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Abstract: The aim of this study was to evaluate the effects of skimmed milk as a recovery 

drink following moderate–vigorous cycling exercise on subsequent appetite and energy intake 

in healthy, female recreational exercisers. Utilising a randomised cross-over design, nine female 

recreational exercisers (19.7 ± 1.3 years) completed a V̇O2peak test followed by two main 

exercise trials. The main trials were conducted following a standardised breakfast. Following 

30 min of moderate-vigorous exercise (65% V̇O2peak), either 600 mL of skimmed milk or 

600 mL of orange drink (475 mL orange juice from concentrate, 125 mL water), which were 

isoenergetic (0.88 MJ), were ingested, followed 60 min later with an ad libitum pasta meal. 

Absolute energy intake was reduced 25.2% ± 16.6% after consuming milk compared to the 

orange drink (2.39 ± 0.70 vs. 3.20 ± 0.84 MJ, respectively; p = 0.001). Relative energy intake 

(in relation to the energy content of the recovery drinks and energy expenditure) was 

significantly lower after milk consumption compared to the orange drink (1.49 ± 0.72 vs.  

2.33 ± 0.90 MJ, respectively; p = 0.005). There were no differences in AUC (× 1 h) subjective 

appetite parameters (hunger, fullness and desire to eat) between trials. The consumption of 

skimmed milk following 30 min of moderate-vigorous cycling exercise reduces subsequent 

energy intake in female recreational exercisers. 
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1. Introduction 

Milk is a nutrient-dense food that contains high quality protein (~34 g/L), carbohydrate (~50 g/L) and 

electrolytes. Milk contains casein and whey proteins in a ratio of 4:1, which results in slow digestion and 

absorption of these proteins and, therefore, a sustained elevation of blood amino acid concentrations [1]. 

These characteristics theoretically make milk an excellent recovery drink to consume following both 

resistance and endurance exercise. Following exercise, the carbohydrates in milk provide a substrate for 

muscle glycogen [2], whilst the protein stimulates muscle protein synthesis [3]. Studies have reported a 

greater restoration of exercise capacity following the ingestion of a milk-based recovery drink compared 

to other commercially-available recovery drinks [4,5]. Work from our laboratory has shown that 

ingestion of milk post-exercise can alleviate the negative effects of exercise-induced muscle damage [6,7], 

and combining milk intake with resistance exercise training has been shown to enhance gains in muscle 

mass in young men [3,8] and women [9]. 

Milk has also been shown to be more satiating [10,11] compared to carbohydrate drinks, an effect 

probably attributable to the protein contained in milk [12,13]. Dove et al. [11] showed that consumption 

of milk at breakfast increased perceptions of satiety and attenuated energy intake at lunch 4 h later 

compared to an isocaloric fruit drink in overweight men and women. Similarly, Harper et al. [10] reported 

that satiety was increased following ingestion of a chocolate milk drink compared to an isoenergetic 

carbonated drink, but this did not translate into a reduced energy intake at a meal 30 min later. 

Previous research has demonstrated differences in appetite regulation between males and females in 

response to alterations in energy balance [14]. Researchers have highlighted observed sex differences 

pertaining to the effect of exercise on appetite-regulating hormones [14]. The cited authors identified 

that in women, regardless of energy status, exercise stimulated orexigenic-regulating hormones. This 

suggests that in women, energy conservation might be promoted during exercise training via alterations 

in appetite-regulating hormones, which might stimulate energy intake in spite of energy status. This 

supports the notion that compensatory energy intake in females tends to be accentuated and more 

powerful than in males following energy deficit [14]. 

It appears that milk is an excellent post-exercise recovery drink, which, due to its appetite-suppressing 

potential, might help enhance recovery from exercise whilst also helping to promote a negative energy 

balance. Many individuals, particularly women, exercise on a regular basis for weight loss or weight 

maintenance purposes [15], and therefore, milk could be an ideal post-exercise drink to consume.  

Therefore, the aim of this study was to investigate the effect of consuming milk as a recovery  

drink following moderate intensity exercise on subsequent appetite and energy intake in  

recreationally-active females. 

2. Experimental Section  

2.1. Design 

A within-subjects, randomised, cross-over design was used to explore the effects of skimmed milk or 

orange drink consumption on subsequent appetite and energy intake, following 30 min of cycling exercise, 

in female recreational exercisers. 
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The study was approved by the Faculty of Health and Life Sciences Research Ethics Committee at 

the University of Northumbria. Written informed consent was obtained from participants prior to data 

collection. Participants were notified that the study was to investigate general aspects of diet and, thus, 

were not informed about the specific nature of the study to ensure no alterations to eating behaviour. 

2.2. Participants 

Nine female recreational exercisers (mean ± SD), aged 19.7 ± 1.3 years, mass 61.7 ± 4.4 kg, stature  

167.0 ± 5.3 cm, BMI 22.1 ± 1.7 kg/m2, V̇O2peak 45.7 ± 13.4 mL/kg/min, were recruited to take part  

in the study. Five participants were oral contraceptive users. Participants were classified as normal 

weight (BMI 19–25 kg/m2) and were non-restrained (<7) eaters, according to the Three Factor Eating 

Questionnaire [16]. In addition, a menstrual cycle question was also completed to ensure that the main 

trials were conducted in the early follicular phase (Days 1–14). 

2.3. Preliminary Measures 

Participants carried out a discontinuous V̇O2peak protocol, on a cycle ergometer (Monark Weight 

Ergometer 839 E, Varberg, Sweden), completing an initial stage at 70 W, and from there, the work load 

was increased by 35 W, until volitional fatigue. The increment of the subsequent stage was determined 

from the heart rate and Ratings of Perceived Exertion (RPE) values given in previous stages. Expired air 

was collected using 200-L Douglas bags (Plysu Industrial Ltd Milton Keynes) during the final minute 

of each stage, and the heart rate (bpm) (Polar Heart Rate Monitor, Polar O.Y. Finland) and RPE were 

taken in the final 15 s of each stage. Expired air was examined using calibrated gas analysis equipment 

(Servomex combined O2 and CO2 Analyser, Servomex Ltd., Crowborough). From this, a work rate of 

65% V̇O2peak was established for each individual using a regression for the linear function of oxygen 

uptake at each of the work rates. Maximal oxygen uptake was measured against the work rate (W) of 

each of the steady-state work rates and maximal power output to derive a value for the subsequent 

exercise protocol testing days [17].  

2.4. Protocol 

Participants were asked to attend the laboratory on three separate occasions (preliminary measures, 

followed by two main trials). All main trials were carried out during the follicular phase of the menstrual 

cycle (Days 1–14; on average, there were 10 ± 3 days between trials). Participants were asked to refrain 

from caffeine, alcohol and vigorous physical activity 12 h prior to all main trials and arrive at the 

laboratory following a 10-h overnight fast. As per our previous studies [18,19], participants were asked 

to replicate their food and fluid intake and portion sizes for their evening meal prior to each trial, using 

photocopies of the first week’s self-reported, weighed food diaries. 

The participants were asked to consume a pre-prepared breakfast at 08:00 at home and subsequently 

arrive at the laboratory at 09:45. The 30-min continuous exercise was conducted on the cycle ergometer 

at 65% ± 4% of the participants individual V̇O2peak. Expired air (L·min−1), heart rate (bpm) and RPE 

scores were obtained at the following time points: 9–10 min, 19–20 min and 29–30 min. The recovery 

drink of either skimmed milk or an orange drink was provided immediately after exercise completion, 
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in an opaque bottle, and consumed within 5 min. An ad libitum pasta meal was made available to the 

participants 60 min after drink ingestion with a maximum feeding time of 30 min. Subjective appetite 

sensations (hunger, prospective food consumption and fullness) were assessed using visual analogue 

scales (VAS) at the time points identified in Figure 1. 

 

Figure 1. Protocol outline. 

2.5. Fixed Energy Breakfast 

The daily energy requirement (DER) was calculated by multiplying basal metabolic rate (predicted 

using the Schofield equation) by a physical activity level of 1.7. This enabled the amount of rice snaps and 

semi-skimmed milk (Tesco, UK) to be calculated for each individual in order to meet 10% of their DER. 

The standardised fixed-energy breakfast meal consisted of a cereal:milk ratio of 30 g:120 mL and delivered 

fat, protein and carbohydrate with a macronutrient composition of 14, 14 and 72%, respectively [12]. 

2.6. Test Beverages 

The two recovery drinks provided to the participants were 600 mL of skimmed milk (Tesco, UK) and 

600 mL of an orange drink, consisting of 475 mL orange juice from concentrate (Tesco, UK) and 125 

mL water to balance the energy content of the drinks (Table 1). All drinks were kept refrigerated  

(~5 °C) until they were served to the participants. 

Table 1. Composition of the recovery drinks. 

 
Skimmed Milk 1 

(600 mL) 
Fruit Juice 2  

(475 mL orange, 125 mL water) 
Energy   

Per portion (MJ) 0.88 0.88 
Protein   

Per portion (g) 20.4 2.4 
Fat   

Per portion (g) 0.6 0 
Carbohydrate   
Per portion (g) 30.0 49.8 

Calcium Per portion (mg) 744 0 
Glycaemic index 30 46–53 

1 Skimmed milk, Tesco, UK. 2 Orange juice smooth from concentrate, Tesco, UK. 
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2.7. Ad libitum Test Meal 

The ad libitum test meal consisted of fusilli pasta (Tesco, UK), bolognaise sauce (Tesco, UK), 

cheddar cheese (British Mature, Tesco, UK) and olive oil (“Drizzle” , Tesco, UK), with preparation and 

cooking protocols standardised and repeated across all main trials. The meal provided fat, protein and 

carbohydrate in the following proportions: 34%, 14% and 52%, respectively. Participants were provided 

with a quiet environment in which to consume the ad libitum pasta meal and were instructed to eat until 

they felt comfortably full. Participants were provided with a full bowl of pasta, which was continuously 

topped up by the research team throughout consumption. This meant that participants could not simply 

finish one bowl of pasta, which may have been perceived as a standard portion. The amount of food 

consumed was calculated and recorded using electronic measuring scales (Sartorius TE6100, A.G 

Germany), by subtracting waste from the total pre-eating weight administered. We have successfully 

used this meal to assess energy intake in other energy regulation studies [12,19,20]. 

2.8. Subjective Sensations 

Subjective appetite responses were rated on 100-mm horizontal lines, to each of the following 

questions: “How hungry do you feel now?” anchored by very hungry (100) and not at all hungry (0); 

prospective food consumption and “How much would you like to eat now?” anchored by a lot (100) and 

nothing at all (0); “How full do you feel now?” anchored by very full (100) and not full at all (0). All 

VAS were measured by hand by one researcher, from the minimum score of 0 mm to the maximum 

score of 100 mm. 

2.9. Data Analysis 

Excel (Version: 2010) was used for all statistical analyses. The means ± SD were calculated for all 

data with the exception of VAS data, where the means ± SE were used. VAS ratings for subjective 

appetite sensations (hunger, prospective food consumption and fullness) were calculated as  

time-averaged area under the curve (AUC) for the post drink, pre-meal periods (1 h). Absolute energy 

intake (MJ) was considered as the absolute amount of pasta consumed at the test meal. Relative energy 

intake at the pasta test meal (in relation to the energy content of the recovery drinks and energy 

expenditure during the cycling exercise) (MJ) was calculated by totalling absolute energy intake at the 

pasta meal with the energy content of the drinks and subtracting the energy expended during the cycling 

exercise. Subsequently, exercise-induced energy expenditure (MJ), absolute and relative energy intake 

(MJ), as well as VAS appetite (hunger, prospective food consumption and fullness: AUC × 1 h) for the 

milk and orange drink trials were analysed using paired samples t-tests. Statistical significance was 

accepted at p < 0.05 for all analyses. 
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3. Results 

3.1. Energy Expenditure 

As intended, the energy cost of the 30-min cycling exercise at 65% V̇O2peak was not different between 

trials, when the milk or orange was provided as a recovery drink (1.78 ± 0.02 vs. 1.74 ± 0.04 MJ, respectively; 

p = 0.382). 

3.2. Energy Intake 

Absolute energy intake at the pasta test meal was significantly less following consumption of milk 

compared to the orange drink (2.39 ± 0.70 vs. 3.20 ± 0.84 MJ, respectively; p = 0.001) with a mean 

reduction of 0.81 ± 0.50 MJ (25.2% ± 14.1%). Relative energy intake at the pasta test meal (in relation 

to the energy content of the recovery drinks and energy expenditure during the cycling exercise)  

was also significantly lower after milk consumption compared to the orange drink  

(1.49 ± 0.72 vs. 2.33 ± 0.90 MJ, respectively; p = 0.005) with a mean reduction of 0.83 ± 0.54 MJ  

(37.4% ± 27.2%) (Figure 2). 

 

Figure 2. Mean (± SD) absolute and relative energy intake (MJ) (ad libitum test meal), 

following 30 min of moderate–vigorous exercise at 65% V̇O2peak between milk and orange 

juice trials (n = 9). * Energy intake significantly lower for absolute and relative conditions 

(p = 0.001 and p = 0.005, respectively). 

3.3. Subjective Appetite Sensations 

There were no observed differences in AUC (× 1 h) subjective appetite between trials for hunger  

(p = 0.267), prospective food consumption (p = 0.063) and fullness (p = 0.410) (Figure 3a–c). 
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(a) 

 
(b) 

 
(c) 

Figure 3. Subjective appetite (mean ± SE (a) hunger (mm); (b) prospective food consumption 

(mm); and (c) fullness (mm)) ratings on the visual analogue scales for the milk (●) and orange 

juice (○) trials (n = 9). 

4. Discussion 

Taking a novel approach, the present study was the first to investigate the effects of skimmed milk 

and an orange drink on subsequent ad libitum energy intake following moderate intensity cycling 

exercise in recreational females. Although other studies using dietary interventions have highlighted the 

satiating effect of milk on subsequent energy intake in both males and females [11,21], none have 

investigated this effect succeeding the completion of exercise. This study therefore identified that the 

consumption of skimmed milk following 30 min of moderate–vigorous cycling exercise resulted in a 

significant reduction in subsequent energy intake in female recreational exercisers (0.81 MJ or ~25% 
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lower compared to the orange juice trial). Such an alteration in eating behaviour was not accompanied 

by any fluctuations in subjective appetite (hunger, prospective food consumption or fullness). Despite this, 

the reduction in energy intake of 0.81 MJ can be described as a worthwhile change, given that several 

authors have identified energy intake deficits of 170 kcal (712 kJ) and 175 ± 45 kcal (733 ± 188 kJ) per 

day [22,23] to be “clinically” meaningful from a weight loss/maintenance perspective.  

Indeed, there are several plausible explanations for the positive observations with regards to the 

reduction in energy intake following the consumption of skimmed milk in the present study. As 

demonstrated in Table 1, milk is a significant source of dietary protein, which has been found to exert 

greater satiating effects when paralleled with carbohydrate-rich drinks, such as fruit juice, which do not 

contain protein [2,10,11,24]. In addition, several studies have reported a significantly lower energy intake 

and increased subjective satiety following a high-protein meal [12], with appetite suppression being 

superior when compared to isoenergetic high-carbohydrate and high-fat meals [13]. The mechanism 

behind this effect has been suggested to be related to elevated levels of cholecystokinin (CCK) and 

glucagon-like peptide-1 (GLP)-1, accompanied by reductions in circulating concentrations of  

ghrelin [25,26]. Indeed, recent studies have proposed the satiating effects of bioactive foods, such as 

milk and dairy products, to be modulated by various anorexic peptides, namely CCK and  

PYY3-36 [27,28]. In addition to the protein content, the type of protein in dairy products may influence 

satiety (see Bendtsen et al. [29] for a review of the effects of dairy protein on appetite). The composition 

of milk protein is ~80% casein and ~20% whey by mass [3]. The metabolic response to protein differs 

by the type consumed, with whey consumption stimulating muscle protein synthesis to a greater extent 

than casein and soy [30,31]. This is likely to be due to differences in the amino acid composition (in 

particular, the greater leucine content of whey) and the faster rate of intestinal absorption [31,32]. These 

properties of protein sources that produce differential muscle protein synthesis rates are likely to manifest 

in changes in body composition over time, but whether they also affect the appetite response to 

consumption is not yet clear. 

Furthermore, it has been postulated that the type of carbohydrate, lipid composition and the calcium 

content of milk may also contribute to the beneficial effects towards appetite control. The primary source 

of carbohydrate in milk is the disaccharide, lactose, comprised of glucose and galactose linked by a 

glycosidic bond, which is hydrolysed by lactase. Lactose is not as sweet as glucose and has a glycaemic 

index (GI) of 43 [33], regarded as low GI. Although the impact of the GI of foods per se is not clear, 

lactose does appear to be a particularly satiating sugar. When males were fed 1025 kJ preloads containing 

56 g, of either glucose or lactose, energy intake at a subsequent meal (180 min post-preload) was 11% 

lower (p < 0.05) with lactose vs. glucose [26]. Appetite sensations were also suppressed, as were circulating 

ghrelin concentrations. Compared to glucose, galactose results in lower postprandial glycaemia [15] and 

suppresses hunger sensations [34]. Thus, it is plausible that lactose and galactose contribute to satiety 

following the ingestion of dairy products.  

Milk lipids are comprised of ~95% triacylglycerol, ~2% diacylglycerol, ~1% phospholipids and 

cholesterol and non-esterified fatty acids contributing <0.5% each [35]. Approximately 64% of the lipid 

content of milk is from saturated fatty acids, with a substantial contribution (~26%) from 

monounsaturated fatty acids and smaller contributions from polyunsaturated fatty acids and trans-fatty 

acids (both ~3%). When matched for energy, fat is generally less satiating than protein and carbohydrate. 

This is purely an effect of energy density rather than fat per se [36]. Fat can also influence food texture, 
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which may suppress appetite due to increased viscosity or potentially enhance appetite through an 

increase in palatability (particularly when combined with sweet flavours [37]). The structure of the fat 

globules in milk are worthy of consideration, influencing metabolism and appetite. Emulsification of milk 

fat (serving to increase the surface area by ~70,000-fold) potentiates postprandial circulating 

apolipoprotein B-48 concentrations and exogenous lipid oxidation. Interestingly, obese participants in 

the study by Vors et al. [38] reported significantly greater hunger ratings following consumption of the 

emulsified milk fat, compared to non-emulsified milk fat. There was no significant difference in appetite 

ratings between trials in non-obese participants, although the trend was similar. Accordingly, the structure 

of dairy fat is likely to influence appetite, at least in certain populations, potentially through an impact on the 

rate of digestion and absorption. 

Finally, the calcium content of meals has also been linked to postprandial circulating glucose-dependent 

insulinotropic peptide (GIP)1-42, GLP-1 and insulin concentrations [39], which are known to suppress 

appetite [40,41]. Recent evidence has implied that calcium influences appetite, both acutely and 

chronically. After consumption of a high-calcium and vitamin D meal, subsequent 24-h energy intake is 

reduced [42]. A mechanism to explain this effect could be the stimulation of the calcium sensing receptor 

(CaSR), which is ubiquitously expressed in the human gastrointestinal tract [43]. In a model using an 

isolated rodent intestine, the presence of calcium potentiates the response of K- and L-cells to L-amino 

acids to secrete GIP, GLP-1 and peptide tyrosine tyrosine (PYY), an effect that is abolished with a CaSR 

antagonist and potentiated with a CaSR agonist [44]. Based on in vitro data, CaSR-stimulated peptide 

secretion seems to act through both cAMP and intracellular calcium signalling pathways [39]. In 

humans, calcium co-ingestion with a meal enhances the postprandial circulating concentrations of  

GIP1-42 and total GLP-1 [39]. Given the well-known role of GIP and GLP-1 in insulin secretion, it is not 

surprising that postprandial insulinaemia is also transiently elevated [39,45]. As insulin and GLP-1 both 

suppress appetite upon administration [40,41], this provides a mechanism by which calcium influences 

postprandial satiety. 

Given the intention of conducting a laboratory-based study with elements of high ecological validity 

(the provision of two representative recovery drinks), we believe various aspects of the study 

methodology to have been extremely robust (isoenergetic recovery drinks; rigorous assessment of 

subjective appetite and energy intake). A potential limitation of the present study was that we did not 

include a water control trial; however, our intention was to explore the potential satiating effects of drink 

products which have been shown to be beneficial for recreational females to consume to promote 

recovery following exercise (i.e., carbohydrate- and milk-based drinks) [9]. Furthermore, we were 

unable to blind the drinks from the participants, as doing so would have modified the characteristics of 

the drinks, which was not desired. Finally, no hormonal indicators of appetite were sought. Therefore, 

there is a requirement for both subjective appetite and short-term hormonal regulators of appetite to be 

assessed concurrently in future dairy-focused appetite control studies. Findings from the present study 

provide a strong rationale for this work to be advanced by exploring objective measures of appetite, such 

as GIP1-42 and active GLP-1, to establish the mechanistic link between milk consumption post exercise 

and appetite regulation. 
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5. Conclusions 

In conclusion, the present study demonstrated that the consumption of skimmed milk following  

30 min of moderate-vigorous cycling exercise resulted in a significant reduction in acute energy intake 

in female recreational exercisers. 
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