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 Abstract 
 
This research was designed to investigate the mechanical properties of timbers 

reclaimed from demolition, with the aim of generating a visual grade and model 

expression to grade these materials for structural reuse. The use of timber, reclaimed 

from demolition, for new construction or refurbishment has both environmental and 

economic benefits.  

 

The research developed an appropriate, alternate visual grading method which takes 

account of the unique problems associated with timber reclaimed from demolition. 

The research also investigated the loading capacity of timbers where previous 

structural loading may have affected the strength, and how grading without prior 

knowledge of the timber species can be utilised. Complimentary research suggested 

that the number of timber growth rings in a specimen has a direct effect on the 

mechanical properties, and that this can serve as a predictor of elastic modulus, 

especially when considered in conjunction with the density of the specimen.  

 

This thesis presents the findings of the research, which involved developing an 

alternate visual grading methodology, appropriate to the inherent ‘in service’ damage 

sustained by timber, and quantifying the mechanical properties of reclaimed timber 

joists and comparing these with small clear tests. The visual grade accounted for the 

lack of species data available, by becoming independent of timber species. The 

research analysis considered density, specimen age and tree ring frequency as the 

variables in generating the model expression. In the final instance the analysis 

rejected the age of the specimen as a variable; this was found to be an anomalous and 

inaccurate figure, which could only be estimated and added very little to the accuracy 

of the model expression.  The model expression uses tree ring frequency and 

specimen density to estimate the modulus of elasticity of the specimen and thus its 

strength grade. 

 

The contribution to knowledge in this research is through the introduction of an 

alternate, novel method of investigation and an expression to estimate the modulus of 

elasticity; the method is aimed specifically towards operatives at the demolition site 

using simple measuring equipment. 
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1 Introduction 

The UK is one of the world's major users of timber and timber products; however, it is 

also one of the most wasteful. Reclaimed timber elements are often discarded, 

reprocessed for lesser use or consigned to waste streams, even though they could be 

used again. Structural timber use in modern construction is increasingly dependent on 

concerns about global climate change, depletion of fossil energy reserves, and 

increasing biodiversity loss. Responsible management of forests and woodlands help 

to support biodiversity conservation, though in its report, UK construction industry 

overview, CorporateWatch (2004) stated ‘there are no currently reliable statistics for 

the amount of wood waste generated in the UK’. The report did, however, calculate 

that wood waste in the construction industry contained more than: 

 2.5 million tonnes a year from construction sites, and 

 2.1 million tonnes a year from demolition 

 

The consignment of used timber to waste and non structural use is placing immense 

pressure on the world's forests, and is a major cause of their destruction and 

deterioration. Currently, much of the timber reclaimed from demolition is simply 

shredded for use as pulp, reprocessed for strand-board, land-filled or destroyed; only a 

small amount of this is reused for building applications. Reclaimed timber could very 

easily be used in new buildings, renovations or alterations, and current building 

regulations and practice means that demand for good quality timber for construction is 

high. A great many UK companies, both large and small, are in business reclaiming 

and selling building materials of all kinds. However, this industry only constitutes a 

drop in the ocean when compared to the overall total mass of timber waste in the UK. 

At the time of writing, the turnover of the reclamation industry, as a whole, is around 

£450 million per year; however, no official figures exist for timber reclamation alone. 

 

1.1  Motivation 

There were several reasons for carrying out this research. Virgin, new timber is 

produced, often from sustainable sources, at extremely competitive prices; however, 

reclaimed timber has the edge environmentally. Care for the environment, 

maintaining biodiversity, cost implications in using reclaimed timber and an attempt 
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to steer future legislation and best practice, are the drivers behind this research 

project. The level of knowledge relating to the amounts, types and location of 

demolition reclaimed construction materials is, at best, an informed guess. Until the 

proposals of increasing legislation and growing public concern over the environment 

and the loss of biodiversity, there was little opportunity, or need, to benchmark 

demolition waste streams.  

 

Existing and new legislation relating to construction waste and materials reuse, and a 

more general move towards cost saving in construction, have highlighted the issue of 

reclamation and reuse of demolition materials without further processing to a wider 

audience. These issues, and a probable future of increasing legislation relating to 

construction waste coupled with innovations in technology, aswell as reducing the 

effects of waste on the environment, has been the guiding motivation for this research. 

 

1.2  Current status of reclaimed timber in construction 

Reclaimed timber is not specifically included within the scope of many current timber 

standards; however, with minor additional application rules they could be extended to 

include reclaimed timber. Unfortunately, at the present time, there exists a dearth of 

tools and techniques suited to the deconstruction of timber structures and buildings. 

BS 6187 Code of practice for demolition (BSI, 2000), recommends that timber 

structures should either be demolished by deliberate collapse methods or 

deconstructed. This second option presented by the standard suffers due to the 

quantity of, and difficulty in removing, connectors in timber structures and the time 

taken in precise deconstruction; making this option far more costly. 

 

Many timber components reclaimed from deconstruction or demolition are tainted, for 

direct construction purposes, with nails and screws that must be removed or made safe 

for handling, before even considering reuse. This can be an extremely time consuming 

process, only proving to be viable for high value, large section timber joists. Many 

lower value components such as small section beams and joists will need to be free of 

nails and screws if they are to be reused, in any capacity. Nailed and screwed 

connections are used to attain explicit values for material shear and pullout (the 

tendency of opposing structural forces to draw nails out of timber connections).   
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While there exists a wide knowledge base on these criteria, there is currently, little 

research establishing basic rules for the performance of nails in reused timber joists. 

For these reasons, timber reclaimed through demolition operations is often sent to 

waste streams; no operator wishes to be burdened with the costs involved in the 

reclamation process. 

 

1.2.1  What is strength grading and how is it carried out? 

In its simplest form strength grading, formerly known as stress grading, is a method of 

accurately estimating the limit state of a piece of plain sawn timber. Construction 

professionals often encounter, with equal measure, the terms 'strength graded' and 'dry 

graded', which are often used interchangeably in texts on the subject. Strength grading 

of timber has been conducted for many decades, but it is only relatively recently that 

moisture content requirements have been introduced into the standards, hence the use 

of the phrases 'dry grading’ and ‘dry graded'.  

 

Strength grading may be carried out by either visual or mechanical methods; visually, 

by individually licensed operatives, and mechanically, by companies operating 

individually licensed strength grading machines. Each separately licensed grade mark 

contains a unique identifying number, of the grader or grading machine, ensuring total 

traceability throughout the process. 

 

Visual strength grading is undertaken by specially trained individuals licensed by 

independent third party certification companies including, BM TRADA Certification, 

BRE QA and BSI QA. Visual strength graders examine each piece of timber and 

assess it for the presence of naturally occurring growth characteristics which affect 

strength. Visual strength grading produces two grades - GS (General Structural) and 

SS (Special Structural). Machine, or mechanical, strength grading also requires the 

assessment of every piece of timber. Strength grading machines measure the stiffness 

of timber; there is a direct correlation between the stiffness of a piece of timber and its 

other strength properties. Strength grading machines are licensed by independent third 

party certification companies. BS EN 14081 Strength graded structural timber with 

rectangular cross section (BSI, 2011) governs the process issues and machine testing 

for the mechanical strength grading of softwoods. 
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1.2.2  Why use strength graded structural timber? 

Timber, used structurally in a building, is a safety critical construction element, and 

the use of strength graded timber is a requirement of the UK Building Regulations - 

Approved Document A (DCLG, 2010). Dry graded timber is seen as a material which 

is 'fit for purpose' in structural engineering terms. It is stronger, and being dry, it is 

dimensionally stable, further reducing the risk of shrinkage or distortion which can 

occur if the timber is subject to changes in moisture content. It is also lighter because 

of this reduced moisture content, and as a result is easier to handle, machines better 

and gives a smoother finish, thereby also providing an improved surface appearance. 

 

1.2.3  Need for a change of the rules for reclaimed timber 

When timber is reclaimed from demolition it will usually have been subject to a 

stable, dry atmosphere for several decades, so usually appears in the dry condition, 

where the measured moisture content is equal to, or less than 12%. This offers the 

potential for immediate dry grading, prior to structural reuse. However, sustainable 

reclamation of timber from demolition can only occur where it is feasible and 

economic to carry the reclamation operations out. In recent years certain industry and 

regulatory drivers have increased the potential scope for the reclamation of timber for 

direct reuse in construction: 

 Increased cost of sending timber to landfill (Landfill tax) 

 Better tools and techniques available for deconstruction 

 Regulations concerning site waste management 

 Development of more effective routes to market 

 Increased client demand for reuse in construction, renovation and DIY.  

 

Standards or best practice guidance for the regrading of reclaimed timber joists would 

be the obvious next step in this developmental path. This research seeks to add to the 

existing body of evidence in favour of the direct reuse of timber components from 

demolition in further construction operations.  
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1.3  Research framework 

This research thesis is organised into several discussion areas; an Introduction and 

background, a Literature search and review, Project methodology, Results, Analysis 

and discussion, and Conclusions and suggestions for further work. 

 

The research introduction and background investigates the status of reclaimed timber 

from demolition in today’s construction industry, the motivation for this research 

project and a general background to reclaimed timber use in the UK. 

 

The Literature review details a large scale view of the use of reclaimed materials, both 

in the UK and global construction industry. The review then considers a more 

narrowly focussed investigation of reclaimed and recycled timber; fielding the 

argument that there is ample scope already to reuse timber directly in new 

construction. At this point the review investigates why there is little direct use of 

reclaimed timber in new construction; considering whether the lack of an industry 

compliant regrading protocol contributes to this. It further suggests that, from recent 

complimentary research, there is scope for the introduction of a method of regrading 

that is quick, inexpensive, and that can be carried out directly, at the site of building 

demolition/timber recovery.   

 

The Project methodology diverges into two parts: Firstly, how an industry test 

regimen could be administered by a certified testing company, and the resultant 

regraded timbers delivered to the construction sales market. Secondly, how the test 

methods utilised to carry out this research project could be laboratory duplicated, 

including the visual and machine tests involved. This section also discusses and 

clarifies the visual grading, machine grading simulation, small clear testing, density 

tests, age calculation and tree ring frequency testing, in enough detail to enable the 

tests to be reproduced by other researchers. 

 

The Results presents the test results for this research; Modulus of Elasticity (MOE), 

Modulus of Rupture (MOR), density, dating of samples and tree ring frequency. 

While this section contains some discussion, it only relates directly to the results 

obtained. 
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The Research Analysis section of this document presents a discussion based on the 

results obtained from the research. It also discusses the methods of generation of 

model calculations produced from the sets of results obtained. The calculated models 

relate to the theory that tree ring frequency and measured density of the timber yield a 

model calculation, able to act as a predictor of the modulus of elasticity of similar 

timbers recovered from demolition. The assumed age of a reclaimed timber sample is 

also considered as a partial indicator quality and remaining strength. 

 

The research conclusions, suggestions and closing remarks are a discussion relating to 

how the results of this research can be further used, recommendations arrived at from 

inferences in the previous sections; and how these results and recommendations may 

inform the basis of further research work in this field. 

 

1.4  Background to the research 

The original intention of this research project was to investigate the possible direct 

reuse of many different types of building materials; from bricks, timber and slates, to 

complete units such as air conditioning and heating units. However, it was discovered 

in the formative period of the research that this was going to be a very large task. 

Even narrowing the investigation to only consider timber reclaimed from demolition 

still involved considering an extensive list of variables. The other reason for 

concentrating on timber reclamation is that it is probably the most wasteful of the post 

demolition processes, with much of the timber reclaimed going to landfill. 

  

While there can be, in some cases, little difference in material qualities between virgin 

and reclaimed timber, there are currently no recognised grading rules or best practice 

guidelines for the stress grading of reused timber, either by machine or visually. Since 

the majority of timber reclaimed from demolition of buildings will require some 

reprocessing before it is reused structurally, it will be necessary to carry out some 

form of regrading operation on the timber prior to reuse. 

 

Establishment of a ‘rule of thumb’ or a basis for grading best practice for reclaimed 

timber is the first step in establishing an altered form of the existing guidance. The 
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formation of a rule of thumb for grading reclaimed timber, and a basic form of best 

practice for doing this, is the goal that this research project aspires to contribute to.   

 

1.5  Contribution of the study to new knowledge 

This research will contribute a best practice methodology for grading reclaimed 

timber from demolition, while it is still at the demolition site; speeding the grading 

process and allowing direct reuse of the reclaimed timber in new build structures or 

refurbishment of existing buildings.  

 

The research will also generate a model expression, based on tree ring frequency and 

calculated density, which can be used to give an accurate estimate of the modulus of 

elasticity and thus, a reliable strength grade of timber joists recovered from 

demolition. 
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2 Literature review 

2.1  Introduction 

The Bruntland report, Our common future, (WCED, 1987) described sustainable 

development as ‘meeting the needs of the present without compromising the ability of 

future generations to meet their own needs’. Simply put, this means that globally we 

should take care of the resources available to us now, to safeguard their availability in 

the future. This applies to all resources, not just foodstuffs and resources, such as oil, 

coal, timber, aggregates etc. All resources need to be conserved to allow their 

sustained use. 

 

Sustainability in terms of construction often refers to a culture of reduction in the use 

of non replaceable materials, reuse of materials, and recycling. This culture can be 

increasingly attained in the modern world through using the latest technology, novel 

building methods, new and recycled materials and extensive thermal and energy 

management techniques. However, this attainment should also include directly 

reusing materials from demolition, as they are often an appropriate substitution for 

certain building products when coupled with new building methods and increased 

insulation values. Timber reuse in new construction is a case in point.  

 

Sustainability is also described in financial terms by Dickson (2002) who cites the 

timber market as differentiating between the ‘capital’ of the forests, and the ‘income’ 

which can be used to meet our present needs. Therefore, there is a requirement in 

global terms for construction to be more sustainable.  

 

Deconstruction and dismantling of buildings instead of demolishing them increases 

the amount of components that can be reused, reducing the share of demolition waste 

deposited in landfills. Schultmann et al (2001) illustrated that in Germany and France 

several research projects have shown environment-friendly dismantling and recycling 

strategies can even be advantageous from an economic point of view. The research 

presents sophisticated methodologies for the deconstruction and recycling of 

buildings, based on a review and a comparison of different research projects 

addressing the relevant problems and solutions concerning how deconstruction work 
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is planned. The objective of the Schultmann study was to produce guidelines that 

would serve as a basis for forthcoming standards for the deconstruction and recycling 

of buildings and for the direct reuse of components. 

 

In a more detailed evaluation, Chini, Acquaye and Rinker (2001) considered the 

mechanical properties of timber salvaged from two residential buildings in Florida, 

USA; comparing these to virgin timber tested under the same conditions. The research 

here proved that the salvaged timber was on average 50% denser than similar newly 

acquired virgin timber; furthermore, it was also strong enough to merit its structural 

reuse in building construction. Results of the visual grading in this research found that 

more than half of the reclaimed timbers (57%) had damage due to use and 

deconstruction, which resulted in a reduction of the grades reported.  
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2.2  Timber reuse in the UK 

According to reported figures from CorporateWatch (2004) the UK construction 

sector accounts for around 10% of the British economy, employs around 1.5 million 

people, and is a major source of waste and emissions. Waste materials; noise, vehicle 

emissions and other contaminants are released into the atmosphere, ground and water 

on a daily basis. Furthermore, the report states that energy produced from non-

renewable sources and consumed in buildings accounts for approximately 50% of UK 

CO2 emissions, while the production of building materials accounts for a further 10%. 

The construction industry also generates one third of all the waste in Britain. It has 

been further estimated by the UK construction industry itself that 20% of new 

building materials on the average building site are simply thrown away at the end of 

the project (DCLG, 2007). 

 

There exists a need to cut the energy output and materials wastage of the construction 

industry and in recent years there has been a shift to a culture of three zeros – ‘zero 

carbon, zero water and zero waste’, sometimes phrased as design-for-disassembly 

(DFD). This practice aims to build zero carbon buildings that have little or no net 

effect on the environment; which have low water consumption, in both construction 

and during habitation; and which offer zero waste products, again during construction 

and habitation. In construction this idea is often put into practice using a ‘reduce, 

reuse, recycle’ philosophy. Much of the work in this area of constructions currently 

being spearheaded in the UK by BRE Research and the Waste Action Resources 

Programme (WRAP, 2004); determining the methodologies, tools and products that 

need to be put in place to optimise materials recovery from existing buildings and 

from future construction. Complementary work by Hobbs and Hurley (2001) 

examined the waste arisings in the construction and demolition (C&D) industries, the 

legislative, strategic, fiscal and policy issues relating to deconstruction and how they 

can work effectively within the C&D and recycling industries. This study built on 

previous work by BRE in designating definitions for the various aspects of 

deconstruction and reuse in the UK: 

 Disassembly - taking apart components without damaging, but not necessarily to 

reuse them. 
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 Demolition - a process of intentional destruction. 

 Deconstruction – Disassembly which considers reusing the components. 

 Refurbishment - Improving building performance through partial or complete 

replacement and/or upgrade 

 Retrofit - Change of use or purpose occurring post construction and occupation  

 Adaptable Building - A multi-use building which allows for change in its use  

 

In the UK some local authorities are incorporating demolition of selected properties 

into their overall strategy for reuse. The work of Bowes and Golton (2001) 

investigated the demolition of flats in Oldham, North West England, examining the 

issues behind the obsolescence of the building, the local authority’s decision to 

demolish, and assessment of the physical demolition process: the methods employed; 

the debris trails produced; and the level of reclamation and recycling on the project. 

The research also examined the attempts made to ‘close the loop’ by finding new uses 

for the project’s debris within the local authority area. 

 

Timber reuse in construction can fulfil this philosophy, and in part already does.  The 

introduction of limit state working, exemplified by Eurocode 5 (BSI, 2008), in 

modern buildings means that modern buildings use a far smaller volume of timber 

than they did in previous eras. Eurocode 5 in common with the other Eurocodes 

provides no data on strength and stiffness properties for structural materials. It merely 

states the rules appropriate to the determination of these values to achieve 

compatibility with the safety format of the design rules of the Code. Used timber 

sourced from demolition and new timber sourced from waste from building sites is 

recycled into many composite construction forms, from medium density fibreboard 

(MDF) to oriented strand board (OSB). However, reuse of timber recovered from 

demolition is one facet of timber reprocessing that does not enjoy the same success; 

even though it is easy to achieve.   

   

As a construction resource timber consumes about 50% of the energy needed to 

produce similar volumes of concrete and about 1% of the energy needed to produce a 

similar volume of steel. This, coupled with the fact that trees can improve land quality 

and soil fertility and are also a prime sink for carbon emissions, signals that timber 
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has the potential to be a totally sustainable resource. This sustainability can be 

improved by increasing their carbon sink characteristic through usage and re-usage as 

reclaimed construction elements in long life products such as timber frame buildings. 

Timber frame construction, therefore, has a major environmental advantage over its 

competitors in the UK market and this is expected to be a contributing factor to its 

continuing growth.  

 

Hairstans, Kermani and Lawson (2004) considered that sustainability issues, the 

application of the Eurocodes and consumer awareness will result in the increased 

usage of timber as a structural material in the UK. An extremely versatile material 

with a wide range of physical and mechanical properties, timber is a renewable and 

reusable resource with an exceptional strength-to-weight ratio. There is also now 

increased global pressure on the construction industry to use timber as a structural 

component due to its sustainability; with particular attention paid, in the UK, to the 

domestic dwelling construction market. 

 

The use of timber as a structural material has become far more widespread; and now, 

following the implementation of Eurocode 5 and the improvements in engineered 

wood products, there exists an unique opportunity for the construction industry to 

produce timber frame houses in the UK constructed entirely from products from 

sustainably managed sources or from recycled and/or reclaimed materials. 
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2.3  UK demolition waste 

The demolition industry has undergone a major transformation in the last few decades 

from a labour intensive, low skill, low technology, and poorly regulated activity, to a 

highly mechanised, skilled process. This has been brought about by the increased 

complexity of building design, financial pressures from clients, health and safety 

issues, regulatory requirements and significant advances in demolition plant design. 

The demolition industry today employs fewer, but more highly skilled, operators 

using very expensive and specialised equipment. Traditionally, much of the 

demolition contractors’ income was from the sale of salvaged and recycled materials. 

However, this has changed and income today is mostly generated from the contract 

fee; demolishing as quickly and as safely as possible. Nevertheless, substantial 

amounts of materials and components are still reclaimed, though these appear to be 

mostly down-cycled and not reused to their full potential 

 

Limited studies have identified that demolition waste is mostly composed of concrete, 

with smaller amounts of ceramics, furniture, timber, metal, plastic, electrical goods 

and miscellaneous materials. In six case studies carried out for the Building Research 

Establishment (Hobbs and Hurley, 2001) there is an overall variation between the 

types of wastes being generated and the reuse or recycling potential for the key 

demolition products. 

 

Table 2.1. Variable percentages quantity of materials (by weight) reclaimed from six 
case studies featured in the UK Country Report on Deconstruction (Hurley and Hobbs 
2001) 

 Multi-
storey 
housing 

Prefab 
housing 

Factory Multi-
storey 
offices 

Factory 2 Hospital 

Ceramic 2.3  9.3 1 16 67 
Metal 3.1 0.4 2.8 1.5 2 1 
Furniture 2.3   59.9 1  
Plastic 0.6 1.1  1.7  1 
Concrete 86.6 85.2 86.5 34.1 78 12 
Timber 3.5 7.7 1.4 1.8 2 19 
Miscellaneous 1.4 5.6   1  
Total 100 100 100 100 100 100 
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While the variation in materials will be determined by the construction type, the reuse 

potential will consider how the materials were bound together as well as their quality 

and condition. Table 2.1, illustrates the relative values (by weight) of reusable 

products sourced from demolition during six case studies. In all of the six studies, 

concrete waste was proven to be the most ubiquitous form; however, the studies also 

show that a not inconsiderable amount of timber waste was also recovered from the 

sites. 

 

There are eight factors which affect the choice of demolition method, and in the BRE 

six building study there were substantial opportunities to reuse as well as recycle. The 

research illustrates that any single building, as part of its demolition, will be subject to 

a unique combination of the following 8 factors: 

1) Structural form of the building 

2) Scale of construction - A large building may make a complex method more 

economic 

3) Location of the building - Access can affect the choice of demolition 

equipment 

4) Permitted levels of nuisance  

5) Scope of the demolition - Some methods are not suitable for partial 

demolition. 

6) Use of the building - A contaminated structure will be treated differently to an 

ordinary residence 

7) Safety 

8) Time period - Clients often want to see a rapid return on their investment, 

precluding full reclamation 

 

However, as part of the recommendations of the BRE study, Hobbs and Hurley 

(2001) suggest that four further factors should be added to the list; though, these are 

again concerned with issues unrelated to the physical attributes of the building: 

1) The proposed fate of the building materials and components - Once the 

structure is demolished this will probably affect the choice to some extent. For 

example, explosives will reduce a building to small pieces taking little or no 

account of the separation of materials.  
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2) The culture of the demolition firm carrying out the work – This will, to a 

certain degree, condition the choice of method for dealing with a particular 

problem. 

3) Monetary cost - If a method would place a heavy burden on the contractor, 

without presenting any other advantages it is unlikely to be chosen 

4) Site Waste Management Plan (SWMP) – now a legal requirement. The 

legislation determines that  for all construction projects with an estimated cost 

greater than £300,000 excluding VAT, the SWMP must record details of the 

construction project, estimates of the types and quantities of waste that will be 

produced, and confirmation of the actual waste types generated and how they 

have been managed, including waste generated by demolition.  

 

There will usually be several methods of tackling any given demolition project, each 

of which will have its own various merits. There may be no right or wrong method, 

just alternative options based on assessment of the relevant factors. 
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2.4  Definition of reclaimed materials  

Reclaimed materials are considered to be those that have been used before either in 

buildings, temporary works or other uses and are re-used as construction materials 

without reprocessing. Reclaimed materials may be adapted and cut to size, cleaned up 

and refinished; however, they are fundamentally being re-used in their original form. 

 

Table 2.2. Examples of the differences between reclaimed and recycled materials 
(CorporateWatch, 2004) 

 Reclaimed Recycled 

Directly re-used timber sections or 
floorboards 

Panel products with chipped recycled timber 

Building bricks cleaned up and re-used Crushed concrete or bricks for hardcore 

Steel sections shot-blasted and re-
fabricated 

Steel with a proportion of recycled content 

Re-used, complete glass panels or 
windows 

Crushed glass recycled as sand or cement 
replacement 

 

 

Timber recovered from old buildings, through demolition, is generally considered to 

be of superior quality to modern joinery timber. However, this is not because the 

timber is inherently better; it is because older timber is more likely to contain a higher 

proportion of heartwood than, less durable, sapwood (CIRIA, 1999). 

 

Generally, in reusing construction materials, there are certain issues that must be 

considered. These are especially important when considering the reuse applications of 

reclaimed timber: 

 Identify materials that are easily available at the right quality and quantity. 

 Reclaimed materials are usually obtained from different sources to new 

building products. Set up relationships with new suppliers in the salvage trade. 

 Early design information helps in the sourcing of reclaimed materials. Lead 

times for ordering will need to be longer. 

 Identify demolition projects near to the construction project. Reclaimed 

materials can then be selected and extracted as required.  
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 Material specifications need to be flexible enough to allow for the variations in 

reclaimed material sizes. Specifications should outline the essential 

performance properties required, without over defining the details. 

 Agree on a sample of the reclaimed material which can be used to show clearly 

the quality that is expected in order to meet the design requirements.  

 

Generally, salvaging direct from demolition is often cheap or free, while older antique 

or reclaimed materials, in large quantities, may be much more costly. 
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2.5  Reclaimed timber reuse 

While government and the public support the introduction of new and novel forms of 

materials and reuse strategies, it has in the past proven difficult to introduce new 

technologies and processes into the construction sector in the UK. There are various 

reasons for this:  

 Prescriptive building regulations.  

 The low impact of innovation on costs.  

 An inherent conservativeness on behalf of the industry.  

 Suspicion of new technologies due to past experiences.  

 

Reclaimed or recycled construction elements are one such innovation. An appraisal of 

the amount of timber waste produced at regional, national or even worldwide levels is 

important as this availability will outline both the market possibilities for timber reuse 

and the necessary structure involved in processing. 

 

The World Business for Sustainable Development emphasises that there are several 

barriers to reuse and recycling, other than the technical difficulties. They include 

economic, geographic and regulatory (or environmental), legal, business, social, time 

and informational barriers. While there are clear benefits in materials reuse (the figure 

below for reclaimed against new timber studwork shows a definite benefit in 

ecopoints and lessening of detrimental effects on the environment) John and Zordan 

(2001) illustrate that the environmental benefit of any form of recycling will only be 

utilised if the product succeeds on the market. They consider that whatever the reuse 

process, it must include technical, environmental and marketing aspects. 

 

Already mentioned,  research from the Waste Resources Action Programme (WRAP, 

2004), considers the availability of timber waste from demolition to be intermittent, at 

best; frequently only happening when the economy is good and new buildings are in 

progress. This effect introduces the necessity of suppliers of reclaimed timber having 

stockpiles in order to sustain the uninterrupted reuse of the product, or of having a 

special arrangement with business, which makes reuse a viable option. 
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The geographical localisation of timbers is also relevant. Transportation distance is a 

key aspect on the cost of reuse. Transportation also affects the environmental balance 

of the reused product. Having large amounts of timber and several sources of supply 

improves chances for the reuse product to succeed on the market. 

 

The total cost of managing a waste material is a good way to calculate the interest for 

its reuse and is a strong argument when asking for financial support. If the waste does 

not have a significant cost or is not the object of social or regulatory pressure, there is 

probably little interest in reuse from the industry’s point of view. Consequently a 

detailed study of the legal and social status of the waste is very important. Any study 

into reuse of waste materials would have to consider: 

 Production process - a study of the production process involved in reuse, 

including variability, normally gives significant information about 

characteristics, including the possible presence of contaminants. Even a small 

variation on processing parameters or composition can result in significant 

changes in the overall reuse characteristics 

 Waste composition and presentation - most industries have little information 

about their own waste except that which is legally required by environmental 

and other government agencies; therefore, most of the time the information 

available will be useful only as a starting point for a deeper study 

 Selection of possible application - selecting the best potential uses for reuse. As 

a rule the best application is one that will use the material’s true characteristics 

and properties to enhance the performance of the new use and minimise 

environmental and health risks 

 

Waste applications should not be made on a preconceived basis. Tukker and Gielen 

(1994) present a methodological scheme to evaluate the environmental benefits of 

different waste use options, including life cycle evaluations of these options. One 

alternative approach that simplifies the work is to consider some processing rules to 

be observed: 

a) Minimise the need for industrial transformation of the waste 

b) Minimise the transportation impact of the waste to the processing plant and 

the final product to its consumers 
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c) Processing must minimise the leaching or volatilisation of dangerous 

chemical compounds by avoiding  contact of the new product with the users 

or any deterioration agent, such running water  

d) The new product must be reusable/recyclable  

e) The new product must present a competitive advantage in comparison to the 

established market and improve the waste value 

 

Timber is naturally renewable with a low environmental impact, so it would seem that 

the most environmentally friendly option, and the ultimate target for the construction 

industry, is the reuse of timber building components without modification. Since the 

deconstruction process can cause damage to timber elements, the suitability of timber 

for reuse will often depend, not only on the condition of the timber, but on its 

robustness to withstand damage during removal from the demolition site. This 

suggests that larger section timber will be more suited to reuse and, in practice, this is 

often the norm.  

 

This investigation into the strength qualities of reclaimed timber joists aims to pave 

the way for the development of a methodology, utilising both quantative and 

qualitative procedures, which can be used as a basis for testing reclaimed construction 

timbers with a view to their unmodified reuse as construction elements. 

 

Despite interest at the research level by bodies such as BRE, Construction Industry 

Research and Information Association (CIRIA), Timber Trade Federation (TTF) and 

the Timber Research and Development Association (TRADA), much of the reclaimed 

and antique materials available from demolition are bought by private customers, 

rather than by professional builders or architects. Constraints on the use of reclaimed 

timber include comprehensive building regulations, which require certain 

manufacturing or performance standards; often difficult to prove for reclaimed timber.  

 

One of the other main reasons that reclaimed timber is not often directly reused for 

construction is that of expense. Grading of virgin timber is part of the sawmill 

production process and is factored into the basic price. This makes the grading of 

newly cut and processed timber a cheap, efficient and speedy process.  
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Contamination with toxic chemicals, which may have been perfectly acceptable for 

use as timber treatments in the past, is another potential issue. However, by far the 

largest constraint to supply and demand for building materials is availability at a set 

point in time of reclaimed timber of the right size, type and specification to fit a 

project design or pre-agreed site schedule. Anecdotal evidence suggests that only 

when builders and architects are forced by regulation, will the widespread use of 

reclaimed timber become commonplace. 

 

Interest at the building industry body level includes contributions by; CIRIA (1999), 

who produced a handbook on the use of reclaimed and recycled construction materials 

– the Reclaimed and recycled construction materials handbook; and TRADA, who 

inaugurated the Timber Dwelling Project, which involves best practice demonstration 

sites featuring the use of recycled materials and the re-use or recycling of waste 

created, on these sites, during the construction process. Other sources which are 

involved in the timber aspect of building materials include the BRE, which has set up 

an internet Materials Information Exchange service, where suppliers and users of 

reclaimed materials can post information on availability and suitability for reuse. BRE 

is hoping to establish itself as a specific industry trade body in this area.  

 

The main, in depth, academic studies relating to the strength of reclaimed timber are 

American, and latterly northern European in origin; for example, Plume (1996) 

considered that manufacturers should reuse heavy timber for post and frame buildings 

because it is typically dry and stable; however, assignment of a strength grade is a 

significant obstacle. Similarly, several researchers have investigated the properties of 

timber that has been in-service for a considerable period of time; Lanius et al. (1981) 

used in-situ stress wave techniques to non-destructively determine the elastic modulus 

of floor joists; it is important to note that they stated this method should be used in 

conjunction with a visual inspection. Fridley et al. (1996) evaluated the wood strength 

of roof trusses after 85 years of service life by cutting small clear specimens from 

several truss members to determine strength properties. A comparison of these values 

to historical research values showed no difference in clear wood material strength. 

However, it should be noted that both studies did not evaluate the strength properties 

of standard size members with natural faults. 
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To fully understand how this research project will progress toward producing a best 

practice method of testing reclaimed timber it is necessary to understand the process 

by which new timber is graded. After reviewing the current timber processing 

industry method of grading virgin timber, this project will then investigate how and if 

this method can be developed to deal with the idiosyncrasies of reclaimed timber 

joists. 

 

It is a requirement of the structural timber design code, BS 5268-2 (BSI, 2002), that 

all timber used in the UK for structural purposes should be strength graded, either 

visually or by machine, to an accepted standard. The UK standards cited are BS 4978 

(BSI, 2007) and BS EN 519 (BSI, 2000a) for softwoods. For softwood timbers graded 

outside the UK, compliance with the standards or rules listed in BS 5268-2, clause 1.5 

is acceptable. However, the introduction of Eurocode 5 has changed how timber is 

specified for construction.  

 

The strength of timber is affected by its moisture content; with strength increasing 

relative to moisture content. For example, the bending and compression stresses for 

timber graded as ‘wet’ (Service class 3) are, respectively, 80% and 60% of those for 

timber graded as ‘dry’ (Service class 1).  Because of this, it is essential that timber 

used for structural purposes is strength graded at a moisture content appropriate to the 

exposure conditions of the timber in service. For example, timber to be used in 

building construction is always graded to Service class 1 or 2. The three service 

classes are defined in the standard (BSI, 2000a) as: 

 Service class 1: Characterised by a moisture content in the materials 

corresponding to a temperature of 20ºC and the relative humidity of the 

surrounding air only exceeding 65% for a few weeks per year. In such 

moisture conditions most timber will attain an average moisture content not 

exceeding 12%. 

 Service class 2: Characterised by a moisture content in materials 

corresponding to a temperature of 20ºC and the relative humidity of the 

surrounding air only exceeding 85% for a few weeks per year. In such 

moisture conditions most timber will attain an average moisture content not 

exceeding 20%.  
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 Service class 3: Characterised by higher moisture contents than service class 2.  

 

A moisture content of 20% is therefore used as the dividing point for grading timber 

for use in wet or dry conditions.  

 

Structural softwood timbers can be graded either visually or by machine. Visual 

strength grading takes into account timber growth characteristics such as rate of 

growth, slope of grain, distortion, knots, resin pockets, etc. Machine strength grading 

exploits the relationship between strength and stiffness of the timber product. Each 

piece is graded, in accordance with BS EN 519 (BSI, 2000a), directly to a strength 

class, as specified in BS EN 338 (BSI, 2009), and is marked accordingly.  
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2.6  Traditional and modern information for strength grading 

Current standards for the grading and use of sawn timber in construction focus 

predominantly on new timber stock:  

 Eurocode 5 - Design of timber structures (BSI, 2008) 

 BS EN 336 - Structural timber – sizes – permitted deviations (BSI, 2003) 

 BS EN 519 - Machine stress grading of timber (BSI, 2000a) 

 BS EN 14081 - Strength graded structural timber with rectangular cross 

section (BSI, 2011) 

 

The majority of reclaimed timber intended for reuse structurally can be partially 

assessed by BS EN 14081 (BSI, 2011) and BS 4978 Visual strength grading of 

softwood (BSI, 2007), which is still current. However, this does not account for 

service anomalies and damage in the timber, such as: 

 Through nails, screws and fastenings 

 Through notching, holes and cut outs 

 Through splits and cracks (or checks) through drying out in service 

 

As part of the reclaimed timber regrading process these anomalies need to be 

thoroughly investigated. Work by Rammer (1999), Cooper et al. (1996) and Nakajima 

and Murakami (2008) illustrate that reclaimed timber can still be of useful structural 

use, even in light of considerable ‘in service’ damage. There are currently no plans to 

make provisions in UK standards for regrading timber with this kind of damage; 

however, there are existing solutions, including plugging (as long as the material used 

is of greater strength/stiffness than the parent wood) and/or machining out damaged 

areas; though these methods affect the size and quality of the finished product.   

 

Regrading timber from demolition will involve utilising existing legislation and 

standards, modifying visual grading techniques, and extending current methods of 

grading of timber for construction. This information can be combined to use a 

quantative method, enabling robust tests to be carried out on reclaimed timber 

elements and conclusions to be drawn from the results.  
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There are several issues surrounding the grading of reclaimed timber that are evident, 

but that will not be addressed by this research, these are: 

 Long term effects of ‘in place’ structural load forces – while loads will have 

an effect on the reclaimed timber there is not a sure way of identifying this, 

other than removing the timber joist from the intact building, thus giving a 

more complete history of its use 

 Possible identification of the timber species from visual characteristics of the 

wood structure – species identification is, at best, 95% accurate even with the 

most complete specimens.  

 

However, long term loading in timber is an issue that has been investigated in some 

detail by previous commentators, and is known to cause strength reduction on a 

logarithmic scale, resulting in a reduction of around 40-45% after 100 years of use, 

evidenced in Construction materials: their nature and behaviour (Domone and Illston, 

1993). Friedley et al. (1995) also provides an in depth study of the history of ‘duration 

of loading’ research. Species identification, however, has already been shown by 

Ravenshorst and Van-de-Kuilen (2006) not to be a significant factor in the strength 

grading of individual timber joists. This has also been made evident in the 

introduction of Eurocode 5 (BSI, 2008), where timber can be specified by its physical 

limitations or by species; however, species specification is considered mainly for 

aesthetic or durability characteristics. 
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2.7  Expected safety margins for reclaimed timber 

Wood is a heterogeneous material whose properties depend greatly on its species, 

biological diversity and growth conditions. Timber strength properties are affected by 

many parameters, including temperature, creep, knots, number of growth rings, 

density and grain angle. In reclaimed timber there are also the effects of age and 

surrounding humidity to take account of. All of these factors can affect the safety 

margins for use/reuse. 

 

There are several methods of alleviating load stress and safety margins, including 

using a percentage-based ‘size penalty' on reclaimed timber when compared to new 

timber. This would relate to established tables, currently in use, to determine the 

dimensions of structural timbers needed for a given span or distance. This research 

will also investigate the effects on the regrading process of: 

 The age of the reclaimed timber – using small clear tests this research will 

investigate the effects that the age of a timber element may have on its 

strength grading 

 Heartwood versus sapwood in the longevity and strength of timber elements 

 

Much of this work will be new and, as such, there is little authorative work to draw 

upon at present. However, ongoing industry testing and academic research pertaining 

to reclaimed timber elements and structures will supply a constantly growing set of 

data to help in formulating theories. 
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2.8  Timber strength grading using visual and simple 

methods 

Several pieces of research have analysed the behaviour of wood under stress to 

determine its strength. In these analyses, the influences of physical parameters, such 

as moisture content and density, on the modulus of elasticity were considered. The 

most significant of these is the work of Dinwoodie (2000), which offers a history of 

timber stress grading, highlighting how this has changed from visual, to a mix of 

visual and machine grading, to its standing now of purely machine grading. The work 

also highlights how small clear tests were originally used in conjunction with visual 

grading of timber joists, and the relationship in results between small clear tests and 

stress testing of full sized timbers. 

 

Knots in the timber structure are associated with distortion of the grain and since even 

slight deviations in grain angle reduce the strength of timber appreciably it follows 

that knots will have a marked influence on strength (Mitsuhashi et al. 2008). The 

significance of knots, in relation to the overall strength of the timber joist, will depend 

on their size and distribution both along the length and in cross-section. Knots in 

clusters are more important than knots of a similar size which are evenly distributed, 

and knots on the top or bottom edge of a joist are more significant than those in the 

centre; furthermore, large knots are much more critical than small knots. 

 

Research by Mitsuhashi et al. (2008) also introduced a new method of describing this 

parameter, the area reduction factor (ARF), which considers the effect of knots on the 

tension strength of timber. ARF considers both the projected area of knots and the 

effect of the slope of grains around the knots. ARF was determined as the minimum 

value obtained when a knot measurement window of 100 mm was slid along the 

plank.  

 

Dinwoodie’s (2000) work illustrates that density is a function of cell wall thickness 

and therefore dependent on the relative proportions of cell components and the level 

of cell wall development. However, variation in density can occur within the same 

species and even within a single tree. In general, as density increases so the various 
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strength properties increase, and thus, density remains the best traditional predictor of 

timber strength; high correlations between strength and density are common 

observations in timber strength studies. Dinwoodie (2000) states that: ‘In most of the 

timbers used commercially the range of the relationship between density and strength 

can safely be assumed to be linear’.  

 

Accepted literature contains many analyses of moisture content significantly affecting 

the elastic constants of timber. There are also several studies; Gerhards (1982), and 

Lenth and Sargent (2004), that show an increase in temperature and humidity results 

in a decrease in the elastic constants of timber.  

 

Since timber density is influenced by the rate of growth of the tree, it should follow 

that variations in tree ring width and frequency will affect changes in the density of 

the timber, and hence, it’s strength. In softwoods, increasing rate of growth results in 

a lower frequency of growth rings and an increased percentage of low-density early 

wood; consequently both density and strength appear to decrease as ring width 

increases.  

 

Exceptionally, it is also found that in certain cases very narrow rings can also have 

very low density, though this is only characteristic of softwoods from very northern 

latitudes where latewood development is restricted by the short summer period. 

Latewood is more dense than wood that is formed early in the season, but the 

mechanics of tree growth mean that latewood is only formed during the later part of 

the summer season; hence the greater the proportion of latewood, the greater the 

density and strength.  

 

The frequency of growth rings can also affect timber strength; this is especially 

prevalent when considered in conjunction with timber density. This fact is not 

commonly presented in the literature; however, it can significantly interfere with the 

values of the modulus of elasticity and rupture. In their study of the parameters that 

influence redwood crush, Cramer, Hermanson and McMurtry (1996) noted that the 

number of growth rings per inch may predict the crush behaviour more efficiently 

than the density alone. This validated earlier findings regarding the changes in elastic 

modulus and strength within an annual ring as, for example Bodig and Jayne (1982) 
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discussed, suggesting a variation in the tensile strength of wood within the location of 

the growth rings.  

 

2.8.1  Small clear samples 

Basic stress is that level of loading which can be permanently sustained with safety by 

an ideal structural component. In the derivation of basic stresses from the tests on the 

small clear samples consideration was given to both the variability in the strength 

figures for clear timber and the need to ensure that the imposed load was a safe one 

for that particular set of conditions.  

 

Timber has been described as a variable material and a measure of this variability was 

shown in how the frequency distribution of a set of test results approximates closely 

to a normal distribution curve which can be used to calculate the value below which a 

certain percentage of the results will not fall.  

 

The apparent strength of timber is influenced by rate of loading, specimen size and 

shape, and duration of loading. So, rather than apply a series of factors, a single factor 

derived mainly from experience has been used. Dinwoodie (2000) states that: 

‘Generally a value of 2.25 was used for most properties, excepting compression 

parallel to the grain where it was 1.4. These factors are in effect a safety factor for 

pieces of minimum strength, and also cover the possibility of slight overloading’.  

 

In the static small clear bend test a specimen is supported and a load-deflection 

diagram plotted. Three strength properties are usually determined from this test. The 

first and most important is the modulus of rupture (MOR), which is a measure of the 

ultimate bending strength of timber for that size of sample and that rate of loading. 

This is actually the stress in the extreme fibres of the specimen at the point of failure. 

The second strength parameter is work to maximum load, which is a measure of the 

energy expended in failure and is determined from the area under the load-deflection 

curve up to the point of maximum load. The third parameter, total work, is the area 

under the load-deflection curve, and is taken to complete failure.  

 

Before the rise of machine grading the basic stress, therefore, for each property was 

obtained primarily from the results of the standard tests on small clear specimens by 
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dividing the statistical minimum by the appropriate safety factor (2.25 or 1.4). Most 

structural timbers have some defects so it was necessary to apply a factor known as 

the strength ratio to the basic stress in order to obtain safe operating conditions for 

these joists. 
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2.9  Aims of this research 

Timber production has undergone major change in the last 150 years, from visual 

grading, using exclusively mature heartwood where possible and over specifying of 

timber joists for use in construction; to cutting timber with a greater proportion of 

juvenile wood, kiln drying, and limit state calculations and specifications for timber to 

work nearer to its mechanical limits when utilised in construction. 

 

This change in the methods of timber processing and specification for construction, 

may have already affected the potential for recovery for much of the timber used in 

modern building projects. However, older timber joists still have enormous potential 

for reclamation and reuse, ostensibly because they started life with a higher 

specification and generally higher strength; often greater than would have been 

needed for their original constructional use. Even though this strength may have 

reduced through ‘duration of loading’ and general material decay over time, these 

timbers remain a valuable and viable reclamation source. 

 

Figure 2.1. Diagram of theoretical distributions, generally illustrating the higher 
relative strength and smaller spread of characteristics in older timber joists than 
corresponding modern components (where fk = 5th %tile and fm = mean strength)  
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The main aim of this research was to investigate the potential for the recovery and 

direct reuse of timber structural joists and other elements and to show that, through 

calculation and visual observation, the existing timber grades can be applied to timber 

reclaimed from demolition. Utilising the timber density, age of the timber and a count 

of the average tree ring frequency, in conjunction with an alternative visual grading 

method, this research project aims to build a model calculation to predict an expected 

strength grade of timber joists recovered from demolition operations. 
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2.10 Objectives of this research 

The research proposes to modify the existing visual grading process for timber to 

allow an ‘on site’ contractor or demolitions operative to carry out specified tests on 

reclaimed timber from demolition processes. To do this it is necessary to: 

 Establish the timber condition by modified visual grading  

 Produce a grading system that is independent of timber species 

 Set up a testing model for large timber joists, sourced directly from 

demolition, and normalised to the test area 

 Set up a testing model for small clear timber tests of samples cut from the 

large joists recovered from demolition   

 Calculate the density of the reclaimed timber joists  

 Calculate, or count, the tree ring frequency of the reclaimed timber samples 

 Establish the cross sectional area and length of the timber joist - giving an 

indication of whether the joist can undergo further machining 

 Analyse the results of all of the tests and formulate a model, to grade further 

timber joists separately recovered from demolition 

 Test the model using a sample of reclaimed timber not used in the 

development of the model itself 

 

The final result of this research will be a regrading best practice, which can be utilised 

to enhance the viability and eligibility of reclaimed timber joists for direct use as 

structural elements in construction projects. This methodology will be targeted at use 

where operatives can carry out the regrading operation ‘at the demolition site’, adding 

to the reuse potential of timber elements reclaimed from demolition.  

 

While legislation such as the Site Waste Management Plans Regulations (HMSO, 

2008) request the reuse of materials recovered from on site demolition, on new 

buildings. This research is being carried out in consideration of current regulatory 

calls to reuse waste materials, from demolition operations from all sites, whether large 

or small; and is expectant that these regulatory calls will be extended to direct reuse of 

reclaimed materials during the coming years.   



 45 

3 Methodology and testing 

The wide range of properties available from timber provides an almost unlimited 

choice for both structural and decorative applications. However, to produce a uniform 

test for reclaimed timber it is necessary to use characteristics common to all types of 

timber, and then formulate a methodology specifically targeted at reclaimed timber.  

 

Similarly the methodology will differ as to whether the practitioner is a professional 

in the demolition or timber trade, or a researcher attempting to duplicate this work. 

However, before focussing on the tools and specific methods that could be utilised to 

carry out this research, an investigation of traditional and modern methods of timber 

strength testing must be explored. 

 

Strength grading allows efficient use to be made of structural timber. Both visual 

grading and machine grading are used and both are equally valid. Visual grading 

assesses the size, frequency and positions of defects in the timber, such as knots, wane 

and sloping grain, and compares them to grading rules contained in BS EN 14081 

(BSI, 2011). Machine grading measures the resistance of the timber to flexing, which 

gives a measure of the strength of the joist or member. Machine grading is carried out 

to the requirements of BS EN 519 (BSI, 2000a). 
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3.1  Traditional methods of grading 

The traditional method of timber strength grading, formerly known as stress grading, 

is by visual inspection by individually licensed operatives. Every grade mark contains 

a unique identifying number of the grader, so total traceability of each piece of graded 

timber is ensured, thus ensuring timber quality and customer confidence 

 

3.1.1  Visual grading 

Before the advent of BS 5268 (BSI, 2008), or its originator CP 112 (BSI, 1952), the 

only testing regime for timber was by visual grading. This generally led to an over 

specification of timber joists, used in many older buildings, for the load to be carried. 

Timber for reuse in structures must be graded, visually or mechanically, just as new 

timber is graded. The graded timber is then assumed to have characteristic values of 

strength, stiffness and density. BS EN 14081 (BSI, 2011) specifies a method of 

strength grading softwood visually for structural use, specifying two visual strength 

grades - General Structural (GS) and Special Structural (SS). However, the standard 

gives only the minimum requirements for visual strength grading, so the following 

characteristics should be taken into account when carrying out this operation: 

 limitations for strength reducing characteristics: knots, slope of grain, density or 

rate of growth 

 limitations for geometric characteristics: wane, distortion (bow, spring, twist) 

 limitations for biological characteristics: fungal and insect damage 

 other characteristics, such as mechanical damage. 

 

In order to determine these characteristics, all four faces of each piece of timber must 

be examined; however, simple economics do not allow for a through examination (in 

sawmills a piece of timber is machine graded in two to four seconds). Considering 

these negative points, TRADA (1995) states that there are advantages in visual 

strength grading of timber and that these are: 

 it is simple, easily understood and does not require great technical skill 

 it does not require expensive equipment 

 it is an effective method, if correctly applied. 
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The first phase of this research was to produce an alternative method of visual grading 

that would still satisfy BS EN 14081 (BSI, 2011); this would serve to weed out 

inferior reclaimed timbers from those which would undergo further machine testing. 

To facilitate this, the existing visual grading process had to be investigated, and 

additions made to take into consideration any extra physical damage through ‘service 

life wear and tear’ that older timbers often demonstrate. Visual examination of new 

timbers under the standard investigates characteristics such as;  

 Knots 

 Slope of grain 

 Wane 

 Fissures 

 Resin/bark pockets 

 Distortion 

 Rate of growth 

 

The alternative test proposed by this research also considers; 

 Damage - caused by insects, fungus, machinery or fittings 

 Chemical treatments  

 Density 

 Condition – wet/dry  

 Recovered size – cross sectional area and length 

 

Visually strength graded timber, whether new or reclaimed, must have a minimum 

cross-sectional area of 2000 mm2 and a minimum thickness of 20 mm. However, If 

regrading is carried out before processing, provided that the processing reduction 

from the target size is not greater than 3mm for dimensions less than or equal to 100 

mm, or not greater than 5 mm for dimensions greater than 100 mm, the visual grade 

will not change and it will still conform to BS EN 14081 (BSI, 2011).  

 

3.1.2  Static bending or ‘small clear’ tests  
The static bending test utilised in this study is carried out by the central loading 

method, as detailed in BS 373 (BSI, 1957). The dimensions of the central loading test 

pieces were 2 cm by 2 cm by 30 cm, detailed in the 2 cm standard test.   
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The specimens should be air dried to constant mass at 12% moisture content, prior to 

being tested. In the central loading method the distance between the points of support 

of the test piece are 28 cm, and the load applied to the central point of the test piece, 

illustrated in Figure 3.1.  

 

Figure 3.1. Central loading for 2cm standard test piece. After BS 373 (BSI, 1957) 

 

 

The loading head must move as near as possible at a constant speed of 0.11 mm/s, and 

contour of the head, which is in contact with the joist, must have a radiused form with 

a 30 mm radius. The deflection of the test piece, at mid length, is measured with 

reference to the outer supported points, until the test piece breaks completely, or is 

fractured and unable to hold 60% of the greatest load placed upon it during the test. 

 

Immediately after each mechanical test has been completed, a determination of the 

absolute moisture content of the test piece must be made. A section should be 

removed from the test piece; this must be a transverse section from near the point of 

fracture. The specimen must be weighed and then dried in an oven at a temperature of 

103 ± 2 °C until the weight is constant; this may take several hours, dependent upon 

the moisture content of the test piece. The loss in weight, expressed as a percentage of 

the final oven-dry weight, is noted down as the moisture content of the test piece.  

 

3.1.3  Indication of strength within the joist 

While three-point loading tests, on a complete recovered timber joist, offer an overall 

strength grade, small clear test results can offer strength grading of a certain area of 

the cross section of the joist. Utilising this method to illustrate the weak areas of 

reclaimed timber joists was considered early during the research period, when the idea 
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of machining out damaged areas was investigated with regard to the viability of 

recovering heavily damaged timber joists.  

 

The small clear tests offer a method of directly observing the modulus of rupture; 

hence, being able to calculate the expected, actual strength of the timber joist. 

However, a problem with this method is that it because of the different stresses 

sustained during the working life of the timber dissimilar results in the small clear 

tests occur when these are taken from different areas of the cross section or along the 

length of the timber joist. This being expected, taking the lowest result from small 

clear results for a single timber should yield a least possible result for the modulus of 

rupture in the joist. This is considered further in the research analysis (Section 5). 
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3.2  Modern methods of grading  

All structural members, assemblies or frameworks utilised in the construction of a 

building, should be capable of sustaining, the whole dead, imposed, wind and other 

types of loading referred to in Eurocode 5 (BSI, 2008). These requirements should be 

satisfied either by calculation, or by load testing of the individual timber members 

through machine grading. 

 

3.2.1  Machine grading 

Machine strength grading of timber has been used commercially for around 40 years, 

but still remains a specialised subject. Timber enters a grading machine at one end 

and leaves the other having been given a strength class; with no obvious means of 

how this is achieved. 

 

After kiln drying, the timber is passed through a highly automated grading line where 

a combination of measurements is taken which closely relate to strength. From this, 

the machine determines the Strength Class of the piece of timber.  

 

Figure 3.2. Scheme of an European strength grading machine with multiple sensing 
devices for measuring deformation (a), load (b), radiation absorption (c), bow (d), 
thickness (e) and moisture content (f), after TRADA (1995) 

 

 

The disadvantages of visual strength grading can be overcome by machine strength 

grading. Most of the grading machines currently in use determine average bending 
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modulus of elasticity over short lengths (Fewell, 1982). Timber is fed continuously 

through the grading machine, which bends each piece as a plank (about its weaker 

axis) between two supports and either measures the applied load required to give a 

fixed deflection or measures the deflection under a particular load. From these values 

a local modulus of elasticity is calculated, taking into account the cross-sectional 

dimensions and natural bow of the piece of timber. 

 

Numerous investigations have dealt with the determination of modulus of elasticity by 

methods other than bending, such as vibration, microwaves and ultrasound. Recent 

research has shown that predictive accuracy of machine grading can be further 

improved by technical modifications of the machine and by a combination of several 

grading parameters. For example, the combination of modulus of elasticity (MOE) 

and knots has a better correlation with strength than MOE by itself (TRADA, 1995). 

The incorporation of density into the grading process can also contribute to the 

grading results.  

 

One important difference between visual and machine grading is that with visual 

grading, it is possible to check at any time the correctness of the grade assignment, 

even when the timber is in use.  For this reason there has to be frequent and regular 

control of the reliability of machine grading and, to accomplish this, two distinct 

control methods have been developed; the output controlled system, and the machine 

controlled system. BS EN 519 (2000a) outlines the requirements for the machine 

strength grading operations under both output controlled systems and machine 

controlled systems. 

 

Naturally, the higher efficiency of machine strength grading comes at a high cost; 

grading machines currently available vary greatly in performance and price.  
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3.3  Issues specific to reclaimed timber 

This section investigates the specific issues which are attached to grading reclaimed 

timbers; focussing on; the timber drying out, duration of loading, moisture content, 

density, resin pockets, distortion, slope of the grain, growth patterns, knots, species 

recognition, ring frequency calculation, timber specimen age and other forms of 

strength grading. 

    

3.3.1  Drying 

The rate at which wood dries depends upon a number of factors, the most important of 

which are the temperature, the dimensions of the wood, and the relative humidity of 

the surrounding atmosphere. Simpson and Tschernitz (1979) developed a simple 

model of wood drying as a function of these three variables. Although the analysis 

was originally carried out for red oak specimens, the procedure may be applied to any 

species of wood by adjusting the constant parameters of the model. 

 

3.3.2  Duration of loading  

The grade stresses and the joint strengths associated with the application of Eurocode 

5 (BSI, 2008) are applicable to long-term loading. A modification factor, by which 

timbers strength should be multiplied for various durations of loading, is given in the 

relevant standards. Loss of strength due to duration of load over time is a proven 

issue; timber under load undergoes a logarithmic loss of strength over time, as proven 

by research by Wood (1951) on the Madison curve. Duration of loading is discussed 

further in section 3.3.12 with regard to the affects of timber age on its strength.   

 

3.3.3  Moisture content 

Moisture content of the cells of the timber of living trees and freshly felled logs is 

often very high and liquid water can constitute over 50% of the timber weight; thus, 

water content has a significant influence on material properties. Timber continually 

exchanges moisture with its surroundings, although the rate of exchange is strongly 

affected by the degree to which it is sealed and the immediate surrounding 

atmosphere. Timber contains moisture in two forms: 

1. Free water - The bulk of water in cell lumens, held by capillary forces.  

2. Bound or hygroscopic water - Bound to the wood via hydrogen bonds.  
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3. Vapour - Water in cell lumens in the form of water vapour is normally 

negligible at normal temperature and humidity. 

 

Since timber moisture content influences distortion, fissures and wood dimensions, 

the timber grade limits have to be related to a reference moisture content, which is set 

at 20% (TRADA, 1995). The moisture content of wood is usually calculated by the 

formula from research by Siau (1984):  

Where 

is the green mass of the wood, 

is its oven-dry mass (the attainment of constant mass generally after drying in an oven 

set at 103 +/- 2 °C for 24 hours as mentioned by Walker et al. (1993).  

 

The equation can also be expressed as a fraction of the mass of the water and the mass 

of the oven-dry wood rather than a percentage. For example, 0.59 kg/kg (oven dry 

basis) expresses the same moisture content as 59% (oven dry basis). 

 

Accepted literature contains many analyses of moisture content significantly affecting 

the mechanical characteristics of timber. For example, Gerhards (1982), and Lenth 

and Sargent (2004), both illustrate that increasing temperature and humidity results in 

a decrease in the elastic constants of timber. The moisture content of timber is 

commonly determined in accordance with BS EN 336 (BSI, 2003) and given a ‘Dry’ 

or ‘Wet’ grading: 

 Dry graded timber - has an average moisture content of 20 % or less, with no 

reading exceeding 24 % moisture content. 

 Wet graded timber - because thick timber is difficult to dry, the provisions of 

the relevant standard do not apply to timber that has a target thickness of 100 

mm or more, where a timber moisture content higher than 20 % would be 

prevalent (corresponding to service class 3). 

 

 

 
moisture content =  
 

(1) 
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Figure 3.3. Graph of the influence of moisture content for small clear specimens. 
After Larsen (2001)  

 

 

Timber releases or absorbs moisture in response to changes in relative humidity in its 

immediate surroundings or working environment until the moisture content of the 

timber has stabilised at an equilibrium moisture content (EMC). Moisture changes 

below the fibre saturation point (just below 30%) influence the strength and stiffness 

and result in dimensional changes (shrinking/swelling). For timber in equilibrium 

with its surroundings the moisture content depends approximately on the relative 

humidity (RH) and temperature of the surrounding atmosphere. 

 

Table 3.1. Influence of moisture content for small clear specimens. For structural 
timber the influence is only about 50 % of the values shown. After Larsen (2001) 

 Strength loss(%) for 
a unit increase in 
the moisture 
percentage 

Strength increase (%) 
when drying from fibre 
saturation point to 
12% 

Tension parallel to grain 3 50 
Tension perpendicular to grain 2 35 
Compression parallel and 
perpendicular to grain 

5 65 

Bending 4 60 
Shear 3 50 
Stiffness 1.5 25 
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The usual method of minimising the likelihood of any adverse effects in timber 

construction is to ensure that the timber joist, when first installed, is at a moisture 

content approximately mid-way between the extremes of the equilibrium moisture 

content it is likely to attain in service. Internal flooring, for example, would probably 

need to be installed with its moisture content at around 12%. Kiln dried virgin timber 

is usually processed at a moisture content of between 10% and 15%. 

 

3.3.4  Density 

In general, as timber density increases so its various mechanical properties also 

increase. Density remains the best general predictor of timber strength, since there 

exists a high correlation between strength and density in many timber studies. While 

this is not a universal truth, it is a common result.    

 

Density of timber at a specific moisture content is the amount (mass) of wood 

substance in a given volume. Density is influenced by the concentration of wood cell 

wall relative to the amount of void space in and between the cells. The density of 

timber cell walls (fibres, tracheids, vessels or rays) are relatively constant in all timber 

species, so the main factors affecting density are the size of the cells, the amount of 

void spaces, and the proportions and distribution of the various cell types.  

Table 3.2. Timbers in common use for housebuilding prior to 1955 (TRADA, 1954) 

Common Name 
 

Botanical name Density 
(kg/m3) 

Mean MOE 
(N/mm2) 

Cedar, western red Thuja plicata 390 8500 
Cedar, yellow Chamaecyparis nootkatensis 420 8800 
Douglas fir Pseudotsuga taxifolia 530 8800 
Fir, balsam Abies balsamea 415  
Hemlock, western Tsuga heterophylla 480 8800 
Larch, European Larix occidentalis 550 9000 
Pine, Corsican Pinus nigra var maritima 510  
Pine, pitch Pinus rigida 710 11000 
Pine, ponderosa Pinus ponderosa 430  
Pine, Scots (Redwood, 
European) 

Pinus sylvestris 510 9000 

Spruce, Canadian Picea glauca   450 6800 
Spruce, European 
(Whitewood, European) 

Picea abies 
Abies alba 

430-470 6800 

Spruce, Sitka Picea sitchensis 450 6800 
 

Table 3.2 illustrates some common softwood types which were used in construction 

prior to 1955 and how their average strength (MOE) is affected by their density, at 
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standard temperature and pressure (STP). For reference and comparison, the average 

density of the most popular modern softwoods used for general construction is usually 

less than 400 kg/m3 (Holzabsatzfonds, 2007). 

 

In general terms, density is a reliable indicator of strength, as well as being a good 

indicator of several other properties. However, density is greatly influenced by the 

amount of moisture contained in the timber at the time of measurement. 

 

3.3.5  Resin and bark pockets 

Resin pockets and bark pockets are assessed as fissures or knots according to their 

shape. If a bark pocket is assessed as a knot it shall be taken into account when 

assessing the knot area ratio. 

 

3.3.6  Distortion 

The methods of assessing distortion are illustrated in BS EN 14081 (BSI, 2011). Bow, 

spring and twist are assessed over a 2 m length, anywhere on the timber surface. As 

distortion is influenced by moisture content precise limits to cover all conditions and 

applications cannot be given, only those acceptable at 20 % moisture content. 

 

3.3.7  Slope of grain 

Slope of grain is assessed as the inclination of the wood fibres (grain) to the 

longitudinal axis of the piece, usually expressed as the number of units of length over 

which the deviation occurs. It is measured over a distance sufficiently great to 

determine the general slope, disregarding local deviations. Where the slope of the 

grain is excessive, strength of the piece can be approximated using Hankinson’s 

formula and by assuming that the MOE of wood perpendicular to grain is about 1/50 

the value of MOE parallel to grain.  The general form of Hankinson’s formula is: 

 
                Ө0 Ө90           
                                                                                                                                                                                                                                           1    

Ө0  sinn  a +  Ө90  cosn a 

 

 
 
(2) 

Where 

Ө0 = MOE parallel to grain 

Ө90 = MOE perpendicular to grain  

a = angle of slope of grain to the longitudinal axis 
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and where the exponent n can take values between 1.5 and 2.  

 

Figure 3.4. Illustration of the form of Hankinsons formula 

 

 
Even though the original relation was based on studies of spruce, Hankinson's formula 

has been found to be remarkably accurate for many other types of wood (Clauston, 

1995). However, for the purposes of testing reclaimed timber, the slope of grain was 

largely ignored. Visual grading and slope of grain testing is likely to have already 

been carried out when the timber joist was installed during construction. It is worth 

noting, though, that the slope of the grain can have a disastrous effect on the strength 

of a timber joist, and as an example, the strength of a Douglas fir joist is illustrated in 

the following graph (Figure 3.5). 

Figure 3.5. Strength graph of Douglas fir. After Breyer, Fridley and Cobeen (1999) 
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Where: 
Joist parallel tensile strength = 8.76 kN/m3 
Joist perpendicular tensile strength = 0.2 kN/m3 

Ө 
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3.3.8  Rate of growth 

To assess the rate of growth, measurement is made on one end of the piece and 

expressed as the average ring width, in millimetres. 

 

Figure 3.6. Rate of growth measurements. After BS 4978 (BSI, 1996) 

 

 

The measurement are taken along a straight line 75 mm long, normal to the growth 

rings, which; when the pith is absent, passes through the centre of the end of the 

piece, and when the pith is present, commences 25 mm from the pith. If a line 75 mm 

long is unobtainable, the measurement on the longest possible line normal to the 

growth rings and passing through the centre of the piece is taken. This measurement is 

expressed in Figure 3.6 above. 

 

3.3.9  Knots 

Knots in sawn timber vary greatly in shape. They may vary with sawing patterns and 

timber dimensions and are often difficult to determine and classify. Timber strength is 

mainly reduced by grain deviations around knots, rather than by the knots themselves. 

This becomes more evident when investigating a joist failure; these anomalies often 

start from extreme fibre deviations in the vicinity of knots. Wood structure may be 

even more affected when several knots are situated close together in a piece of timber.  

 

Knots are assessed by their total knot area ratio (TKAR) and their margin knot area 

ratio (MKAR).  If any part of a knot or the grain disturbances for which they are 
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responsible overlap along the length of the piece, the knots are considered as part of 

the same cross-section; however, in making this assessment, knots or knot holes of 5 

mm diameter or less are ignored, as outlined below: 

 total knot area ratio (TKAR) - Ratio of the sum of the total projected cross-

sectional areas of all knots intersected by any cross-section to the total cross-

sectional area of the piece. 

 margin knot area ratio (MKAR) - Ratio of the sum of the projected cross-

sectional areas of all knots or portions of knots in a margin intersected at any 

cross-section, to the cross-sectional area of margin. 

 

Thus, knot ratio is usually calculated from the sum of knots within a defined section 

along the length of a piece of timber rather than simply from the biggest knot. Edge 

knots and knots in tensile zones have a greater effect on strength than centre knots or 

knots in compression zones. Therefore, the position of knots within cross-sections of 

timber is often also taken into account in grading rules. 

 

As has been previously mentioned, the significance of knots will depend on their size 

and distribution within the cross section and profile of the joist.  

 

Figure 3.7. Effect of knot ratio A and density on tensile strength ft,0 of structural 
timber. After Glos (1983). 
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In accounting for the weakening effect of knots, the assumption can be made that the 

knot is effectively a hole through the piece, reducing the cross section. For a joist 

containing an edge knot, the bending strength ratio can be visualised as the ratio of the 

bending moment that can be resisted by a joist with a reduced cross section, to that of 

a joist with a full cross section (Mitsuhashi et al. 2008). 

 

The ratio is illustrated on the following page and is represented by the formula: 

Where  

SR = strength ratio,  

k = knot size, and  

h = width of face containing the knot.  

 

Figure 3.8. Effect of edge knot: (A) edge knot in timber joist and (B) assumed loss of 
cross section (shaded area). Mitsuhashi et al. (2008) 

 

 

This is the basic expression for the effect of a knot at the edge of the vertical face of a 

joist that is deflected vertically. The following figure illustrates how strength ratio 

changes with knot size according to the formula above. 

 

SR = 1 - (k/h)2 (3) 
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Figure 3.9. Relationship between bending strength ratio and size of edge knot 

expressed as fraction of face width. k is knot size; h, width of face containing the knot 

(AF & PA, 1997). 

 

  

3.3.10 Timber species identification 

One major difference in timber obtained directly from sawmills and from reclamation 

is the assurance of species uniformity. Sawmill timber will typically originate from a 

single species stream; as identified by the bark, needles, and geographic origin of the 

tree. Reclaimed timber, however, will be very likely sourced from a building that 

contained a mixture of species, and that could be a result of the original building 

material supply chain or remodelling and repair (or both). Unless a grade stamp 

exists, species uniformity cannot be guaranteed. Also, visual identification to confirm 

species presents a potential problem as the timber will often be dirty or discoloured. 

 

In construction, many factors are involved in the choice of species, but from the 

purely structural view it is the strength grade which is of prime importance. To 

provide an alternative method of specification for the designer, coupled with greater 

flexibility of supply, BS 5268-2 (BSI, 2002) gives a series of strength classes which 

for design use can be considered as being independent of species. However, for some 

applications it may be necessary to specify particular species (or exclude them) from 

within a strength class to take account of particular characteristics, e.g. natural 

durability of the timber or amenability to preservatives, glues and fasteners. 
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Timber species recognition can be easily carried out by a trained technician, using no 

more that a microscope, the timber species is identified from recognition of the cell 

structure. While this does not give an absolute result, it does give a 95% chance of 

correct identification of the species. The aim in species identification is to establish a 

correlation between microscopic examination and; timber colour, grain, density and 

rate of growth, in order to produce an estimation of the timber species from these 

other characteristics. Thus, negating the need to use more expensive methods of 

identification.  

 

Identification of species has been called attempting the impossible, as the only sure 

path to identifying the species is through identification of the leaves and fruit of the 

tree. Any other attempt at identification must state that ‘the features observed, accord 

well with species X, but can only be confirmed by comparison with authenticated 

specimens’. Therefore, in a general identification it would be reasonable to exhaust 

the easy macro clues first, before seeking more costly advice. Some of the macro-

clues, when present, which will help in species identification are:  

 A knowledge of the history of the piece/element can be helpful  

 Size - Larger sections of softwood more likely to be Canadian, unless early 

Victorian  

 Saw marks - Hand sawn pieces will be earlier than circular sawn or band sawn  

 Colour - As seen, as freshly cut, as polished. Should be viewed under daylight 

conditions  

 Ease of cutting - hardness and smoothness enable estimation of density  

 Smell - Use a drill to generate some friction (pines have a distinct smell) 

 Knot arrangement  

 Shippers marks - can give the  name of the manufacturer and hence country of 

origin, strength grade and even the species  

 Rate of growth (absence of growth rings is an identifying feature)  

 Density - Consulting density charts can be helpful in identification 

 

Because of the difficulty involved in correct timber species identification, it was 

decided early in the research programme, that while the identification of various 
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timber species from the reclaimed specimens was useful for the research analysis, 

especially for pinpointing anomalous results in the strength grading tests, it would 

ultimately not prove to be viable as part of a methodology or process that could be 

carried out with any ease.  

 

Furthermore, the introduction of Eurocode 5 (BSI, 2008), offers the designer the 

choice of timber specification by grade strength or by species. This means that 

identification of timber species procured through reclamation, is no longer necessary. 

Eurocode 5 states; ‘A timber population may be assigned to a strength class if its 

characteristic values of bending strength and density equal or exceed the values for 

that strength class given (in the standard), and its characteristic mean modulus of 

elasticity in bending equals or exceeds 95% of the value for that strength class given’ 

(BSI, 2008 p. 8). 

 

In this research there has risen a need for strength grading of 'unknown' species. The 

dataset developed will be used to develop a species independent model. Because the 

proposed method of visual assessment looks at characteristics other than timber 

species, it is proposed that this will represent a best practice in species independent 

softwood grading, similar to that proposed in the work of Ravenshorst and Van-de-

Kuilen (2006). For these reasons, species identification is not pursued as part of the 

methodology in this present work. 

 

3.3.11 Tree ring frequency calculation 

In temperate regions of the world, each year the girth of a tree trunk increases by one 

growth ring as each sheath of secondary xylem is added. At the beginning of the 

growing season earlywood or spring growth, in the form of large thin walled cells are 

produced by the cambium. At some point during the growing seasons (late 

summer/autumn) the type of cells produced by the cambium changes and latewood 

growth occurs resulting in cells with thick walls. Cell production by the cambium 

stops abruptly with the onset of winter. This is followed by the onset of new growth 

the following spring and the formation, once again, of earlywood cells. This pattern 

occurs for all softwoods, other than tropical softwoods.  
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In softwoods, the variation in colour that occurs throughout a growth ring can be 

related to changes in thickness of the cell walls. The variations in cell wall thickness 

between earlywood and latewood cells account for differing properties between these 

regions.  

  
Without magnification, growth rings appear as alternating bands of light and dark 

material. Using a microscope the difference between the size of the earlywood cells 

and the latewood cells is fairly obvious. Since density is influenced by the rate of 

growth of timber it follows that variations in ring width and frequency will change the 

density of the timber and hence the strength.  

 

The frequency of growth rings per inch also affects timber strength; this is especially 

prevalent when considered in conjunction with timber density; large annual growth 

rings mean a low density and thus a lower strength (Larsen, 2001).  This fact is not 

commonly presented in the literature; however, it can significantly interfere with the 

values of the modulus of elasticity and rupture. In their study of the parameters that 

influence redwood crush, Cramer et al. (1996) noted that the number of growth rings 

per inch may predict the crush behaviour more efficiently than the density alone. This 

validated earlier findings regarding the changes in elastic modulus and strength within 

an annual ring as, for example Bodig and Jayne (1982) showed, suggesting a variation 

in the tensile strength of wood within the location of the growth rings.  

 

Other recent research by Mascia et al. (2009) illustrates that the frequency of the 

occurrence of growth rings can also considerably affect the strength of timbers.  

 

3.3.12 Age of the reclaimed timber 

This is not easy to ascertain and can only be determined with any accuracy by 

knowing the location of the site from where the specimen was removed. From this 

information, local searches may reveal the age of the site, or buildings upon it, and 

thus, by extrapolation, the probable age of the timbers used in the building. 

Alternatively, if there are any date markings on the building, such as dedications or 

cornerstones, these may give an exact date of the first use of building materials on the 

site. However, it should be borne in mind that before that advent of kiln drying, 
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timber joists would have been air seasoned for several years prior to their first use, 

and so any date can only yield a near approximation of the actual timber age.  

 

Dendrochronology and Radio Carbon (RC) dating are probably more obvious 

methods for dating timber joists from reclamation; however, both of these methods 

are extremely expensive, and even for a research project, add prohibitive costs to the 

overall budget. Furthermore, as the methodology is constructed as a simple to use 

process, in practice Dendrochronology and RC dating will make the ‘on site’ nature 

and benefit of the tests too complex.   

 

There is some debate about how time affects the characteristics of timber joists; it is 

assumed that they become more stiff, dry, and generally less strong, as they age. The 

loss of strength is a proven issue; timber undergoes a logarithmic loss of strength over 

time, as proven by research by Wood (1951) on the Madison curve.  Subsequent 

studies, such as Pearson (1972) found good agreement despite differences of species, 

dimensions and moisture content. The best exponential relationship to fit the results 

below SL = 100% was shown to be 

Where 

tf = time to failure in hours. 

SL = actual stress level over predicted short-term strength 

 

Based on this methodology, Madsen (1973) reported results from step-wise ramp 

loading of western hemlock timbers. These results suggested that the duration of load 

effect varied with material quality. Low perceived quality (low strength) material 

seemed to exhibit less duration of load effect than material perceived to be high 

quality, of the same species and type of specimen. For low quality material, the effect 

was significantly smaller than predicted from the Madison Curve for both dry and wet 

timbers. For the interpretation of experimental results and development of a 

mathematical duration of load model, conclusions from constant load tests have been 

linked to results from ramp load tests and have been extrapolated to the lower loads 

typical of design situations. This has spawned two approaches to the development of 

time-to-failure modelling: 

SL= 90.4 - 6.5 log10 tf (4) 
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 Accumulation of damage 

 Fracture mechanics of viscoelastic materials 

 

However, this research has not aimed to include this level of accuracy in any form of 

‘remaining strength’ model calculation. The age of the timbers under test can only be 

approximated and the load and duration of load cannot be estimated with any 

accuracy, except to say that the materials have been under load; even if this is only the 

dead load of the building itself. In this case the model calculation discussed in the 

research analysis will only consider the duration of load calculation in the work of 

Pearson (1972).  

 

During this research finding the source site for timber has been difficult; because of 

health and safety measures only certain personnel are allowed to enter an active 

demolition site and contractors are unwilling to allow anyone other than their own 

personnel onto site. 

 

There is the argument that, for this research, the age of the timber is unimportant, as 

the timber strength is observed through testing. However, age is likely to become a 

factor in any model calculation aiming to illustrate the mechanical characteristics of 

the timber specimens.  

 

3.3.13 Temperature considerations 

As timber is cooled below normal temperatures, its properties generally increase; 

when heated the reverse usually occurs. The magnitude of these changes depends 

largely upon the moisture content of the timber. Up to 65°C, the effect of temperature 

is assumed to be reversible.  

Table 3.3. Property adjustment factors for in-service temperature exposures (After 
AF&PA 1997) 

 Factor 
In-service moisture 
content  

T <  or = 37°C  37°C <  T  < 52°C  52°C <  T < 65°C  

Wet or dry  1.0  0.9  0.9  
Dry 1.0 0.8 0.7 
Wet  1.0  0.7  0.5  
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For reclaimed timbers, there is little information on the ‘in service’ temperature that it 

has been subjected to. However, it would be wise to keep this fact in mind and 

consider it when visiting demolition sites. For new structural members that will be 

exposed to temperatures up to 65°C, design values are multiplied by the factors given 

below; these should be considered in calculating the possible reclamation viability of 

structural timbers. 

 

3.3.14 Ultrasonic, sound wave and X-ray grading 

There exist other faster and more accurate methods of measuring the mechanical 

properties of timber; namely those using ultrasonic, sound wave and X-ray 

measurement. The inherent problems here are the complexity of some of the 

equipment and the need for specialist operators. This, coupled with the need for many 

of these methods to be laboratory based, tends to make them unsuitable for ‘on site’ 

testing operations, carried out on a regular basis. 

 

Sound wave, or natural frequency, measurement of timber measures the natural 

frequency of the wood caused by the longitudinal vibration and calculates the velocity 

of the sound throughout the joist. The measurement itself is carried out by placing a 

vibration sensor on the joist end and hitting the log with a hammer to excite the 

vibration. Based on the measured natural frequency and an additional length 

measurement and assuming a default density value, the dynamic modulus of elasticity 

of the joist can be calculated. 

 

X-ray scanning of the timber is performed by irradiating the joist from several sides 

while they move past the machine. The intensity of the transmitted radiation is 

measured on the opposite side of the irradiators. By the method, a three dimensional 

picture of the timber joist and its interior can be obtained and different parameters 

concerning the log calculated. These parameters include various density parameters, 

knot ratios and ring width and frequency parameters. 

 

The ultrasound transit time of timber joists is measured by monitoring the time in 

which the sound travels through the timber longitudinally. The measurement is 

performed by attaching a starter and receiver transducer on the ends of the joist. 

Based on the transit time measurement and length measurement a dynamic modulus 
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of elasticity (assuming a default density value) can be calculated; however, it should 

be noticed that the dynamic MOE measures this way is based on a different physical 

phenomenon than the one obtained by the natural frequency measurement. 
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3.4  Methods suggested by this study for testing reclaimed 
timbers 

This research suggests that there are two methods of approaching the re-grading of 

timbers recovered from demolition; laboratory testing and contractor ‘on site’ re-

grading. Both of these will have a different set of operations attached to them; taking 

the reclaimed timbers from the building being demolished, through re-grading and 

testing, and on to reuse in another structure. 

 

3.4.1  Laboratory testing  

The methodology for laboratory testing and grading conceived for this research was 

separated into several phases; each phase dealing with a different material 

characteristic of the reclaimed timber joists. Visual grading and density measurement 

were carried out at the recovery site (demolition site); timber joist machine grading 

and small clear tests were carried out in the controlled surroundings of the laboratory 

test area.  

Figure 3.10. Process flowchart for a researcher testing timbers from demolition 

 

Researcher arranges collection of timber joists from demolition site 

 

Visual examination and grading by the researcher, at the demolition site 

 

Offsite storage in laboratory test area 

 

Moisture testing (and possible repeat testing) 

 

Machine grading of the timber joists  

 

Cut small clear test pieces from timber joists 

 

Carry out small clear tests 

 

Analysis of results by researcher 
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The intention in carrying out testing in different phases was to find a correlation in 

properties between visual grading, large timber joist tests and small clear tests. From 

these results a test methodology was formulated to visually grade reclaimed timber 

joists for structural use. 

 

The important issue of recovery from site should be discussed here also. Negotiating 

with demolition contractors for reclaimed timber is not easy; however, this should be 

done, where possible. Visiting the demolition site allows the researcher to see the 

timber and visually inspect it as soon as possible after recovery from the building. It 

also allows a glimpse into the nature of the possible past loading the timber may have 

undergone. Furthermore, it allows the researcher to further investigate the building 

that the timber came from; possibly finding a date for construction, whether the 

building underwent any refurbishment or extension, giving an adjusted date for first 

use of the reclaimed timber elements. 

 

The best recovery conditions are that the timber joists should be dry, not affected by 

insect damage, and with no removal damage. Where this is not possible, the timber 

should be in good condition and the researcher should have a dry storage ready; to 

minimise any time in equilibrating the timbers to test conditions. Timber joists should 

be transported to a dry storage area as soon as possible and given at least 2 weeks to 

reach the ambient humidity conditions of the storage area. At this time the moisture 

level should be tested. If it is not at the level of the storage area, the timber should be 

returned to storage and tested again in a further week. This should carry on until the 

timber moisture level has reached the storage area conditions. 

 

3.4.2  Contactor regrading 

The methodology for regrading of timbers reclaimed from construction by trained 

personnel, or by the demolition contractor is, again, separated into several phases; 

each phase dealing with a different process in the journey of the timber, from removal 

from a condemned building to utilisation in a new structure, either on the same or a 

different site.  

 

Visual grading and density measurement would be carried out at the recovery site 

(demolition site), as would the grading operation. The intention in carrying out 
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grading by this method is to process the reclaimed timbers in as short a time span as 

possible, thus limiting exposure of the timber to the outside atmosphere.  

 

Figure 3.11. Process flowchart for a contractor regrading of timbers from demolition 

 

Removal of timber joists from the condemned building by the demolition contractor 

 

Visual examination at demolition site by trained personnel 

 

Re-grading at demolition site by trained personnel 

 

Graded timber beams sent to storage/reseller 

 

Graded timber joists sent to a new construction site/sold by reseller 

 

Graded timber utilised in a new building 

 

 

The issue of recovery from site should not be a difficult one of the demolition 

contractor. At this time the moisture level should be tested and density calculations 

adjusted, as per BS EN 384 (BSI, 1995).  

 

The contractor may already have some date knowledge about the building, afforded 

by the demolition contract or other documentation associated with their role. They can 

also arrange the optimum recovery conditions; that the timber joists are dry and 

without damage due to removal, insects or rot. It is likely that a dedicated dry storage, 

where reclaimed timbers can be transported to will also be available to the contractor.   
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3.5  Issues surrounding timber grading suggested by this 
research  

There are several issues related to the grading of reclaimed timbers from demolition, 

where this process differs from visual grading of virgin timber. These differences are 

important and must be considered before any methodology for the process can be 

constructed. 

 

3.5.1  Visual grading of reclaimed timber 

The assessment data discussed in the standard (BSI, 2011) deals with visual testing of 

all types of virgin timber. However, older, reclaimed timbers have other 

characteristics that need to be considered. Certainly, some of the timber recovered 

from demolition will have been visually graded as part of a batch, before its use in the 

original building took place. And, because at least some of the reclaimed timbers will 

have already been batch graded visually prior to their original use, it is likely that 

many of the commonly sought faults looked for in a visual timber examination will 

have already been weeded out. These faults would typically be due to; the presence of 

a hazardous amount of knots in the joist, slope of the grain in the timber rendering it 

too weak for construction use, the rate of growth of the timber being too high, and 

timber wane being present.  

 

What an alternative grading system will be specifically looking for will be faults that 

have occurred in the timber since its first use as a building material. A test schedule 

for visually grading of reclaimed timbers is available as section 3.6.1 of this research 

project; being a modified version of BS 4978:1996. However, this does not 

automatically mean that a reclaimed timber joist will pass regrading, though it does 

indicate that it is likely to be perceived to be of good quality. The only facets of the 

timber that will be seriously in doubt, and main purpose of visual grading, are any 

areas of damage that have occurred during the service life of the timber.  

 

3.5.2  Moisture content 

Of all of the characteristics, at the time of testing, moisture content of the timber joist 

is one of the most important. Timber releases or absorbs moisture in response to 

changes in relative humidity in its immediate surroundings until the moisture content 

of the timber has stabilised at equilibrium moisture content (EMC). These moisture 
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changes can seriously influence the strength and stiffness of the timber. This feature 

of timber, both old and new, is illustrated in Table 3.4.  

Table 3.4. Influence of moisture content for timber joists. After Larsen (2001) 

 Strength loss(%) per unit 
increase in moisture 
percentage 

Tension parallel to grain 1.5 
Tension perpendicular to grain 1 
Compression parallel and 
perpendicular to grain 

2.5 

Bending 2 
Shear 1.5 
Stiffness 0.75 

 
 

Moisture penetration, subsequent drying times and effects on strength, while 

investigated as part of the scenario of timber storage, are not included in the results or 

analysis of this research. 

 

3.5.3  Previous loading  

Unless an exact history of the building where the timber was originally housed is 

known, little can be discovered about lifetime loads, so testing cannot consider this; 

however, unlike most structural materials, timber is very resistant to cyclic loading. 

Research by the National Association of Forest Industries (NAFI) found that static 

tests showed that wood subjected to 30 million cycles of stress in tension parallel to 

the grain still retained 40% of its static strength (NAFI, 2004). 

 

3.5.4  Insect and fungus damage 

Abnormal defects, such as insect damage and fungal decay, which may have caused a 

decrease in strength properties to an amount which threatened the serviceability of the 

piece, would indicate that these timber joists were discarded from the grading process 

as failures. Decay, such as rot or insect attacks, causes a reduction of the cross-

section, hence a reduction in the timber strength. However, in some timbers it may be 

difficult to ascertain whether there is damage; internal decay is often masked by the 

lack of evidence on the exposed surface. There are two main indicators of fungal 

attack:  
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 Stain: Fungi cause staining in timber, when it feeds only on food materials stored 

in the sapwood. Stain defect does not usually affect the strength properties of 

timber 

 Decay: This is observed due to fungi breaking down the cell structure and 

attacking both sapwood and heartwood; reducing the strength properties of the 

timber. 

 

Insect borers constitute one of the most destructive biological sources of defects in 

timber. However, damage from these agencies is visible in the form of tunnels and 

wood dust packed galleries in the timber. 

 

As part of the visual grading, and as reclaimed timber used in the research were in 

mainly dry conditions during service, insect and fungus damage was at a minimum. 

However, decay is frequently restricted to localised points, such as those in contact 

with walls, where moisture collects. Where damage of this nature was found, these 

timbers were discarded from the grading and testing processes. 

 

3.5.5  Tree ring frequency 

Research by Mascia and Cramer (2009) illustrates that the frequency of growth rings 

also considerably affects the strength of timber. 

 

This phase of the research aimed to evaluate the influence of the number of annual 

growth rings on the strength of the reclaimed timber specimens. In softwood, the 

growth rings are often difficult to see, so to adequately view the delineation of growth 

rings a section was cut from the main timber joist and the frequency of growth rings 

recorded by scanning the section on a desk scanner and counting the rings displayed 

within a nominated 75 mm line, normal to the growth rings.  

 

Some complementary work in this field, involves the production of a smartphone 

application to count the ring frequency from a photograph taken of the end of the 

timber joist. This application, in its present incarnation will only attempt to calculate 

the number of rings on the test piece and has not yet been developed enough to make 

measurements in line with the recommendations of BS EN 14081 (BSI, 2011); 



 75 

however, this facet is being further researched. The smartphone application is 

discussed further in the research analysis. 

 

3.5.6  Machine and ‘in service’ damage 

The most distinguishing feature of reclaimed timber is the presence of previous ‘in 

service’ damage. This may be a result of; the original construction processes (nail 

holes, bolt holes, notches, etc.), building use (in service drying defects, decay and rot), 

and through the deconstruction process. For purposes of this research, damage was 

defined as; holes as a result of nails or bolts, splits other than those caused by drying, 

saw cuts and, notches and decay. While it is desirable to minimise damage so that 

yields can be maximised, in an existing building, it is only possible to minimise 

damage through the deconstruction process.  

 

The most frequent form of damage in reclaimed timber joists is nail holes and damage 

to the edge of the members, affecting about a third of the timbers. Following on the 

work of Nakajima and Murakami (2008), this research proposed a rule to grade 

timbers based on the effect of the number of nail holes in their various surfaces. 

Nakajima and Murakami observed that a decrease of MOE and MOR values occurred 

when the total amount of nail holes on the two narrow surfaces of the reclaimed 

timbers was more than 70 (over a 2 m length). A reduction in these values was also 

observed when the total amount of nail holes on the two broad surfaces of the lumbers 

was more than 50. 

Figure 3.12. Effect on strength due to damage by nail holes in the joist (narrow) edge 
of reclaimed timbers (results in GPa = KN/mm2 and MPa N/ mm2). After Nakajima 
and Murakami (2008) 
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Accordingly, this research adopted a process of counting the number of nail holes on 

a 1 m length of the upper surface (most densely nailed surface) of the reclaimed 

timber joist and doubling this number. If the total is more than 40, the piece was 

discarded. While this process tends to give a larger total than counting every nail hole, 

it does save time and allows a safety margin in the estimation. As Figure 3.12 

illustrates, the loss in strength through nail holes is only 10%, even at the greatest 

allowable quantity of nail holes. 

 

In this research machined and drilled holes and screw holes have been treated as knots 

that pass through the cross section of the piece. These are covered further in Section 

3.5.7, which deals specifically with timber knots; however Falk et al (2003) illustrated 

that a justified allowable hole, one half the allowable knot size, can be accounted for 

in calculations. For this research, in cases where there were holes that were larger than 

half the allowable knot size, those timbers were excluded from further testing. 

 

Damage, as a result of the deconstruction process, could be lessened by careful 

removal of elements connected to timber joists; as could more careful removal of end 

nails from joists and rafters. 

 

3.5.7  Knots in the timber 

For the purposes of this research, knot area ratios were not considered other than to 

discard those items where the ratio was high. All instances where single knots were 

over 30 mm in diameter and on the surface of the timber joist, and were they were 

within the h/4 edge margin were discarded from further testing. 

 

This method of filtering out unsuitable timbers may seem unduly harsh, but the visual 

examination is intended to be carried out on site, where calculation of the knot area 

ratio may not be easily managed. This is also coupled with the characteristic that 

seasoned timbers from older trees have very few large knots in their length and the 

knowledge that any timbers reclaimed are likely to have been batch tested before 

being originally used for construction operations.  

 



 77 

3.5.8  Timber density 

The only stipulation for density calculation relating to the reclaimed timber specimens 

in the laboratory is that the temperature and humidity is known. Measuring the timber 

density will give an indication of the condition of the timber and, when compared to 

the absolute density, calculated from the small clear test specimens, an estimation of 

the water content. Reference conditions of 20°C and 65% relative humidity should be 

maintained, wherever possible, in the test and timber storage areas. 

 

3.5.9  Machine grading tests 

The machine testing involved a strength and stiffness test on a rig which simulates the 

machine testing environment.  The large specimen test rig used in this research project 

simulates the conditions encountered in a grading machine, except that it is not 

automated (see – Figure 3.16, Section 3.6.5). Each specimen is passed through and 

tested, to a set deflection, on the plank edge, at increments of 150 mm, and to within 

800 mm of each end of the joist; the joist is turned over and then reversed and 

readings taken from the opposite edge. These two operations are usually done 

simultaneously in industry, on equipment such as the compumatic bending machine. 

 

For this research a further static bend test was carried out on the weakest area of any 

visually assessed joist. This static bend test then gave a minimum strength rating for 

the particular timber. 

 

3.5.10  Small clear tests   

Small specimen testing is detailed in BS 373 (BSI, 1957). Small clear test specimens 

were cut from the larger timber joist specimens, and further machined to size before 

being tested to destruction on the small, purpose built test rig (see – Figure 3.19, 

Section 3.6.6). This test has yielded the expected absolute strength for the specimen 

(modulus of rupture); and hence a related absolute strength for the larger joists. 

 

The test rig for this operation is a piece of apparatus specially designed by the 

researcher from the illustrations and description of the rig in BS 373 (BSI, 1957). The 

static bending test carried out by the central loading method on the 2 cm standard rig, 

has a distance between the points of support of the test piece of 280 mm. The load is 

applied at the central point between the supports with the loading head moving at a 
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constant speed of 6.6 mm/min. The contour of the loading head which is in contact 

with the joist shall have a radiused form (of 30 mm radius). The test pieces are 

supported at the ends so that they are free to follow the bending action and not be 

restrained by friction. The deflection of the joist at mid length is measured with 

reference to the outer points of loading. 

 

Fabrication of the rig structure was a relatively simple engineering exercise. The 

framework was built up and bolted and dowelled together, the specimen supports 

were running bearings, and so frictionless, and the loading head tup was milled to 

shape and produced from an aluminium block. A cavity for a load cell was machined 

into the tup and a screwed loading head machined to fit this and drive the load.  

 

Because of the travel of the loading head and the fact that it could not be motorised, 

due to budget and time constraints, it was decided to produce a made for purpose 

screw thread for the loading head and tup body. Both the internal (body) thread and 

the external (loading head) thread were specially turned to a pitch of 1.1 mm. This 

meant that six turns of the thread per minute would equal the 6.6 mm travel required 

by the loading head. 

 

Vee form threads can be extremely accurate when produced to a tight tolerance and 

the thread used had a 3A/3B tolerance. Classes 3A and 3B are suited for close 

tolerance fasteners where safety is a critical design consideration. This class of fit has 

restrictive tolerances and no allowance. In this instance safety was not a 

consideration, but accuracy was and the threads are a very close fit reflecting this. 

 

The rig is operated by hand, the operator turning the loading head and lowering the 

tup at a constant rate, to approximate the mechanical lowering of the tup in the 

standard mechanism. The rate is easily controlled by the operator with the aid of a 

stopwatch and did not take long to master. The turns of the screw thread give a 

constant velocity for the loading head, the stopwatch a time control and the load cell a 

reading of the applied load.  
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3.6  Testing 

This section explains each of the phases of testing (for laboratory testing), and visual 

grading, for use with both the laboratory and contractor processes.  It also details the 

method of density calculation for contractor timber grading. Timber grading, at the 

demolition site, by the contractor or trained personnel is associated with the model 

calculation produced as the end result of this research. It will be discussed in principle 

here, but in detail during the research analysis. 

 
The research consisted of static bending tests on reclaimed timber joists, and also on a 

small number of virgin timber joists (as a control source). The bending tests are as 

detailed in BS EN 408 (BSI, 1995a) and small clear tests on a purpose built rig, as 

detailed in BS 373 (BSI, 1957). For the large tests 200 specimens of reclaimed timber 

joists were used from demolition sites which were within 20 miles of Newcastle upon 

Tyne city centre. The virgin timbers, to be utilised as a control, were sourced from a 

local building materials outlet. The timber specimens from both sources consisted of 

joists of random sizes; from 75 mm to 200 mm width, 60 mm to 125 mm breadth, and 

in lengths from 1400 mm up to 3600 mm.  

 

The small clear test specimens were cut from these larger joists. These small clear 

tests were all cut and machined to 20mm x 20mm x 300mm, as prescribed in BS 373 

(BSI, 1957). The growth ring orientations were all placed parallel to the applied 

vertical load.  

 

A small batch of the reclaimed timber specimens were first tested by an outside 

timber grading laboratory, at the Forest Products Research Centre, of the 

Buckinghamshire Chilterns University College. These tests were carried out to 

ascertain that the results from the joist tests of this research were in accord with the 

results of a professional testing laboratory. This also served to establish a set of 

comparison values for strengths of timber specimens. 

 

The starting point of the grading process was to produce an alternative method of 

visual grading, which would eliminate inferior reclaimed timbers from those which 

would undergo further machine testing. The process for the grading tests and 

examination are detailed in the following sections. 
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3.6.1  Visual grading at the demolition site 

This visual grading is intended to be carried out ‘on site’, ie at the demolition site or 

site of timber recovery, and is intended to be carried out as soon as possible after the 

timber joists have been removed from the building. 

 

The density of timber joist specimens can be calculated using two methods. The 

laboratory method has been already discussed in Section 3.4.1. The alternative ‘on 

site’ method is detailed in section 7 of BS EN 384 (BSI, 1995) and states: ‘Where the 

moisture content is higher than 12%, the density shall be decreased by 0.5 % for every 

percentage point difference in moisture content and, where the moisture content is 

lower than 12 %, the density shall be increased by 0.5 % for every percentage point 

difference in moisture content’. 

 

The timber density is then calculated from:  

Where 

m = mass of the timber joist 

v = volume of the timber joist 

  

The frequency of timber growth rings was recorded by scanning the end of specimen 

timbers directly on a desk scanner (by cutting a piece from the end of the timber joist 

and scanning this), or by photographing the specimen end and scanning the resultant 

photograph, and ranged from 2 to 30 growth rings per inch (2.54 cm). One method, 

discovered during the research, of making the growth rings more visible, was to 

dampen the end of the timber. This enhanced the dark and light areas of tree ring 

delineation, making them far more visible to optical recognition. 

 

The flow chart, on the following page, details the visual grading element of the 

testing. An explanation and summary of the terms used, including how they differ 

from the criteria given in the relevant standard, is detailed in Section 3.6.3.  

 

 

ρ = m/v (5) 
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Figure 3.13. Flow chart for ‘on site’ visual grading tests for reclaimed timbers  
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3.6.2  Visual grading for the laboratory process 

The visual grading is intended to be carried out partially at the demolition site, and 

partially at the test laboratory. This method is used as the first phase of the complete 

grading test; those timber joists that pass this visual grade then go forward to further 

moisture/humidity testing in the laboratory, and finally, to timber grading machine 

testing and small clear testing. 

 

The results from these tests will, ultimately, lead to the formulation of a model 

calculation, which can be transposed for use in the previous ‘on site’ tests. Thus 

calculating the strength of reclaimed timbers directly, from data obtained at the site of 

recovery. 

 

Humidity is far more of an issue, with regard to accuracy, when testing in conjunction 

with the generation of a model calculation. In this situation attaining a standardised 

level of moisture within the timber joist form is of the upmost concern for the 

accurate calculation of the timber joist strength and density. As well as density the 

strength of the timber joist can vary greatly dependent on the moisture level within its 

form (Gerhards, 1982). 

 

The density of timber joist by the laboratory method has been already discussed in 

Section 3.4.1. The alternative ‘on site’ method, as detailed in section 7 of BS EN 384 

(BSI, 1995) is not suitable for this research. The reason for this is that not all species 

of timber behave uniformly under changing moisture conditions. To maintain any 

form of accuracy the density calculation in the laboratory must be at standard 

temperature and pressure, thus, standard humidity conditions, and the timber must be 

left to normalise to these conditions. The timber density is then calculated, as before, 

from Equation 5 – Section 3.6.1.  

  

The recorded densities of timber joist specimens used for this research varied between 

0.29 kg/m3 and 0.71 kg/m3. All specimens were tested as per the documented methods 

contained in BS EN 408 (BSI, 1995).  
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Figure 3.14. Flow chart for laboratory visual grading tests for reclaimed timbers 
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3.6.3  Flowchart explanations for visual grading of reclaimed timbers 

The following observations are intended to have a short answer, making the grading 

process straightforward, simple and as error free as possible. 

 

Start 

The visual grading element assumes that the reclaimed joist is 2 m or longer and has 

been previously used, under load, within a building (ie. it has been under at least 

‘dead load’ and kept free of excess moisture and outdoor climatic conditions for its 

service life). 

 

In service damage 

Has the joist suffered any obvious damage? This may be in the form of notches, holes, 

splitting and rot – especially at the end faces.  

 

Count the number of nail holes on a 1 m length of the upper surface (most densely 

nailed surface). If the total is more than 40, the piece should be discarded. 

 

Allow holes and notches up to 15 mm wide, or in diameter, but not on the joist edge 

(narrow) surface.  Allow notches up to 25 mm, if they are within 200 mm of the joist 

end – these can be machined out to give a shorter joist, if necessary. 

 

Humidity/moisture 

Where the joist has been recently removed from it’s ‘in service’ position, this should 

answer ‘Dry’; the joist will be dry to the touch. Timber which feels wet/damp to the 

touch could be damaged by rot. In this case the joist should be rejected.   

 

Distortion 

Bow - Not more than 20 mm over a length of 2 m  

Spring - Not more than 12 mm over a length of 2 m  

Twist - Not more than 2 mm per 25 mm width over a length of 2 m  

If all of these conditions are met, the joist is a ‘Yes’; if not then it is a ‘No’ and must 

be rejected. 
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Knots 

No knots of over 30 mm wide on the surface of the timber and within the h/4 edge 

margin. Any knots that breach this rule are failed and the specimen is rejected. 

 

Grain, fissures and wane 

Slope of clear grain should not be greater than 1 in 6.  The number of fissures can be 

unlimited; however, they must not be longer than 600 mm on any running metre. Any 

timbers that breach this rule are failed and the specimen rejected. No wane (absence 

of edge material) of the reclaimed joist is allowed by the visual grade. 

  

Calculate tree ring frequency, age and timber density 

This criterion is explained for this method of visual grading in Section 3.6.1. Timber 

age can be ascertained by various methods already discussed in Section 3.3.12.  

 

Density measurement on site is best carried out with a spring balance and tape 

measure. The only stipulation for density calculation at the demolition site is that the 

humidity of the timber joist specimen is known. Measuring the timber density may 

also give an indication of the condition of the timber. 

 

For the ‘on site’ grading methodology, utilising the model expression, discussed in 

Section 5.2.8 of the results analysis, a grade can now be assigned to the timber joist, 

and the joist marked accordingly. 

 

Proceed to storage / machine testing 

This is the end of the flowchart and signals either; the movement of the visually 

graded timber to storage or to a reseller, or the progress of the timber joist specimen 

to further machine testing. 
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3.6.4  Summary of the permissible limits of visual grading in this 

research  

The following table is a summary of the criteria for visual grading inspections. The 

relevant criteria and how the values are generated and calculated are discussed in 

Sections 3.5.1 to Section 3.5.7.  

Table 3.15. Summary of permissible limits for the visual strength grades for reclaimed 
timber joists, as indicated by this research 

Characteristic Test 

In service damage No more than 40 nail holes per 1 m length of the upper 
surface (most densely nailed surface).  
Allow holes and notches up to 15 mm wide, or in diameter, 
and notches up to 25 mm, if they are within 200 mm of the 
joist end.  
Insect damage – Not permitted  
Chemical damage – not allowed 

Distortion – bow, 
spring, twist, cup 

Bow - Not more than 20 mm over a length of 2 m  
Spring - Not more than 12 mm over a length of 2 m  
Twist - Not more than 2 mm per 25 mm width over a length 
of 2 m  
Cup - Unlimited 

Knots No knots of over 30 mm wide on the surface of the timber 
and within the h/4 edge margin  

Slope of grain, Fissures 
and Wane 

Slope - Not greater than 1 in 6 
Fissures - Unlimited. Not longer than 600 mm on any 
running metre 
Wane - Not allowed. 

Tree ring frequency Calculated as an average number of rings.  

Age of the timbers 
Only really be determined by knowing the location of the 
site where the piece was removed from.  

 
 

3.6.5  Tree ring frequency  

Recent research by Mascia and Cramer (2009) illustrates that the frequency of growth 

rings can also considerably affect the modulus of elasticity of the timber. This phase 

of this research project also seeks to evaluate the influence of the frequency of annual 

growth rings on the strength of timber specimens tested thus far. 

 

As discussed in Section 3.5.5 the frequency of growth rings is best recorded by 

scanning the end of the specimen. In practice it was found to be easier to 

scan/photograph the timber section cut from the main timber joist while it was wet. 

This wetting is achieved by dipping the section briefly (for no more than 30 seconds) 

in water and padding dry with a paper towel, to remove the excess water. The section 
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is left damp, thus, revealing in more detail the growth ring structure. Images obtained 

from a document scanner are perfectly adequate for routine inspection of timber 

surfaces.  

 

Document scanners have the advantage over optical microscopes of having a greater 

depth of field, so timber specimens need not be perfectly flat. As long as the face to 

be scanned is relatively plane and smooth, the rest of the specimen's form is 

unimportant, and does not hinder imaging. High resolution scans in the order of 2000 

dpi are perfectly feasible and yield surprisingly detailed information. This method 

also enhanced colours in the image; making it far easier to delineate the dark and light 

areas of the growth rings, even when these were very close together.  

Figure 3.15. Two test images for ring frequency counting (colour and monochrome) 
illustrating the delineation of fine growth rings 

    

 

To measure the frequency of growth rings it was often necessary to print the image 

generated, hence the need for the ruler (Figure 3.15), and count them manually. 

However, in the case of very tight ring structure, the image could be enlarged, making 

the ring structure easier to delineate and count. In regular use the, earlier mentioned, 

smartphone application should prove to be of immense practical use.  
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3.6.6  Three point bending test for timber joists 

The three-point bending test serves as a means to determine mechanical properties in 

flexure; modulus of elasticity, stress-strain response, yield stress and modulus of 

rupture. The test measures the force required to bend a joist under three point loading 

conditions. The main advantages of the three-point bending test are; its simplicity, 

ease of setup and speed of testing.  

 

The test joist is supported at the ends and a transverse load is applied in the middle; 

hence, loads are applied at three points only. Each specimen is passed through and 

tested, to a set deflection, on the plank edge, at increments of 150 mm, and to within 

800 mm of each end of the joist; the timber joist is turned over and then reversed and 

readings taken from the opposite edge. Strength can be calculated from the overall 

measurements over the two plank edges, but for this research a further static bend test 

was carried out on the weakest area of any visually assessed joist. The static bend test 

then gave a minimum strength rating for the reclaimed timber joist as a whole.  

 

Dynamic bend test method 

1. Breadth and height for the specimen are measured (in mm). 

2. The specimen should be placed in the three-point bend test apparatus ensuring 

that the test piece is correctly oriented (the joist should be lying on its plank 

edge). The first test area placement is at 800 mm from the joist end. 

3. The pressure anvil is lowered into position so that the tip touches the upper edge 

of the specimen. The micrometer indicator should be set to read zero deflection.  

4. The load on the anvil should be set at 2000N. 30 seconds of loading should be 

allowed for the deflection to stabilise.  

5. The load on the joist and the deflection obtained should be noted. 

6. Items 1-5 of this test should be repeated at increments of 150 mm along the 

length of the joist. The test ends when the increments come to within 800 mm of 

the opposite end of the joist. 

 

This method will, in graphical form, illustrate a joist deflection diagram similar to that 

one shown by Figure 3.17.  
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Figure 3.16. Large timber specimen testing rig set up for dynamic bend test 

 

 

Figure 3.17. Joist load-extension graph (60 x 170 x 2400mm under 2000N load) 
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Static bend test method  

1. Breadth and height for the specimen are measured (in mm). 

2. The specimen should be placed in the three-point bend test apparatus ensuring 

that the test piece is correctly oriented (the joist should be resting on its narrow 

edge – see Figure 3.15). The test area placement is at the weakest point on the 

joist, as indicated by the results from the dynamic bend test. 

3. The pressure anvil is lowered into position so that the tip touches the top of the 

specimen. The micrometer indicator should be set to read zero deflection.  

4. The load on the anvil should be increased, by increments (of 1000N) to 10,000N; 

however, displacement should be kept below 5 mm (this could signal an early 
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conclusion of the test). 30 seconds per increment in load should be allowed for 

the deflection to stabilise.  

5. The load on the joist and the deflection obtained should be noted and plotted as a 

load/deflection graph. 

 

Figure 3.18. Large timber specimen testing rig set up for static bend test 

 

 

By measuring the deflection (δ) as a function of load (m) in the three-point bend test 

apparatus the Modulus of elasticity of the joist can be calculated. This part of the 

process investigates the elastic deformation of the timber, so the test piece should not 

be overloaded. A total force of 10,000 N will usually be sufficient to give an accurate 

indication of MOE, unless the timber specimen has a particularly large cross sectional 

area.  

 

The main advantage of a three point flexural test is in the ease with which the 

specimen is prepared; the test itself does not call for any special setup or equipment 

other than the rig, load apparatus and deflection indicator.  
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The deflection at any location along the length of a simply supported joist with a 

single mid-span point load can be determined by: 

Where 

Δy = deflection in the vertical direction 
P = load  
x = point distance from supports  
L = distance between supports 
E = modulus of elasticity 

I = moment of inertia 

 

For a rectangular cross section, the moment of inertia is: 

Where 

b = width of joist  

h = height of joist 

 

Thus, the modulus of elasticity can be resolved by rearranging Equation 6. 

 
 
 

3.6.7  Small clear tests 

In the static small clear bend test the orientation of the growth rings is parallel to the 

direction of loading and an extensometer is usually attached to provide a load-

deflection diagram from which is calculated the modulus of elasticity, as determined 

by BS 373 (BSI, 1957).  

 

For this research small clear specimen test pieces should be cut from the larger timber 

joist specimens, and machined to size by being passed through a bench plane to 

acquire the 20 mm dimension expressed in the standard as accurately as possible. The 

machined specimen is tested to destruction on a small, purpose built test rig (see - 

Δy =  Px(3L2 -4x2) 
             48EI 

(6) 

I = bh3 
      12 

(7) 

E =  Px(3L2 – 4x2) 
             48I Δy 

(8) 
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Figure 3.19). The standard has largely fallen out of practice since the advent of 

automated computerised testing of large joists; however, it has proven useful for this 

research in the calculation of stiffness values and where, ultimately, a smaller scale 

reclamation setup is being considered. 

Figure 3.19. Example of a non automated ‘small clear’ test apparatus setup 

 

 

Small clear test method 

1. The specimen should be placed in the test apparatus ensuring that it is correctly 

oriented (taking careful note of the angle of the growth rings; they should be as 

near vertical as they can be placed). 

2. The pressure anvil is lowered into position so that the tip touches the upper edge 

of the specimen. The load cell indicator should be zeroed.  

3. The load on the anvil is gradually increased, maintaining a constant momentum 

of 0.11 mm/s (this equated to 6.6 mm/minute; six and a half turns of the screw 

guide in the piece of apparatus used for this research – Figure 3.17) 

4. The reading from the load cell should be marked at each full turn of the screw 

guide, this will yield a load reading every 10 s, and for every 1.1 mm of 

deflection (The deflection of the joist at mid length is measured with reference to 

the outer points of loading)  
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5. Readings continued until the specimen either fails to support one tenth of the 

maximum load recorded, or is deflected by more than 60 mm; whichever occurs 

first.  

6. A load deflection displacement diagram should be plotted for each specimen. 

 

Three strength properties are usually determined from this test; Modulus of rupture 

(MOR), work to maximum load, and Total work. The MOR is a measure of the 

ultimate bending strength of timber for that size of specimen and that rate of loading. 

This is actually the equivalent stress in the extreme fibres of the specimen at the point 

of failure. In three-point bending the MOR is given by:  

Where  

P is the load in Newtons (at the point of maximum load/rupture)  

L is the span length in mm,  

b is the width of the joist in mm, and  

d is the thickness of the joist in mm.  

 

The second strength parameter is work to maximum load, which is a measure of the 

energy expended in failure and is determined from the area under the load-deflection 

curve up to the point of maximum load. The third parameter, total work, is the area 

under the load-deflection curve, and is taken to complete failure.  

 

The intention in carrying out two different methods of strength tests is to find a 

correlation in properties between small clear specimens and large timber joists. 

   

3.6.8  Density measurement in small clear tests 

Measuring the timber density indicates the condition of the timber and allows 

estimation of the water content within the wood. To gain an absolute density measure, 

as well as calculating density at the test area temperature and pressure, specimens 

were cut from the small clear specimens, after the tests had been carried out, to further 

determine their moisture content using the oven dry method. The moisture content of 

the test piece, expressed as a percentage by mass, should be calculated to an accuracy 

of 1% (BSI, 1957).  

MOR (in N/mm2 ) = 3PL   
          2bd2 

(9) 
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Oven dry method 

1. A test piece should be cut from the small clear specimen, as close to the site of 

rupture as possible. It should have a length along the grain of 25 mm and should 

include the full cross-section of the specimen. 

2. The test piece should be weighed to an accuracy of 0.5 % of is mass, then dried to 

constant mass in a vented oven at a temperature of 103 ± 2 °C. Constant mass is 

considered to be reached if the loss in mass between two successive weighings 

carried out at an interval of 6 h is not greater than 0.5 % of the mass of the test 

piece. 

3. After cooling, which should be sufficiently quick to avoid an increase in moisture 

content, the test piece should again be weighed to an accuracy of 0.5 % of its 

mass. 

 

The moisture content of the test piece, expressed as a percentage by mass, should be 

calculated to an accuracy of 1 % from the equation: 

 
D = 100 (m1 – m2) 
                m2 

 
(10) 

Where 

m1 = green mass of specimen 

m2 = oven dried mass of specimen 

 

The attainment of constant mass generally occurs after drying for 24 hours as 

mentioned by Walker et al. (1993). The equation can also be expressed as a fraction 

of the mass of the water and the mass of the oven-dry wood; 0.59 kg/kg (oven dry 

basis) expresses the same moisture content as 59% (oven dry basis). 
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3.7  Summary of reclaimed timber testing 

This phase of the research project involved preparing the specimens, both full length 

timber joists and small clear tests, measuring the test piece dimensions in each case, 

and carrying out the relevant bend tests on the specimens. 

 

Careful measurements were taken of density, tree ring frequency, and the probable 

age of each of the specimens, calculated from the age of the building they were taken 

from. However, the age of the timber specimen can only be assumed, as the timber is 

likely to have been felled at least 5 years before the building was constructed. In more 

recent buildings there exists the possibility that constituent timbers may have been 

forced dried or kiln dried, giving any calculated date greater accuracy.   

 

Each timber joist was tested on a 3 point bending test rig; measuring the modulus of 

elasticity and strength. Small clear specimens were tested to destruction, establishing 

the modulus of rupture.  

 

These results thus generated, along with the previously calculated values for density, 

tree ring frequency and age, are discussed in the analysis, with the final aim of 

observing or establishing a pattern and the formulation of a rule and calculated 

expression to predict this in other, as yet ungraded, timber joists still to be reclaimed 

from demolition operations. 



 96 

4 Results  

The objective of this part of the project is to produce a dataset of test results, which 

can then be used to produce statistical and qualitative analysis and conclusions 

regarding the strength of timber recovered from demolition. This phase of the 

research illustrates tabular evidence and graphical representations of the results of the 

visual grading and machine simulation testing.  

 

A control dataset was built up from observing virgin timbers sourced from a builder’s 

merchant chain. This control data set was composed of twenty 3.6 m joists, of random 

cross sectional areas. All were treated in the same way as the reclaimed timbers; 

visually graded, stored, moisture tested and machine simulation tested. This control 

data acts as a comparison of the load bearing characteristics of virgin timber, 

compared to that of reclaimed timber. 

 

While results are summarised in this section of the research, full results of all of 

machine simulation testing and small clear tests, for both reclaimed timbers and the 

control timbers, are shown in Appendix 1. 

 

The following sections are arranged by first considering the visual grading 

characteristics, followed by machine simulation grading data. 
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4.1 Visual grading results 

The visual grading elements of the testing, essentially, produce a pass or fail result. 

This is because the final test method is intended for use by site operators, in situations 

where value judgement over the results is not always possible; usually due to time and 

cost constraints.  

 

As indicated in Table 4.1, damage affected the visual grade of 38% of the timber 

reclaimed and evaluated in this research; making this percentage discards from further 

testing. Of this, the presence of nail holes was the predominant reason (18%); while 

edge damage accounted for only 15% of the damaged timbers. However, edge 

damage was the most common form of deconstruction damage encountered, 

presenting itself as similar to wane. It is likely that this damage resulted from 

removing other timbers, which were themselves nailed to the timber joists.  

Table 4.1. Percentages of timber discarded from the visual grading, by damage type 

Damage type Percentage discarded 
Knots 2 
Nails 16 
Machined holes 5 
Deconstruction 15 
Total 38 

 

Trimming the edges of damaged joists to eliminate defects, whether due to 

deconstruction processes or other outside agencies, will undoubtedly increase the 

yield of reclaimed timber; however, this trimming will also result in shorter pieces 

with, perhaps, a smaller cross section. For the demolition contractor this can do no 

real harm, if there is a market for these lesser timbers. 

 

The remaining 62% of timbers reclaimed from demolition proceeded, after visual 

examination of the number of tree rings present and weighing/calculation of the 

timber density, to further machine simulation testing.   
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4.1.1  Density measurement 

Specimens taken from both the large timber joist and small clear tests, revealed oven 

dry densities in a range from 331 kg/m3 (corresponding to Western Red Cedar) up to 

680 kg/m3 (corresponding to Caribbean Pitch Pine).  

 

Because the timbers were reclaimed directly from the demolition site in a timely 

manner, there was no cause for them to be stored for longer than was necessary for 

the timber surface to equalise to the test area humidity level; however, internal 

moisture levels were also read before testing. Timbers proved to have a moisture 

content which was, typically, under 10% when directly reclaimed from demolition. 

Many of the timbers utilised during this research were sourced from the demolition of 

dwelling houses, and would typically have been floor and roof joists, so it is likely 

that they would have spent their service life in dry conditions.  

 

Preliminary density calculations revealed a relative abundance of timber specimens 

which correspond with, what is now considered to be, quite rare and expensive 

timber. Thus, the reclamation process illustrated the viability of reusing these timbers. 

Density measurements of all specimens involved in further testing are detailed in 

Appendix 1. 

 

4.1.2  Tree ring frequency 

Tree ring frequencies recorded throughout the data collection ranged from 4 to 15 

growth rings per centimetre (cm). This may have had much to do with the prevalent 

economic conditions at the time of construction of the original building. Older 

timbers, containing a greater percentage of mature wood, had a generally greater tree 

ring count and timbers with a very high tree ring count predominantly came from 

buildings which were dated as built before 1910. Greater populations of less mature 

timber, though still with a high tree ring count, seemed to occur in buildings 

constructed before 1940. 

 

From the timbers collected for this research, it appears that from 1940 onwards tree 

ring frequencies generally appeared to reduce over time, signifying either; a rise in the 

cost of more mature timber, or a general lack of timber supply; possibly both.  
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4.1.3  Age of specimens  

Dated from the calculated age, or observed through relevant documentation and plans, 

of the building they formed a constituent of, timber joists recovered ranged from 

around 40 years old to 160 years old.  Full figures for timber age of the specimens 

under test have been detailed in Appendix 1. 
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4.2 Machine simulation testing 

The machine simulation tests are carried out in a controlled environment; standard 

temperature and pressure (20oC and 65% relative humidity).  Full data figures for 

these tests are given in Appendix 1. 

 

Throughout this section linear regression is employed in an attempt to fit a model to 

observed data and make a significant association between the variables. Scatter plots 

of the data collected are illustrated with the aim of determining the strength of the 

relationship between the variables.  This section also makes use of the correlation 

coefficient (R2 value), which takes a value between -1 and 1; with 1 or -1 indicating 

perfect correlation (where all points in the scatter plot lie along a straight line). A 

correlation value close to 0 indicates no association between the variables.  

 

The aim of using linear regression analysis at this point in the research is to illustrate 

the correlations between the observed phenomena and to highlight any special 

relationships within the content of the data.     

 

Each characteristic measured during the machine simulation test phase is illustrated in 

the following sections. 

 

4.2.1  Humidity and ambient temperature 

The most important points of reference in the laboratory test environment are relative 

humidity and ambient temperature. To monitor these conditions a temperature and 

humidity data logger was present in the test area for several months prior to any 

testing being carried out, and also present during the test phases. Variations in 

temperature during the times when testing took place are calculated and accounted for 

in the analysis of the results. 

                                            

The relative humidity of the storage/test area indicates a humidity level corresponding 

to timber Service Class 1, characterised by a moisture content corresponding to a 

temperature of 20oC and a relative humidity of the surrounding air only exceeding 

65% for a few weeks per year. In these conditions most timber will attain an average 

moisture content not exceeding 12 %. 
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 Figure 4.1. Half hourly log of temperature and relative humidity in the timber 

storage/test area, between 16th February 2006 and 5th July 2006 (coldest and warmest 

times of the year). 
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4.2.2  Modulus of elasticity (MOE) and density 

Figure 4.2 illustrates a regular distribution pattern of density against MOE in the 

reclaimed timbers investigated through this research; this is not an unusual result from 

this type of test. The high results in the mid-density range appeared to be due to 

timbers which had almost no damage, very few knots, which were similar in structure 

to ‘clear’ specimens. Some of the excessively low results appeared to be caused by 

damaged timbers, which had narrowly passed the visual grade, or timbers where 

damage was present and not identified by the visual grading process. 

 

Linear regression performed on this data offered a correlation value of 51% (R2 = 

0.51). While the data generally exhibited a regular distribution, some of the results 

showed very high or unexpectedly low figures that deviated from the regular pattern; 

however, the overall relationship remained significant.  

 

These results also illustrated how an indiscriminate attitude to timber species seems to 

have been prevalent when these timbers were originally used for construction. The 

complete results showed that, in many cases, timbers with a range of densities 

originated from the same demolition site, and hence from the same building. This 

illustrated that , at the time of construction there appeared to be a greater focus on the 

strength and stiffness qualities of the timbers. 
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Figure 4.2. Illustration of the relationship of MOE against density in the reclaimed timbers  
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Figure 4.3.Illustration of the relationship of MOE against timber density in the control data   
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Figure 4.3 illustrates the comparison of control data for the same criteria, and shows a 

marked difference in the range of density measurements. The small range of observed 

densities evident in the graph suggests an equally small range of commercially grown 

timber species; whereas Figure 4.2, of reclaimed timber data, suggested a larger range 

of timber species. However, as many of these were sourced from demolition of the 

same buildings, there may have been a requirement for mechanical strength rather 

than species dependent characteristics.  

  

4.2.3  Modulus of elasticity (MOE) and tree ring frequency 

Figure 4.4 illustrates a distribution pattern of MOE against tree ring frequency, 

perhaps offering a method of grading based on the frequency of tree rings in the 

timber joist. The figure shows some high, and some unexpectedly low, MOE results; 

it is these that appear to have affected the regression analysis of the dataset. The linear 

regression coefficient of 38% (R2 = 0.38) marks a low correlation. However, even 

with these results in mind, the visually close band of results suggested that they could 

be used as a basis for determining results from tests on reclaimed timber. 

 

While the regression analysis showed a low correlation, around 90% of the results fell 

in a band 2000 kn/mm2 above and below the average result; only one standard 

deviation distant from the mean. Thus, this result forms an important indicator of 

physical properties in relation to tree ring frequency, and a basis for further in-depth 

modelling during the research analysis. 
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Figure 4.4. Illustration of the relationship between MOE and Tree ring frequency in reclaimed timbers  
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Figure 4.5. Illustration of MOE and Tree ring frequency relationship in control data  

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

0 5 10 15 20 25 30 35 40 45 50

Tree ring count per inch

M
o

E
 (

N
/m

m
^

2
)

 



 107 

In contrast to the distribution revealed in Figure 4.4, those results illustrated in Figure 

4.5 offer no regular pattern of distribution; both the MOE and tree ring count of the 

control data appeared to be in small, tightly controlled, bands; suggesting a small 

number of species grown specially for certain mechanical characteristics.   

 

4.2.4  Density and estimated age of timbers 

The timbers tested illustrated, on average, a lower density measurement over time; 

timber joists recovered from older sites usually exhibited higher densities. Those 

joists used on more ancient sites would have been cut from trees which were felled at 

a much later age than those in more modern construction use, meaning that far more 

of the more mature heartwood was utilised in the joist. The data findings indicated 

that timbers were probably quarter cut to avoid using the pith and sapwood, where 

possible.  

 

The reduction in density of the timbers recovered, when considered with regard to 

their age, could be attributed to the shift towards utilising a smaller number of tree 

species throughout the decades. This appears to have resulted in a very small density 

range in the modern control timbers, which were obtained from a building supplier. 

The low density of control timbers could also be accounted for by presence of a 

greater abundance of sapwood. 

 

4.2.5  Density and tree ring frequency  

Figure 4.6 illustrates a considerable spread of results and a regression coefficient of 

26% (R2 = 0.26), marking a rather low correlation of the observed data. However, this 

does not make representing this data a useless exercise. Comparison of Density and 

tree ring frequency could be utilised to highlight a possible minimum acceptable 

density, or suggest a cut off point in relation to density, where the strength of a timber 

joist may not be any greater regardless of the tree ring count above this level. This 

will be explored further during the research analysis. 
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Figure 4.6. Relationship between timber density and tree ring frequency in reclaimed timbers 
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4.2.6  Modulus of elasticity and age of timber 

The results of the comparison of MOE and age showed as bands of less dense timber 

over each decade, relative to the times where the timbers were first used. The results 

illustrated the general reduction of the MOE, when compared against the timber’s first 

use in construction; however, this trend in reduced MOE measurement is more 

pronounced in younger timbers. Even considering the degradation, due to duration of 

loading, on the older timbers they still reached an acceptable level as regraded joists.  

 

This research shows that older timbers, from mainly Victorian buildings, remain 

relatively strong; however, later tests showed them to be extremely brittle also. A 

possible explanation is that prior to the 1950s timber was almost exclusively visually 

graded, leaving a considerable safety margin. As the introduction of machine timber 

grading gave more accurate results, a reduced safety margin was necessary; and now 

modern timbers are influenced by the introduction of Eurocode 5 and are processed 

and machined to work near to their mechanical limits. 

 

This does beg the question relating to whether there can really be a long term future in 

reclaiming timbers from demolition for structural reuse. As timbers are usually under 

load, even dead load, for all of their construction life and their strength is reduced 

during this time, it is likely that future reclamation and subsequent reuse opportunities 

may be limited. 

 

This research results suggest that, because of the advent of machine strength grading 

of timber and the introduction of other forms of testing, such as ultrasonic and X-ray, 

both the strength and density of timber used in construction has undergone a gradual 

reduction.  

 

The control timbers utilised in this research exhibited a narrow density range, and a 

similarly narrow range of timber strengths. This may be attributed to these timbers 

containing a mix of heartwood, sapwood, pith, knots and other allowable damage; all 

common in modern construction timbers, giving a lower level of load bearing 

capacity. 
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Figure 4.7. Relationship between MOE and Age of timber 
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4.2.7  Moisture content 

Measurements of the density of the timbers over a period of time (both at collection 

and during storage) also offered an indication of the condition of the reclaimed timber 

and an estimation of the water content of the timber while still in service. While this 

was not envisaged as part of the timber test methods originally, it has proved to be 

insightful factor in the analysis of results.  

 

To illustrate how much moisture the reclaimed timbers would absorb, several of them 

were stored underwater for 1 month. At recovery from the demolition site some of the 

timbers had been in very dry condition during their service life (moisture conditions 

of the timbers at recovery was typically measured at 8-10% humidity). The results of 

this experiment were revealing; water ingress to the heart of the timber was minimal, 

even after such a prolonged period of being wet. In all cases water penetration was 

less than 10mm depth from the timber surface. Furthermore, these timbers were able 

to be dried out to a ‘dry’ classification, in the timber storage area, taking around a 

week longer to normalise than timber joists collected direct from site and already in a 

‘near dry’ condition. This suggests that timbers from demolition may be recovered 

from sites with little change to their long term properties resulting from increased 

moisture content. 
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4.3 Small clear tests 

A common assumption is that the properties of wood change appreciably with time, 

especially if acted on by destructive or other actions that degrade the timber, 

specifically duration of loading. To counter this assumption, the small clear data were 

analysed and compared to available data on small clear test properties. The modulus 

of rupture for the reclaimed small clear tests was favourably comparable, when 

considering duration of loading, to that presented in existing literature (BRE, 1974).  

 

In some cases during the small clear tests, after the maximum load was attained in 

new timber specimens, they were still able to support a reduced load; as stated in 

relevant literature. However, in many of the reclaimed joist small clear tests, the 

specimen suffered complete failure, and was unable to support any load, after the 

point of rupture; many separated and snapped in half completely at the failure 

location. This type of failure will undoubtedly be of concern for certain applications 

(for example, structural systems where there is little or no load sharing between 

members), where a failure of the timber joist will be total and catastrophic. Though 

for most structural applications guidelines would direct that reclaimed joists should sit 

alongside others from various origins, thus sharing any imposed load between both 

reclaimed and virgin timbers.  

 

4.3.1  Modulus of elasticity (MOE) and Modulus of rupture (MOR) 

The linear regression fit for this combination of characteristics exhibited a consistent 

distribution pattern (R2 = 0.70). However, when comparing the small clear test results 

to the full sized joist tests results (R2 = 0.49), the comparison between the results of 

the two tests was less convincing. 

 

The precision with which a mechanical grading system can sort lumber into strength 

classes (grades) is dependent upon the degree of correlation between bending strength 

and bending stiffness. The expected value for softwood timber is about 56% (R2 = 

0.56), as stated in the work of Green, Ross and McDonald (1994). The results 

illustrated in Figure 4.8 suggest that it may be possible to assign properties to small 

clear tests on a species independent basis, though larger scale testing will need to be 

carried out to make any firm judgement on the limitations of this. 

http://www.entrepreneur.com/tradejournals/article/190150958_3.html##
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Figure 4.8. Illustration of the relationship between MOE and MOR - small clear tests 
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4.3.2  Small clear test results by decade 

Results from small clear tests from very early timbers suggested that, where there is a 

high MOE, there will also be a complimentary moderate to high count of tree rings 

present in the specimen; indicating a greater percentage of mature timber in the joist.  

  

Until the advent of World War II, there appears to be a consistency in the strength 

results obtained from reclaimed timbers; suggesting that timber used for construction 

after 1850 and before 1940 may have been consistent in its material and 

mechanical/structural properties. The results also suggest that timbers used for 

construction after this time may be considered to be of a lesser quality; that they 

contain less mature heartwood and are more prone to strength related defects, even in 

joists recovered from the same building.  

 

Modern construction tends toward utilising younger, fast grown, carefully managed 

timbers. This, in conjunction with a tightening of design standards and structural 

calculations, appears to have lead to a lessening of timber strengths overall. As timber 

has been increasingly utilised closer to its design limitations, this research suggests 

that its recoverability has become less economically viable. 

 

4.3.3  Modulus of elasticity (MOE) and Tree ring frequency 

The visual results of this comparison suggest that there is a regular distribution pattern of 

MOE against tree ring frequency; however the coefficient of correlation for these results 

was not high and exhibited a relatively poor pattern (R2 = 0.33). These results are 

illustrated in Figure 4.9.  

 

Because the results showed a regular, though sparse distribution, it can be expected 

that further, more extensive, testing would yield a better regression pattern and a 

results set that could be used as a basis for determining strength based on tree ring 

frequency and for comparison against other reclaimed timbers.  
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Figure 4.9. Illustration of the relationship between MOE and Tree ring frequency – small clear tests 
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4.3.4  Summary of small clear tests  

The results of MOE for all small clear test specimens follow a similar pattern to the 

larger timber joist tests.  

 

A general prediction of Modulus of elasticity for newly reclaimed timber joists may 

be able to be made with regard to tree ring frequency per inch/cm in the reclaimed 

joist. Further analysis will work from this point to establish a model calculation based 

on the relationship between MOE, tree ring frequency, approximate recovered age 

and density.  
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5 Analysis and discussion  

5.1  Introduction 

The continually improving accuracy of machine grading, and a better understanding 

by engineers and designers of ‘limit state’ designs in timber, has resulted in a 

narrowing of safety margins, being incorporated into timber buildings; in short, 

designers understand better how buildings function, so make components operate 

closer to the design specifications required. This means less timber, less labour, less 

cost. 

 

This study has investigated the influence that several parameters have on changes in 

the mechanical behaviour of reclaimed timber parallel to the grain, by determining 

and analysing values of the modulus of elasticity of reclaimed timbers. In this way, 

the investigations aim to make reclaimed timber an environmental and economically 

viable alternative to virgin timber. 

 

Although many results presented in this research are well established by other 

previous researchers, available literature does not present a complete study, with 

statistical analyses, of the effect that the frequency of timber growth rings has on the 

modulus of elasticity. Density is a well known indicator of timber properties; it is also 

probable that the age of the timber and the frequency of timber growth rings may also 

act as a further predictor of the mechanical properties of timber. 

 

This research consisted of several separate phases; visual grading of timbers 

reclaimed from demolition at the recovery site (demolition site), dynamic and static 

bending tests on the reclaimed timber joists which had passed the visual grading 

process, and small clear tests on specimens cut from the reclaimed joists. The visual 

grading involved examining 340 timber joists at, or near to, the demolition site. For 

the large joist tests 201 specimens of reclaimed timber joists were further recovered 

after visual grading, from demolition. 67 small clear test specimens were then cut 

from a selection of these larger joists. The lesser number of small clear tests is 

accounted for because a number of the timbers joists were recovered from a reclaimed 

building materials supplier, delivered direct from the site of demolition; however, the 
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materials supplier requested only non-destructive testing be carried out on the timbers, 

hence the visual and large bend tests results only.   

 

The frequency of growth rings was recorded by scanning the end of the specimen, on 

a desk scanner, and ranged from 4 to 45 growth rings per inch (2.54 cm), as discussed 

in Section 3.6.5.  

 

The density of timbers varied between 290 and 720 kg/m3. All specimens were tested 

at standard temperature and pressure. During this procedure, all specimens were 

equilibrated to approximately 12% moisture content while in the testing laboratory, 

before testing began, as documented in BS EN 14081 (BSI, 2011). 

 

5.1.1  Build-up of the analysis and model calculation 

In producing a model calculation from the research results, considerable time was 

given to interpreting and deliberating over how the results should be represented.  A 

key element in this process was to discern how the dataset would paint a clear and 

concise picture of the representative facts. A first phase involved aggregating the data 

collected as graphical and image representations, and investigating the patterns within 

these. This necessarily involved a lot of comparisons of measured data values; 

modulus of elasticity, modulus of rupture, tree ring frequency, density, estimated age 

of sample. At this point it was also decided to look not only at the results as a whole, 

but to split them into time frames and observe results by decade throughout the age 

category. 

 

This analysis also investigates regression statistics and variance in the results dataset 

and how this relates the information together; enabling the generation of a model 

expression, with the aim of using this, coupled with the research methodology, to 

produce a regrading ‘rule of thumb’ to directly assess other untested timber joists 

reclaimed from demolition.  

 

The final model expression is based on its accuracy when compared to the observed 

results and its relative simplicity of calculation. A second, slightly more approximate, 

model calculation is also presented, which considers a position where the operative is 

not aware of the age of the timbers under test. 
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5.1.2  Linear regression 

The equation y = mx + b algebraically describes a straight line for a set of data with 

one independent variable where x is the independent variable, y is the dependent 

variable, m represents the slope of the line, and b represents the y-intercept.  

 

Multiple linear regressions can be carried out where a line represents a number of 

independent variables in a multiple regression analysis to an expected result; the 

equation of the regression line takes the form:  

 

Where 

y is the dependent variable  

x1 through to xn are n independent variables  

m1 through mn are the coefficients of each independent variable 

and b is a constant. 

 

5.1.3  Quadratic regression 

Quadratic regression is a more complex method described by y =  ax2 +  bx +  c. 

While, throughout this analysis multiple linear and bi-quadratic regression were the 

tools mainly used to generate models, tri-quadratic regression was trialled, but the 

results offered no greater insight than the other forms of analysis.  

 

Tri-quadratic regression for this research was based on 3 independent variables; 

density, tree ring frequency and recovered age of samples. However, this generated an 

extremely complex expression where the results were only marginally better than 

other forms of analysis. A decision was made, at this point, to cease pursuing tri-

quadratic regression for this research, as any model expression generated can only be 

as accurate as the original measurements and data. The final result of this research is 

an expression that can, at best and in the absence of any material or physical load 

measurements, offer an accurate estimation of the strength of reclaimed timbers. 

Using such a narrowly focussed investigation technique as tri-quadratic regression 

would have resulted in an imbalance of accuracies in the methodology and resultant 

data analysis. Effectively, a model expression containing a dozen or more variables, 

y = m1x1 + m2x2 +...+ mnxn + b   (11) 
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with the final intention of producing an approximate answer. This is explored further 

in the discussion (Section 5.3). 

  

5.1.4  Regression figures utilised in this analysis 

Throughout this analysis multiple linear regressions will be used as the basic form of 

statistical analysis to generate models. For this research the basic form of equation is:  

Where  

E is the calculated Modulus of elasticity N/mm2 

x and x1 are n independent variables  

m through m1 are the coefficients of each independent variable 

b and c are constants. 

 

This equation can be expanded to: 

 

This analysis also investigates the relationships in the results dataset, by utilising 

multiple quadratic regressions. The discussion will also comment on its effectiveness 

when compared to the results for linear regression. Quadratic regression for this 

research is centred on the expanded form of:  

 

 

For the purposes of this analysis all equations shall use the same independent 

variables for: Tree ring frequency and Density. These are: 

R = Tree ring frequency  

p = Density 

 

5.1.5  Duration of load figures utilised in this analysis 

A further facet to the analysis will be drawn from the relationship of timber age and 

duration of loading, through application of the Madison Curve (Wood, 1951) as 

discussed in Section 3.3.12. Effectively the Madison curve can predict the logarithmic 

E = (mx +  b) (m1x1 + c)  (12) 

E = bc + b* m1x1 + c*mx  +  mx*m1x1  (13) 

E = (mx2 +mx +   b) ( m1x1
2 + m1x1 +  c)  (14) 
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loss of strength in timber, over time; however, this criterion only affects timber under 

load. The assumption recognised by this research is that all timbers reclaimed from 

demolition have been under continuous load during their past service life. 

 

Utilising the modulus of rupture measurements from the small clear tests, calculations 

can be performed to estimate the original strength of the timber joist that the small 

clear specimen was cut from. A re-calculation of Equation 4, relating to Pearson’s 

(1972) expression of the effects of the Madison Curve, could show the original short 

term strength (S) of the original timber joist to be: 

Where 

tf = time to failure in hours. 

S = predicted short-term strength 

L = actual stress level   

 

Furthermore, Pearson’s (1972) expression can also aid in calculating a variable 

relating to the loss of strength over time in timber, allowing the integration of this 

calculated variable into the generation of a model expression, as follows: 

Where 

tf = time to failure in hours. 

SL = predicted short-term strength over actual stress level   

 

Utilising the result from this expression, a variable (V) can be calculated to establish a 

relationship with the measured modulus of elasticity from the timber static bend tests:  

Where 

V =  a numerical value relating current to original strength of the timber 

SL = predicted short-term strength over actual strength 

S = 90.4 - 6.5 log10 tf 
                  L 

(15) 

SL = 90.4 - 6.5 log10 tf             (16) 

V  = 100 
         SL            

(17) 
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5.2  Analysis 

This analysis will specifically investigate the results for the large joist dynamic and 

static tests, supporting this where necessary with results from the small clear tests. 

The intention in this analysis to create a model expression that can be used directly to 

give an estimation of the strength of timber joists reclaimed from demolition, without 

the need to follow this up directly with small clear tests or further measurement. 

Effectively, creating a one stop ‘rule of thumb’ that can be applied adequately at the 

site of timber recovery or directly during the demolition process. 

 

5.2.1  Tree ring frequency and age calculated variable 

Utilising the variable calculated in Equation 17 for each timber under test, and 

examining these results through regression against Tree ring frequency the basic 

equation is expanded to:  

Where 

V = variable calculated from the age of the timber  

R = Tree ring frequency (per cm) 

 

In this case the regression yielded a calculated model expression of: 

Where 

E = calculated modulus of elasticity (N/mm2) 

      

The coefficient of determination of the regression exercise is R2 = 0.45. The standard 

deviation for this exercise was 597.1 N/mm2. The fit of the expression predicted 

values for MOE against the observed values is illustrated in Figure 5.1. 

 

The regression results also offered a test of the significance of the R2 result, and 

showed a high degree of significance of the regression analysis; effectively suggesting 

that the calculated results closely resembled the observed ones throughout a large 

section of the comparison process. 

 

E =  A + B*V + C*R + D*(VR) (18) 

E = (142.1V + 22.4R - 15.4VR - 204)*1000 (19) 
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Figure 5.1. Tree ring frequency and age calculated variable - Regression analysis: Observed against predicted values illustrating deviations of 
predicted (shown in red) from observed (shown in blue) measurements  
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5.2.2  Timber density and age calculated variable  

Utilising the variable calculated in Equation 17 for each timber under test, and 

examining these results through regression against timber density measurements the 

basic equation is expanded to:  

Where 

V = variable calculated from the age of the timber  

p = Density (kg/m3) 

 

In this case the regression yielded a calculated expression of:  

Where 

E = calculated modulus of elasticity (N/mm2) 

     

The coefficient of determination, of the expression was R2 = 0.56 and the standard 

deviation was 1000.7 N/mm2. The regression results also offered a test of the 

significance of the result; the standard deviation suggested that the calculated results 

resembled the observed ones, in all but the extreme observed results (ie. unusually 

low or high figures). 

E =  A + B*V + C*p + D*(Vp) (20) 

E =  64475V + 67.7p – 39.1Sp - 93571 (21) 
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Figure 5.2. Density and age calculated variable - Regression analysis: Observed against predicted values illustrating deviations of predicted 
(shown in red) from observed (shown in blue) measurements  
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5.2.3  Tree ring frequency and timber density 

The multiple linear regression model expression based on the frequency of tree rings 

and timber density is the expanded form of the basic multiple linear regression 

equation, and expanded to:  

Where 

R = Tree ring frequency  

p = Density (kg/m3) 

 

In this case the regression yielded a calculated model formula of: 

Where 

E = calculated modulus of elasticity (N/mm2) 

     

The coefficient of determination of the generated expression was R2 = 0.61 and the 

standard deviation was 1060 N/mm2. Once again the regression results offered a test 

of the significance of the expression; the standard deviation suggested that the 

calculated results resembled the observed ones, in all but the extreme observed results 

(ie. unusually low or high). 

 

Once again, the graphical illustration of observed against calculated results shows a 

high degree of significance; the calculated results closely resemble the observed ones 

for a large part of the modelling process. 

 

While other evaluations gave less clear results for the small clear tests, the regression 

model relating tree ring frequency to specimen density offered the best result. In this 

case the coefficient of determination of the generated expression was R2= 0.716 and 

the standard deviation was 1864.5 N/mm2, as illustrated in Figure 5.4. However, the 

very large standard deviation for this expression discounted it from further 

consideration.

E =  A + B*p + C*R + D*(Rp) (22) 

E = 12.8p + 373.7R - 0.45Rp - 811 (23) 
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Figure 5.3. Density and tree ring frequency - Regression analysis: Observed against predicted values illustrating deviations of predicted (shown 
in red) from observed (shown in blue) measurements  
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Figure 5.4. Density and tree ring frequency - Regression analysis: Observed against predicted values illustrating deviations of predicted (shown 
in red) from observed (shown in blue) measurements – small clear tests 
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5.2.4  Tri-linear regression 

The expression developed through multiple linear regression is based on the 

frequency of tree rings, calculated variable from Equation 17, relating to the age of 

the timber specimen and timber density is an expansion of the basic multiple linear 

regression equation:  

Where 

V = variable calculated from the age of the timber   

R = Tree ring frequency  

p = Density (kg/m3) 

 

In this case the regression yielded a calculated expression of:  

Where 

E = calculated modulus of elasticity (N/mm2) 

 
 
The coefficient of determination of the expression was R2 = 0.64 and the standard 

deviation was 624.8 N/mm2. While the observed comparison of results from the 

calculated against observed results showed a digression, the regression analysis 

revealed a high degree of significance of the results. However, this did not make 

presentation of the data a useless exercise. Figure 5.4 could be used to highlight 

possible minimum acceptance criteria, or suggest a cut off point in relation to density, 

where the strength of a sample may not be any greater regardless of the tree ring count 

above this level. This will be explored further during the analysis discussion. 

 

 

E =  A + B*R + C*p + D*V + E*(R*p) + F*(R*V) + G*(V*p) + H*(R*p*V) (24) 

E = 19268 - 13356V - 260p + 31743R +184.2Rp – 21165VR – 29Vp + 19RpV  (25) 
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Figure 5.5. Density, tree ring frequency and age calculated variable - Regression analysis: Observed against predicted values illustrating 
deviations of predicted (shown in red) from observed (shown in blue) measurements 
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5.2.5  Bi-quadratic analysis 

The multiple quadratic regression model calculations based on the observed variables 

were based on the expanded form of the basic quadratic regression equation 

 

Utilising this form of regression analysis yielded model expressions which were 

totally out of context for the calculation to be performed; dealing in multiples of a 

million to gain a result which was no more accurate than the other forms of regression 

analysis.  

 

Determination coefficients for quadratic regression exercises ranged from R2 = 0.59 to 

R2 = 0.69. In all cases the exercise offered a very high figure for the degree of 

significance in the results from the regressions. This can often signify that, rather than 

there being a very close relationship between the observed and calculated results, 

there is in fact no relationship and that the generated values may be nearly random. 

 

5.2.6  Tri-quadratic analysis 

As mentioned earlier a trial of tri-quadratic regression was also carried out. This being 

the expanded form of: 

 

This expansion leads to an extremely complex model, with as many as 15 variables 

for input. Furthermore, the generated model expression, while it is undoubtedly 

useful, offers no further accuracy or insight into the prediction of MOE results than 

does the simpler forms of regression modelling. It also offers no greater surety of 

results to the operative who performs the calculation. 

     

5.2.7  Modulus of rupture in small clear tests 

Modulus of rupture (MOR) is the maximum moment in the member when failure in 

tension occurs. A property relationship between MOR and Modulus of Elasticity 

(MOE) seems to follow the trends expected for the timbers recovered. Thus, there is 

E = (mx2 +mx +   b) ( m1x1
2 + m1x1 +  c) (26) 

E = (mx2 +mx +   b) ( m1x1
2 + m1x1 +  c) ( m2x2

2 + m2x2 +  c)  (27) 
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no reason to doubt the ratio between MOR and MOE of 0.55, as given in certain 

standards (ASTM, 2011). 

 

In plotting available MOR for the small clear specimens against MOE in the static 

joist tests, the coefficient of determination of the regression was R2 = 0.57 with a 

standard deviation of 1100.1 N/mm2.  Furthermore, the R2 result showed a high 

degree of significance from the regression analysis; hence, the model results very 

closely resemble the observed ones for a large part of the modelling process. 

However, this is to be expected if a relationship exists between MOE and MOR. 
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5.3  Final model expression 

The best fit model expression, based on regression analysis gave a coefficient of 

determination of R2 = 0.61 and a standard deviation, in relation to this, of 1060 

N/mm2. This based upon the final generated model expression: 

Where 

E = calculated modulus of elasticity (N/mm2) 

R = Tree ring frequency  

p = Density (kg/m3) 

This expression is the preferred end result because of several limiting factors. The 

reported results for timber age and the resultant calculation of a variable for inclusion 

into the regression statistics appear to yield figures that cannot offer any extra 

accuracy or greater efficacy to the model expression. The inclusion of the age of the 

timber specimen, in any form, does not add considerably to the accuracy of the 

coefficient of determination, or to the accuracy of the model expression. Hence, the 

expression can be used whether the age of the timber sample is known or not, and as 

an approximation of the timber strength, will be as accurate. This is discussed further 

in Section 5.3. 

From the calculated value for MOE, the MOR can also be further calculated. The 

relationship between MOR and MOE, established by BRE through regression analysis 

(Dinwoodie, 2000), exhibits the formula: 

Where the units for MOR are established in N/mm2 

This is one of the basic facets of machine timber grading and establishes the grade 

class of the timber. Of the timber specimens used in this research project, around 20% 

would not have passed the strength grade, based on MOR calculated from the 

observed MOE. BS EN 338 (BSI, 2009) provides data for a number of strength 

classes, each designated by a number indicating the value of bending strength. 

 

E = 12.8p + 373.7R - 0.45Rp - 811 (23) 

MOR = 0.002065*MOE (28) 
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Measurement errors for the set of results which make up the analysis data set could 

add or subtract 5% to any observed figures. However, this is a calculated error based 

on the results of testing how the test equipment crushed the timber samples, and a 

comparison to certified laboratory test results. 

  

The standard deviation can be used to calculate confidence intervals for the true 

population mean. For a 95% 2-sided confidence interval, the Upper Confidence Limit 

(UCL) and Lower Confidence Limit (LCL) are calculated as:  

 

The value 1.96 represents the 97.5 percentile of the standard normal distribution. 

Using these formulae there is 95% confidence that the calculated model results, based 

on the test data used, will fall within 1060 N/mm2 of the actual observed result. The 

final expression (Equation 23) also offered the simplest solution to the calculation of 

modulus of elasticity in reclaimed timbers.  

95%UCL = Mean + 1.96*StDev 
95%LCL = Mean – 1.96*StDev 

(29) 
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5.4  Discussion 

From the statistical analysis, the timber grading methods suggested by this research 

exhibit an adequate correlation with the measured parameters. And despite the limits 

of the research (number of specimens and inherent visual grading errors from hidden 

anomalies), some important criteria remain to be examined. 

Dedicated on-site visual grading criteria must be established, taking into account the 

incidence of defects leading to the reduction in modulus of elasticity in reclaimed 

timber elements.  

The reported test results for timber age can be erroneous, or at best doubtful; however, 

the regression analysis highlighted that this information did not greatly impact on the 

final outcome of the analysis. It also highlighted some of the complexities of 

assumption on the identity of the characteristics of old timbers. 

The model expression derived serves the existing data set and is also the least 

complex model to use; reinforcing its suitability as an on-site ‘rule of thumb’ or 

approximate calculation. It can be utilised on site, at the time of recovery, to offer an 

instant result for the expected MOE of the reclaimed timber, without resorting to the 

use of any specialist measuring equipment.  This model expression also generated test 

results that show a generally a narrow dispersion pattern, with many results falling 

between the upper and lower quartile of the calculated data. The model expression 

does not display the disturbances to results occasioned by extreme values; effectively, 

the expression closely shadows the observed results. 

 

The analysis and model expression also show a high degree of positive correlation 

between tree ring frequency and specimen density observed in the results; the 

coefficient of determination R2 = 0.61 illustrates that as tree ring frequency increases, 

and specimen density increases, the associated MOE of the timber also increases  (up 

to the limits of the test). While the model expression offers an accurate approximation 

of the actual timber MOE, it is based upon mechanical qualities that are not uniform 

in each timber sample; hence, any calculated value will only be as accurate as visual 

grading and the homogeneity of the timber specimen being tested permits.  
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While the analysis of observed results from the small clear tests reveals a higher 

degree of positive correlation between the measured characteristics; tree ring 

frequency, specimen density and specimen age, the results are based upon mechanical 

qualities that are more uniform throughout both the individual specimens and the 

range of timber samples; effectively, small clear tests have minimal anomalies in their 

structure to affect their mechanical properties and so offer clearer relationships 

between the observed results. However, Madsen (1992) claims that the traditional 

method of deriving allowable stresses by testing small clear wood specimens is 

inaccurate and a more realistic way to derive them is to test structural size specimens 

containing defects. For this reason and because of the small number of test subjects 

and large standard deviation resulting from the application of the generated 

expression, the model expression has been derived from the structural sized 

specimens with only a guiding reference to the small clear tests.   

 

The following discussions offer some insights into the method and some of the 

assumptions made about quality and other characteristics of the timber used for this 

research. 

 

5.4.1  Visual grading 

In practice, damage affected the visual grading process of 38% of the timber 

reclaimed and evaluated in this research; making this percentage of the joists discards 

from further testing. Of these discards, the presence of nail holes was the predominant 

reason (18%) for their failure; while edge damage accounted for a smaller amount 

(15%). The edge damaged timbers were almost exclusively damaged during the 

deconstruction and recovery phase.  

While surface defects were adequately identified by visual grading, some timbers 

passed through the process, but had internal damage. Without any suitable method of 

interpretation of internal defects, the visual grading process will not be as reliable as 

machine grading. However, for small numbers of timber specimens, undergoing 

visual examination at the demolition site, this form of examination is, and is likely to 

remain, cost effective.  
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5.4.2  Discounted results 

In the test results for analysis there was a very small percentage (2%) of very low and 

very high MOE timber specimens. For the purposes of generating a model expression 

based on the median of the set of results observed, it was decided to leave this 

percentage in the data set. Including these results would widen the range of the 

expression, effectively lengthening the range of the Gaussian curve produced by 

results, as the extremes were taken into account. This lengthening of the curve also 

affected the standard deviation from the median result; in its turn widening the range 

of the model expression.  

 

The analysis and model expression predict that any sample taken and inspected 

through visual grading and the application of the final model expression, discussed in 

Section 5.2.8, should have an observed MOE that is within 2 standard deviations of 

the calculated MOE as defined by this research; in other words, the model expression 

will predict the value of around 95% of the tests carried out, to within 1060 N/mm2 of 

the actual observed MOE.  

 

5.4.3  Choice of regression model 

The results of more complex regression models did not generate a sufficient 

improvement over simpler models to warrant proceeding with them. The Tri-

quadratic regression model (using 3 variables) also generated an extremely complex 

and cumbersome model calculation, with more than a dozen variables. This opens up 

to discussion the argument of sufficient accuracy. An operator working outside, and 

away from a laboratory, would not be able to achieve adequate results from such a 

complex and laborious process of calculation; especially as the final result is an 

approximate value.  The expression generated from this research is one that can be 

used, with an adequate level of complexity, but still generate an accurate 

approximation of the true value.  

 

The regression model that yields the model expression is based on the density and tree 

ring frequency of the timber sample. This is used for two reasons; because the 

variables in question gave the best regression results for the test data presented, and 

because they can be directly calculated/counted from the physical timber specimen 

without any further investigation of mechanical properties.  
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5.4.4  Measurement uncertainty 

While the large joist and small clear test equipment was uncalibrated, there were 

control tests carried out on timbers to establish a calibration baseline. The large joist 

tests were calibrated against tests carried out by the Forest Products Research Centre 

(FPRC), of Buckinghamshire Chiltern University College, and by lab testing with a 

Dennison bending machine (Model - T42U). This latter had been calibrated in the 

year before this research began (Cert. No. 59477). The Dennison machine, results 

from the FPRC, and tests on the large joist bending rig were consistent over the 

samples tested. However, because of high costs involved, only a small batch at the 

beginning of the research period was tested by an established laboratory.  

 

The small clear tests results were verified by also testing on a Lloyd LR100K Plus 

bending machine. This machine was installed new, during the research programme, 

and was certified at installation. The majority of the small clear tests were carried out 

on the small bending rig, illustrated in chapter 3, because of availability for use and 

constraints of research time of the Lloyd bending machine. However, once again, in 

the case of the small tests the Lloyd machine and the small bending rig offered similar 

and consistent results.  

 

One major factor which affected the results from the Dennison bending machine was 

‘timber crush’ at the loading contacts (rollers). This was in part mitigated by the use 

of larger, custom made loading rollers, but without the FPRC test results on which to 

base calculations, the Dennison produced an error of up to 10% to measured Moduli 

of Elasticity.   

 

The issue of timber size, and cross sectional area, also factors in the results. Large 

timber cross sections experienced greater ‘timber crush’ even when the loading head 

was at its maximum size. Fortunately this was more of a factor in measuring the 

control timbers; older timbers, perhaps through being denser, appeared to be more 

resistant to this.    

 

Factoring together the variations in the timber sizes and how these affect the 

measurements, coupled with the control results from certified laboratory tested 
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timbers, uncertainties in the results are small. This research estimated that there were 

as little as 5% errors in most machine measurements. 

 

5.4.5  Remainders and constants 

The question of a constant or remainder to account for the anomalies in the actual 

results, over the predicted results, remains an open one. Because of its non-

homogeneous nature, there will always be occurrences of anomalous results which 

stand out from the norm, whether they are higher or lower than expected. The test of 

significance of the R2 value from regression analysis; which is itself a measure of the 

frequency of attainment of the average, shows a greater degree of homogeneity 

between timber joists where the material density is high. 

 

This research considers a wide range of different species of timber, most of which 

were unknown other than through estimation based on timber density at the time of 

testing, aswell as a wide range of ages of sample. However, even under these 

conditions a relatively high degree of significance of results was achieved. It is for 

these reasons that this research does not use a remainder calculation or a correcting 

constant.   

 

5.4.6  Nail-hole damage to samples 

Nail-holes are almost always present in reclaimed timber and, while they are found 

predominantly on the narrow faces of the joist, can be found on almost every face. 

Narrow edge-nail holes are commonly found on joists along an entire length of a joist. 

Usually these are the result from the prior attachment of cladding or floorboards. 

Face-nail holes (those marks found on the wide face) are typically caused by nailing 

of bridging or hardware. 

 

Narrow edge-nail holes can potentially reduce bending strength if the face of the joist 

containing the nail holes is loaded in tension. To determine how narrow edge-nail 

holes affected the timber joist properties, the orientation of the timber edge containing 

the greater proportion of nail holes was tracked during testing. This edge was oriented 

to be on the top in the test rig (so that the nail holes were in the compression zone) or 

on the bottom (nail holes in tension zone). Certain American grading rules, for 

example WCLIB Standard No. 17 (WCLIB, 1996) contain provisions for grading 
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large and small holes. Under these rules nail holes would be defined as either a pin 

hole (if less than 3.2 mm diameter) or medium (small) hole if less than 6.5 mm 

diameter. The grading rules do not contain specific guidelines for the measurement of 

edge-nail holes, they simply state that holes that extend only partially through a piece 

may also be designated as surface pits. In an earlier study, Falk, Green and Lantz 

(1999) also investigated edge-nail hole orientation with respect to the direction of 

loading. In the study, when nail holes were present in the piece, the grader summed up 

the nail holes and equated this area to an equivalent knot size for grade determination. 

For bolt holes, the grader allowed holes half the size of an allowable knot. 

 

However, this research proposed a rule to grade timbers based on the effect of the 

number of nail holes in their various surfaces, after Nakajima and Murakami (2008), 

discussed in Section 3.5.6. This gave results which were achieved more quickly and 

with greater accuracy than through measuring nail-hole sizes and extrapolating knot 

sizes from the collected data. This method of estimating nail-hole damage saves time 

and allows a safety margin in the estimation process. 

 

In general, nail holes need to be located at the region of highest load stress to have an 

effect in the fracture process and hence, the MOE. Also, cracks need to be able to 

form on the tension edge, where failure begins, for these nail holes to come into play. 

However, it is worth considering that Eurocode 5 does not count certain damage in 

the grading process, though this does refer to virgin timber, namely nails and screws 

with a diameter of 6 mm or less, which are driven (hammered home) without pre-

drilling.  

 

There is a direct resistance by processors to carry out any processing of damage 

caused by nails, bolts and notching. The reason for this is purely an economic one; 

they do not wish to machine reclaimed timber that may contain nails. This can 

damage equipment, plus there is the associated cost of removing nails before 

processing; a timber saw blade can be very quickly ruined by a stray nail in a piece of 

timber. Other than nails that are protruding from the surface, this is not a cost 

effective measure. The loss associated with this form of timber processing would 

amount to a high cost to any organisation carrying out this kind of work. 
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5.4.7  Eurocodes 

The results of the modulus of elasticity results indicate that, without reverting to 

species data, many of the reclaimed timbers are able to pass the minimum MOE and 

stiffness grades to be classified as structural timber in the UK (timber grade C14), 

with many making the higher structural grade of C16. Around 85% of the observed 

results fall within 2 Standard Deviations (2SD) of the mean, as calculated by the 

model expression. Thus, in a modern industrial grading pattern it is likely that the 

reclaimed data set, as a batch, would be allocated standard UK construction grades. 

 

Table 5.1. Strength properties of timber for softwoods: characteristic values, after BS 
EN 338 (BSI, 2009) 

 

 

Timber is now grown, cut and prepared to work nearer to its limit state than ever 

before. Coupled with this is the loss of the ‘permissible stress’ approach to design, 

which worked by ensuring that stresses in the timber materials remained below a 

certain threshold to cover a range of performance criteria. The ‘limit states’ approach 

adopted by the Eurocodes is very different from what has been previously used for 

construction, in that it attempts to address separately various concepts of failure 

through rules based on reliability theory. In the past it was strength that governed 

design, but now modulus of elasticity and density are also important for both ultimate 
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and serviceability limit states in structural timber. In effect, mechanical characteristics 

are now the arbiters of how timber is chosen for construction and timber species is no 

longer as important, save for matters of durability and aesthetics. These ideas make 

reclamation a more viable and sensible approach to sourcing structural timber, as 

much of it will still pass the requisite grade parameters suggested by the Eurocodes. 

 

Eurocode 5 suggests that, in the absence of species data, direct grading to a use class 

is the only exigency that is called for. Certain species, with identical mechanical 

characteristics, could be interchangeably used in construction without altering the 

structural expectations of the design. This quality would allow reclaimed timbers to 

be grouped with regard to mechanical characteristics, rather than species 

characteristics. In reclaimed timbers this factor could help to make inroads to a 

species independent softwood grading system, based solely on the mechanical 

properties of the timbers. Eurocode 5 asks only that the following be considered by 

the structural analysis of timber for construction: 

 deviations from straightness; 

 inhomogeneities of the material. 

 reductions in the cross-sectional area  

 

The Eurocodes suggest ‘working to limit states’, where the materials operate at their 

safe maximum loading capacities. In the case of timber, this is coupled with the 

gradual decline in strength of timber under load. These factors pose the question: For 

how long can we reclaim previously used timber? The results and findings of this 

research would suggest that the introduction of the Eurocodes (early 2000s) as a 

method of structural calculation may signal the turning point for this. However, the 

introduction of machine grading in the early 1970s could be seen as a better date. 

 

The introduction of ‘limit states’ no longer allows extra structural capacity to be built 

in to construction designs, whether by design, aesthetics or applied safety margin. 

This suggests that through ‘duration of load’ timbers may no longer support the same 

maximum load that they would have when newly cut, processed and graded as virgin 

timber, hence, these structural elements may no longer achieve a useful grade when 

assessed after reclamation. 
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This also poses a question about the relevancy of this current research to future 

generations. Will timber produced and utilised in construction projects now, cut and 

machined to perform to its ‘limit state’, be ‘worn out’ by the fatigues and loading 

during its service lifetime, and less likely to be viable for reuse. If, as the results of 

this research suggest, this is the case; future recovery of timbers from modern 

buildings may yield no structurally reusable material.  

 

5.4.8  Load capacity 

Timber load capacity decreases from its virgin static maximum load value on a 

logarithmic scale, if it is under service load (the Madison Curve). Thus, a timber joists 

subjected to a continuous bending load for 100 years may carry approximately 52% of 

the load required to produce failure in a static test on the timber when it was new. 

However, much of the timber which can currently be reclaimed tends to be older and 

from a period when over specification was the norm in timber structural design. Thus, 

many recovered timbers, while they may not be as strong as when first utilised are 

still gradable for general structural construction use.  

 

Creep is additional time-dependent deflection over that resulting from elastic 

deformation which occurs when timber is subjected to a constant load over a period of 

time. Changes in climatic conditions during a duration of load or creep test may 

produce a lower load capacity and more creep than that observed under constant 

conditions of temperature and moisture content. These effects can be quite substantial 

for small wood specimens. Fortunately, such changes are moderate for most wood 

structural members in typical service environments.  

 

However, general results show that timber joists, kept dry during their working life 

are still in a reusable condition. Results from research by Falk and Green (1999a) 

indicate that the quality of reclaimed timber is, on average, only slightly less than that 

of freshly sawn timber, more often as a result of damage incurred during 

deconstruction than through service life effects. 
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5.4.9  Density 

The dry wood of most species float in water, so it is evident that part of the volume of 

a piece of wood is occupied by cell cavities and pores. Variations in the size of these 

characteristics cause some species to have more wood substance than others. In the 

absence of knots and other defects, density is an excellent indicator of the amount of 

wood substance present. The influence of a knot on mechanical properties, especially 

density, is primarily due to the interruption of continuity and change in direction of 

fibres around the knot. The influence of a knot on the performance of timber depends 

upon the size, location, and shape of the knot. In many older timbers, because of slow 

growth to maturity, many of the deviations in substance associated with new timbers 

are not present, or exist in very small numbers and volumes; thus, density in 

reclaimed timber is a good indicator of mechanical properties, as it is relatively 

unaffected by the presence of knots. 

 

The longer aged timber joists from the research exhibit a better range of homogeneity 

in this respect. They generally have a more compact structure, with fewer, less 

expansive knots and generally smaller areas of anomalies in their make up. This again 

illustrates a long growth cycle and careful cutting to recover the maximum 

mechanical strength per cross sectional area for each timber joist. 

 

5.4.10 Moisture and temperature 

Many mechanical properties are affected by changes in moisture content below the 

fibre saturation point. Generally, most mechanical properties increase as wood is 

dried, up to a certain point. Similarly temperature can have both immediate 

(reversible) and permanent effects on wood properties.  In general, one immediate 

effect is that mechanical properties tend to decrease as the temperature is increased. 

 

To mitigate this, timber samples were stored in a stable environment, equilibrating the 

humidity to around 12% at all times. This situation was monitored by a temperature 

and humidity logger, placed in the test/storage area.  

 

5.4.11 Specification by builders/architects 

Reclamation organisation Salvo estimate in their report a ‘Reclamation protocol’ that 

only 1% of building materials are currently from reclaimed sources; whereas some 5-
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10% of the building materials demand could potentially be met from this source 

(Salvo, 1995). Green organisations have been pressing for legislation for reclaimed 

materials to make up at least 5% of the total project materials by value, measured by 

recording the value of all construction materials used on the project. If this form of 

legislation is introduced, specifiers and builders would need to consider the following 

before utilising any timber from reclamation: 

 Early discussions with reclaimed materials dealers and salvage experts will help 

to identify materials that are easily available at the right quality and quantity 

 Early design information helps in sourcing of reclaimed timber 

 On site storage either on site, nearby or else at the demolition site can be helpful 

in matching up phasing 

 Material specifications for the project need to be flexible enough to allow for the 

variations in reclaimed timber 

 Agree on a sample first; sometimes a selection of samples will be needed to show 

a range of colours or states of wear that are acceptable 

 Always consider the price; some basic modern salvage direct from demolition is 

cheap or sometimes free, while older antique or reclaimed materials from salvage 

yards and stockholders, may be much more, costly.   

 

 

5.4.12 Why not use electronic test methods? 

While electronic methods of strength measurement may give equally accurate results, 

they are not well suited for use with regard to reclaimed materials. Furthermore, 

electronic methods are often prone to giving false readings when encountering 

anomalies in the timber joists; these include knots, cracks and splits, as well as nails 

and bolts, which can all severely affect the accuracy of readings from electronic 

equipment. 

 

The other main reason that this research does not rely on electronic measurements is 

at the very heart of its focus; and that is simplicity. This research aimed to produce a 

method of regrading that could offer an approximation of the modulus of elasticity of 

reclaimed timber, requiring only the minimum of equipment to carry out the process.  



 146 

 

5.5  Testing of the model expression 

Some limited testing has been carried out to date on a selection of newly reclaimed 

timber joists, not associated with the timbers already involved in this research.  

 

19 timber joists were recovered from 3 separate sites (North Shields NE29, Whitley 

Bay NE26 and Peterlee SR8) and visually graded using the methodology set out in 

Section 3.6.1. Of these 19 specimens, 8 were rejected by the visual grading process (a 

slightly high figure when compared to the average rejection rate throughout this 

research), 2 specimens were rejected through excessive nail damage and 6 through 

damage caused by the demolition and recovery process. 

 

Comparing the observed results in these specimens against the calculations of 

modulus of elasticity produced from the model expression (Equation 23) produced 

observed figures which fell very close to the expected range of the model expression 

values, plus the standard deviation of 1060 N/mm2. These test results are reproduced 

in Table 5.2. The figures were based on the final generated model expression: 

Where 

E = calculated modulus of elasticity (N/mm2) 

R = Tree ring frequency  

p = Density (kg/m3) 

Table 5.2. Results from tests of reclaimed timber - calculated values against observed 
values for MOE  

Breadth 
(mm) 

Height 
(mm) Date 

Density 
(kg/m

3
) 

MOE - 
observed 

(N/mm
2
) 

Tree rings 
 (per cm) 

MOE – 
calculated 

(N/mm
2
) 

54.0 155.0 1910 609 8670.5 4.6 7569.5 

54.0 155.0 1910 609 9006.7 6.6 7650.8 

64.0 150.0 1910 613 7898.5 7.4 7759.6 

64.0 165.0 1910 589 8567.3 8 7596.0 

64.0 165.0 1930 611 8111.7 7 7866.0 

54.0 155.0 1930 616 6322.0 6.4 7641.8 

54.0 155.0 1930 554 7635.7 5 6902.2 

45.0 125.0 1940 523 7810.3 6.8 6824.2 

45.0 125.0 1940 519 6326.1 5 6532.9 

75.0 150.0 1940 491 7220.5 6 6390.3 

45.0 125.0 1940 515 7819.2 6.2 6661.1 

E = 12.8p + 373.7R - 0.45Rp - 811 (23) 
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Figure 5.6. Results for model expression - observed results against calculated figures 
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Figure 5.6 graphically illustrates the relationship between the observed and calculated 

values for MOE in the test timbers. In this batch of results all but 2 of the observed 

values fall outside the standard deviation range of the calculated values. For the 

higher of the two results, there is no adequate explanation, except that the timber joist 

had been in good condition at recovery and had little ‘in service’ damage. The lower 

result of these two anomalies had substantial nail damage to both narrow edges of the 

joist.      

 

While these, very limited, test figures show the analysis and associated model 

expression to be sound and performing within calculated parameters, more wide 

ranging future testing will be required to prove the method. 
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6 Conclusions and areas of further work 

The objective of this research was to establish a process of visually grading reclaimed 

timber so that it could be directly used in future construction work. It achieved this by 

first investigating the current state of the art in timber grading; considering the rules, 

equipment and expertise that are employed by the timber supply industry. The 

research next considered the mechanism by which the current grading system could 

be adapted or modified to produce an alternate visual grading, accounting for the 

special characteristics of reclaimed timber. This research also carried out basic 

grading tests on reclaimed timber joists and small clear specimens to prove previous 

assumptions and to, by analysis, generate a model expression to estimate by 

calculation the modulus of elasticity (MOE) of a timber joist. Finally, the 

methodology procedure generated a visual grading process and a model expression to 

examine reclaimed timber joists and calculate their expected MOE, without the need 

to identify the timber species. 

 

The research produced an alternate visual timber grading process, allowing an 

operative to take into account damage caused by ‘in service’ conditions and damage 

caused during the recovery process. The examination and calculation method 

generated through this research can be carried out on site on reclaimed timber 

recovered from demolition. To accomplish this it was necessary to change the way in 

which reclaimed timber is viewed; the following sections illustrate the changes made 

through the application of this research. 

 

6.1  Modified visual grading 

The research produced a modified visual grading method, involving a follow through 

process by which faults and damage are identified in reclaimed timbers. This lead to a 

‘keep or reject’ end decision, filtering out potentially unusable timbers. In practice 

this step filtered out around 40% of timbers during the visual grading phase; however, 

this figure was severely dependent on the care which was taken by demolition site 

operatives during the deconstruction process. At certain sites the failure rate caused 

by recovery damage in the visual grading examination was as high as 60%.  
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6.1.1  Produce a grading system that is independent of timber species 

The introduction of Eurocode 5 means that timber can be graded directly to a strength 

grade, without considering the timber species, requiring that timber for construction 

can be sought on the basis of the MOE and calculated strength, as an alternative to 

species and strength grade. The introduction of an alternate facility to satisfy the 

requirements Eurocodes is likely to have an important impact on how reclaimed 

timber is sourced and processed for construction operations. 

  

6.1.2  Set up a testing model for large timber joists 

The mean bending strength of reclaimed timbers (MOR) was found to be about 20% 

lower than the control data for the virgin timbers of the same density. However, nail 

holes possibly caused a skewing of the comparison. Nail holes reduced the MOR only 

when closely spaced, were near to the loading point or if they had created further 

splitting, especially at the tension edge. This is typically exhibited in results where the 

MOE is low, but the timber is from older stock and narrowly passed visual grading.  

 

The number of reclaimed timbers which progressed to bending tests and still showed 

damage was small; suggesting that the grading rules applied by this research may be 

too conservative. However, in the interests of facilitating a safety margin, no changes 

are anticipated to the visual grade. Reclaimed timber failing at points of damage, such 

as holes, notches and areas of extensive nail damage (which passed the visual 

examination) frequently exhibited higher MOE results than virgin timbers which 

consequently failed through the presence of knots. 

 

6.1.3  Set up a testing model for small clear timber tests  

Results of mean MOR in the small clear tests were essentially as expected; there was 

an expected reduction in MOE and the timber specimens were far more brittle. 

However, these were within expectations for older timbers, in relation to results of 

small clear tests from historical data, namely, the Strength properties of timber (BRE, 

1974). While there was a drop in MOE in the small clear tests this was not enough to 

affect the potential strength grade; though it is clear that they would have fallen closer 

to the lower reaches of the strength class.  
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The small clear tests offer strength ratings which can be applied, to the larger timber 

joists from which they were cut. However, the issue of damage to the timber joist, the 

time taken in conducting small clear tests and the need for specialist equipment means 

that they are unsuitable for further use beyond establishing a comparative data set to 

serve as an initial test of the model expression and as a correlation of the tests carried 

out on the structural joists. 

 

6.1.4  Calculate the density of reclaimed timber joists  

Density calculation proved to be an important part of the model equation, and a 

general indicator of the quality and moisture content of the reclaimed timber; in 

extremes it also offered an indication of the timber species. This research has shown 

that timber recovered during demolition operations is, under most circumstances, of 

low moisture content and high quality, regardless of age.  

 

Density in reclaimed timber joists essentially offers a facility for the estimation of the 

MOE of the material, and hence its strength.  

  

6.1.5  Calculate the tree ring frequency in reclaimed timber joists 

Calculating, or counting, the ring frequency (per cm) in reclaimed timber joists 

offered a method estimating the strength of the joist based on its age and cell structure 

at the time that the tree was felled. A greater count of tree rings signifies older timber 

containing more mature heartwood, which is known to exhibit greater mechanical 

properties than younger wood. Mature wood also has greater constituent properties 

against crush (compression) and tension. 

 

Slow growing trees, often associated with older, more traditional types of culture and 

construction, have a greater tree ring frequency than timber from trees felled for 

modern construction, where they are fast grown, containing fewer tree rings and a 

more open cell structure. Older timbers, because of their cell structure, retain an 

amount of their original, higher strength when compared to modern timbers. This 

feature makes them worthy of reclamation and reuse as structural members. 
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6.1.6  Analyse the test results and formulate a model expression 

Using the results from visual, large structural tests and small clear testing, this 

research has formulated a model expression to calculate the MOE to estimate the 

strength grade class for reclaimed timber joists from demolition operations.  The 

model expression is built up from analysis of the relationship between the density and 

the frequency of tree rings in each reclaimed timber specimen. 

 

The inclusion of ‘age of timber sample’ data has proven to be ambiguous and difficult 

to manage. Even considering the date of construction of the building, useful data is 

difficult to capture; timber felling may predate construction by as much as a decade 

on older sites. Furthermore, the duration of load approximation, even if applied to the 

analysis, offers no greater accuracy in the final expression.  

 

However, even in the face of this omission, the expression still gives an accurate 

approximation of the timber joist MOE, which for general building and construction, 

where the joist is part of a multiple element structure, will suffice.    

  

In analysing the data from the visual grading and machine simulation tests, it has 

become plain that a larger set of test data may have given a different analysis results. 

The model expression generated here, however, is suited to all ages of reclaimed 

timber, failing no more than is necessary, making it the most effective when utilised 

in conjunction with the alternate visual grade, also developed as part of this research. 

  

In testing the model expression and visual grade method, the volume of test data used 

to make the model calculation could come into question. To be totally certain of the 

validity of the research, further research and larger scale timber joist testing against 

the model expression would need to be carried out. 
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6.2  Concluding statements  

This research has enhanced the viability of reclaiming timber joists from demolition 

and regrading them for further use, by producing a cost efficient methodology for 

visual grading that can be easily carried out at the recovery site. This adds 

considerably to the reuse potential of timber elements reclaimed from demolition 

operations.  

 

It is important to emphasize that the conclusions drawn here are restricted to the 

experimental data and limited testing of the model expression, represented in the 

research results and analysis.  

 

This project has looked at several characteristics of reclaimed timber and, considering 

them together, generated a model expression and visual grading methodology to 

process these materials for structural reuse in construction. These are:  

 Tree ring frequency - The effect that the average number of growth rings has on 

the modulus of elasticity is relevant, especially when considered in conjunction 

with density. On its own tree ring frequency can give an indication of the 

approximate strength of the timber, though this can only be an accurate estimation 

when coupled with the material density.   

 Density - The effect of density on reclaimed timber joists has a direct relationship 

to their strength at standard temperature and pressure, and constant moisture 

content. A high density joist will be of greater strength than a low density one. 

This relationship appears to be proportional in the data used for this research, 

within the limits of reclaimed timber densities of around 350kg/m3 up to 

710kg/m3.  

 

The visual grading system generated as a product of this research can be used to 

examine all forms of reclaimed softwood timber, but is aimed specifically at structural 

joists, processing them into either a pass or fail result. Passed timber joists can be 

assessed against the model expression to generate an estimate of their MOE.  
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Failed joists have suffered too much damage during their working life to be of any 

further structural use; there is also the possibility of their total collapse if overloaded. 

While a virgin timber joist will break or crack and still carry a reduced load, many 

older reclaimed timbers exhibit a tendency towards total collapse when the rupture 

point is reached, supporting no load thereafter. 

 

The model expression generated through this research can be utilised to estimate the 

MOE, and hence the strength, of timber joists that have first been visually examined.   

 

This research began in the belief that there would soon have been a regulatory call to 

directly reuse, without further processing, more timber recovered from demolition 

operations. While this has not been the case directly, the introduction of the 

Eurocodes in the UK, and Site Waste Management Plans (SWMPs) have gone part of 

the way on this in suggesting that material strength is a major consideration and 

making mandatory recovery of construction materials from demolition for reuse on 

site. The results of this research indicate that there are no technical barriers to 

establishing a regrading rule for reclaimed timbers, and that this would help 

immensely in more precise assignment of timbers from demolition than is currently 

possible.  
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6.3  Recommendations 

This research suggests that timber reclaimed from demolition is a viable and needed 

commodity that can be structurally reused effectively. The recommendations from 

this research are a natural next step, and their implementation could considerably add 

to the reuse potential of reclaimed timber from demolition: 

 Reclaimed timber joists should be graded, by whatever means, and reused for 

construction purposes.  

 Grading rules, and architects’ and design practices, should formally recognize 

reclaimed timber as a suitable and environmentally efficient construction material 

and provide guidance regarding appropriate reuse. 

 In line with the requirements of Eurocode 5, designers and architects should 

consider using reclaimed timber based on ‘limit state’ theory, selecting reclaimed 

timber for its mechanical properties   

 Designers and architects should recognize the impracticality of identifying the 

exact species of each piece of reused timber, and accommodate some degree of 

species mixing.  

 The visual grading method and model expression produced as part of this research 

could be adopted as a ‘rule of thumb’ or good site practice for the reclamation of 

timber from demolition.  

 In reusing timber, edges should be marked such that regular edge-nail holes are 

placed in the compression zone, or away from the highest tension zone in design. 

 

In recommending these points consideration must also be given to the legislative 

aspects of reclamation. These recommendations will only be seriously considered 

when there is a regulatory call to use reclaimed materials, such as timber, in new 

construction. Therefore, the next step is up to government, to make a regulatory call 

for the reuse of demolition materials, especially timber. 
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6.4  Areas of further work 

This research has discussed the production of an iPhone/Android phone application to 

photograph tree ring structures and count the frequency of rings. This application is at 

present only in the discussion stage; however, a prototype which can count tree rings 

from scanned images is at the beta stage. A complete working version is envisaged 

that will count tree rings from a photograph, taken by the device’s camera; then 

calculate the estimated MOE and MOR from other values input by the site operative, 

giving an immediate result. 

 

A further use of this application is the possibilities for Dendrochronology in an 

application that can count tree rings from a photograph, then compare them to an 

online database of past images, mapping them over one another. 

 

An evaluation of this system for grading timbers insitu would be a logical extension 

of this research. This would involve measuring the timber joist density insitu, 

probably by electronic methods or by physical sampling. Also, using the two model 

calculations together could result in a further process of being able to estimate the age 

of timbers reclaimed from demolition, by rearranging the calculations.  

 

Further ongoing testing of the model and rerunning the multiple regression statistics 

should tighten the model, as greater amounts of information feed into the original 

research data set. It is unclear at this time what effect a larger data set will have on the 

regressions and model calculations, though it is expected that the model calculation 

will reach a limit state, where further data will not affect its outcome. However, these 

facets of the research will require further investigation.    
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7 Publications arising from the research  

1. Re-use of by products and materials in the construction industry  

This research work will inform a book chapter in Reuse of materials and byproducts in 

construction: Waste minimization and recycling (Richardson, 2013). This book 

addresses the use of waste and by products in the construction industry. The specialist 

author contributions cover many areas associated with sustainable construction aiming to 

encourage best practice. This research will contribute to Chapter 5 - Use of recycled and 

reclaimed timbers, and will discuss:  

 Development of modern timber construction  

 Reuse of timber in construction  

 Timber as a reusable material  

 Effect of processing on the reuse of timber  

 Future challenges to timber reuse  

 

2. Visual strength-grading and estimation of strength in reclaimed timbers  

This paper was submitted to the International Wood Products Journal, in August 2012. 

The paper discusses the reuse potential of reclaimed timbers, through the use of visual 

strength-grading coupled with the use of a model expression. The aim of the paper is to 

highlight the difficulties and shortcomings that can occur in the assessment of reclaimed 

timber joists from demolition. The paper also gives some indications about the 

effectiveness of the grading criteria applied to reclaimed timbers and the level of accuracy 

to be expected from the model expression.  

 

3. Investigation into the physical properties of reclaimed timber joists, to generate a 

simplified method of regrading for construction  

This paper was presented to the World Conference on Timber Engineering 2010, 

Trentino, Italy, in June 2010. The paper investigates how the previous structural use of 

timber may affect its properties in terms of being fit for purpose for re-use as building 

elements. The paper also suggests that the number of growth rings in a piece of timber 

has an effect on the modulus of elasticity, and that this characteristic can serve as a good 

predictor of timber strength.  



 157 

8 Reference list 

AF&PA (1997) Design values for wood construction—a supplement to the national 

design specification for wood construction. Washington, DC: American Forest and 

Paper Association. 

 

ASTM (2011) D245-06 Standard practice for establishing structural grades and 

related allowable properties for visually graded lumber. USA: ASTM International. 

 

Bodig, J. and Jayne, B.A. (1982) Mechanics of wood and wood composites. New 

York: Van Nostrand. 

 

Bowes, H. and Golton, B. (2001) Obsolescence and demolition of local authority 

dwellings in the UK – a case study. Proceedings of the CIB World Congress meeting 

of CIB Task Group 39 on Deconstruction. Wellington, New Zealand. 

 

BRE (1974) Strength properties of timber. London, Princes Risborough Laboratory of 

the BRE, MTP Construction. 

 

Breyer, D.E. Fridley, K.J. and Cobeen, K.E. (1999) Design of Wood Structures ASD 

(4th Edition): New York: McGraw-Hill. ISBN: 0070077169.    

 

British Standards Institution (2011) BS EN 14081: 2011 Strength graded structural 

timber with rectangular cross section. London: BSI. 

 

British Standards Institution (2009) BS EN 338:2009 Structural timber. Strength 

classes. London: BSI.  

 

British Standards Institution (2008) BS EN 1995-1-1: 2004+A1 Eurocode 5. Design of 

timber structures. General. Common rules and rules for buildings. London: BSI. 

 

British Standards Institution (2003) BS EN 336:2003 Structural timber - sizes - 

permitted deviations. London: BSI. 

 



 158 

British Standards Institution (2002) BS 5268-2: 2002 Structural use of timber. Code 

of practice for permissible stress design, materials and workmanship. London: BSI. 

 

British Standards Institution (2000) BS 6187: 2000 Code of practice for demolition. 

London: BSI. 

 

British Standards Institution (2000a) BS EN 519:1995 Structural timber - Grading - 

Requirements for machine strength graded timber and grading machines. London: 

BSI. 

 

British Standards Institution (1996) BS 4978:1996 Visual strength grading of 

softwood. London: BSI. 

 

British Standards Institution (1995) BS EN 384:1995 Structural timber – 

determination of characteristic values of mechanical properties and density. London: 

BSI. 

 

British Standards Institution (1995a) BS EN 408:1995 Timber structures - Structural 

timber and glued laminated timber - Determination of some physical and mechanical 

properties. London: BSI. 

 

British Standards Institution (1957) BS 373:1957 Methods of testing small clear 

specimens of timber. London: BSI. 

 

British Standards Institution (1952) CP 112:1952 Code of practice for the structural 

use of timber. London: BSI. 

 

Chini, A.R. Acquaye, L. and Rinker, M.E. (2001) Grading and mechanical properties 

of salvaged lumber. CIB World Building Congress- Deconstruction Meeting. 

Wellington, New Zealand. pp.138-161.  

 

CIRIA (1999) Reclaimed and recycled construction materials handbook. Publication - 

C513. London: Construction Industry Research and Information Association (CIRIA). 

ISBN – 9780860175131. 



 159 

 

Clouston, P. (1995) Tsai-Wu strength theory for Douglas fir laminated veneer. M. S. Thesis. 

USA: University of British Columbia. 

 

Cooper, P. Ung, T. Aucoin, JP. and Timusk, C. (1996) The potential for re-use of 

preservative treated utility poles removed from service. Waste Management and 

Research. Vol. 14, pp. 263–279 

 

Corporate Watch. (2004) UK construction industry overview. Corporate Watch UK. 

URL: http://www.corporatewatch.org.uk/?lid=277 (Accessed: 21 November 2010) 

 

Cramer, S.M. Hermanson, J.C. and McMurtry, W.M. (1996) Characterizing large 

strain crush response of redwood. Sandia Report. SAND96 - 2966.UC-820, Sandia 

National Laboratories. 

 

DCLG (2007) Survey of arisings and use of alternatives to primary aggregates in 

England, 2005: Construction, demolition and excavation waste - Final report. London: 

Department for Communities and Local Government (DCLG). 

 

Dickson M. (2002) Timber: a growth material for construction, Journal of the 

Institute of Wood Science. Vol. 16(2), pp. 78-86. 

 

Dinwoodie, J.M.  (2000) Timber: Its nature and behaviour. New York: Van Nostrand 

Reinhold Co. 

 

Domone, P. and Illston, J. M. (1993) Construction Materials: Their Nature and 

Behaviour. Taylor and Francis. 

 

Falk, R.H. DeVisser, D. Plume, G.R. and Fridley, K.J. (2003) Effect of drilled holes 

on the bending strength of large dimension Douglas-fir lumber. Forest Products 

Journal. Vol. 53(5), pp. 55-60. 

 

Falk, R.H. DeVisser, D. Cook, S and Stansbury, D. (1999) Effect of damage on the 

grade yield of recycled lumber. Forest Products Journal. Vol. 49 (7/8), pp. 71-79. 

http://www.corporatewatch.org.uk/?lid=277


 160 

Falk, R. and Green, D. (1999a) Stress grading of recycled lumber and timber. 

Structures Congress: Structural engineering in the 21st Century. April 

18-21. New Orleans, LA. Reston, VA. Sponsored by the American Society of Civil 

Engineers. pp. 650-653. 

 

Fewell, A.R. (1982) Machine stress grading of timber in the United Kingdom. Holz 

als Roh- und Werkstoff. Vol 40, pp. 455-459. 

 

Fridley, K. J. Mitchell, J.B. Hunt, M.O. and Senft, J.F. (1996). Effect of 85 years of 

service on mechanical properties of timber roof members. Part 1 - Experimental 

observations. Forest Products Journal. Vol. 46(5), pp. 72-78. 

 

Gerhards, C.C. (1982) Effect of moisture content and temperature on mechanical 

properties of wood: An analysis of immediate effects. Wood and Fiber. Vol. 14(1), 

pp.443–449. 

 

Glos, P. (1983) Technical and economical possibilities of timber strength grading in 

small and medium sized companies. SAH-Bulletin 1983/1. Zurich: Schweizerische 

Arbeitsgemeinschaft ftir Holzforschung. 

 

Green, D.W. Ross, R.J. and McDonald, K.A. (1994) Production of hardwood machine 

stress rated lumber. Proceedings of 9th international symposium on non-destructive 

testing of wood. September 22-24. Madison, WI, Canada. 

 

Hairstans, R. Kermani, A. and Lawson, R. (2004) Sustainable developments in timber 

frame construction. 2004 World Conference on Timber Engineering. Lahti, Finland 

2004.  

URL: http://www.ewpa.com/Archive/2004/jun/Paper_283.pdf  (Accessed: 15 May 

2009) 

 

HMSO (2008) Site waste management regulations. SI 2008/314. London: HMSO. 
 

Hobbs, G. and Hurley, J. (2001) Deconstruction and the reuse of construction 

materials.  UK: Building Research Establishment, Watford.  

http://www.ewpa.com/Archive/2004/jun/Paper_283.pdf


 161 

 

Holzabsatzfonds (2007) Modern wood products – timber for construction – 

softwoods. Germany: Holzabsatzfonds. 

URL: http://www.radermacher-

pr.de/fileadmin/pdf_dokumente/Nadelholzprodukte/Softwood_eng_web.pdf 

(Accessed: 20 May 2012) 

 

John, VM and Zordan, SE. (2001) Research and development methodology for 

recycling residues as building materials - a proposal. Waste Management. Vol. 21, pp 

213-219. 

 

Lanius, R.M., Tichy, R., and Bulliet, W.M. (1981) Strength of old joists.  Journal of 

Structural Engineering. ASCE, Vol. 107(12), pp. 2349-2364. 

 

Larsen, H.J. (2001) Properties affecting reliability design of timber structures - an 

overview. COST E24 Seminar on Reliability of timber structures. Coimbra, Portugal, 

4th – 5th May 2001. 

http://www.km.fgg.uni-lj.si/coste24/data/CoimbraDocuments/Coimbra-larsen.PDF 

 

Lenth, C. and Sargent, R. (2004) Investigating the influence of moisture content and 

temperature on the tensile stiffness of radiata pine. Proceedings of Third International 

Conference of the European Society for wood Mechanics. UTAD, Vila Real, 

Portugal. 

 

Madsen, B. (1992) Structural behavior of timber (3rd edition). Canada: Timber 

Engineering Limited, Vancouver, BC. 

 

Mascia, N.T. and Cramer S.M. (2009) On the effect of the number of annual growth 

rings, specific gravity and temperature on Redtimber elastic modulus. Maderas. 

Ciencia y tecnología. Vol. 11(1), pp. 47-60. 

 

NAFI (2004) Timber Manual Datafile Part 1 - Timber species and properties.  

Australia: National Association of Forest Industries. 

 

http://www.radermacher-pr.de/fileadmin/pdf_dokumente/Nadelholzprodukte/Softwood_eng_web.pdf
http://www.radermacher-pr.de/fileadmin/pdf_dokumente/Nadelholzprodukte/Softwood_eng_web.pdf
http://www.km.fgg.uni-lj.si/coste24/data/CoimbraDocuments/Coimbra-larsen.PDF


 162 

Nakajima, S. and Murakami, T. (2008) Strength properties of two-by-four salvaged 

lumbers. 2008 World Conference on Timber Engineering, Miyazaki, Japan.   

URL: http://www.ewpa.com/Archive/2008/june/Paper_034.pdf 

 

Pearson, R.G. (1972) Effect of duration of load on the bending strength of wood. 

Holzforschung. Vol. 26(4), pp. 153-158. 

 

Plume, G.D (1997) Reclaimed timber: A modern construction material. Proceedings 

of the conference on the use of recycled wood and paper in building applications. 

USA: Forest Products Society. pp. 104-107. 

 

Rammer, D.R. (1999) Evaluation of recycled timber members. Materials and 

construction – the Proceedings of the fifth ASCE materials engineering congress. 

May 10-12, Cincinnati, Ohio. p 46-51. 

 

Ravenshorst, G.J.P. and Van-de-Kuilen, J.W.G. (2006) An innovative species 

independent strength grading model. World Conference on Timber Engineering, 

Portland, Oregon. 

URL: http://www.ewpa.com/Archive/2006/aug/Paper_020.pdf (Accessed: 10 May 

2010) 

 

Schultmann, F. et al. (2001) Methodologies and guidelines for deconstruction in 

Germany and France. CIB World Building Congress - Deconstruction Meeting. 

Wellington, New Zealand, pp.27-41. 

 

Siau, J.F. (1984) Transport processes in wood. New York: Springer-Verlag. 

 

Simpson, W. and Tschernitz, J. (1979). Importance of thickness variation in kiln 

drying red oak lumber. Oregon, USA: Western Dry Kiln Clubs.  

URL:http://ir.library.oregonstate.edu/dspace/bitstream/1957/5722/1/Importance_Thic

k_ocr.pdf (Accessed: 15 December 2010) 

 

http://www.ewpa.com/Archive/2008/june/Paper_034.pdf
http://www.ewpa.com/Archive/2006/aug/Paper_020.pdf
http://ir.library.oregonstate.edu/dspace/bitstream/1957/5722/1/Importance_Thick_ocr.pdf
http://ir.library.oregonstate.edu/dspace/bitstream/1957/5722/1/Importance_Thick_ocr.pdf


 163 

Tukker, A. and Gielen, D.J. (1994) A concept for the environmental evaluation of 

waste management benefits. Environmental aspects of construction with waste 

materials. Amsterdam: Elsevier. pp.737-8 

 

TRADA (1954) Timbers for house building. UK: Timber Research and Development 

Association (TRADA). 

 

UK Building Regulations (2010) Approved Document A (2010). London: Department 

for Communities and Local Government. 

 

Walker, J.C.F. et al. (1993) Primary wood processing. London: Chapman and Hall.  

 

WCED (1987) Our common future (the Brundtland report). London: World 

Commission on Environment and Development.  

 

WCLIB (1996) Grading rules for West Coast lumber. Standard No. 17. USA: West 

Coast Lumber Inspection Bureau, Portland, Oreg 

 

Wood, L. W. (1951) Relation of strength of wood to duration-of-load. U.S.D.A Forest 

Service Report No. 1916. USA: Forest Products Laboratory, Madison, WI. 

 

WRAP (2004) Evaluation of the market development potential of the waste wood and 

wood products reclamation and reuse sector. London: Waste and Resources Action 

Programme (WRAP). ISBN - 1844051110 

 

 

 

 

 

 

 

 



 164 

9 Bibliography 

Adams, K.T. (2003) How do you identify the best practicable environmental option 

for construction and demolition waste? CIB World Proceedings of the 11th Rinker 

International Conference. Florida, USA, pp.226-238. 

 

AF&PA (1997) Design values for wood construction—a supplement to the national 

design specification for wood construction. Washington, DC: American Forest and 

Paper Association. 

 

Anatomy of softwoods and its influence on timber quality. (1962) PHILLIPS Forestry. 

Vol. 33, pp. 15-20.  

URL: http://forestry.oxfordjournals.org/cgi/reprint/33/2/15 (Accessed: 5 June 2010) 

 

Arntzen, C. J. (Ed). (1994) Encyclopedia of Agricultural Science. Orlando, FL: 

Academic Press. Vol. 4, pp. 549-561. 

 

ASTM (2011) D245-06 Standard practice for establishing structural grades and 

related allowable properties for visually graded lumber. USA: ASTM International. 

 

Bawcombe, J. Harris, R. Walker, P. and Ansell, M. (2010) A multidisciplinary study 

assessing the properties of Douglas fir grown in the south west region of the UK. 

2010 World Conference on Timber Engineering. Trentino, Italy.  

 

BedZED: Toolkit Part 1 - A guide to construction materials for carbon neutral 

developments (2002). London: Bioregoinal Developments. URL: 

http://www.bioregional.com/files/publications/BedZED_toolkit_part_1.pdf (Accessed 

20 November 2010) 

 

Blass, H.J. and Frese, M. (2004) Combined visual and machine strength grading. 2004 

World Conference on Timber Engineering. Lahti, Finland.  

URL: http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/685539 (Accessed: 20 

May 2009)  

 

http://forestry.oxfordjournals.org/cgi/reprint/33/2/15
http://www.bioregional.com/files/publications/BedZED_toolkit_part_1.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/685539


 165 

Bodig, J. and Jayne, B.A. (1982) Mechanics of wood and wood composites. New 

York: Van Nostrand. 

 

Boström, L. et al (2000) Control of timber strength grading machines. SMT4-CT97-

2207, SP Report 2000:11, Borås, Sweden. 

 

Bowes, H. and Golton, B. (2001) Obsolescence and demolition of local authority 

dwellings in the UK – a case study. Proceedings of the CIB World Congress meeting 

of CIB Task Group 39 on Deconstruction. Wellington, New Zealand. 

 

BRE (1974) Strength properties of timber. London: Princes Risborough Laboratory of 

the BRE, MTP Construction. 

 

BRE (2000) Information Paper 00/7: Reclamation and recycling of building 

materials. London: BRE. 

 

BRE (2003) Digest 476: Guide to machine strength grading of timber. London: BRE. 

 

Breyer, D.E. Fridley, K.J. and Cobeen, K.E. (1999) Design of Wood Structures ASD 

(4th Edition): New York: McGraw-Hill. ISBN: 0070077169.    

 

Brown, M.T. and Vorasun Buranakarn (2003). Emergy indices and ratios for 

sustainable material cycles and recycle options. Resources, Conservation and 

Recycling. Issue 38, pp.1-22.  

 

British Standards Institution (1952) CP 112:1952 Code of practice for the structural 

use of timber. London: BSI. 

 

British Standards Institution (1957) BS 373:1957 Methods of testing small clear 

specimens of timber. London: BSI. 

 

British Standards Institution (1995) BS EN 384:1995 Structural timber – 

determination of characteristic values of mechanical properties and density. London: 

BSI. 



 166 

 

British Standards Institution (1995) BS EN 408:1995 Timber structures - Structural 

timber and glued laminated timber - Determination of some physical and mechanical 

properties. London: BSI. 

 

British Standards Institution (1996) BS 4978:1996 Visual strength grading of 

softwood. London: BSI. 

 

British Standards Institution (2000) BS 6187: 2000 Code of practice for demolition. 

London: BSI. 

 

British Standards Institution (2000) BS EN 519:1995 Structural timber - Grading - 

Requirements for machine strength graded timber and grading machines. London: 

BSI. 

 

British Standards Institution (2002) BS 5268-2: 2002 Structural use of timber. Code 

of practice for permissible stress design, materials and workmanship. London: BSI. 

 

British Standards Institution (2003) BS EN 336:2003 Structural timber - sizes - 

permitted deviations. London: BSI. 

 

British Standards Institution (2008) BS EN 1995-1-1: 2004+A1 Eurocode 5. Design of 

timber structures. General. Common rules and rules for buildings. London: BSI. 

 

British Standards Institution (2009) BS EN 338:2009 Structural timber. Strength 

classes. London: BSI.  

 

British Standards Institution (2011) BS EN 14081: 2011 Strength graded structural 

timber with rectangular cross section. London: BSI. 

 

Chinia, A.R. and Acquayea, L. (2001) Grading and Strength of Salvaged Lumber 

from Residential Buildings. Environmental Practice. Issue 2001(3), pp.247-256 

 



 167 

Chinia, A.R. Acquaye, L. and Rinker, M.E. (2001) Grading and mechanical properties 

of salvaged lumber. CIB World Building Congress- Deconstruction Meeting. 

Wellington, New Zealand. pp.138-161.  

 

Crews, K. and MacKenzie, C (2008) Development of grading rules for recycled 

timber used in structural applications. Research Paper. University of Technology, 

Sydney, Australia.  

 

Crowther, P. (2001) Developing an inclusive model for design for deconstruction. 

Proceedings of the CIB Task Group 39 – Deconstruction Meeting of the CIB World 

Building Congress. Wellington, New Zealand 

 

CIRIA (1999) Reclaimed and recycled construction materials handbook. Publication - 

C513. London: Construction Industry Research and Information Association (CIRIA). 

ISBN – 9780860175131. 

 

Clouston, P. (1995) Tsai-Wu strength theory for Douglas fir laminated veneer. M. S. Thesis. 

USA: University of British Columbia. 

 

Cooper, P. Ung, T. Aucoin, JP. and Timusk, C. (1996) The potential for re-use of 

preservative treated utility poles removed from service. Waste Management and 

Research. Vol. 14, pp. 263–279 

 

Corporate Watch. (2004) UK construction industry overview. Corporate Watch UK. 

URL: http://www.corporatewatch.org.uk/?lid=277 (Accessed: 21 November 2010) 

 

Cramer, S.M. Hermanson, J.C. and McMurtry, W.M. (1996) Characterizing large 

strain crush response of redwood. Sandia Report. SAND96 - 2966.UC-820, Sandia 

National Laboratories. 

 

DCLG (2007) Survey of arisings and use of alternatives to primary aggregates in 

England, 2005: Construction, demolition and excavation waste - Final report. London: 

Department for Communities and Local Government (DCLG). 

 

http://www.corporatewatch.org.uk/?lid=277


 168 

Dickson M. (2002) Timber: a growth material for construction, Journal of the 

Institute of Wood Science. Vol. 16(2), pp. 78-86. 

 

Diebold, R. and Glos, P. (1994). Improved timber utilization through novel machine 

strength grading. Holz als Roh- und Werkstoff . Vol 52, pp. 222. 

 

Dinwoodie, J.M.  (2000) Timber: Its nature and behaviour. New York: Van Nostrand 

Reinhold Co. 

 

Domone, P. and Illston, J. M. (1993) Construction Materials: Their Nature and 

Behaviour. Taylor and Francis. 

 

Dumail, J.F. and Salmen, L. (2001) Intra-ring variations in the rolling shear modulus 

of spruce wood. Holzforschung 55(5), pp. 549-553. 

 

Edlund, J. et al (2006) Modulus of elasticity of Norway spruce saw logs vs. structural 

lumber grade. Holz als Roh- und Werkstoff. Vol. 64(4), pp. 273-279. 

 

Falk, R.H. DeVisser, D. Plume, G.R. and Fridley, K.J. (2003) Effect of drilled holes 

on the bending strength of large dimension Douglas-fir lumber. Forest Products 

Journal. Vol. 53(5), pp. 55-60. 

 

Falk, R.H. DeVisser, D. Cook, S and Stansbury, D. (1999) Effect of damage on the 

grade yield of recycled lumber. Forest Products Journal. Vol. 49 (7/8), pp. 71-79. 

 

Falk, R.H. and Green, D. (1999) Stress grading of recycled lumber and timber. 

Structures Congress: Structural engineering in the 21st Century. April 

18-21. New Orleans, LA. Reston, VA. Sponsored by the American Society of Civil 

Engineers. pp. 650-653. 

 

Falk, R.H. Green, D.W and Lantz, S.F. (1999) Evaluation of lumber recycled from an 

industrial military building. Forest Products Journal. Vol. 49(5), pp. 49-55. 

 



 169 

Fewell, A.R. (1982) Machine stress grading of timber in the United Kingdom. Holz 

als Roh- und Werkstoff. Vol 40, pp. 455-459. 

 

Fiorelli, J. and Alves-Dias, A. (2003) Analysis of the strength and stiffness of timber 

beams reinforced with carbon fiber and glass fiber. Materials Research. Vol.6(2). 

 

Fridley, K. J. Mitchell, J.B. Hunt, M.O. and Senft, J.F. (1996). Effect of 85 years of 

service on mechanical properties of timber roof members. Part 1 - Experimental 

observations. Forest Products Journal. Vol. 46(5), pp. 72-78. 

 

Fujimoto, T. (2008) Rapid and non-destructive evaluations of wood mechanical 

properties by near infrared spectroscopy. 2008 World Conference on Timber 

Engineering. Miyazaki, Japan 2008.  

URL: http://www.ewpa.com/Archive/2008/june/Paper_037.pdf (Accessed: 25 July 

2009) 

 

Gao, W. et al (2001) Energy impacts of recycling disassembly material in residential 

buildings. Energy and Buildings. Issue 33, pp. 553-562. 

 

Gerhards, C.C. (1982) Effect of moisture content and temperature on mechanical 

properties of wood: An analysis of immediate effects. Wood and Fiber. Vol. 14(1), 

pp.443–449. 

 

Giubileo, C. (2005) Doctoral Thesis: Experimental and theoretical analysis of the 

structural behaviour of ancient timber structures. XVIII ciclo, Università degli Studi 

di Napoli Federico II Facoltà di Ingegneria, Italy.  

URL: http://www.dist.unina.it/doc/tesidott/PhD2005.Giubileo.pdf (Accessed: 20 

September 2010) 

 

Glos, P. (1983) Technical and economical possibilities of timber strength grading in 

small and medium sized companies. SAH-Bulletin 1983/1. Zurich: Schweizerische 

Arbeitsgemeinschaft ftir Holzforschung. 

 

http://www.ewpa.com/Archive/2008/june/Paper_037.pdf
http://www.dist.unina.it/doc/tesidott/PhD2005.Giubileo.pdf


 170 

Green, D.W. and Kretschmann, D.E. (1991). Lumber property relationships for 

engineering design codes. Wood and Fiber Science. Vol. 23(3), pp. 436-456. 

 

Green, D.W. and McDonald, K.A. (1993). Mechanical Properties of Red Maple 

Structural Lumber. Journal Wood and Fiber Science. Vol 25(4), pp.365-374 

 

Green, D.W. Falk, R.H. and Lantz, S.F. (2001) Effect of heart checks on flexural 

properties of reclaimed 6 by 8 Douglas-fir timbers. Forest Products Journal. Vol. 51 

(July/August), pp. 82-88. 

 

Green, D.W. Ross, R.J. and McDonald, K.A. (1994) Production of hardwood machine 

stress rated lumber. Proceedings of 9th international symposium on non-destructive 

testing of wood. September 22-24. Madison, WI, Canada. 

 

Hairstans, R. Kermani, A. and Lawson, R. (2004) Sustainable developments in timber 

frame construction. 2004 World Conference on Timber Engineering. Lahti, Finland 

2004.  

URL: http://www.ewpa.com/Archive/2004/jun/Paper_283.pdf  (Accessed: 15 May 

2009) 

 

Harris, R. (2004) 21st Century timber engineering - the age of enlightenment for 

timber design. Part 1: An introduction to timber. The Structural Engineer. Vol. 

82(23), pp. 52-57. 

 

Harris, R. (2004) Sustainability into reality. Responsible use of timber. The Structural 

Engineer. Vol. 82(17), pp. 24-27. 

 

Harris, R. (2005) 21st Century timber - the age of enlightenment for timber design 

Part 2: Environmental credentials. The Structural Engineer. Vol. 83(2), pp. 23-28. 

 

HMSO (2008) Site waste management regulations 2008. SI 2008/314. London: 

HMSO. 

 

http://www.ewpa.com/Archive/2004/jun/Paper_283.pdf


 171 

Hobbs, G. and Hurley, J. (2001) Deconstruction and the reuse of construction 

materials.  UK: Building Research Establishment, Watford.  

 

Holzabsatzfonds (2007) Modern wood products – timber for construction – 

softwoods. Germany: Holzabsatzfonds. 

URL: http://www.radermacher-

pr.de/fileadmin/pdf_dokumente/Nadelholzprodukte/Softwood_eng_web.pdf 

(Accessed: 20 May 2012) 

 

Hurley, J. and Hobbs, G. (2001) TG39 – UK Country report on deconstruction 

(Report 9). International Council for Research and Innovation in Building and 

Constuction. 

 

Isik, A. (2003) Dissasembly and reuse of building materials: a case study on salvaged 

timber components.  Turkey: Middle East Technical University.  

 

Jeong, G.I. Hindman, D.P.and Zink-Sharp, A. (2010) Orthotropic properties of 

loblolly pine (Pinus taeda) strands. Journal of materials science. June 2010 issue. 

 

Jernkvist, L.O. and Thuvander, F. (2001) Experimental Determination of stiffness 

variation across growth rings in Picea abies. Holzforschung.  Vol. 55, pp. 309–317. 

 

John, V.M. and Zordan, S.E. (2001) Research and development methodology for 

recycling residues as building materials - a proposal. Waste Management. Issue 21, 

pp. 213-219. 

 

Karube, H. (2004) Automatic software for deciding characteristics of load-

displacement curves. 2004 World Conference on Timber Engineering. Lahti, Finland 

2004.  

URL: http://www.ffpri.affrc.go.jp/labs/etj/karube/PickPoint/  (Accessed: 15 May 

2009) 

 

Kibert, C.J. (2002) Deconstruction’s Role in an Ecology of Construction. CIB World 

Proceedings-Deconstruction Meeting.  Karlsruhe, Germany, p.218-229. 

http://www.radermacher-pr.de/fileadmin/pdf_dokumente/Nadelholzprodukte/Softwood_eng_web.pdf
http://www.radermacher-pr.de/fileadmin/pdf_dokumente/Nadelholzprodukte/Softwood_eng_web.pdf
http://www.ffpri.affrc.go.jp/labs/etj/karube/PickPoint/


 172 

 

Kibert, C.J. (2003) Deconstruction: the start of a sustainable materials strategy for the 

built environment. Industry and Environment. April-September 2003, pp. 84-88. 

 

Kohler, N. and Moffat, S. (2003) ‘Life cycle analysis of the built environment’. 

Industry and Environment. April-September 2003, pp. 17-21. 

 

Koponen, T. et al. (2005) The stiffness modulus in Norway spruce as a function of 

year ring. Holzforschung. Vol. 59(4), pp.451–455. 

 

Lanius, R.M., Tichy, R., and Bulliet, W.M. (1981) Strength of old joists.  Journal of 

Structural Engineering. ASCE, Vol. 107(12), pp. 2349-2364. 

 

Larsen, H.J. (2001) Properties affecting reliability design of timber structures - an 

overview. COST E24 Seminar on Reliability of timber structures. Coimbra, Portugal, 

4th – 5th May 2001. 

http://www.km.fgg.uni-lj.si/coste24/data/CoimbraDocuments/Coimbra-larsen.PDF 

 

Lassandro, P. (2003) Deconstruction case study in Southern Italy: Economic and 

environmental assessment. CIB World Proceedings of the 11th Rinker International 

Conference. Florida, USA, pp.115-1240 

 

Laxton, R. Litton, R. and Clifford, D. (1988) An east midlands master tree-ring 

chronology and its use for dating vernacular buildings. Nottingham University, 

England. 

 

Lenth, C. and Sargent, R. (2004) Investigating the influence of moisture content and 

temperature on the tensile stiffness of radiata pine. Proceedings of Third International 

Conference of the European Society for wood Mechanics. UTAD, Vila Real, Portugal. 

 

Lin, Cheng-Jung et al. (2007) Effects of ring characteristics on the compressive 

strength and dynamic modulus of elasticity of seven softwood species. Holzforschung. 

Vol. 61(4), pp. 414-418. 

 

http://www.km.fgg.uni-lj.si/coste24/data/CoimbraDocuments/Coimbra-larsen.PDF


 173 

Madsen, B. (1992) Structural behavior of timber (3rd edition). Canada: Timber 

Engineering Limited, Vancouver, BC. 

 

Mascia, N. T. (2003) Concerning the elastic orthotropic model applied to timber 

elastic properties. Maderas. Ciencia y tecnología.  Vol. 5(1), pp. 3-19. 

 

Mascia, N.T. and Cramer S.M. (2009) On the effect of the number of annual growth 

rings, specific gravity and temperature on Redtimber elastic modulus. Maderas. 

Ciencia y tecnología. Vol. 11(1), pp. 47-60. 

 

Mettem, C. and Harris, R. (2002) Building on timber codes and standards. The 
Structural Engineer. Vol. 80 (17), pp. 31-34. 
 

Mitsuhashi, K. Poussa, M. and Puttonen, J. (2008) Method for predicting tension 

capacity of sawn timber considering slope of grain around knots.  Journal of Wood 

Science. Vol. 54(3), pp. 189-195. 

 

Mvogo, J.K. Ayina, O. Morlier, P. and Castera, P. (2008) A new approach of 

grouping wood species and a proposal of a grading system of timber in the Congo 

basin. 2008 World Conference on Timber Engineering. Miyazaki, Japan.  

URL: http://www.ewpa.com/Archive/2008/june/Paper_199.pdf (Accessed: 25 June 

2009) 

 

NAFI (2004) Timber Manual Datafile Part 1 - Timber species and properties.  

Australia: National Association of Forest Industries. 

 

Nakajima, S. and Murakami, T. (2008) Strength properties of two-by-four salvaged 

lumbers. 2008 World Conference on Timber Engineering. Miyazaki, Japan.   

URL: http://www.ewpa.com/Archive/2008/june/Paper_034.pdf 

 

Omar-Khaidzir, M. and Husain, H. (2008) Neuro-fuzzy inference of sound response 

of timber for non destructive determination of strength groups. 2008 World 

Conference on Timber Engineering. Miyazaki, Japan 2008.  

http://www.ewpa.com/Archive/2008/june/Paper_199.pdf
http://www.ewpa.com/Archive/2008/june/Paper_034.pdf


 174 

URL: http://www.ewpa.com/Archive/2008/june/Paper_038.pdf  (Accessed: 25 July 

2009) 

Ouis, D. (2004) Effect of a Longitudinal Crack on the Strength Properties of a 

Wooden Beam. 2004 World Conference on Timber Engineering’. Lahti, Finland 

2004.  

URL: http://homeweb.mah.se/~tsdjou/Pub_Conf/Pub_Conf_28.pdf (Accessed: 15 

May 2009) 

 

Øvrum, A., Vestøl, G.I. and Høibø, O. A. (2008) Modeling the longitudinal variation 

of sawn timber grades in Norway spruce (Picea abies (L.) Karst). Holz als Roh- und 

Werkstoff. Vol. 66(3), pp. 219-227. 

 

Pearson, R.G. (1972) Effect of duration of load on the bending strength of wood. 

Holzforschung. Vol. 26(4), pp. 153-158. 

 

Plume, G.D (1997) Reclaimed timber: A modern construction material. Proceedings 

of the conference on the use of recycled wood and paper in building applications. 

USA: Forest Products Society. pp. 104-107. 

 

Rammer, D.R. (1999) Evaluation of recycled timber members. Materials and 

construction – the Proceedings of the fifth ASCE materials engineering congress. 

May 10-12, Cincinnati, Ohio. p 46-51. 

 

Ravenshorst, G.J.P. and Van-de-Kuilen, J.W.G. (2006) An innovative species 

independent strength grading model. World Conference on Timber Engineering, 

Portland, Oregon. 

URL: http://www.ewpa.com/Archive/2006/aug/Paper_020.pdf (Accessed: 10 May 

2010) 

 

Ridley-Ellis, D. Moore, J. and Lyon, A. (2009). Strength grading and the end user – 

lessons from the SIRT project at Napier University. COST Action E53 - End user’s 

needs for wood material and products. 29th - 30th October 2008, Delft, Netherlands. 

 

http://www.ewpa.com/Archive/2008/june/Paper_038.pdf
http://homeweb.mah.se/~tsdjou/Pub_Conf/Pub_Conf_28.pdf
http://www.ewpa.com/Archive/2006/aug/Paper_020.pdf


 175 

Richardson, A. (Ed) (2013) Reuse of materials and byproducts in construction: Waste 

minimization and recycling. Springer-Verlag, 2013. 

  

Rovers, R. The role of policies in promoting sustainable practices. Industry and 

Environment. April-September 2003, pp. 29-32.  

 

Säll, H. Källsner, B. and Olsson, A. (2007) Bending strength and stiffness of aspen 

sawn timber. COST E53 Conference - Quality Control for Wood and Wood Products. 

15th – 17th October 2007, Warsaw, Poland. 

URL: http://www.coste53.net/downloads/Warsaw/Warsaw-presentation/COSTE53-

ConferenceWarsaw-Presentation-Sall.pdf (Accessed: 01 June 2010) 

 

Sandberg, D. (2005) Distortion and visible crack formation in green and seasoned 

timber: influence of annual ring orientation in the cross section. Holz als Roh- und 

Werkstoff.  Vol. 63(1), pp. 11-18. 

 

Schultmann, F. et al. (2001) Methodologies and guidelines for deconstruction in 

Germany and France. CIB World Building Congress - Deconstruction Meeting. 

Wellington, New Zealand, pp.27-41. 

 

Siau, J.F. (1984) Transport processes in wood. New York: Springer-Verlag. 

 

Silkin,P. P. and Kirdyanov, A. V. (2003) The relationship between variability of cell 

wall mass of earlywood and latewood tracheids in larch tree-rings, the rate of tree-ring 

growth and climatic changes. Holzforschung. Vol. 57(1), pp. 1-7. 

 

Simpson, W. and Tschernitz, J. (1979). Importance of thickness variation in kiln 

drying red oak lumber. Oregon, USA: Western Dry Kiln Clubs.  

URL:http://ir.library.oregonstate.edu/dspace/bitstream/1957/5722/1/Importance_Thic

k_ocr.pdf (Accessed: 15 December 2010) 

 

Sonderegger, W. Alter, P. and Niemz P. (2008) Untersuchungen zu ausgewählten 

Eigenschaften von Fichtenklangholz aus Graubünden (Investigations on selected 

http://www.coste53.net/downloads/Warsaw/Warsaw-presentation/COSTE53-ConferenceWarsaw-Presentation-Sall.pdf
http://www.coste53.net/downloads/Warsaw/Warsaw-presentation/COSTE53-ConferenceWarsaw-Presentation-Sall.pdf
http://ir.library.oregonstate.edu/dspace/bitstream/1957/5722/1/Importance_Thick_ocr.pdf
http://ir.library.oregonstate.edu/dspace/bitstream/1957/5722/1/Importance_Thick_ocr.pdf


 176 

properties of tonal wood of spruce from Grisons). Holz als Roh- und Werkstoff. Vol. 

66(5), pp. 345-354 (German language article). 

 

Steffen, A. Johansson, C. J. and Wormuth, E. W. (1997) Study of the relationship 

between flatwise and edgewise modull of elasticity of sawn timber as a means to 

improve mechanical strength grading technology. Holz als Roh- und Werkstoff. Vol. 

55(2-4), pp. 245-253. 

 

Tasissa, G. and Burkhart, H.E. (1998). Modelling thinning effects on ring specific 

gravity of loblolly pine (Pinus taeda L.). Forest Science. Vol. 44(2), pp. 212-223. 

 

TG39. UK Country Report on Deconstruction. (2000) International Council for 

Research and Innovation in Building Construction (CIB), Task Group 39 on 

Deconstruction.  

 

Thelandersson S. and Larsen H.J.(Eds). (2003) Timber engineering. John Wiley and 

Sons, UK. ISBN - 0470844698 

 

TRADA (1954) Timbers for house building. UK: Timber Research and Development 

Association (TRADA). 

 

TRADA (1995) Timber engineering STEP 1 - Basis of design, material properties, 

structural components and joints. London: Timber Research and Development 

Association (TRADA). 

 

TRADA (2000) Strength graded timber. London: Timber research and Development 

Association (TRADA). 

 

Tsai, T.H. (2004) Estimation of modulus of wooden components by using non-

destructive testing strategy. 2004 World Conference on Timber Engineering. Lahti, 

Finland 2004. Available at: http://www.ewpa.com/Archive/2004/jun/Paper_327.pdf  

(Accessed: 15 May 2009) 

 

http://www.ewpa.com/Archive/2004/jun/Paper_327.pdf


 177 

Tukker, A. and Gielen, D.J. (1994) A concept for the environmental evaluation of 

waste management benefits. Environmental aspects of construction with waste 

materials. Amsterdam: Elsevier. pp.737-8 

 

UK Building Regulations (2010) Approved Document A (2010). London: Department 

for Communities and Local Government. 

 

Walker, J.C.F. et al. (1993) Primary wood processing. London: Chapman and Hall.  

 

WCED (1987) Our common future (the Brundtland report). London: World 

Commission on Environment and Development.  

 

WCLIB (1996) Grading rules for West Coast lumber. Standard No. 17. USA: West 

Coast Lumber Inspection Bureau, Portland, Oreg 

 

Winandy, J.E. (1994) Wood Properties. In: Arntzen, Charles J., ed. Encyclopedia of 

Agricultural Science. Orlando, FL: Academic Press. Vol. 4, pp. 549-561. 

 

Wood, L. W. (1951) Relation of strength of wood to duration-of-load. U.S.D.A Forest 

Service Report No. 1916. USA: Forest Products Laboratory, Madison, WI. 

 

WRAP (2004) Evaluation of the market development potential of the waste wood and 

wood products reclamation and reuse sector. London: Waste and Resources Action 

Programme (WRAP). ISBN - 1844051110 

 

Yohanis, Y.G. and Norton, B. (2002) ‘Life-cycle operational and embodied energy for 

a generic single-storey office building in the UK’. Energy. Issue 27, pp. 77-92. 

 

Ziethen, R. (2006) Reliability of proof-loading as a strength grading technique. World 

Conference on Timber Engineering. Portland, Oregon 2006.  

URL: http://www.ewpa.com/Archive/2006/aug/Paper_021.pdf (Accessed: 15 May 

2009) 

 

http://www.ewpa.com/Archive/2006/aug/Paper_021.pdf


 178 

Ziethen, R. (2006) Strength grading of Norway spruce using image analysis 

technique. 2006 World Conference on Timber Engineering. Portland, Oregon 2006. 

URL: http://www.ewpa.com/Archive/2006/aug/Paper_048.pdf  (Accessed: 15 May 

2009). 

http://www.ewpa.com/Archive/2006/aug/Paper_048.pdf


 179 

Appendix 1 – test data 

 
Control data 
The control data for his research was generated from materials procured, off the shelf, 

from a leading builder’s merchant chain. 

 

Table A.1 Control data 

Index 
No. 

Breadth 
(mm) 

Depth 
(mm) 

Rings 
per cm 

MoE 
(N/mm

2
) 

Density 
(kg/m

3
) 

Calculated 
MOR 
(kN/mm

2
) 

1001 75 150 4.5 7550.5 455 15.6 

1002 75 150 3 7294.6 456 15.1 

1004 70 175 2.5 4471.9 458 9.2 

1006 60 150 3.5 5736.7 469 11.8 

1007 45 145 5 5270.5 433 10.9 

1010 45 170 4 5901.7 490 12.2 

1012 45 145 7 7597.1 459 15.7 

1013 60 170 4.8 5506.2 470 11.4 

1014 60 170 3.2 6485.1 460 13.4 

1015 75 145 2.8 6528.8 475 13.5 

1016 75 145 206 6528.8 455 13.5 

1017 75 145 3 6528.8 465 13.5 

1018 60 170 3.2 4732.1 490 9.8 

1019 60 170 2.8 4684.5 465 9.7 

1020 70 175 2.8 4471.9 462 9.2 

1021 65 170 4 5105.7 462 10.5 

1022 65 200 3 4063.8 450 8.4 

1003 75 150 2.4 7551.8 470 15.6 

1178 54 155 5.2 7315.4 473 15.1 

1179 54 155 4.4 7306.7 484 15.1 

 
 
Test data 
Timbers for testing were procured from demolition sites and building contractors 

throughout the North of England. Careful measurements were taken of density, tree 

ring frequency, and the probable age of each of the specimens. Each timber beam was 

tested on a 3 point bending test rig; measuring the modulus of elasticity. Small clear 

specimens were tested to destruction, establishing the modulus of rupture; these 

figures are only applicable to some of the structural beams and are in blue text.  

 

In the test data table (following pages) commercial premises are shops and small 

offices, and industrial premises refer specifically to factories.   

 



 180 

Table A.2 Test data 

Index 
No Breadth Depth Date Density MoE  

Rings 
per cm MOR 

SCT-
MoR 

SCT-
MoE Building type 

1005 40 165 1910 552 7920.2 4.2 16.4 16.7 8080 Domestic dwelling - North Shields NE29 

1009 45 175 1925 540 8086.1 3.4 16.7   Domestic dwelling – Wallsend NE28 

1023 70 200 1965 401 5444.1 3.6 11.2 18.3 5699.3 Commercial premises – Cullercoats NE25 

1024 65 175 1935 620 6322 4.8 13.1   Industrial premises – Newcastle NE1 

1025 65 170 1910 670 8679.9 4.6 17.9   Domestic dwelling - North Shields NE29 

1026 80 225 1910 669 3609.3 8.6 7.5   Domestic dwelling - North Shields NE29 

1027 60 175 1935 584 6336.1 6.4 13.1   Industrial premises – Newcastle NE1 

1028 55 130 1920 495 5279.8 4 10.9   Domestic dwelling – Low Walker NE6 

1029 55 130 1920 510 5216.1 7.2 10.8   Domestic dwelling – Low Walker NE6 

1030 55 130 1920 540 7094.6 6 14.7   Domestic dwelling – Low Walker NE6 

1031 50 170 1920 390 5470.2 7.6 11.3   Domestic dwelling – Low Walker NE6 

1032 50 170 1940 474 5651.8 3.6 11.7 42.5 5350.8 Domestic dwelling – Low Walker NE6 

1033 50 170 1940 511 5817.9 3.2 12.0   Domestic dwelling – Newcastle west NE4 

1034 50 170 1940 529 5738.1 3.6 11.8 27.8 5602.3 Domestic dwelling – Newcastle west NE4 

1035 45 125 1940 579 8516.2 6.8 17.6   Domestic dwelling – Newcastle west NE4 

1036 45 125 1940 470 8337.7 6.4 17.2 19.3 5145 Domestic dwelling – Newcastle west NE4 

1037 45 125 1940 696 9801.9 12 20.2 29.6 11433 Domestic dwelling – Newcastle west NE4 

1038 45 125 1940 580 7475.6 6 15.4 19.3 6966 Domestic dwelling – Newcastle west NE4 

1039 45 125 1940 527 6640.3 5.6 13.7   Domestic dwelling – Newcastle west NE4 

1040 50 180 1925 585 5410.3 2.6 11.2   Commercial premises – Gateshead NE9 

1041 50 180 1925 604 8195.4 4.4 16.9   Commercial premises – Gateshead NE9 

1042 55 150 1930 610 7809.1 3.6 16.1   Commercial premises – Durham DH4 

1043 54 155 1930 601 9387.9 4.8 19.4   Commercial premises – Durham DH4 

1044 64 165 1930 660 9840.5 5.6 20.3 35.1 9489.6 Commercial premises – Durham DH4 

1045 54 155 1910 610 7610.5 4.2 15.7   Commercial premises – Ashington NE63 

1046 64 165 1930 590 6580.1 7.2 13.6 19.9 6502 Domestic dwelling – Sunderland SR1 

1047 54 155 1930 489 6393.9 2.2 13.2   Domestic dwelling – Sunderland SR1 
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Index 
No Breadth Depth Date Density MoE  

Rings 
per cm MOR 

SCT-
MoR 

SCT-
MoE Building type 

1048 54 155 1930 510 6507.1 6 13.4 20.9 6379 Domestic dwelling – Sunderland SR1 

1049 54 155 1930 589 6574.8 6.4 13.6   Domestic dwelling – Sunderland SR1 

1050 54 155 1930 621 5788.9 5.6 12.0   Domestic dwelling – Sunderland SR1 

1051 54 155 1930 581 6243 6.4 12.9   Domestic dwelling – Sunderland SR1 

1052 64 165 1930 640 9416.6 6.8 19.4 30.9 9947 Commercial premises – Newcastle NE1 

1053 64 165 1930 595 7710.8 6 15.9   Commercial premises – Newcastle NE1 

1054 54 165 1930 551 6419.9 6.4 13.3   Commercial premises – Newcastle NE1 

1055 54 165 1930 596 8422.9 6.4 17.4   Commercial premises – Newcastle NE1 

1056 54 165 1930 588 7908.6 6.8 16.3   Commercial premises – Newcastle NE1 

1057 54 145 1930 597 7901.2 7.2 16.3   Domestic dwelling – Manchester M28 

1058 54 145 1930 560 7667.9 6.4 15.8 14.1 5316 Domestic dwelling – Manchester M28 

1059 64 165 1930 601 9041.9 7.2 18.7   Domestic dwelling – Newcastle NE4 

1060 64 165 1930 621 8000.3 6.8 16.5   Domestic dwelling – Newcastle NE4 

1061 64 165 1930 583 7187.5 4.8 14.8   Domestic dwelling – Newcastle NE4 

1062 64 165 1930 530 6501.3 8.8 13.4 17.8 6147 Domestic dwelling – Newcastle NE4 

1063 64 165 1930 580 6366.9 7.6 13.1 16.7 6174 Domestic dwelling – Newcastle NE4 

1064 64 165 1930 501 6262.2 4.8 12.9   Domestic dwelling – Newcastle NE4 

1065 64 165 1930 661 11074.6 17.2 22.9 26.8 10967 Domestic dwelling – Newcastle NE3 

1066 64 165 1930 598 10255.3 14 21.2 15.1 6259.7 Domestic dwelling – Newcastle NE3 

1067 65 165 1935 562 10119.6 14.4 20.9 13.8 5745 Domestic dwelling – Newcastle NE3 

1068 65 165 1935 590 7796.1 7.6 16.1   Domestic dwelling – Newcastle NE3 

1069 65 165 1935 505 7187.5 6 14.8   Domestic dwelling – Newcastle NE3 

1070 65 165 1935 590 7310.2 6.4 15.1 20.4 6175 Domestic dwelling – Newcastle NE3 

1071 54 155 1930 511 5610.6 5.6 11.6   Commercial premises – Blyth NE24 

1072 54 155 1930 520 5565.1 4.8 11.5 20.9 6088 Commercial premises – Blyth NE24 

1073 45 155 1910 510 7706.4 13.2 15.9   Commercial premises – Wallsend NE28 

1074 45 155 1910 552 7477.9 13.2 15.4   Commercial premises – Wallsend NE28 

1081 55 155 1910 416 8060.7 14 16.6 16.2 6517 Commercial premises – Wallsend NE28 

1082 64 150 1930 598 8492 7.2 17.5   Industrial premises – Wardley NE10 
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Index 
No Breadth Depth Date Density MoE  

Rings 
per cm MOR 

SCT-
MoR 

SCT-
MoE Building type 

1083 64 165 1930 705 8945.6 7.6 18.5 31.5 12005 Industrial premises – Wardley NE10 

1084 64 165 1930 715 8893.5 7.2 18.4   Industrial premises – Wardley NE10 

1087 54 155 1930 469 6419.6 4.8 13.3 11 5625.2 Industrial premises – Wardley NE10 

1088 54 155 1930 563 6508.7 11 13.4   Industrial premises – Wardley NE10 

1089 45 155 1920 512 7338.7 8.4 15.2   Domestic dwelling – Corbridge NE45 

1090 45 155 1920 522 7344.2 9.2 15.2 19.3 6764 Domestic dwelling – Corbridge NE45 

1091 50 125 1920 456 7419.6 10 15.3 19.3 6448.8 Domestic dwelling – Corbridge NE45 

1092 50 125 1920 468 7428.5 6.4 15.3 16.2 5899.6 Domestic dwelling – Corbridge NE45 

1093 45 125 1925 552 8211.4 6.2 17.0   Domestic dwelling – South Shields NE33 

1094 50 125 1972 399 5022.3 3.2 10.4 19.4 5806.6 School - North Shields NE29 

1095 50 170 1950 406 5315 3.6 11.0   School – Whitley Bay NE26 

1096 50 170 1950 412 5310.3 3.2 11.0   School – Whitley Bay NE26 

1097 50 170 1950 488 5589.3 3.2 11.5 13.6 5659.1 School – Whitley Bay NE26 

1098 50 170 1950 467 5137.2 3.2 10.6 8.8 4554.7 School – Whitley Bay NE26 

1099 50 175 1950 522 4993.9 2.8 10.3 9.4 4802.5 School – Whitley Bay NE26 

1100 50 175 1950 501 5134.1 2.6 10.6   School – Whitley Bay NE26 

1101 65 180 1925 553 7210.3 4.4 14.9   Domestic dwelling – South Shields NE33 

1102 65 180 1925 561 7204.1 6 14.9   Domestic dwelling – South Shields NE33 

1103 65 180 1925 573 7322.6 7.2 15.1   Domestic dwelling – South Shields NE33 

1104 45 125 1930 612 8728.2 10.4 18.0   Domestic dwelling – Shiremoor NE27 

1105 45 125 1930 620 8735.8 10 18.0   Domestic dwelling – Shiremoor NE27 

1106 50 125 1935 563 7420.5 5.6 15.3   Domestic dwelling – Wallsend NE28 

1107 50 125 1935 551 7445.3 6 15.4   Domestic dwelling – Wallsend NE28 

1108 50 125 1935 523 7557.2 7.2 15.6   Domestic dwelling – Wallsend NE28 

1109 50 125 1935 536 7638.5 6.4 15.8   Domestic dwelling – Wallsend NE28 

1110 75 175 1910 711 8931.9 13.6 18.4 26.7 9032 Domestic dwelling – North Shields NE29 

1111 64 165 1930 706 8802.1 11.2 18.2 34 8944 Industrial premises – Blyth NE24 

1112 54 165 1935 706 7771.3 10 16.0 27.9 9114 Industrial premises – Boldon NE35 

1113 54 165 1935 687 7782.9 9.2 16.1   Industrial premises – Boldon NE35 
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Index 
No Breadth Depth Date Density MoE  

Rings 
per cm MOR 

SCT-
MoR 

SCT-
MoE Building type 

1114 54 165 1935 685 7817.6 10 16.1   Industrial premises – Boldon NE35 

1115 54 145 1930 652 7762.4 4 16.0   Industrial premises – Blyth NE24 

1116 54 145 1930 673 7749 6 16.0   Industrial premises – Blyth NE24 

1117 64 165 1935 719 8932.7 10.4 18.4 38.3 12040 Domestic dwelling – Seaham SR7 

1118 64 165 1935 713 8987.1 12 18.6 31.9 12110 Domestic dwelling – Seaham SR7 

1119 64 165 1935 702 8900.4 10.2 18.4 25.18 8575 Domestic dwelling – Seaham SR7 

1120 64 165 1935 697 8787.1 12.4 18.1   Domestic dwelling – Seaham SR7 

1121 64 165 1935 692 8911.2 10.8 18.4   Domestic dwelling – Seaham SR7 

1122 64 165 1935 721 9305.7 13.2 19.2   Domestic dwelling – Seaham SR7 

1123 64 165 1935 704 8731.2 10.4 18.0   Domestic dwelling – Seaham SR7 

1124 64 165 1935 672 8443 11.2 17.4   Domestic dwelling – Seaham SR7 

1125 65 165 1935 601 7665.9 5.8 15.8   Domestic dwelling – Seaham SR7 

1126 65 165 1935 608 7671.6 5.4 15.8   Domestic dwelling – Seaham SR7 

1127 65 165 1935 612 7626.6 6.8 15.7   Domestic dwelling – Seaham SR7 

1128 65 165 1935 576 7670.5 6 15.8   Domestic dwelling – Seaham SR7 

1129 54 155 1930 669 7590.5 5.6 15.7   Domestic dwelling – Longbenton NE12 

1130 45 155 1910 596 7590.9 14.4 15.7   Domestic dwelling – North Shields NE29 

1130 54 155 1930 689 7676.7 5.6 15.9   Domestic dwelling – Longbenton NE12 

1131 45 155 1910 589 7677.3 14 15.9   Domestic dwelling – North Shields NE29 

1138 55 155 1910 726 8067 14.4 16.7 25.6 9604 Domestic dwelling – North Shields NE29 

1139 64 150 1930 613 8148.5 8.4 16.8   Domestic dwelling – Longbenton NE12 

1140 64 165 1930 609 8270.3 8 17.1   Domestic dwelling – Longbenton NE12 

1141 64 165 1930 611 8313.7 7.2 17.2   Domestic dwelling – Longbenton NE12 

1144 54 155 1930 676 7637.1 6.4 15.8   Domestic dwelling – Longbenton NE12 

1145 54 155 1930 654 7640.7 6 15.8   Domestic dwelling – Longbenton NE12 

1146 45 155 1920 587 7576 7.2 15.6   Domestic dwelling – South Shields NE33 

1147 45 155 1920 587 7612.1 6 15.7   Domestic dwelling – South Shields NE33 

1148 50 125 1920 589 7949 6.4 16.4   Domestic dwelling – South Shields NE33 

1149 50 125 1920 577 7943.6 6 16.4   Domestic dwelling – South Shields NE33 
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Index 
No Breadth Depth Date Density MoE  

Rings 
per cm MOR 

SCT-
MoR 

SCT-
MoE Building type 

1150 45 125 1925 612 8807 5.6 18.2 21.2 8820 Domestic dwelling – South Shields NE33 

1151 50 125 1950 463 6087.8 3.6 12.6 20.9 4459.3 Domestic dwelling – Cramlington NE23 

1152 50 170 1950 479 5868.9 8.8 12.1 27.2 5639.9 Domestic dwelling – Cramlington NE23 

1153 50 170 1972 488 4726.9 2.4 9.8 10.5 5233.7 School – Whitley Bay NE25 

1154 50 170 1972 536 4998.9 2.4 10.3   School – Whitley Bay NE25 

1155 50 170 1950 425 5136.8 2.4 10.6 25.4 5076.4 Industrial premises – Cramlington NE23 

1156 50 175 1950 398 5143.7 2.8 10.6   Industrial premises – Cramlington NE23 

1157 50 175 1950 423 5265.2 2.8 10.9 22 5923.5 Industrial premises – Cramlington NE23 

1158 65 180 1925 496 7582.9 6.6 15.7 26.7 7888.8 Commercial premises – Gateshead NE11 

1159 65 180 1925 503 7609.1 8 15.7 21.2 7821 Commercial premises – Gateshead NE11 

1160 65 180 1925 539 7598.3 7.4 15.7   Commercial premises – Gateshead NE11 

1161 45 125 1930 623 8410.3 8.8 17.4   Domestic dwelling – Longbenton NE12 

1162 45 125 1930 619 8343.4 8 17.2   Domestic dwelling – Longbenton NE12 

1163 75 150 1930 491 6831.5 5.2 14.1 17.7 6105.5 Domestic dwelling – Longbenton NE12 

1164 45 125 1930 615 8379.6 9.2 17.3   Domestic dwelling – Longbenton NE12 

1165 75 150 1910 561 7748.2 13.6 16.0   Domestic dwelling – North Shields NE29 

1167 75 150 1910 568 7786.2 13.2 16.1   Domestic dwelling – North Shields NE29 

1168 75 150 1910 549 7771.3 14 16.0   Domestic dwelling – North Shields NE29 

1169 75 150 1910 526 7490.7 14 15.5   Domestic dwelling – North Shields NE29 

1169a 45 125 1955 502 7376 4.8 15.2   School – Shiremoor  NE27 

1170 55 155 1910 706 8078.7 14.8 16.7 29.8 9375 Domestic dwelling – North Shields NE29 

1170a 45 125 1955 521 7286.9 6 15.0 28.3 7759.6 School – Shiremoor  NE27 

1171 64 150 1910 595 8071.8 15.6 16.7   Domestic dwelling – North Shields NE29 

1171a 65 162 1935 520 6451.2 5.2 13.3 20.3 6275 Domestic dwelling – Consett DH8 

1172 64 165 1910 591 7869.7 14.4 16.3   Domestic dwelling – North Shields NE29 

1173 64 165 1910 683 9048.1 16.4 18.7 27.5 8918 Domestic dwelling – North Shields NE29 

1174 45 155 1910 588 7720.1 15.2 15.9   Domestic dwelling – North Shields NE29 

1175 45 155 1910 652 8214 14.4 17.0   Domestic dwelling – North Shields NE29 

1176 50 180 1900 705 8661.2 7.6 17.9 22.5 8686 Domestic dwelling – Tynemouth NE30 
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Index 
No Breadth Depth Date Density MoE  

Rings 
per cm MOR 

SCT-
MoR 

SCT-
MoE Building type 

1176 65 165 1955 464 5158.9 4 10.7 26.2 6201.5 School – Shiremoor  NE27 

1177 50 180 1900 712 8902.1 6 18.4 25.6 8575 Domestic dwelling – Tynemouth NE30 

1177a 65 165 1955 459 5042.1 6.8 10.4 21.4 5530.5 School – Shiremoor  NE27 

1178 62 162 1870 521 6548.1 16.4 13.5   Domestic dwelling – Tynemouth NE30 

1179 62 162 1870 566 8186.1 14.8 16.9   Domestic dwelling – Tynemouth NE30 

1180 65 162 1870 545 8670.4 13.6 17.9   Domestic dwelling – Tynemouth NE30 

1181 65 162 1870 544 7585.3 11.2 15.7   Domestic dwelling – Tynemouth NE30 

1181a 70 200 1925 503 6241.9 7 12.9    

1182 65 162 1870 456 6149.3 8.8 12.7   School - North Shields NE29 

1182a 65 175 1950 435 5002.9 3.6 10.3   Commercial premises – Newcastle NE1 

1183 65 162 1870 456 5088.8 8.4 10.5   School - North Shields NE29 

1183a 65 170 1950 439 5010.2 3.2 10.3 25.6 5621.9 Commercial premises – Newcastle NE1 

1184 62 162 1870 667 8534.8 13.2 17.6   School - North Shields NE29 

1184a 65 170 1950 461 7628.6 4.4 15.8   Commercial premises – Newcastle NE1 

1185 62 162 1870 658 8415.9 14 17.4   School - North Shields NE29 

1185a 60 175 1965 389 5129.5 4.4 10.6   Commercial premises – Cullercoats NE25 

1186 65 162 1870 581 8976.2 12.4 18.5   School - North Shields NE29 

1186a 55 130 1925 698 7989.8 11.6 16.5 29.3 9604 Domestic dwelling – Newcastle NE4 

1187 65 162 1870 679 8850.9 11.6 18.3 21.2 8115 School - North Shields NE29 

1187a 55 130 1925 689 8094.7 12 16.7 31.9 9114 Domestic dwelling – Newcastle NE4 

1188 65 162 1870 661 8804.4 13.6 18.2   School - North Shields NE29 

1188a 55 130 1925 687 8121.6 10 16.8   Domestic dwelling – Newcastle NE4 

1189 65 162 1870 673 8816.9 14 18.2 17.2 7310 School - North Shields NE29 

1189a 50 170 1935 654 7340.8 6 15.2   Domestic dwelling – Consett DH8 

1190 65 165 1864 712 10070.9 15.2 20.8   School - North Shields NE29 

1190a 50 170 1935 662 7514.1 5.6 15.5   Domestic dwelling – Consett DH8 

1191 65 165 1864 714 10056.4 13.6 20.8 29.3 9976 School – North Shields NE29 

1191a 50 170 1935 671 7726.1 4.8 16.0 14.5 8233.6 Domestic dwelling – Consett DH8 

1192 65 165 1864 588 7773.6 14 16.1   School - North Shields NE29 
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Index 
No Breadth Depth Date Density MoE  

Rings 
per cm MOR 

SCT-
MoR 

SCT-
MoE Building type 

1192a 50 170 1935 621 7698.7 6 15.9   Domestic dwelling – Consett DH8 

1193 65 165 1864 564 7779.2 14.4 16.1   School - North Shields NE29 

1193a 45 125 1940 583 6043.4 4 12.5   Domestic dwelling – Wallsend NE28 

1194 75 150 1910 530 7786.2 13.2 16.1   Domestic dwelling – Newcastle NE6 

1194a 45 125 1947 494 5271.7 3.6 10.9 10.4 4527 Commercial premises – Wallsend NE28 

1195 75 150 1910 540 7771.3 14 16.0   Domestic dwelling – Newcastle NE6 

1195a 45 125 1940 499 5324.2 3.6 11.0 13.6 4939.6 Domestic dwelling – Wallsend NE28 

1196 75 150 1910 510 7490.7 14 15.5   Domestic dwelling – Newcastle NE6 

1196a 45 125 1940 497 5150.6 4.4 10.6   Domestic dwelling – Wallsend NE28 

1197 55 155 1910 680 8078.7 14.8 16.7 22.5 9804 Domestic dwelling – Newcastle NE6 

1197a 45 125 1940 544 5954.3 4 12.3 14.1 5213 Domestic dwelling – Wallsend NE28 

1198 64 150 1910 580 8071.8 15.6 16.7   Domestic dwelling – Tynemouth NE30 

1199 64 165 1910 590 7869.7 14.4 16.3   Domestic dwelling – Tynemouth NE30 

1200 64 165 1910 670 9048.1 16.4 18.7 14.6 7743.7 Domestic dwelling – Tynemouth NE30 

1200a 65 170 1972 433 4238.2 3.5 8.8 15.7 5022.2 School - Whitley Bay NE26 

1201 45 155 1910 570 7720.1 15.2 15.9   Domestic dwelling – Tynemouth NE30 

1202 45 155 1910 643 8214 14.4 17.0   Domestic dwelling – Tynemouth NE30 

1203 50 180 1900 680 8661.2 7.6 17.9 26 9202 Domestic dwelling – Tynemouth NE30 

1204 50 180 1900 690 8902.1 6 18.4   Domestic dwelling – Tynemouth NE30 

1205 65 162 1870 521 6548.1 16.4 13.5   Domestic dwelling – North Shields NE29 

1206 65 162 1870 566 8186.1 14.8 16.9   Domestic dwelling – North Shields NE29 

1207 65 162 1870 545 8670.4 13.6 17.9   Domestic dwelling – North Shields NE29 

1208 65 162 1870 544 7585.3 11.2 15.7   Domestic dwelling – North Shields NE29 

1209 65 162 1870 456 6149.3 8.8 12.7   Domestic dwelling – North Shields NE29 

1210 65 162 1870 456 8088.8 8.4 17.5   Domestic dwelling – North Shields NE29 

1211 62 162 1880 650 8534.8 13.2 17.6   Domestic dwelling – Longbenton NE7 

1212 62 162 1880 650 8415.9 14 17.4   Domestic dwelling – Longbenton NE7 

1213 65 162 1880 601 8976.2 12.4 18.5   Domestic dwelling – Longbenton NE7 

 


