7: mCHP deployment on District Level 

 

234 
 

Table 7.6 shows the results in respect of the economic and environmental performance of a 

mixture of mCHP technologies in such the 120-house street. 

 Table 7.6 Annual CO2 emissions and utility costs for the 120-house street 

Configuration of the house heating 
system  CO2 emission (t) Annual Expenses (£k) 

Conventional  heating systems   721.8 147.1 

A mixture of mCHPs   708 103.6 

 

The obtained results presented in Table 7.6, indicate a reduction in carbon emissions of 

approximately 13 tonnes per annum (corresponding to 2 %) in respect of the 120-house street 

powered by a mixture of mCHP systems, whereas the utility bills were reduced by 29.5 %. 

7.2.3 The 240-house street 

Finally, a street which consisted of 240 houses was simulated. Table 7.7 shows the mixture of 

houses which was used in the modelling process of the 240-house street. Table 7.8 shows the 

results in respect of the economic and environmental performance of a mixture of mCHP 

technologies in such the 240-house street. 

If the above mixture of mCHP systems replace the conventional heating systems in the street 

of 240 houses then a 28.5 % overall reduction in the utility costs can be achieved as presented 

in Table 7.8. In respect of the CO2 emission, a reduction of 15.6 tonnes per annum (about 1 

%) is estimated to be achieved in such the street.   
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Table 7.7 The mixture of houses and mCHP technologies which was used 

in the modelling process of the 240-house street. 

Type of Dwelling 
Number of 
Dwellings mCHP # Dwellings 

mCHP & Back-up Boiler # 
Dwellings 

Bungalow 

  4 8 

12 
Whispegen Honda Ecowill & Boiler 

  PEMFC & Boiler 

Semi-Detached 2006 

  8 8 

16 
Whispegen Honda Ecowill & Boiler 

 2 kWe  ICE   PEMFC & Boiler 

Detached 2006 

  24 16 

40 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill& Boiler 

3 kWe Disenco    

Semi Detached 1996 

  24 16 

40 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Detached 2006; Increased   
Electricity consumption 

  12 24 

36 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill& Boiler 

3 kWe Disenco    

Semi Detached 1996 
Increased   Electricity 

consumption 

  24 16 

40 

  3 kWe ICE   Whispergen & Boiler 

 2 kWe Stirling   Honda Ecowill & Boiler 

3 kWe Disenco    

Detached 2006; Increased   
Electricity consumption 

  12   

12 

  3 kWe ICE   

/  2 kWe Stirling   

3 kWe Disenco  

Semi-Detached 1996 
Increased   Electricity 

consumption 

  12   

12 

  3 kWe ICE   

/  2 kWe Stirling   

3 kWe Disenco  

Detached 1996 

    16 

16 / 
Whispergen & Boiler 

Honda Ecowill & Boiler 

Detached 1996; Increased   
Electricity consumption   

    16 

16 
  Whispergen & Boiler 

  Honda Ecowill & Boiler 

Total 240 120 120 
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Table 7.8 Annual CO2 emissions and utility costs for the 240-house street 

Configuration CO2 emission (t) Annual Expenses (£k) 

Conventional  heating system Street 
scheme 1443.7 293.8 

mCHP based Street scheme 1428.1 209.9 

 

7.3 Annual CO2 and utility cost reductions from deployment of mCHP technologies on 
the street level 

Obtained simulation results are summarised in order to assess the merits of the installation of 

mCHP systems on the district/street level. Figure 7.1 shows the reduction in carbon emissions 

and utility cost (in percentages) for all simulated street scenarios. 

 

 

Figure 7.1 CO2 and utility cost reductions from deployment of mCHPs on the street level 

 
It can be noted from Figure 7.1 that as the number of houses on the street increases, the 

carbon emissions and cost savings decline. This is attributed to an increase in the number of 

mCHP units with poorer performance appearing in the mix of systems as the total number of 

houses goes up.  The total annual carbon emissions in all scenarios was analysed in its 
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component parts, namely fuel-related and electricity-related. Figure 7.2 shows the annual 

carbon emissions components related to the number of houses. 

 

Figure 7.2 CO2 emissions related to both fuel and electricity from deployment of mCHPs on 

the street level 

In all cases cogeneration systems featured a lower thermal efficiency than the condensing 

boiler, which results in the increased fuel consumption. Therefore, carbon emissions related 

to fuel consumption were found to be higher compared to the reference scenario as it can be 

seen in Figure 7.2. In the 61-house street the carbon emissions were found to be almost 8% 

higher than the base scenario case whereas for 120- and 240-houses carbon emissions were 

increased by 10 %.  The increase of the fuel related CO2 emissions combined with the 

gradual drop in the electricity related emissions, resulted in a steep drop in the carbon 

emission savings as shown in Figure 7.1 (particularly in the transition from the 61- to 120-

house street). The marginal saving in carbon emissions in both the 120- and 240- house 

streets was attributed to a higher number of low performance mCHP units which were 

allocated in the distribution pattern. 

The savings in the utility costs were found to consist of three components: the fuel 

consumption, the electricity purchased and the economic incentives under the feed-in tariff 
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scheme. Figure 7.3 shows savings in the utility costs related to all three components over the 

total number of houses in the street. 

 

Figure 7.3 Utility cost savings split between the fuel and electricity from deployment of 

mCHPs on the street level 

From Figure 7.3 it can be seen that the reduction in the electricity bills due to the feed- in 

tariff (FIT) was approximately unchanged in all three scenarios; the FIT contribution 

accounted for the 23.4 % to 24.2 % reduction of the gross utility costs. The savings related to 

the electricity imported from the national grid were found to gradually decrease. The gas 

related savings show a steep increase in the transition from the 61- to 120-house street whilst 

it remained constant in transition from the 120- to 240-street houses. This supports the 

suggestion that more "low performance" mCHPs are participating in 120- and 240-house 

street schemes. Under all scenarios the increased fuel consumption was translated to higher 

utility bills. 

7.4 Equipping Street houses with best mCHP technologies   

Overall results from deployment of a mix of different mCHP technologies on the street scale 

are significantly affected by the selection of the energy supply-demand mix distribution. The 
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approach which was followed in the previous modelling of the three streets was based on an 

even distribution of technologies which in return could constrain overall mix mCHP 

performance. In this section, since data on the individual mCHP system's performance is 

available, the only technologies that demonstrated the best performance were selected to 

replace the conventional heating systems in given dwellings. Table 7.8 shows the best units 

selected for replacement of the conventional heating systems in the 61-house street.   

Table 7.8 The best units selected for replacement of the conventional heating 

systems in the 61-house street.   

Type of Dwelling 
Number of 
Dwellings mCHP # Dwellings 

mCHP & Back-up Boiler 
# Dwellings 

Bungalow 
  2 2 

4 Whispegen Honda Ecowill & Boiler 

Semi-Detached 2006 
  2 2 

4 Whispegen Honda Ecowill & Boiler 

  
Detached 2006 

  6 4 

10 3 kWe Disenco  Honda Ecowill & Boiler 

  
Semi Detached 1996 

  6 4 

10 3 kWe Disenco Honda Ecowill & Boiler 

  
Detached 2006; Increased    
Electricity consumption 

  3 6 

9  3 kWe ICE   Honda Ecowill & Boiler 

Semi Detached 1996; Increased    
Electricity consumption 

  6 4 

10 3 kWe ICE   Honda Ecowill & Boiler 

Detached 2006; Increased    
Electricity consumption 

  3   

3 3 kWe Disenco / 

Semi-Detached 1996; Increased    
Electricity consumption 

  3   

3 3 kWe Disenco / 

Detached 1996 
    4 

4 / Honda Ecowill & Boiler 

Detached 1996; Increased    
Electricity consumption 

    4 

4 / Honda Ecowill & Boiler 

Total 61 31 30 

The similar selection of the mCHP technologies offering the best performance then was 

carried out for 120- and 240-house streets following the methodology and distribution as 

summarised in Table 7.8. Table 7.9 shows the annual results on CO2 emissions and utility 

costs obtained for all three streets (in percentage) with reference to the base scenario in which 

conventional heating systems were used in all houses. 
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Table 7.9 Annual results on CO2 emissions and utility costs savings obtained for all 

three streets with reference to the base scenario in which conventional heating 

systems were used in all houses 

Configuration Emission Savings % Expenses Savings % 

61-house street 5.22 32.85 

120-house street 5.21 32.96 

240-house street 3.6 31.01 

 

The allocation of the best mCHP technology in houses improved the overall performance on 

the street level in terms of both carbon emissions and utility costs. It can be seen in Table 7.9 

that CO2 emission savings are increased compared to the original mCHP technology mix 

distribution and are in the range between 3.6 to 5.2 %. This was achieved as the least feasible 

units were excluded from the mCHP mix. The utility costs are decreased by approximately 32 

% in all cases. The improvement in the performance was due to the higher on-site utilisation 

of the electricity and lower gas consumption by more efficient mCHPs.   

7.5 A possibility of “electrical power” coupling of adjacent houses with 
different occupancy patterns 

In all previous modelling of street scenarios, it is assumed that there is no electrical 

interaction between the houses and surplus of electricity, generated in each house, is exported 

to the national grid. In this section, a hypothetical situation in which a power interaction 

between the dwellings is carried out is considered with expectation that this will result in 

better performance due to higher on-site electricity utilisation.  In a coupled houses scenario, 

an excess of produced electricity is assumed to be utilised in the adjacent houses, rather than 

be exported into the grid. Due to different operating profiles in the street mix, any 

overlapping in the power generation through the day is expected to enhance the advantages of 
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mCHP. The selected pair of houses represents bungalows meeting the 2006 building 

regulations and equipped with the ICE engine mCHPs.  The energy requirement profiles for 

the house with two retired residents were selected for the first bungalow and the energy 

requirement profiles for the house with a pair of working adults were applied for the second 

bungalow. In this way, the operation of the mCHP throughout the day could be attained. All  

simulations were performed in the split heat generation mode. Figure 7.4 shows the layout of 

the coupled bungalow buildings. 

 

Figure 7.4 The layout of the coupled bungalows 

Figure 7.5 shows the operation of both cogeneration units with the back-up boilers in a winter 

weekday. It can be seen in Figure 7.5 that the Honda Ecowill_1 mCHP combined with its 

auxiliary Boiler_1 was used to meet the thermal demand of the bungalow house with two 

retired residents, whereas the Honda-Ecowill_2 mCHP combined with its auxiliary Boiler_2 

was used in the adjacent bungalow in which two working adults reside. 



Chapter 7: mCHP deployment on District Level 

 

242 
 

 

Figure 7.5 Heat generation by two mCHPs with auxiliary boilers in the coupled bungalows 

in the split heat generation mode in a winter weekday 

 
Heat generated by both mCHP units prior to the space heating (indicated by arrows in the 

diagram) was used for charging corresponding 150 L DHW tanks. The lower exterior 

temperature during early morning resulted in the increased thermal output from the Boiler_1 

during the morning space heating operation compared to the corresponding operation of the 

Boiler_2 two hours later in the day (when the exterior temperature was higher). Once the 

zones thermal comfort temperature was reached, both boilers were switched off and the 

mCHP unit was operating in cycles. This can be observed starting after 15.30 during the long 

operation of the Ecowill_1 mCHP in the bungalow of the retired couple.   

The obtained simulation results were compared against the scenario in which the   adjacent 

bungalows do not exchange generated electricity. Table 7.10 shows the results on annual 

carbon and utility cost savings for both scenarios.   
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Table 7.10 Annual carbon and utility cost savings 

House configuration CO2 emission  savings 
% 

 Utility costs  Savings 
% 

Bungalows with power Interaction 13.71 45.29 

Bungalows without power Interaction 9.91 41.17 

It can be seen in Table 7.10 that the power interaction between buildings enhances both 

economic and emission savings by about 4 %. Despite the fact that in both scenarios, the 

power generated and the natural gas consumption were identical, the purchased electricity 

amount was decreased by 819 kWhe which corresponds to 14 % of the total electricity 

imported. The on-site electricity utilisation rate was increased from 50 % for the scenario 

without power interaction to a 66 %.   

If such power interaction is extended to the street level then the overall performance of 

buildings in streets may improve beyond 4 % enhancement. 

7.6 Conclusions 

 In all street scenarios savings in annual carbon emissions and utility costs are 

achieved. Savings in the carbon emissions are  in the range of 1-5 % whilst reductions 

in the utility costs are between 28.5 and 31.7 % 

 The negative ecological impact of individual mCHP units with poorer performance 

was compensated by mCHPs with better performance in the mix.   

 In the scenario in which all conventional heating equipment was replaced with the 

mCHP technologies, which demonstrated the best performance, both carbon and 

utility cost savings were enhanced. Reductions are in the range of 3.6-5.2 % and 31-

32.5 % for the carbon emissions and utility costs, respectively. 
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  Simulations of two bungalows with different occupancy patterns and with power 

interaction indicate that both economic and environmental performance of buildings 

were enhanced by about 4 % as a result of the higher rate of on-site electricity 

utilisation.  
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Chapter 8 Conclusions and Recommendations for Future work 
 

8.1 Conclusions 

The outcomes and the main findings of the experimental and theoretical analysis of 

deployment of a number of mCHP systems based on various technologies along with 

recommendations for future investigations are presented in this Chapter.   

Conclusion from the experimental setups of Whispergen Mk Vb 1 kWe Stirling engine, 

Hilton PEM fuel cell 0.75 kWe and Baxi SenerTech Dachs 5.5 kWe ICE 

Conclusion from the theoretical simulation of several configuration and operating regimes of 

the Stirling engine based mCHP system applied in a semi-detached building under 2006 

construction regulations 

Conclusion from the theoretical simulation of a number mCHP units with nominal capacity in 

the range of 1-3 kWe based on Stirling, ICE engines and PEM fuel cell prime mover 

technology. 

Conclusion from theoretical simulation of a mass installation scheme which used a mixture of 

different micro scale co-generation technologies (Stirling, ICE engines, PEMFC) 

8.1.1 Conclusions from the experimental part of investigations  

The performances of three mCHP units, namely 1 kWe Whispergen MkVb Stirling engine, 

0.75 kWe Hilton PEM fuel cell and 5.5 kWe Baxi SenerTech Dachs ICE, were determined for 

steady-state and dynamic (transient) regimes of the operation, including start-up and shut-

down regimes.   
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The experimentally obtained performance of the units were then used as input data for 

modelling house heating systems in EnergyPlus software for analysing the energy 

performance of different types of buildings over  a yearly period. 

the Stirling based mCHP unit 

1. The unit was found to operate at relatively low average thermal and electrical efficiencies 

of 67 % and 12 %, respectively. The lower level of efficiencies is observed during start-

up transient regimes.  

2. The unit still generates heat (at a lower rate) for few minutes after it is switched off and 

this has a positive effect on the overall efficiency of the unit.  

The PEM fuel cell unit 

1. The maximum electrical efficiency is calculated at 49 % during ‗low load‘ operation and 

the highest thermal efficiency is 36 % when the stack operates at high power densities. 

The average efficiency values are 43 % and 31 % for the electrical and thermal 

efficiencies, respectively, when hydrogen is used as a fuel.   

2. The warm star-up of the unit improves both the electrical and thermal performance due 

to the increased stack temperature and, consequently, to enhanced kinetics of the cell 

reactions.   

3. Each change of the load is associated with a voltage transient behaviour and the 

magnitude of it‘s undershoot/overshoot depends on the load variation. No significance 

difference in the recovery time was noticed during the overshoot voltage response. The 

absence of the current undershoot/overshoot phenomena suggests that the water content 

in the self-humidifying membrane is insufficient for provoking the transient voltage 

behaviour. 
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4. Despite the fact that purging of hydrogen decreased the stack efficiency, it improves the 

water management within the fuel cells. In addition hydrogen purging frequency 

increases with rise in the load since the possibility of water flooding is enhanced at high 

power densities operation. 

the ICE mCHP 

1. The average thermal and electrical efficiencies of the unit are 70 % and 20 %, 

respectively.  

2. The unit demonstrates a poor thermal performance during the start-up period.   

3. There is a very little delay in full power generation during start-up period (few minutes 

only).   

4. Due to the increased heating requirements of the building in which experiment were 

conducted the cycling operation did not take place.   

8.1.2 Conclusions from simulations of deployment of the Stirling engine based unit with   

different house heating system configurations and operating strategies  

For the estimation of the annual performance two main operating scenarios were identified, 

and simulated; simultaneous CH and DHW heat generation and split CH and DHW heat 

generation.  

simultaneous heat generation mode 

1. The economic savings of ₤261 is predicted, which is attributed to the current UK feed-in-

tariff rate.   

2. The carbon savings are not achieved, in fact there is a rise in carbon emissions by about 

16 %; 

3. Such the operating regime was the least feasible in all scenarios investigated. 
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split heat generation mode  

The mCHP operates for longer periods in this mode thus generating more electricity but also 

consuming more fuel at the lower efficiency. 

1. The economic savings for this mode of operation is ₤244 and are due to the feed-in tariff 

scheme.   

2. The carbon savings are marginal at 0.64 %, compared to a conventional domestic heating 

system.   

3. This mode of operation was the most feasible in all scenarios investigated. 

 

the effect of DHW  tank capacity 

The rise in the DHW tank capacity is detrimental to annual performance of the mCHP system 

due to higher thermal losses in the tank and due to an extended operation on a daily basis 

with increased consumption of fuel. 

 

the effect of the rise in electricity requirements 

The rise in electricity requirements in the house result in a higher carbon emission savings 

due to higher on-site power utilisation, but marginally decreased the utility cost savings due 

to the higher cost of the imported fraction of electricity. 

 

the effect of the rise in thermal requirements 

1. Both Stirling and ICE mCHP systems provide the highest CO2 emission savings in the 

buildings with average thermal demand (13-15 MWhth). In buildings with good 

insulation and higher DHW demand mCHP exhibit a poor performance in terms of 

carbon savings. 
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2. In respect to the utility savings, regardless the technology, increasing the thermal load 

results in deterioration of the mCHP‘s economic performance. 

3. In buildings with high thermal demand the 1 kWe PEM FC mCHP exhibits the strong 

economic and environmental performance.   

4. For both utility costs and carbon emissions, an increase in savings with increasing of 

the auxiliary Boiler/mCHP thermal outputs ratio is evident, which can be attributed to 

an increase in the combined thermal efficiency of the auxiliary boiler/mCHP system. 

Maximum savings were predicted the auxiliary Boiler/mCHP thermal outputs ratios 

between 1 and 1.2.   

8.1.3 Conclusion from the theoretical simulations of various mCHP units 

  1 kWe mCHP units 

1. The PEM FC mCHP cannot be used on its own to meet heating demand in even small 

houses due to its low HPR.  

2. The Stirling engine mCHP is the only unit which can be deployed in buildings without 

an additional burner due to the highest HPR. The low thermal efficiency results in the 

high fuel consumption and therefore marginal CO2 savings can be achieved. The system 

provides the lowest utility cost savings.   

3. Best performance was predicted for the ICE engine based mCHP unit which is attributed 

to the quick start-up transient process, moderate electricity import and the highest 

combined thermal (CHP/Boiler) efficiency. 

mCHP units in the range of 2-3 kWe 

The best performance is demonstrated by the 3 kWe ICE and Stirling base mCHP units 

depending on the energy requirements of the building  
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8.1.4 Conclusions from simulations of deployment of a mix of mCHP technologies on a 
district/street scale  

 
The ecological and economical impacts of deployment of a mix of mCHP technologies on a 

district/street levels (61, 120 and 240-house streets). Technologies considered for a mix are 

Stirling and ICE engines and PEM fuel cells.  

1. In all street scenarios savings in annual carbon emissions and utility costs are 

achieved. Savings in the carbon emissions are  in the range of 1-5 % whilst reductions 

in the utility costs are between 28.5 and 31.7 % 

2. The negative ecological impact of individual mCHP units with poorer performance 

was compensated by mCHPs with better performance in the mix.   

3. In the scenario in which all conventional heating equipment was replaced with the 

mCHP technologies, which demonstrated the best performance, both carbon and 

utility cost savings were enhanced. Reductions are in the range of 3.6-5.2 % and 31-

32.5 % for the carbon emissions and utility costs, respectively. 

4. Simulations of two bungalows with different occupancy patterns and with power 

interaction indicate that both economic and environmental performance of buildings 

were enhanced by about 4 % as a result of the higher rate of on-site electricity 

utilisation.  

8.2 Recommendations for future work 

 
In respect to the experimental work 

1. The effect of the water tank volumes should be assessed experimentally on the test 

rig.  
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2. DHW usage profile during the operation of the mCHP should be implemented in 

experimental investigations.   

3. Experimental evaluation of a PEM FC mCHP system with fuel reformer should be 

carried out in order to improve the accuracy of theoretical simulations of energy 

performance of houses.  

In respect to the theoretical work: 

1. The EnergyPlus software should be improved in order to accurately present the 

dynamic behaviour of all mCHP systems. This can be implemented by activating an 

empirical power generation equation. 

2. Further improvements in the Fuel Cell module in EnergyPlus are required to include 

interaction with the auxiliary burner. Additionally, an explicit heat-led operation 

option should be included in the modelling procedure in software. 

3. The effect of the power interaction should be assessed on the street level.   
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Appendix A 

Validation of the Stirling based mCHP power delay modelling approach 

The modelling method used for description of the operation of the Stirling engine based 

mCHP assumes that the heat generation depends on the engine‘s temperature.  This approach 

is in a good agreement with experimental results described in (Section 5.2.6). This approach 

was suggested by EnergyPlus developers as the most adequate method for simulating 

particularly Stirling engine based mCHPs. Additionally, the operation of the Stirling engine is 

simulated using a power delay method (normally used with IC engines). Figure A.1 shows 

theoretical and experimental results on simulation of the dynamic operation of the Stirling 

engine mCHP.   

 

Figure A.1 Validation of theoretical modelling of operation of Stirling engine based mCHP 

using "Power delay‖ approach 

It can be seen in Figure A.1 that the theoretical modelling predicts a significantly faster 

response to the heat requirements. Dynamic characteristics during the start-up resume are not 

included in this approach and the engine reaches the steady state significantly sooner that in 
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real conditions. In respect to the power generation it can be seen that there is a delay period 

during start-up (2 minutes). The mCHP reaches the nominal electric capacity within 1 minute 

period, i.e. significantly faster than in experimental conditions. There is no a noticeable 

difference in results during the steady state operation for both heat and power generation. 

Overall, this theoretical method produces less accurate results and therefore was not deployed 

in the current research.   
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Appendix B 

Operation of mCHP systems in a semi-detached building satisfying 1996 

constructions regulations 

The operation of 2 and 3 kWe ICE and 3 kWe Stirling mCHP units in base scenario case 

demand profiles, and DHW profiles are presented in Figures B.1-B.6 

Base Demand profiles (Electricity - 4.6 MWhe, DHW – 200 L/day) 

 

Figure B.1 Heat and Power generation by 3 kWe Disenco mCHP combined with a 150 L 

DHW tank in winter weekday 
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Figure B.2 Heat and Power generation by 3 kWe ICE mCHP combined with a 150 L DHW 

tank in winter weekday 

  

 

Figure B.3 Heat and Power generation by 2 kWe Stirling engine mCHP combined with a 150 

L DHW tank in winter weekday 
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Increased DHW demand (Electricity - 4.6 MWhe, DHW – 250 L/day) 

 

Figure B.4 Heat and Power generation by 3 kWe Disenco mCHP combined with a 200 L 

DHW tank in winter weekday 

 

 

Figure B.5 Heat and Power generation by 3 kWe ICE mCHP combined with a 200 L DHW 

tank in winter weekday 
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Figure B.6 Heat and Power generation by 2 kWe Stirling engine mCHP combined with a 200 

L DHW tank in winter weekday 
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