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Abstract: In this paper, a novel silicon-on-insulator (SOI) waveguide with the multi-
period vertical grating is proposed to realize broadband parametric wavelength
conversion with a quasi-phase matching technique. The grating period in the former part
of the SOI waveguide is optimized to enhance the conversion efficiency at designated
signal wavelength and the 3-dB bandwidth. When the continuous-wave pump at 1550 nm
is used, the conversion efficiency of �14.0 dB at 1750 nm and the 3-dB bandwidth of
387 nm can be obtained. Compared to the constant-width waveguide, the improvements
of 26.7 dB and 298 nm are achieved, respectively. The results show that this SOI wave-
guide is an ideal device for broadband wavelength conversion without dispersion
engineering.

Index Terms: Multi-period grating, quasi-phase matching (QPM), silicon-on-insulator
(SOI), wavelength conversion.

1. Introduction

Recently, the silicon-on-insulator (SOI) waveguide has emerged as an attractive optical device

due to its potential means to alleviate the urgent demands on electronics in the future optical

communications. Because of good optical field confinement and large nonlinear coefficient, the

SOI waveguide-based planar devices can be integrated with the state of art integrated circuits.
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Recently, lots of studies have concentrated on studying the nonlinear optical phenomena in SOI

waveguide. Significant works, including the Raman laser [1], [2], parametric amplification [3], [4],

wavelength conversion [5]–[8], and the all optical switch [9], [10] have been reported. Four-

wave mixing (FWM) based broadband parametric wavelength conversion in SOI waveguide has

attracted considerable interests because it can realize the parallelism of information transferring

and processing in the multiple wavelength channels [5], [6]. However, FWM as a parametric pro-

cess is very sensitive to the relative phase-mismatch between the pump, signal, and idler, which
can cause the periodical power fluctuation of the idler. Thus, the main challenge to realize

broadband FWM-based wavelength conversion is to optimize the phase-matched condition in-

duced by dispersion and nonlinearity effects.

The waves involved in FWM process can be phase-matched through pumping near the zero

dispersion wavelength (ZDWL) of SOI waveguide [6], [8], but it requires the careful design of

the waveguide geometry so as to reduce the phase-mismatch. Recently, the quasi-phase

matching (QPM) technique was proposed to periodically reset the phase-mismatch [11]. This

technique could realize efficient wavelength conversion in the case of serious phase-mismatch,
which provides more freedom to design the waveguide geometry. However, it is difficult to real-

ize the QPM on SOI platform due to large Kerr coefficient and strong nonlinear loss induced by

two-photon absorption (TPA) and free carrier absorption (FCA) [12], [13]. Although some

schemes were proposed to solve the problem, the conversion efficiency was only enhanced at

the designed wavelength [12]–[14]. As reported in our previous work, the single-period vertical

grating can be used for extending the conversion bandwidth by alternating the phase-mismatch

between two values with opposite signs, but the QPM scheme in single-period grating wave-

guide (SPG-w) suffers from the strong nonlinear absorption [15].
Here, a novel SOI waveguide with the multi-period silicon grating is presented. The multi-

period grating waveguide (MPG-w) is utilized to strictly limit the phase-mismatch to a small

range in the former part of SOI waveguide. Compared with the SPG-w, the numerical results

show that both the conversion efficiency and 3-dB bandwidth can be efficiently enhanced. It

is possible to simplify the waveguide structure when the optimal parameters are chosen.

2. Principle

During the FWM process, the powers of pump Pp, signal Ps, and idler Pi in silicon waveguide

can be described by the following equations that take into account of TPA, FCA, free carrier dis-

persion (FCD), and Kerr effects [15], [16]:

dPp

dz
¼ �

c�N
p

nvg;p
�þ �FCA

p

� �

þ 2�TPA
p Pp

" #

Pp � 4Reð�pspiÞ P2
pPsPi

� �1
2

sin � (1)

dPk¼s;i

dz
¼ �

c�N
k

nvg;k
�þ �FCA

k

� �

þ 2�TPA
kp Pp

� �

Pk þ 2Reð�kplpÞ P2
pPsPi

� �1
2

sin � (2)

d�

dz
¼�þ Re �spip P2

pPi=P
� �1
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þ�ipsp P2

pPs=P
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�4�pspi ðPsPiÞ

1
2

� �

cos � (3)

� ¼�� þ 2Reð�sp þ �ip � �pÞPp � �FCD (4)

where � and vg;j represent the linear loss and group velocity, respectively. Here, �N
j is the con-

finement factor that corresponds to the power scale of the wave j confined within the silicon.

The coefficient �FCA
j ¼ 1:45� 10�17ð�j=�refÞ

2N and �nFC
j ¼ ð�8:8� 10�4N � 8:5N0:8Þ � 10�18 de-

scribe the absorption and index change of free carriers, respectively. The reference wavelength

�ref is located at 1550 nm. N ¼ �0�TPAjApj
4=2�h!pa

2
p represents the density of free carriers gener-

ated by TPA, �o ¼ 1 ns is the lifetime of the free carrier, and �p is the effective modal area of
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the pump. N and �FCA
j have units of cm�3 and cm�1. The parameter 	 klmn is defined as [14],

[15], [17]

�klmn ¼
3!k
klmn

4"0c2�aðnknlnmnnÞ
1
2

�
ð3Þ
klmn ¼

n2!k
klmn

c�a
þ i

�TPA
klmn

2�a
(5)

The indices k , l , m, and n refer to p, s, and i in Eq. (1)–(3), nvð!vÞ ðv ¼ i ; j ; k ; lÞ is the modal

refractive index at !v , and �a is the average effective mode area given by �a ¼ ðakalamanÞ.

Here �
3Þ
klmn is the third-order susceptibility tensor. The Kerr coefficient n2 and the TPA coeffi-

cient �TPA are related to the real and imaginary part of the tensor. Based on the measure-

ments carried out to characterize n2 and �TPA over a wide frequency range [18]–[24], the value

of n2 for silicon is 6� 10�5 cm2=W, and the �TPA is 0.45 cm/GW at near-infrared wavelength.


klmn ¼
RR

F �
k FlF

�
mFndA=ð�v¼k ;l ;m;n

RR

jFv j
2dAÞ1=4 is the mode-overlap factor [16], where Fv is the

mode profile transverse to the propagating direction. Equation (4) includes the wavelength-

dependent parameters, such as nonlinear parameters, mode-overlap factor, and modal

refractive index. When only one wave at !i is propagated, 
iiii ¼ 1, and (5) is reduced to the

conventional nonlinear parameter [16], [25]. The waves in (1)–(3) are assumed to be the funda-

mental TE mode so that the Raman scattering could be neglected [8], [12]–[15], [26].

Here �ðzÞ ¼ ��z þ �sðzÞ þ �iðzÞ � 2�pðzÞ is phase-mismatch of the co-propagating waves,

k ¼ s, i holds when l ¼ i , s. � is the phase-mismatch and �FCD induced by FCD can be

neglected at low pump power [4], [16]. Equations (1) and (2) describe the power conversion rate

in the waveguide, indicating that � determining the directions of power flow in FWM process. If

sin � 9 0, dPp=dz G 0 in (1), indicating the power being converted from the pump to signal and

idler. If sin � G 0, dPk=dz G 0 in (2), indicating that the power being converted from the signal

and idler to the pump. For a constant-width waveguide (CW-w), the power of idler becomes fluc-
tuation due to the large phase-mismatch. When a QPM scheme is utilized, the phase-mismatch

is periodically reset between two values with the opposite signs, and the phase-mismatch can

be controlled to ensure that sin � 9 0 along the waveguide. The power back conversion is sup-

pressed, and a higher conversion efficiency is achieved. It is evident that the factor

Reð	 klmnÞðPpPsPiÞ
1=2

sin � in (1) and (2) determines the conversion rate of power. The traditional

QPM would keep the conversion rate dPk=dz 9 0 all along the waveguide. However, due to the

nonlinear absorptions, the linear attenuation and energy transfer, the pump power Pp along the

silicon waveguide is dramatically reduced, which induces a significantly decrease of the factor

Reð	 klmnÞðPpPsPiÞ
1=2

sin � during the propagation. The decrease of factor makes the QPM in sili-

con waveguide more difficult since the first term in (2), which represents the linear loss and non-

linear absorptions, is quite large and negative. The large Kerr coefficient also make the

decrease of the factor more obvious. During the propagation, the power of pump in the former

part of the waveguide is larger than the back part due to the large loss and nonlinear absorption

of silicon waveguide. The QPM is more sensitive to the phase-mismatch in the former part. By

changing the structure of the former part of the waveguide, the phase-mismatch is restricted to
a small value, and the power of idler can be enhanced. (4) shows the total phase-mismatch �.
Here the first part �� is the linear phase-mismatch between the pump, signal, and idler. Other

parts are induced by the nonlinearities such as nonlinear absorption and FWM process. Only

the linear phase-mismatch can be directly controlled by changing the cross-section of wave-

guide [14], [27], [28]. The linear phase-mismatch �� is determined by the second-order disper-

sion �2;p and fourth-order dispersion �4;p [5]:

�� � ��2;pð!p � !sÞ
2 �

�4;p

12
ð!p � !sÞ

4: (6)

In our investigation, the QPM scheme is achieved by using the rectangular SOI waveguide

with air cladding, as shown in Fig. 1(a). The waveguide height h is set to be 220 nm. The
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second-order and fourth-order dispersions �2;p and �4;p at 1550 nm as a function of w are

shown in Fig. 1(b). It can be seen the phase-mismatch can be periodically reset between two

values with opposite signs by changing the waveguide width which creates the waveguide grat-

ing. So even the phase-mismatch is serious, which corresponds to a larger ��, the mismatch

phase � will be controlled within a smaller range with � / ��þL1 þ���L2 inferred from (4).
Here ��þð�Þ means the phase-mismatch between the co-waves, the indices “þ” and “�” means

the sign of ��. L1 and L2 are the lengths of grating that correspond to the waveguide width w1

and w2, respectively. In the MPG-w the grating length L1;2 is reduced in the enhanced area,

where the range of phase-mismatch is also decreased. The structure of the proposed wave-

guide is shown in Fig. 1(a), where the waveguide width is set to be w1 and w2 periodically and

the period of gratings in the enhancing area is smaller. It is evident that the effective area is

also changed by the waveguide width, and both of the nonlinear coefficient 	 and linear phase-

mismatch are periodically changed along the waveguide.
The QPM scheme in the MPG-w is described as

��sw ðzÞ ¼
��þ if w ¼ w1

��� if w ¼ w2

�

(7)

where ��sw is the linear phase-mismatch between �s and �p in SOI waveguide. When

�ð0Þ ¼ 
=2, the phase-mismatch factor ��þ and ��� have the relations:

��þLf ;1 ¼ ����Lf ;2 ¼



2
(8)

��þLb;1 ¼ ����Lb;2 ¼ 
 (9)

where Lf ðbÞ;1 and Lf ðbÞ;2 are the length of gratings corresponding to the waveguide width w1 and

w2. The periods of grating in the enhanced area �enha and back part �back are �enha ¼ Lf ;1 þ Lf :2
and �back ¼ Lb;1 þ Lb;2, respectively. The indices f and b mean the former and back part of the

waveguide. In the previous works [14], [15], the QPM scheme is induced by the single-period

grating, as described by (9). In the MPG-w, Equations (8) and (9) indicate that the range of

phase � is within 
=2 in the former part, and changed to 
 in the back part. The values of sin � in

(1) and (2) are close to 1 in the enhanced area, which contributes a larger rate of power conver-

sion compared to the SPG-w.

In addition, the variation of w will induce the mode mismatch and the additional back reflec-

tion loss. Hence a linear taper is utilized to connect w1 and w2 to reduce the loss [14], [29]–[31].

The waveguide width is changed linearly from w1 (or w2) to w2 (or w1), as shown in Fig. 1(a).
Equation (8) indicates that the length of grating j��jLgrating should equal to 
=2. Based on the

analysis in [14], the taper length should have a limitation of j��jLtaper G 
=2. Here, we set

Fig. 1. (a) Conceptual illustration of the MPG-w, and (b) second-order and fourth-order dispersion
at 1550 nm as a function of the waveguide width.
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Ltaper ¼ 25 �m as in [14], it can be inferred that the linear phase-mismatch j�� should be less

than 628.3/cm. Such a value is translated to be j�2;pj G 3:2 ps2=m when the wavelengths of

pump and signal are chosen as 1550 and 1750 nm. As seen from Fig. 1(b), it is evident that

such a value will not limit the width of waveguide since the value of 3.2 ps2=m is much larger

than �2;p in Fig. 1(b).

3. Simulation Results and Discussions

In the simulation, the pump at �p ¼ 1550 nm and signal at �s ¼ 1750 nm are used. The powers

of the pump and signal are 250 mW and 120 �W, respectively. The linear loss coefficient is

1.5 dB/cm for w1 ¼ 720 nm and w2 ¼ 800 nm. Note that the waveguide width shift is 80 nm and
the taper length is 25 �m, which is nearly the order of 3 larger than the width shift. Such a

length of taper can efficiently reduce the back reflection loss [14], [29]–[31]. The value of sin �
as a function of propagating length is shown in Fig. 2. As shown in Fig. 2(a), the sin � is chan-

ged from �1 to þ1 in the SOI waveguide with constant width w ¼ 720 nm. This is induced by

the large phase-mismatch between the pump �p ¼ 1550 nm, signal �s ¼ 1750 nm, and idler

�i ¼ 1391 nm. Fig. 2(b) shows the waveguide with the single-period grating. When sin � ¼ 0, a
phase shift of 
 is induced by changing the waveguide width, and sin � is positive along the

waveguide. The multi-period grating is illustrated in Fig. 2(c). The value of sin � is close to 1 in

the enhanced area. The length of enhanced area is 0.6 cm, which is suitable for the tradeoff

between grating number and conversion effects.

The conversion efficiency as a function of propagation length is shown in Fig. 3, which is

given by 
c ¼ 10log½PidlerðLÞ=Psignalð0Þ�. Here L, PidlerðLÞ, and Psignalð0Þ represent the length of

waveguide, the output idler power, and the input signal power, respectively. Fig. 3(a) shows the

conversion efficiency at �s ¼ 1750 nm as a function of propagating length. It is evident that the

CW-w induces the power fluctuation due to the large phase-mismatch, and the final conversion

efficiency of �40.8 dB is achieved. The SPG-w suppresses the power fluctuation along the

Fig. 2. Waveguide width of (a) the CW-w, (b) SPG-w, and (c) MPG-w and the value of sin � as a
function of propagating length.
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waveguide, and the conversion efficiency is increased to �16.1 dB. It is evident that the power

of idler in MPG-w increases faster than the others since the value of sin � is close to 1 in the

enhanced area. The corresponding power conversion rate dPi=dz is larger, and the higher

conversion efficiency is obtained in MPG-w. The conversion efficiency in the MPG-w can be up

to �14.0 dB, achieving an enhancement of 26.8 dB compared with CW-w and an increase of

2.1 dB compared with SPG-w. In addition, the proposed waveguide shows a higher conversion

efficiency when compared with the similar works in [14] and [15], where the conversion effi-
ciency of �23 dB and �17 dB are obtained at 1750 nm with 300 mW pump at 1550 nm, re-

spectively. The parameters such as the linear loss, Kerr coefficient, and lifetime of the free

carrier are nearly the same. Hence it is convincing to show the better performance of the pro-

posed waveguide since it enhances the conversion efficiency by using a lower pump power of

250 mW. To further clarify the effect of these gratings, the curves separate region is shown in

Fig. 3(b). The curves of CW-w and SPG-w separate at point B. This point corresponds to

sin � ¼ 0 because a phase shift of 
 is induced by changing waveguide width in SPG-w after

point B. The curve of MPG-w is separated from SPG-w at point A. It can be noted that point A
is before the curve maxima point C, and the point B is after the curve maxima. The slop at

point A and B is positive and negative, respectively. In SPG-w, the sin � equals to zero at point B,

and dPi=dz equals to the first term in (2). Hence, the power conversion rate dPi=dz G 0, the slope

of point B is negative. For this reason, the power of idler wave is decreased when sin � is near

the zero. During the propagation, sin � is changed from 1 to 0 periodically in SPG-w. When the

value of sin � is quite close to zero, the first term in (2) makes the conversion rate dPi=dz G 0.

As the value of sin � is increased, the conversion rate is changed to be dPi=dz > 0. This periodi-

cal change of conversion rate induces a ripple of the conversion efficiency curve in SPG-w, as
illustrated in Fig. 3(a), and the ripple becomes smaller when propagating in the back part which

indicates the conversion efficiency is more sensitive to the phase-mismatch in the former part of

the waveguide. The ripple induces a slower increase of the idler power, which indicates that the

power conversion suffers from the large loss and Kerr coefficient of SOI waveguide with the

single-period grating. In contrast, the MPG-w makes the value of sin � close to 1 in the en-

hanced area. The second term at the right side in (2) makes the conversion rate dPi=dz > 0

along the waveguide, which makes the slope at point A to be positive. Thus, the multi-period

grating can circumvent the hurdle induced by the large loss of waveguide, and there is no obvi-
ous ripple as shown in Fig. 3(a), which can enhance the power conversion.

The conversion efficiency of different SOI waveguide is shown in Fig. 4. For the 720 nm

CW-w, the 3-dB bandwidth is 89 nm. Another waveguide has the constant width of 755 nm

which corresponds to the dispersion engineering waveguide (DE-w). It shows that the 3-dB

bandwidth is increased to 304 nm by pumping near the ZDWL, and a broadband wavelength

conversion is achieved. The QPM-gratings can make a further bandwidth enhancement. The

Fig. 3. (a) Conversion efficiency as a function of propagating length in CW-w, SPG-w, and MPG-w,
and (b) the magnified picture of separate region in (a).
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SPG-w realizes the bandwidth of 334 nm, which is 245 nm larger than that in the CW-w and

30 nm larger than that in the DE-w. The MPG-w performs a bandwidth of 387 nm, which is

53 nm larger than that of SPG-w. Compared with other works [14], [15], the bandwidth is still

significantly increased. In [14] the bandwidth is quite small because it only converts the op-

tics at the designed wavelength around 1750 nm. In [15], the SPG-w is used that realize a

331 nm bandwidth which is still smaller than our work. It can be noted that the conversion effi-

ciency of the DE-w shows better when the signal is launched in the wavelength range of 1428
to 1699 nm. This is induced by the relatively smaller phase-mismatch in the FWM process since

the wavelength of signal is not quite far from the pump. It is evident that the QPM gratings real-

ize a higher conversion efficiency as the wavelength distance ��s;p ¼ j�p � �sj is increased,

which corresponds to the serious phase-mismatch. Especially when the signal is launched near

1350 or 1800 nm, an improvement of �6 dB is realized in the MPG-w compared with the

SPG-w and DE-w.
The dependence of conversion efficiency on the pump power in MPG-w is shown in Fig. 5(a).

As the power is increased, the higher conversion efficiency can be obtained. When the pump is

stronger, the increment of pump contributes less to the conversion efficiency due to the large

nonlinear absorptions induced by TPA and FCA. The conversion effects in different waveguides

as a function of the pump power are shown in Fig. 5(b). The pump power has less influence on

the conversion bandwidth, and the MPG-w contributes to the largest bandwidth. The conversion

efficiency becomes saturate when the pump power reaches 200 mW due to the nonlinear

losses. For the waveguide with w ¼ 720 nm, the conversion efficiency is �39.3 dB when the
pump is 350 mW, and a much higher value of �29.1 dB can be acquired with only 20 mW in

MPG-w. Similarly, the saturate conversion efficiency of �14 dB is obtained with 250 mW in

Fig. 4. Conversion efficiency spectra of different SOI waveguides.

Fig. 5. (a) Dependence of conversion efficiency on the pump power in MPG-w and (b) conversion
effects in different waveguides as a function of the pump power.
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SPG-w while the same value is acquired with 100 mW in MPG-w. For the CW pump, such a de-

crease on the pump power can improve the feasibility and save the energy of the device
significantly.

The enhanced area is located in the former part of the SOI waveguide. As the length of en-

hanced area is increased, both of the idler power and the 3-dB bandwidth can be improved.

However, the grating period in the enhanced area is smaller than that in the back part. Longer

enhanced area means a larger number of gratings, which will increase the reflection loss and

the fabrication difficulty. Fig. 6 shows the relationships between the conversion efficiency and

the 3-dB bandwidth and the length of enhanced area. Both of the conversion efficiency

and 3-dB bandwidth are increased with the increase of enhanced area length. Moreover, the im-
provement of conversion effects is not linear with the length of enhanced area, and tends to be

saturated when the length reaches 0.6 to 0.8 cm. A longer length of enhanced area will no lon-

ger induces an efficient enhancement of the conversion effects.

Above all, the MPG-w significantly enhances the conversion effects over a broadband wave-

length range. It can be seen from Fig. 1(b) and (6)–(9) that the smaller dispersion makes the

phase change much slower with the propagating length. Hence the optimal value of w2 in the en-

hanced area can simplify the structure of MPG-w by reducing the grating number. Furthermore,

for the same grating number, the range of phase-mismatch in (8) can be set smaller than 
=2
when the width of w2 is optimized which can further enhance the conversion effects. Table 1

shows the 3-dB bandwidth and the conversion efficiency of signal at 1750 nm of different grating

widths. The grating number is defined by Ngrating ¼ 2ð�enha þ �backÞ, and the enhanced area is

about 0.6 cm. It is evident that the grating number is smaller for the same phase-mismatch range
when the width of w2 is decreased. When w2 is 760 nm, the period number is 16, which is even

Fig. 6. Conversion efficiency of �s ¼ 1750 nm and the 3-dB bandwidth as a function of the enhanc-
ing area length.

TABLE 1

Conversion effects in different SOI waveguides
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smaller than that of SPG-w. It also shows that the conversion effects reach to �13.4 dB and

410 nm for a smaller phase-mismatch range of 
=5. Hence the proposed waveguide has the po-

tential to realize the enhancement of conversion effects over a broad wavelength range. Com-

pared with the 755 nm DE-w, the MPG-w performs a better conversion effects, and contributes

to the enhancement of �8 dB and �100 nm of conversion effects. And it shows that different

structures of the MPG-w can be chosen to realize the broadband enhancement of conversion

effects which brings more freedom of the waveguide design.

4. Conclusion

In summary, a SOI waveguide with the multi-period vertical grating is proposed. The grating re-

alizes the QPM scheme in FWM process by overcoming the difficulty caused by the large Kerr
coefficient and nonlinear absorptions and contributes to a better conversion effects even if the

phase-mismatch of co-waves are serious. It is found that the conversion efficiency and the 3-dB

conversion bandwidth at designated signal wavelength can be enhanced evidently in the pro-

posed waveguide without dispersion engineering. By optimizing the length of enhanced area

and the width of grating, a wavelength conversion with the efficiency of �13.4 dB and the band-

width of 410 nm can be achieved when the phase-mismatch w1 and w2 are 
=5, 720, and

760 nm, respectively. The study results show that the proposed SOI waveguide is an ideal

device for the broadband wavelength conversion.
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