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a b s t r a c t

The celebrated van der Waals model describes simple fluids in

the thermodynamic limit and predicts the existence of a critical

point associated to the gas–liquid phase transition. However the

behavior of critical isotherms according to the equation of state,

where a gas–liquid phase transition occurs, significantly departs

from experimental observations. The correct critical isotherms are

heuristically re-established via theMaxwell equal areas rule. A long

standing open problem in mean field theory is concerned with the

analytic description of van der Waals isotherms for a finite size

system that is consistent, in the thermodynamic limit, with the

Maxwell prescription. Inspired by the theory of nonlinear conser-

vation laws, we propose a novel mean field approach, based on

statistical mechanics, that allows to calculate the van der Waals

partition function for a system of large but finite number of par-

ticles N . Our partition function naturally extends to the whole

space of thermodynamic variables, reproduces, in the thermody-

namic limitN → ∞, the classical results outside the critical region

and automatically encodes Maxwell’s prescription. We show that

isothermal curves evolve in the space of thermodynamic variables

like nonlinear breakingwaves and the criticality is explained as the

mechanism of formation of a classical hydrodynamic shock.
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1. Introduction

In late 19th century, due to the outstanding contribution of its founding fathers, Boltzmann,

Maxwell and Gibbs, Statistical Thermodynamics has been successfully introduced as the general con-

ceptual framework for understanding equilibrium thermodynamic phenomena bymeans of statistical

mechanics [1,2].

The early success of the kinetic theory of gases and the discovery of the mean field approach for

the derivation of the classical van der Waals equation [3] nurtured the hope that an equally neat and

clear description of critical phenomena would be as effective as it was away from the critical region.

Although second order phase transitions, as for example the ergodicity breakdown of real gases at the

triple point, have nowadays been completely framed into a rigorous scaffold [4] – also partially guided

by techniques from the near field theory [5,6] – first order phase transitions, such as gas–liquid phase

transitions, turned out to be more elusive.

Indeed, in spite of the accuracy of the celebrated van derWaals equation for the description of real

gases, the behavior predicted within the critical region, where a real gas turns into a liquid, signif-

icantly departs from the experimental observations. Fig. 1 shows the typical isothermal curves of a

real gas: above the critical temperature (for T > Tc) the pressure decreases as a strictly monotonic

function of the volume; the critical point corresponds to the temperature T = Tc where the critical

isotherm develops an inflection point; below the critical temperature (at T < Tc) real isotherms are

constant within a certain volume interval in spite of the oscillating behavior predicted by the clas-

sical van der Waals equation. Interestingly, the behavior of real isothermal curves within the critical

region turns out to be intimately connected to the theoretical one via the celebrated Maxwell rule

stating that the constant pressure plateau is placed in such a way it cuts lobes of equal areas on the

associated van der Waals isotherm. As it is well known, the Maxwell rule corresponds to the condi-

tion of thermodynamic equilibrium such that, below the critical temperature, the Gibbs free energy

develops two minima of equal value [7].

The remarkable validity, although heuristic, of Maxwell’s approach stimulated countless studies

aimed at a rigorous statistical mechanical description of first order phase transitions as for instance in

theworks of Lebowitz and Penrose [8] and van Kampen [9], where large classes of pairwise interaction

potentials for particles (continuous and hard-sphere-like respectively) are considered or the work by

Griffiths [10] that focuses on the study of analyticity properties of thermodynamic functions.

Alternative methods to analyze phase transitions have also been developed based on macroscopic

approaches to thermodynamics. For instance, the Landau theory allows to construct suitable

asymptotic expansions of the free energy in the order parameters to obtain information of the critical

exponents in the vicinity of the critical point (see e.g. [11]); the Widom approach relies on the

construction of effective free energy functions based on the analysis of their scaling properties [12].

Further recent developments in this direction led to the formulation of the thermodynamic limit as

the semiclassical limit of nonlinear conservation lawswhere phase transitions are associated to shock

solutions of a hyperbolic nonlinear PDE in the class of conservation laws [13–16]. Such nonlinear PDEs

can be also derived inmean field theories from the analysis of differential identities of the free energy

as showed in [13,14,17–19] for the Curie–Weiss and the Sherrington–Kirkpatrick models, or from the

analysis of thermodynamic Maxwell relations as showed in [20,15] for the van derWaals model. Both

the microscopic statistical mechanical approach, via the study of correlation functions asymptotics,

and the macroscopic thermodynamic approach, based on the expansion of the free energy in the

vicinity of the critical point, show the intimate connectionwith the singularity and catastrophe theory

– since the very first pioneering contributions by Arnold – and the Hopf bifurcation theory (see

e.g. [21]).

Despite the numerous progressesmade in understanding phase transitions in a variety of contexts,

from thermodynamics to classical and quantum field theory [22,23], or complex and biological sys-

tems [24,25], and the discovery of their intrinsic universality, a global analytical description of phase

transitions for the van der Waals gas is still missing. In this work, inspired by the theory of nonlinear

PDEs, in the class of nonlinear conservation laws, we propose a novelmethod such that given an equa-

tion of state assumed to be accurate outside the critical region allows to construct a partition function



292 A. Barra, A. Moro / Annals of Physics 359 (2015) 290–299

Fig. 1. Real gas isothermal curves: within the critical region, between the points A and B the behavior predicted by the

van der Waals equation (dashed line) departs from the experimentally observed (solid line). The actual critical isotherms are

constructed starting from the theoretical ones via the Maxwell equal areas rule.

for a finite number of particlesN that is valid in thewhole space of thermodynamic variables including

the critical region. This partition function automatically encodes the Maxwell equal areas rule.
Based on the mean field assumption that configurations of equal volume are equally weighted,

we obtain the general functional form of the partition function. For finite N , the partition function is,

as expected, analytic in the space of thermodynamic variables but it develops a singularity in the

thermodynamic limit N → ∞. We use the Laplace method for the asymptotic evaluation of the

partition function for large N with the constraint that above the critical point, where the Laplace

integral admits one single critical point, the leading asymptotics of the volume expectation value

satisfies the classical van der Waals equation. Remarkably, this condition allows to fix uniquely the

functional form of the partition function in such a way that the logarithm of the probability density

gives the correct Gibbs free energy of the van der Waals model above the critical point. Finally, we

prove that in the critical region, defined as the region in the space of thermodynamic variables where

the Laplace integral admits multiple critical points, the leading asymptotics for the volume develops a

discontinuous behavior, providing the exact analytical description of the first order phase transition.

2. The model

Let us consider a fluid of N identical particles of massm, whose center of mass is fixed at the origin

of the reference frame, described by the Hamiltonian of the form

HN =

N


l=1

p2
l

2m
−

1

2

N


l,m=1

ψ(rl, rm)+ Pv(r1, . . . , rN), (1)

where pl is the momentum of the particles, ψ(rl, rm) is a two-body interaction potential, and the

last term models the interaction with an external field where P > 0 is a real positive mean field

coupling constant and the volume v(r1, . . . , rN) is defined as the minimum convex hull associated to

the configuration {r1, . . . , rN}. The partition function is given by the standard formula for a canonical

ensemble

Z =



dNpid
Nrie

−βHN

where β = (KBT )
−1 with KB the Boltzmann constant and T the temperature. Let us observe that

fixing the center of mass breaks the translational invariance of the Hamiltonian (1) that otherwise

would lead to a divergent partition function Z. Integration over the moment variables pl returns

Z = (2πmKBT )
3N/2Z where

Z =



dNri exp



N



t

2



l,m

ψ (rl, rm)+ xv



. (2)
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The rescaled variables t = 1/(NKBT ) and x = −P/(NKBT ) introduced abovewill allow us to define the

thermodynamic limit and the choice of the notation emphasizes the formal analogy between theGibbs

free energy and the Hamilton–Jacobi function of the associatedmechanical problem (see e.g. [14]). Let

us introduce the density of free energy

αN = −N−1 logZ.

This quantity is sometimes also referred to as mathematical pressure, see e.g. [26]. The expectation

value of a given observable O is defined in the usual manner, i.e.

⟨O⟩ = Z
−1



dNr O e−βHN .

In particular, let us observe that ⟨v⟩ = −∂αN/∂x.

The thermodynamic regime is defined as the large particles limitN ∼ NA whereNA ≃ 6.022×1023

is Avogadro’s number. In particular, for nmoles of a gas of molecules of hard core volume b0 we have

N = nNA NKB = nR Nb0 = nbm

where R = NAKB ≃ 8.31 J/mol K is the gas constant and bm = NAb0 is the molar hard core volume.

Hence, the gas constant R defines the typical scale for the variables x and t . We now assume that for

fixed values of the variables x and t , configurations of equal volume occur with the same probability

density, so that there exists a probability measure µ(v) such that the partition function (2) is of the

form

Z =

 ∞

b

dµ(v) (3)

where b = nbm is the total hard core volume. This assumption gives a nonlinear generalization of

the standardmean field approximation introduced for the statistical mechanical derivation of the van

der Waals equation of state (see e.g. [3]). We also note that, from a formal perspective, this ansatz is

equivalent to the request that the moments ⟨vn⟩ for the model (1) are such that the measure µ(v) is
the solution to the Stieltjes moments problem [27], that is

⟨vn⟩ =

 +∞

b

vndµ(v).

Expressing the differential as dµ(v) = µ′(v)dv, the function µ′(v) gives the weight associated to a

given volume configuration that, for fixed values of x and t , is the same for all configurations of equal

volume. As for the canonical ensemble the logarithm of the probability density in (2) is linear in the

variables x and t (this ensures entropy maximization at equilibrium), we have that the probability

density µ′(v) is such that logµ′(v) = N


xv + 1

2
tφ(v)+ σ(v)



for certain functions φ(v) and σ(v).
Hence, the partition function takes the form

Z =

 +∞

b

dµ(v) =

 +∞

b

eN(xv+
t
2
φ(v)+σ(v)) dv. (4)

In the following we will prove that the functions φ(v) and σ(v) can be uniquely determined by

the request that the expectation value ⟨v⟩ evaluated, away from the critical region, according to the

partition function (4) satisfies, in the thermodynamic limit, the celebrated van der Waals equation



P +
a

v2



(v − b) = nRT . (5)

We should stress that, as discussed in details below, the assumption about the existence of the

measure in (3) is a strong enough information to fix uniquely the functional form of ϕ(v) and σ(v)
with no further specifications on the two-body potential ψ(rl, rm). However, we find instructive to

present an heuristic phenomenological construction for a class of two-body nearest neighborhood

potential depending on the distance of the form ψ(rl, rm) = ψ(rlm), where rlm = |rl − rm|. In
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the thermodynamic limit, we can assume that for a given equilibrium configuration particles are on

average approximately equidistant, i.e. rlm ≃ r̄ where r̄ is the mean distance, then


l,m

ψ(rlm) ≃


l,m

ψ(r̄) ∼ Nψ(r̄).

We used the fact that the number of nearest neighborhood pairs is of order N . Let us consider for

example an effective electric potential energy

ψ(r̄) ≃
1

Nβ

q2

4πϵ0 r̄α
≃

q2

4πϵ0vα/3

where we observed that the mean distance for a given volume configuration is related to the volume

per particle by the relation r̄ ≃ (v/N)1/3 and the exponent β = α/3 is chosen to ensure the linear

extensivity of the potential term in (1). More in general we assume that in the thermodynamic limit

we can write


l,m

ψ(rl, rm) ≃ φ(v),

that is the potential energy can be expressed as a function of the volume. Under this assumption, we

observe that the partition function (2) can be equivalently written as

Z =

 ∞

b

dv DN(v)e
N( t

2
φ(v)+xv)

where

DN(v) =



dNriδ (v − v(r1, . . . , rN))

gives the number of configurations of the prescribed volume v. A direct comparison with the formula

(4) leads us to the natural interpretation, for largeN , of the function σ(v) as the configurational entropy
of the system i.e.

σ(v) ≃
1

N
logDN(v).

Let us now proceed by evaluating the leading order asymptotics, for N → ∞, of the partition

function (4) in the region of thermodynamic variables x and t where logµ′(v) admits one single critical

point. Laplace’s formula gives

Z ≃



2π

Nα′′(v⋆)
e−Nα(v⋆), N → ∞ (6)

where α(v) = −xv − tφ(v)/2 − σ(v) and v⋆(x, t) is a stationary point for the potential α(v) such
that α′(v⋆) = 0, i.e.

x +
t

2
φ′(v⋆)+ σ ′(v⋆) = 0. (7)

In particular, formula (6) implies that α = limN→∞ αN . Identifying the external field constant P in the

Hamiltonian (1) with the physical pressure in Eq. (5) and choosing

φ(v) = 2a/⟨v⟩ (8a)

σ(v) = log (⟨v⟩ − b) . (8b)

Eq. (7) coincides with the van der Waals equation (5). We also note that the asymptotic matching

condition (8b) allows us to evaluate the function DN(v) for large N that as expected is

DN(v) ≃ (⟨v⟩ − b)N .
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The prescriptions (8) are, according our procedure, the necessary matching conditions that

uniquely fix the partition function (4) consistently with the van der Waals equation of state, which is

assumed to be accurate above the critical region. We note that α(v) = G/T , where G is the Gibbs free

energy density of the van der Waals model. A direct calculation shows that the partition function so

obtained

Z =

 ∞

b

eN(xv+t a
v+log(v−b)) dv (9)

satisfies the Klein–Gordon equation in the light-cone variables

∂2Z

∂x∂t
= N2aZ . (10)

Let us also observe that the integral expression (9) can be explicitly evaluated at finite N for t = 0 and

gives ⟨v⟩(x, 0) = b − 1/x − 1/Nx that coincides with the equation of state (5) in the limit T → ∞.

Using the self-consistency equation

⟨v⟩ = N−1Z−1∂Z/∂x

the Klein–Gordon equation (10) implies that the volume density satisfies the nonlinear viscous con-

servation law

∂⟨v⟩

∂t
=
∂

∂x



a

⟨v⟩
+

1

N

∂ log⟨v⟩

∂t



(11)

of the type studied in [28] and that is related to the viscous analog of the Camassa–Holm equation.

In the thermodynamic limit, above the critical temperature where the gradient of ⟨v⟩ is bounded, the
term of order O(N−1) in (11) is negligible and the volume density satisfies the Riemann–Hopf type

equation

∂t⟨v⟩ = ∂x(a/⟨v⟩)

whose solution develops a gradient catastrophe in finite ‘‘time’’ t . As illustrated in Fig. 2(a), the volume

⟨v⟩ evolves in the space of thermodynamic parameters just like a nonlinear hyperbolic wave and the

gradient catastrophe is associated to the critical point xc = −1/8b, tc = 27b/8a, vc = 3b. Beyond
the critical time tc , the physical solution develops a shock discontinuity, corresponding to a first order

phase transition, whose position at fixed t > tc is determined by the equal area rule and its speed U
is given the Rankine–Hugoniot condition

U = −(a/vl − a/vr)/(vl − vr) = a/(vlvr) > 0,

where vl and vr are the limiting values of ⟨v⟩ respectively to the left and to the right of the jump. It was

observed in [20] that the Rankine–Hugoniot condition is equivalent to the Clausius–Clapeyron equa-

tion implying that the shock speed is proportional to the latent heat associated to the first order phase

transition and the trajectory of the shock is interpreted as the coexistence curve of the gas–liquid

phase as shown in Fig. 2(b). Such connection between phase transitions and scalar shock waves was

first observed in the context of magnetic models (see e.g. [16] and reference therein), and in the clas-

sical thermodynamic setting in [15,20] where the notion of universality has been also discussed.

It is interesting to compare the mean field partition function (9) associated to the model

Hamiltonian (1) and the equation of state obtained according to the standard canonical ensemble

formalism. For the sake of simplicity let us consider an ideal gas of non-interacting particles of

hard core volume b. In this case the φ(v) = 0 and the coupling constant P models the interaction

with the external environment. We should stress that in the present formalism the gas does not

occupy a prescribed volume, but the mean field partition function (9) accounts for all possible gas

configurations over the whole space. Evaluating explicitly the formula (9) we obtain

Z =
(N − 1)!

NN



−
1

x

N+1

eNbx.
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Fig. 2. (a) van der Waals isothermal curves (for the choice of parameters a = 1 and b = 3) above and below the critical

temperature Tc = (NKBtc)
−1 . (b) Shock trajectory (solid line) and critical sector (delimited by the dashes lines) associated to

multivalued isotherms.

The equation of state for the gas of N particles is given, in full analogy with the case of mean field spin

systems (see e.g. [14]) via the self-consistency equation

⟨v⟩ =
1

N

1

Z

∂Z

∂x
= b −

N + 1

Nx

or equivalently

(⟨v⟩ − b)P = (N + 1)KBT .

In the thermodynamic regime N ≃ nNA we obtain the well known ideal gas equation of state

(⟨v⟩ − b)P = nRT , (12)

which allows us to identify the coupling constant P with the physical pressure that plays the role of

the external magnetic field in spin systems.
Within the canonical formalism the ideal gas constituted by a fixed number of particles N of

Hamiltonian

H =

N


l=1

p2
l

2m

is assumed to be in equilibriumwith an external reservoir and occupy a prescribed volume, say V . The

partition function is given by

Z =



dNpi d
Nri e

−H/KBT = (2πmKBT )
3N/2



dr

N

= (2πmKBT )
3N/2(V − b)N .

The pressure

P = −
∂F

∂V

is then defined in terms of the Helmholtz free energy F(V , T ) = −KBT logZ gives the equation of

state in the form (12). Unlike the canonical formalism the mean field Hamiltonian (1) encodes the

boundary condition weighing different volume configurations that are intrinsically defined via the

minimum convex hull. As a consequence the number N associated to the spatial scale of the system

takes into account of finite size effects, which are important near the criticality, in a consistentmanner

with the Maxwell rule.

Remark. We observe that the procedure presently described, that allows us to extend the van der

Waals equation of state to the critical region, can straightforwardly be generalized to the class of

equations of state obtained from (large volumes) virial expansions of the form (see e.g. [29])

P =
nRT

v



1 +
B1(T )

v
+

B2(T )

v2
. . .
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with

Bi(T ) =
αi+1

2nRT
+ βi+1 i = 1, 2, 3, . . .

where αi and βi are real constants given by the large volume asymptotic expansion of the functions

σ(v) and φ(v) of the form

φ(v) = −

∞


k=1

αk+1

kvk
σ(v) = log V −

∞


k=1

βk+1

kvk
.

3. The critical region

The subset of the space of thermodynamic variables x and t where the free energy α(v) admits

multiple critical (stationary) points defines the critical region associated to the gas–liquid phase

transition. In this case, the leading asymptotics at large N of the partition function (9) is given by

the formula

Z ≃


i



2π

Nα′′(vi)
e−Nα(vi), N → ∞ (13)

where the sum runs over the localminima vi(x, t) of the free energyα(v). Hence, consistentlywith the

classical description of the van der Waals phase transition, below the critical temperature the Gibbs

free energy develops three stationary points, two of which are local minima. In the limit N → ∞
the leading contribution to the partition function is given by the point of local minimum vm such that

α(vm) ≤ α(vi), for all i ≠ m. Hence, within the critical region, the solution is given by

⟨v⟩ = lim
N→∞

N−1∂x log Z = vm

where vm(x, t) is a root of the equation of state α′(vm) = 0 such that the Gibbs free energy has

the lowest local minimum. The subset of the (x, t)-plane, such that α takes two equal minima

α(vi(x, t)) = α(vj(x, t)), represents the curve of resonance of the exponential contributions in (6)

and identifies the shock line shown in Fig. 2(b). As already known from the theory of classical shocks

for the viscous Burgers equation, such resonance condition is equivalent to the equal areas rule [30].

In Fig. 3we plot the isothermal curves evaluated using the partition function (9). AsN increases the

exact isothermal curves develop an inflection point and rapidly converge to the asymptotic behavior

predicted by the Laplace formula. We should emphasize that the partition function (9) provides a

global description of isothermal curves in the space of thermodynamic variables and the description

of the phase transition is apparently accurate already for relatively small N ≃ 104 if compared with

Avogadro’s number. The formula (9), provides an explicit description of how finite size effects play the

role of a singularity resolutionmechanism. It also gives a statisticalmechanical based interpretation of

the results obtained in [20] that allow to identify the multi-scale regime characterizing the universal

local form of the equation of state

v = vc + N−1/4u



x − xc + a(t − tc)/v
2
c

N−3/4
,
t − tc

N−1/2



where

u(ξ , τ ) = −2
∂ logΛ

∂ξ
(ξ, τ ),

Λ(ξ , τ ) is the Pearcey integral

Λ(ξ , τ ) =

 ∞

−∞

e− 1
8
(z4−2τ z2+4ξz) dz

and (xc, tc, vc) are the coordinates of the critical point as evaluated above.
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a b

c d

Fig. 3. Solution for different values of N and comparison with the classical shock at t = 1.15tc for the choice of parameters

a = 1 and b = 3.

4. Concluding remarks

This work shows how our approach based on the combination of Statistical Mechanics and

nonlinear PDEs theory provides us with a novel and powerful tool to tackle phase transitions. This

method leads to solution of perhaps the most known test-case that exhibits a first order phase

transition (semi-heuristically described) such as the van der Waals model. In particular we have

obtained the first global mean field partition function (Eq. (9)), for a system of finite number of

particles. The partition function is a solution to the Klein–Gordon equation, reproduces the van der

Waals isotherms away from the critical region and, in the thermodynamic limitN → ∞ automatically

encodes theMaxwell equal areas rule. The approach hereby presented is of remarkable simplicity, has

been successfully applied to spin [17–19,14,16] andmacroscopic thermodynamic systems [20,15] and

can be further extended to include the larger class of models admitting partition functions of the form

(4) to be used to extend to the critical region general equations of state of the form (7) including a

class virial expansions.
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