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Abstract  

The optimum design of Hybrid Renewable Energy Systems (HRES) depends on different economical, environmental and 

performance related criteria which are often conflicting objectives. The Non-dominated Sorting Genetic Algorithm (NSGA-

II) provides a decision support mechanism in solving multi-objective problems and providing a set of non-dominated 

solutions where finding an absolute optimum solution is not possible. The present study uses NSGA-II algorithm in the 

design of a standalone HRES comprising wind turbine, PV panel and battery bank with the (economic) objective of minimum 

system total cost and (performance) objective of maximum reliability. To address the uncertainties in renewable resources 

(wind speed and solar irradiance), an innovative method is proposed which is based on Chance Constrained Programming 

(CCP). A case study is used to validate the proposed method, where the results obtained are compared with the conventional 

method of incorporating uncertainties using Monte Carlo simulation.  

 

Keywords: multi-objective optimisation; NSGA-II; standalone hybrid wind-PV-battery; reliability; chance constrained 
programming; design under uncertainties 

I. INTRODUCTION  

Decision making problems can be categorized in two classes based on the number of objective functions that are involved in 

the problem; single objective and multi-objective. In a single objective problem, the aim is to identify the best solution 

corresponding to minimising or maximising a single objective function. However,  in real life, the decision making process 

usually involves more than one objective function. Multi-objective problems do not have a single optimal solution but they 

have a set of compromised solutions between different objective functions known as Pareto set.  

In optimal sizing of HRESs, there are normally more than one objective function to be considered. Two important objective 

functions in the design of a HRES are cost and reliability. Since these objectives are contradicting, a single optimal solution 

cannot be found (with minimum cost and maximum reliability) and a multi-objective optimisation is needed to find a trade-

off; Pareto set solutions. Several studies have been reported in multi-objective optimisation of HRES considering different 

objection functions and using various optimisation techniques. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/41073103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS 74(1):187–194 ·  JANUARY  2016 

DOI: 10.1016/j.ijepes.2015.07.007 

 Kaviani et al. [1] used a PSO to optimize a hybrid wind-photovoltaic-fuel cell generation system with the objective of 

minimizing the annual cost of the hybrid system subject to reliable supply to meet the demand. Diaf et al. [2] analysed the 

optimum configuration of a stand-alone hybrid photovoltaic-wind system that guarantees the energy autonomy of a typical 

remote consumer with the lowest levelized cost of energy. The search method was used to analyze different combinations. 

Kaabeche et al.  [3] recommended an optimisation model based on iterative technique to optimise the size of a hybrid 

wind/photovoltaic system combined with a battery bank with the objective being to minimise the deficiency of power supply 

and levelized unit of electricity cost. 

Bernal-Agustín et al. [4] applied the Multi-Objective Evolutionary Algorithm (MOEA) to the multi-objective design of 

isolated hybrid systems (photovoltaic–wind–diesel) where the objectives were minimizing the total cost  and pollutant 

emissions during useful life of the installation.  

Giannakoudis et al. [5] proposed an optimisation method based on stochastic optimization algorithms (such as simulated 

annealing) for the design and operation of a hybrid power generation system that consists of PV panels, wind generators, 

accumulators, an electrolysis apparatus, hydrogen storage tanks, a compressor, a fuel cell and a diesel generator. 

Genetic Algorithms (GA) proved to be popular in solving optimisation problems. Ould [6] proposed a Pareto-based multi-

objective GA for sizing a hybrid solar–wind-battery system with the aim of minimizing the annualized cost and minimizing 

the probability of loss of power supply. 

Montoya et al. [7] presented a hybrid Pareto- based multi-objective meta-heuristic approach to minimize voltage deviations 

and power losses in power networks, which can be extended to hybrid systems. Yang et al. [8] proposed a GA based optimal 

sizing technique using typical meteorological yearly data. The proposed optimisation model determines the system optimum 

configuration which is able to provide the desired Loss of Power Supply Probability (LPSP) with minimum Annualized Cost.  

The Non-dominated Sorting Genetic Algorithm (NSGA-II) was proposed [9]  to perform multi-objective evolutionary 

algorithms (MOEA) in which an elite-preserving operator gives the best individuals the opportunity to  be directly transferred 

to the next generation. By doing so, a ‘good’ solution which is found in early generations is never removed from the 

population unless a better solution is discovered. Katsigiannis [10] used the NSGA-II to design a small autonomous hybrid 

power system that contained both renewable and conventional power sources with the objectives of minimizing the energy 

cost of the system and total greenhouse gas emission during the system life time. However, the effects of uncertainties in 

renewable energy generation were not considered in this study.  

Different methods to include the uncertainties in renewable resources in the design of HRES have been reported. 

Giannakoudis et al [11] considered adding a known disturbance to the design inputs to maintain optimum mix of renewable 

resources. Nandi et al.[12] assumed that wind speed variation follows the Weibull distribution. Lujano-Rojas el al [13] used 

time series theory to simulate the uncertainties in wind speed in the design of small wind/battery systems. Usually, the Monte 

Carlo simulation approach is used in solving probabilistic problems. Given a significantly large sample size, this method can 

provide highly accurate results. However, the main drawback is the computational burden associated with the large number 

of  repeated calculations [14]. The Chance Constrained Programming (CCP) approach, first introduced by Charnes and 

Cooper [15] in 1959, is now popular method in solving problems that include  random parameters.  Its main feature is that it 

ensures the probability of the resulting decision to  comply with the specified constraints [16]. The CCP  method has been 

widely applied in different disciplines for optimisation under uncertainty[17], but very few studies are reported on using this 



INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS 74(1):187–194 ·  JANUARY  2016 

DOI: 10.1016/j.ijepes.2015.07.007 

method for the design of HRES. Arun et al. [18] used the CCP  approach in the design of  a PV-battery system to deal with 

the uncertainties in the solar radiation. Seeraj et al. [19] used this method to find the battery bank size when renewable energy 

resource availability, ratings and load demand were assumed to be known. 

This paper presents the results of a multi-optimisation NSGA-II based approach for the design of a standalone HRES, shown 

in Figure 1, considering uncertainties in the resources available. The approach employs the chance constrained programming 

to deal with the effects of uncertainties in renewable resources instead of common approach of using Monte Carlo simulation. 

Authors in [20] have shown that chance constrained programming can result in optimum solution for a predefined reliability 

in a single-objective optimisation problem in design of HRES, however  in a multi-objective optimisation problem where 

there is no predefined reliability, conventionally Monte Carlo simulation is employed. This study proposes a novel method in 

employing chance constrained programming in multi-objective problems as a substitute of Monte Carlo simulation. The 

study proposes a method in which chance constrained programing is used as a tool in estimating the expected value of the 

objective function which is affected by the uncertainties, in other words instead of finding the optimum solution for a 

predefined value of reliability, chance constrained programing is used to estimate the expected value of the reliability of the 

design candidates in a multi-objective optimisation problem. To evaluate the performance of the proposed method, the results 

obtained are compared with those obtained by employing the Monte Carlo simulation.   

The outline of this paper is as follows:  

The components modelling and cost modelling are presented in sections 2. 

 Problem formulation and design methodology are presented in section 3.  

A case study is described in section 4. Results and discussion are described in section 5 and finally conclusions are presented 

in section 6. 

II. COMPONENTS AND COST MODELLING 

The HRES design is crucially dependent on the performance of its individual components. Different mathematical models 

have been proposed to estimate the output power of wind turbine, photovoltaic panel and batteries (considered in this work). 

The models implemented in this study are chosen with consideration of giving a realistic estimation of the output of each 

PV Panel

Load

Wind Turbine

++ --

++ --

Dump load
 

Figure 1. Concept diagram of HRES 
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component without being too complicated with details. The mathematical models of components  used in this study are 

briefly presented in Appendices A. More details on components modelling is discussed in [20] . 

In this study the total cost of the system TC (of the design candidates) is calculated as the economical measure taking into 

account the initial capital cost ( ICC ),  replacement cost ( treplacemenC ) and present value of maintenance cost ( M&OC ). That 

is: 

M&OtreplacemenIC CCCTC ++=       (1) 

A. Initial Capital Cost 

The initial capital cost consists of the components cost and their installation cost. 

( ) ( ) 0Bat,UnitBatBatWT,UnitWTPV,UnitNom,PVPVIC C)CcN( CACPAC +++=     (2) 

0C  ; the total installation constant cost including the cost of installation of the wind turbine and PV panels and is considered 

to be 20% of the component cost of the wind turbine and 40% of the component cost of the PV system [3]. 

B. The Present Value of Replacement Cost 

In this study the only component which needs to be replaced during life time of the HRES is assumed to be the battery bank 

so this cost is only calculated when the battery bank exists in the configuration.  

The replacement cost of the battery bank can be calculated as [3]: 
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C. The Present Value of Operation and maintenance Cost 

The present value of operation and maintenance cost of the hybrid system is expressed as[3]: 




































+

+
−

−

+

=

,YC

,
k1

f1
1)

fk

f1
(C

C

0

0

)M&O(

Y

dd

)M&O(

HRES,M&O

fk

fk

d

d

=

≠

     (4) 

 
0)M&O(C ; the operation and maintenance cost in the first year and can be given as a fraction ( k ) of the initial capital 

cost ICC  as: 

IC0)M&O( kCC =         (5) 

The value of k  is assumed to be  1% for the PV system, 3% for wind turbine and 1% for battery bank  [3]. 

 

III. PROBLEM FORMULATION AND DESIGN METHODOLOGY 

The proposed technique adopts the non-dominated sorting genetic algorithm (NSGA-II) [9] in combination with the chance 

constrained programming (CCP) [15] to effectively solve the multi-objective optimisation problem of design of a HRES 

under uncertainties.  
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The aim is to find the Pareto set solutions based on the desired objective functions using NSGA-II. The NSGA-II provides a 

very efficient procedure in keeping the elitism optimisation process as well as preserving the diversity which assures a good 

convergence towards the Pareto-optimal front without losing the solution diversity [21]. 

The following steps are implemented in the NSGA-II algorithm. 

1: Initial population is generated based on defined decision variables and number of populations. 

2: Evaluation of each chromosome in terms of defined objective functions. The adopted methods in evaluation the objective 

functions affected by uncertainties are explained in sub-section (III-A) and (III-B). 

3: Set the generation count 

4: Prepare the mating pool 

5: Perform crossover and mutation operators 

6: Evaluation of new offspring  in terms of defined objective functions. 

7: Perform non-dominated sorting 

8: Calculate the crowding distance 

9: Perform the selection based on rank. If individuals with the same rank are encountered, crowding distance is compared. A 

lower rank and higher crowding distance is the selection criteria. 

10: Increment the generation count and repeat steps 4 to 9 until the counter reaches the maximum number of generation 

11.Generate Pareto set. 

 

The decision variables are the wind turbine rotor swept area ( WTA ), the PV panel area ( PVA ) and the number of batteries 

( BatN ).  

The optimisation problem can be defined as: 

{ }DPSP,TCmin
BatPVWT N,A,A

       (6) 

 Subject to          

 minSOCSOC ≥                    (7) 

where          

treplacemenM&OIC CCCTC ++=       (8) 
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As Equation 6  shows, two objective functions have been considered associated with both minimisation of the system total 

cost (TC ) and the deficiency of power supply probability ( DPSP ); where DPS is the amount of power shortage at each 

hour and h  is the total hours under study.  Since different applications of HRES need different reliability requirements  the 

trade-off between reliability and cost of the designed system expectedly would result in obtaining different HRES with 
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reliability values between 0 and 100% and that would be the decision makers choice to choose the design option  that suits 

the application. 

The energy balance of the system can be modelled as: 
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)a( if total power generated by the wind turbine and PV is sufficient to cover the load demand, otherwise 

)b( WTP + PVP is not sufficient to meet the demand and the battery has to supply the difference. 

In order to compare the performance of the proposed method, the NSGA-II algorithm objectives affected by uncertainties are 

evaluated with CCP  (explained in section III-A) as well as a conventional method based on Monte Carlo simulation 

(explained in section III-B). 

A.  Optimal Estimation of the Objective Functions Affected by Uncertainties Using CCP 

Each design candidate in the main optimisation process needs to be evaluated in terms of the desired objective functions; here 

these are the total cost )TC( and deficiency of power supply probability )DPSP( . As uncertainties with renewable resources 

have direct effects on the second objective function (DPSP); finding an exact value for DPSP is not realistically possible. 

Therefore, this objective function needs to be estimated using stochastic methods, in this study using chance constrained 

programming.  

As  estimatedDPSP is completely dependent on the correct estimation of uncertain variables, here the aim would be to estimate 

the hourly values of 
estimated,tWTP and 

estimated,tPVP . The estimation problem of 
estimated,tWTP and 

estimated,tPVP can be written as a chance 

constrained problem. The aim of this problem would be to estimate the hourly values of 
estimated,tWTP and 

estimated,tPVP in such way 

that their sum would have a value with a desired confidence level α . The estimation problem can be described as a chance 

constrained problem, as:  

α≥+≥+ )PPPPPr(
estimated,testimated,ttt PVWTPVWT      (11) 

Following the method proposed by the authors [20], the hourly values of 
estimated,tWTP and 

estimated,tPVP are extracted and then used 

to calculate the estimatedDPSP . As shown in the case study (section IV), this method requires considerably shorter process time 

as compared with the  conventional Monte Carlo simulation. 

B. Monte Carlo Simulation 

Monte Carlo simulation is conventionally used to estimate the expected value of the parameters with uncertainties. The 

performance of the Monte Carlo simulation is dependent on the accurate modelling of uncertainties in the wind speed and 

solar irradiance. Different approaches are used to model the renewable sources. One of the common approaches is by fitting 

the uncertainties to known distributions such as Weibull or Beta distributions [22]. However, research show that for some 

locations (e.g. in the UK), using predefined distributions may not simulate the weather data properly[23]. Erken [24] used 

different distributions to find the best fitted distribution for each hourly meteorological data. Another method in considering 

uncertainties is adding a random disturbance to the average values of wind speed and solar irradiance [11]. Lujano-Rojas [13] 

and Ji [25] used a time series analysis to model wind speed and solar irradiance variations. To obtain accurate modelling of  
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wind speed and solar irradiance variations, two methods are used to correlate  historical data to known distributions and  time 

series analysis using autoregressive moving average models (ARMA)[26]. Based on the location of the desired site, the 

performance of different modelling methods should be investigated and the most suitable model selected  as the random data 

generator to model the uncertainties in Monte Carlo simulation. Using these random data generators, the Monte Carlo 

simulation is repeated enough for each configuration until the expected values of the objective function; here [ ]DPSPE , is 

calculated with the confidence level of %90 and variation value of less than %3. 

 

The flowchart of the implemented NSGA-II using adopted methods in evaluation the objective functions affected by 

uncertainties are explained in sub-section (III-A) and (III-B) is presented in Figure 2. 

IV. CASE STUDY 

The proposed method is used to design a standalone HRES for a household in Kent, UK. The input data for the design are 

historical hourly data (2000-2008) of wind speed and solar irradiance for 12 months of the year together with typical summer 

and winter load profiles shown in Figure 3. The load profile is a typical load profile in the UK which is adopted from [27].   

Details of technical and economical characteristics of the system components are given in Table I. 

The system under study consists of a wind turbine, a PV panel and a battery bank. The wind turbine rotor area is varied in the 

range from 0 to 154 m2 (in 10 steps), PV panels area is from 0 to 260 m2 and minimum number of batteries required to meet 

the probabilistic constraint is determined for each case. The number of batteries is assumed to vary from 0 to 478. The 

maximum permitted number of batteries in this study is calculated, using Equation 12, considering required storage for one 

day of autonomy with highest daily load demand; here typical winter load demand is used.  

BatmaxBatBat

D
Bat

DODVc

LoadS
N

η
=      (12) 

where Load is maximum daily load )W( ; DS is the number of autonomy or storage days (in this study considered as 1day); 

BatV is the battery bank voltage in )(V ; maxDOD is the maximum depth of discharge and Batη  is the battery efficiency. 

The NSGA-II algorithm is performed for 250 iterations with a population number of 100, the mating pool size is considered 

as 0.5 of the population, crossover probability pc = 0.9 and mutation probability of n1 ; where n is the number of variables; 

here 3.  

To select the best model for wind speed and solar irradiance in Monte Carlo simulation, the results of ARMA simulation are 

compared with those obtained from fitting the historical data of wind speed to Weibull distribution and solar irradiance to  

Table 1. The components design parameters 

Component Efficiency  (%)
Lifetime 

(year)

Initial 

Cost
O &M Cost

Interest Rate 

(%)

Inflation 

rate (%)
Nomial Capacity (Ah) Nominal Voltage (V)

Depth of 

Discharge (%)

PV panel 12.3 25 600 ($/m2) 1% of price 8 4  -  -  -

WT 20 700 ($/m2) 3% of price 8 4  -  -  -

Battery Bank 90 8 1.5 ($/Ah) 1% of price 8 4 40 24 90
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Figure 2. Flowchart of NSGA-II using CCP/ Monte Carlo Simulation  
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Beta distribution. Based on the results presented in [20] Weibull distribution showed better performance in modelling wind 

speed variation and ARMA simulation is used to model solar irradiance in the desired site. 

V. RESULTS AND DISCUSSION 

The system under study was designed based on the methodologies explained in section III and results are presented in this 

section. 

Figures 4-a  and  5-a present a comparison between the initial populations and the final Pareto sets of performing NSGA-II in 

combination with CCP  and Monte Carlo simulation. It can be observed that the NSGA-II with CCP produces more 

conservative results as compared to the other method, as it results in solutions with higher total cost. However, it obtains 

better results in high reliabilities close to 100%; with lower total cost of the system.  

Figures 4-b and 5-b show how the output of each technique converges to its final Pareto set. As can be seen, in both cases 

(using the CCP and Monte Carlo simulation), the outputs of the NSGA-II converges to the final Pareto set at generation 150. 

The final Pareto sets of performing optimisation process using proposed NSGA-II algorithm on the site under study;  in 

combination with CCP as well as  Monte Carlo simulation are compared ; Figure 6. The Pareto sets obtained in both cases of 

employing NSGA-II are well defined and solutions are spread over the reliability axis. It should be noted that a solution with 

zero total cost is not feasible.  

Although using CCP instead of Monte Carlo simulation results in more conservative set of solutions (as shown in Figure 6); 

the execution time is significantly lower. The calculation time for evaluating the objective function of each chromosome is 

11.44 seconds using CCP which is significantly lower than performing the Monte Carlo simulation, which takes 56.81 

seconds for each design candidate. 
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Figure 3. Summer and Winter load profiles  
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The Figure 6 also shows that maximum deviation between two Pareto sets happens when the DPSP is between 15% to 35%. 

To help the decision maker to choose the solution which fits the requirements, the output solution of two design methods for 

reliability of 80% or DPSP of 20% is studied in detail. Design parameters of CCP and the optimum solutions of two design 

methods are presented in Table 2. To evaluate the performance of each of the selected solutions; Monte Carlo simulation is 

performed for the simulation number of 2500 runs. A selection of results is presented in Figures 7-8. Figures 7-a and 8-a 

present the distribution of different blackout occurrence probabilities along the hours of a year. By comparing these two 

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7x 10
5

(100-Reliability) or DPSP (%)

C
os

t (
$)

 

 

Initial population
Pareto-set NSGA-II and CC

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7x 10
5

(100-Reliability) or DPSP (%)

C
os

t (
$)

 

 

Initial population
Pareto-set at Gen. No. 50
Pareto-set at Gen. No. 150
Pareto-set at Gen. No. 200
Pareto-set at Gen. No. 250

 

(a)                                                                                           (b) 

 Figure 4. NSGA-II with chance constrained programming  

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7x 10
5

(100-Reliability) or DPSP (%)

C
os

t (
$)

 

 

Initial population
Pareto-set NSGA-II and Monte Carlo Sim.

 
0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7x 10
5

(100-Reliability) or DPSP (%)

C
os

t (
$)

 

 

Initial population
Pareto-set at Gen. No. 50
Pareto-set at Gen. No. 150
Pareto-set at Gen. No. 200
Pareto-set at Gen. No. 250

 

(a)                                                                                           (b) 

Figure 5. NSGA-II with Monte Carlo simulation 
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Figure 6. Comparison between Pareto sets obtained with different optimisation methods 
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graphs one can see that there are more hours in the year with very little chance of having power shortages in solution -1 than 

in solution-2. It is also observed that the maximum hourly blackout occurrence probability is less in solution-1 than solution-

2; 0.6 for solution-1 and around 0.8 for solution-2.  

Figures 7-b and 8-b present the average daily probability of blackout occurrence throughout the year. Comparing these to 

figures shows that in solution-1 the last three months of the year have the highest probability of blackout occurrence which is 

due higher load demand in winter (see Figure 3) as well as less renewable resources available in these months. However, in 

solution-2 the second half of the year has higher probability of power loss. 

The day that has the largest probability of blackout occurrence in Figures 7-b and 8-b is selected and details of having 

blackout at each hour of that day is presented in Figures 7-c and 8-c.  

Figures 7-d and 8-d show the results of performing Monte Carlo simulation for 2500 times on the hour with most probability 

of blackout and presents the frequency and load satisfaction percentage for that hour. 
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Table 2. Optimum solutions of two design methods for reliability=0.8 

WT Rotor Area (m2) PV Panel Area (m2) Number of Batteries WT Rotor Area (m2) PV Panel Area (m2) Number of Batteries

0.9 92 26 49 77 0 96

NSGA-II and MonteCarlo simulation (Solution-2)NSGA-II and chance constrained programming (Solution-1)
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Figure 7. Monte Carlo simulation results on optimum solution of NSGA-II with chance constrained prog. for reliability=0.8 
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Figure 8. Monte Carlo simulation results on optimum solution of NSGA-II with Monte Carlo sim. for reliability=0.8 
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VI. CONCLUSIONS 

This paper proposes a multi-objective optimisation algorithm for optimum economic and reliability oriented design of hybrid 

renewable energy system. The algorithm takes into account the uncertainties in renewable resources. The decision variables 

are the wind turbine rotor swept area, the PV panel area and the number of batteries. Two conflicting objectives which are 

total cost and system reliability are considered. A novel method in using chance constrained programming is proposed in this 

study to estimate the expected value of the objective function; the reliability of design candidate;   affected by  uncertain 

values of wind speed and solar irradiance at each jour under study. This reduces the evaluation time of the design candidate 

and consequently the run time of the NSGA-II program.  

The results obtained by using the proposed method are compared with those obtained using a conventional Monte Carlo 

simulation. The comparison shows that the proposed method yields conservative results in lower reliability values and better 

results in high reliability values.  
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APPENDIX A- COMPONENTS MODELLING 

Table A-1 Wind Turbine Model 

The wind power generated by a 

wind turbine 
WT

3
wpWT AVC

2

1
P ρ=  

The wind speed wV at the hub 

height 


















=

0

ref

0

hub

refw

z

z
ln

z
z
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VV  

The wind turbine power 

coefficient, pC  0.001027- v 0.11-0.07874v0.01295v- 
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Table A-2 Photovoltaic Panel Model 

The power generated by PV  
PVPVPV IAP η=  

Table A-3 Battery Bank Model 

The state of the charge ( SOC  ), 

during the charging process Bat

CtBat
tt1t

c

∆tI
 )δ(1SOCSOC

η
+−=+  

The battery current 
BatI

 

during the charging process 
Bat

tloadtWTtPV

tBat
V

PPP
I

−+
=  

The state of the charge ( SOC  ), 

during the discharging process Bat

tBat
tt1t

c

tI
)1(SOCSOC

∆
δ −−=+  

The battery current BatI
 

during the discharging process 
V

PPP
I tWTtPVtload

tBat

−−
=  
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Nomenclature   

PVA  
PV panel area (m2) I  horizontal solar irradiance in 

(W/m2) 

WTA  wind turbine rotor disk area (m2) 
BatI  battery current 

0C  
total constant cost including the cost of 

installation of the wind turbine and PV panels 
dk  annual real interest rate 

BatC  
nominal battery bank capacity (Ah) 

pL  system life period in years 

ICC  the total cost of the system BatN  Total number of batteries 

MOC &  
present value of maintenance cost 

repN  number of replacements of the 
battery over the system life period 

repC  the present value of replacement cost 
BatP  battery bank available power (W) 

Bat,UnitC  unit Cost of battery bank ($/Ah) 
PVP  the  PV array output power (W) 

PV,UnitC  unit Cost of PV panel ($/m2) 
WTP  wind turbine  power (W) 

WT,UnitC  unit cost of the wind turbine($/m2) 
Nom,PVP  PV panel nominal  power (W) 

pC  wind turbine power coefficient, ρ  air density (1.225 Kg/m3) 

t∆  
the time step (one hour in this study) SOC  state of the charge of the battery 

PVη  efficiency of the PV array and corresponding 

converters 

TC  the total cost of the system 

Batη  
battery efficiency 

BatV  battery voltage 

Cη  battery bank charge efficiency factor 
refV  the wind speed at the reference 

height 
f  

inflation rate 
wV  hourly average wind velocity (m/s) 

PVη  efficiency of the PV array and corresponding 

converters 

Y  system life span in (years) 

Batη  
battery efficiency 

hubz  wind turbine hub height 

Cη  battery bank charge efficiency factor 
0z  surface roughness length (m) 

f  
inflation rate 

refz  reference height (m) 
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