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Abstract— In this paper, a framework for the synchronization 
of two non-identical discrete-time hyperchaotic systems, 
namely the 3D Baier-Klein and the 3D Hitzel-Zele maps, based 
on the use of hybrid output feedback concept and aggregation 
techniques, is employed to design a two-channel secure 
communication system. New sufficient conditions for 
synchronization are obtained by the use of Borne and Gentina 
practical criterion for stabilization study associated to the 
forced arrow form matrix for system description. The 
efficiency of the proposed approach to confidentially recover 
the transmitted message signal is shown via an application to 
the hyperchaotic Baier-Klein and Hitzel-Zele systems, 
considered as generators of asymmetric encryption and 
decryption keys. 
 
Index terms – Discrete-time hyperchaotic maps; Hybrid output 
feedback; Forced arrow form matrix; Synchronization; 
Asymmetric encryption and decryption keys. 
 

I. INTRODUCTION 

Chaos and its applications in the field of secure 
communication has been the subject of intensive research 
during the last two decades. Indeed, the pioneering work 
done in the synchronization of chaotic systems, that was 
initiated by Pecora and Carroll [1-2], as well as the random-
like behaviour of chaotic signals provide the potential for 
many applications; in particular, the introduction of chaos 
into secure communication field [3-6]. In recent years, a 
growing number of cryptosystems based on chaos 
synchronization have been proposed such as: chaotic 
masking [7-8], chaotic modulation [9-10], chaotic shift 
keying [11-12]. In papers [13-16], a novel idea for secure 
communication was proposed using discrete-time chaotic 
systems based on encryption, where a different output from 
chaotic transmitter, which was transmitted in the channel, 
was used as a key stream to encrypt the message signal. 

In this paper, we use secure communication based on 
encryption using two communication channels, instead of 
one, for the purposes of fast synchronization and higher 
security [17]. In these cryptosystems, the cipher text 
consists of a complex nonlinear combination of the plaintext 
and a mixture of state variables of a chaotic transmitter’s 
generator. Since it was not possible to synchronize the slave  

 

 
system with such cipher text, a second channel had to be 
used in the system for transmitting synchronization signal. 

Thus, the main purpose of this work is to determine 
necessary and sufficient conditions for the asymptotic 
stability of the error states between two different 
hyperchaotic discrete-time processes. In fact, these 
processes can, not only reach chaos synchronization starting 
with different initial conditions, but also can be applied to 
two secure communication channels based on chaotic 
systems. The proposed stabilizing conditions for nonlinear 
discrete-time two levels hierarchical systems are based on 
the Borne and Gentina practical criterion for stability study 
[18] associated to the forced arrow form matrix for system 
description [19-23]. 

The paper is organized as follows: in Section 2, we 
proposed a systematic approach to design a hybrid output 
feedback that is effective in achieving synchronization of 
discrete-time hyperchaotic systems. Additionally, it 
guarantees the asymptotic stability for the synchronization 
errors, characterized in the state space, by a forced arrow 
form matrix. The implementation of the proposed 
synchronization scheme to two secure chaotic 
communication channels, using two non-identical discrete-
time hyperchaotic Baier-Klein and Hitzel-Zele systems is 
realised in Section 3. In Section 4, numerical simulations are 
carried out using this kind of discrete-time hyperchaotic 
systems and the proposed secure communication scheme. 
Finally, some concluding remarks are given. 
 

II. MAIN METHODOLOGY 

The proposed synchronization approach for a class of 
discrete-time hyperchaotic systems for two secure 
communication channels is illustrated in Figure 1. 

 
Figure 1. The proposed hyperchaotic communication sheme 
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A. Hybrid output feedback-based discrete-time 
hyperchaotic synchronization 
Consider the n dimensional hyperchaotic discrete-

time in Lurie form master and slave systems. 
The master system is modelled as follows: 

1( ) ( ) ( ) ( )

( ) ( ) ( )

m m m m t

m m t

x k A x k x k RV k

y k Cx k V k
                  (1)  

where ( )
n

mx kT  is the state vector, noted ( )mx k  at the 

instant ,  kT T  the sampling time. (.) (.)m mijA a  the 

n n  instantaneous characteristic matrix of (1), 

1 nC c c  a 1 n  constant output matrix, 

1

T

nR r r  a constant vector characterizing the 

way to mix the cipher text ( )tV k  with the chaotic signal 

( ),mx k  and  a scaling factor chosen to allow the term 

( )tRV k  belonging to a compatible range with respect to 

the minimum and maximum bound of states variables of 

master and slave chaotic signal ( )tV k  [24-25]. 

By referring to the inclusion method [26-27], the 
considered hyperchaotic master system (1) generates the 

output signal ( )my k  and the key ( )tK k  used q  times 

as a key stream to encrypt the original message ( )tm k  with 

an encryption rule (.),Enc  a q shift cipher algorithm, 
such as: 

1 1 1

( ) ( ), ( )

( ( ( ( ), ( )), ( )), , ( ))

t t t

t t t t

q q

V k Enc m k K k

f f f m k K k K k K k                (2)  

with: 

2 2
1( ) ( ) ( )t m mnK k x k x k                                (3)  

1( ),  , ,mix k i n  are the components of the state vector 

( ).mx k  

1(.)f  is a nonlinear function defined, in this case, by: 

1

2 for 2

for

2 for 2

( ( ), ( ))

( ) ( ) ,   ( ) ( )

( ) ( ),   ( ) ( )

( ) ( ) ,   ( ) ( )

t t

t t t t

t t t t

t t t t

f m k K k

m k K k h h m k K k h

m k K k h m k K k h

m k K k h h m k K k h

 (4)  

h  is an encryption parameter chosen such that the 

transmitted message ( )tm k  and the key ( )tK k  lie within 

the interval , .h h  The output signal ( ),my k  is sent 

through the public channel to the bloc operating in the 
decryption phase. 

The hyperchaotic slave system is described by: 

1( ) ( ) ( ) ( )

( ) ( )

s s s s y r

s s

x k A x k x k K V k

y k Cx k
                  (5) 

,  
n

s sx y  are, respectively, the state vector and the 

output of the slave system. (.) (.)s sijA a  the n n  

instantaneous characteristic matrix of (5), and 

1 1,  ,  , , ,
T

y y yn yiK k k k i n  is the 

linear vector gain to be conceived. 

The slave system (5) generates the output signal ( )sy k  

and the recovered key ( )rK k  used to decrypt ( )rV k  and to 

recover the original plaintext using a decryption rule 
(.),Dec  as following: 

1 1

1
1 1 1

( ) ( ), ( ) ( ), ( )

( ( ( ( ), ( )), ( )), , ( ))

r r r r r

r r r r

q q

m k Dec V k K k Enc V k K k

f f f V k K k K k K k

                                                                             (6) 
with: 

( ) ( ) ( )r m sV k y k y k                                             (7) 
and: 

2 2
1( ) ( ) ( )r s snK k x k x k                                 (8) 

1( ),  , ,six k i n  are elements of the state vector ( ).sx k  

Taking into account that the chaotic trajectory remains 
confined in a bounded space [25], the problem, considered 
in this paper, is to design a hybrid output feedback, 
combining both linear and nonlinear control laws. The linear 

part is independent of the master and slave variables ( )mx k  

and ( ),sx k  but the nonlinear one is, essentially, used to set 

aside the obtained instantaneous function resulting after 
coupling the slave hyperchaotic system with the master one. 
Obviously, the developed hybrid output feedback must be 
determined such that the master and slave synchronization is 
achieved. 

Therefore, it is amount to find suitable scalars ,
ii yr k  

for 1, , ,i n  such that master-slave synchronization 
defined by: 

lim 0 1( ) ( ) ,  , ,mi si
k

x k x k i n                      (9) 

is fulfilled. 

In the next subsection, the design of a hybrid discrete-
time output feedback is proposed to synchronize 5 with 1. 
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B. Proposed hybrid output feedback-based approach for 
discrete-time hyperchaotic synchronization  
In this part, a systematic procedure to synchronize 

master and slave hyperchaotic systems is proposed [1-2]. 
By considering the synchronization error vector ( ),e k  

such that: 

( ) ( ) ( )m se k x k x k                                             (10)  
the error system between (1) and (5) can be described by: 

1( ) (.) ( ) (.) ( )

( ) ( )

m m s s

y t y

e k A x k A x k

K Ce k V k R K
                    (11)  

In the particular case where ,yR K  then it comes: 

1( ) (.) ( ) (.) ( ) ( )m m s se k A x k A x k BU k             (12)  

with .n nB  

In fact, for several discrete-time hyperchaotic systems, 
we have: 

(.) ( ) (.) ( ) (.) ( ) ( ), ( )m m s s c m sA x k A x k A e k G x k x k         
                                                                           (13)  

For this reason, let us consider the proposed slightly 
modified hybrid output feedback ( )U k  defined by: 

( ) ( ) ( ) ( ), ( )y m s m sU k K y k y k G x k x k      (14)  

leading, in this case, to the error system description which 
can be reduced to the following compact form: 

1( ) ( ), ( ) ( )c m se k A x k x k e k                             (15)  

with: 

( ), ( ) ( ), ( )c m s e m s yA x k x k A x k x k BK C         (16)  

and (.) (.) ,c cijA a  (.) (.)
icij eij y ja a k c , 

, 1, ,i j n . 
From the control theory viewpoint, the synchronization 

of systems (1) and (5) is equivalent to the stabilization of the 
dynamical error system (12) by a suitable modified output 
feedback control law ( )U k  conceived by respect to (14). 

To achieve this goal, let us elaborate stability conditions 
guaranteeing the asymptotic stability of the obtained closed-
loop error system, described in the state space, by (15) and 
(16). 

The overvaluing system ), ( ) ,(c m sM A x k x k  

associated to the following vectorial norm [14]: 

1( ) ( ) ( )
T

np z k z k z k                        (17)  

with 1( ) ( ) ( ) ,
T

nz k z k z k  is described by: 

( 1) ), ( ) ( )(c m sz k M A x k x k z k                     (18)  

with ), ( )(c m sM A x k x k  (.) ,ijm  

(.) ,(.)ij cijm a  1, , , .i j n  

Chaotic signals are bounded and generated in a 
deterministic manner [25]. Exploiting this property, the 

matrix ), ( )(c m sM A x k x k  can be overvalued by an 

n n  matrix 1,  , , , ,o oijM m i j n  whose all 

elements are constant, positive and independent of both state 

variables ( )mx k  and ( ),sx k  of the master and slave 

systems such that the inequality (19): 

1( ) ), ( ) ( ) ( )(c m s op k M A x k x k p k M p k     (19) 
is verified. 

The system (12) is, then, stabilized by (14), if the matrix 

oM  is an M matrix, i.e.: 

1
0 1

1
 , ,o

i
M i n

i
                   (20) 

Taking into consideration that the arrow form choice for 
instantaneous characteristic matrices makes sufficient 
stability conditions easy to test, let us design the control law 

( ),U k  so that the instantaneous characteristic overvaluing 

matrix of the closed-loop system oM  be under the forced 

arrow form, such as [18-23]: 

1

1

1 1 1

1

( ) ( ) ( ),  , ,

( ) ( ) ( )

i oii i oin n

n

n oni i onn n
i

e k m e k m e k i n

e k m e k m e k
   (21) 

Then, the following theorem, based on the use of 
Kotelyanski lemma [18-20] associated to the specific forced 

arrow form matrix ,oM  introduced in (21) [18-23], gives 

sufficient conditions of complete synchronization, relatively 
to slave (5) with master (1) systems. 

 
Theorem. The dynamical synchronization error vector (10) 

converges towards zero, if the matrix ,oM  is in the forced 

arrow form such that: 

i. the diagonal elements, ,oiim  of the constant matrix oM  

satisfy: 

1 0 1 1,  , ,
iiom i n                                     (22) 

ii. there exist 0  for which: 
1

1

1

1 1

n

onn oin oni oii
i

m m m m            (23) 

 
Proof. The error system (15), described by (16), is stabilized 
by the proposed output feedback control law (14), if we 
make an appropriate choice of the linear output feedback 

gain yK  such as the matrix oM  is an M matrix 

[18], that is to say: 

1 0 1 1

det 0

,  , ,oii

o

m i n

M
                                 (24) 
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The computation of the first member of the last 
inequality, announced in (24), leads to the following 
expression: 

1

1

det 1
n

o ojj
j

M m�                                  (25)  

and achieves easily the proof of the above-mentioned 
Theorem. 
 

III.  SYNCHRONIZATION OF TWO NON-IDENTICAL 

DISCRETE-TIME HYPERCHAOTIC MAPS                        

BASED ON HYBRID OUTPUT FEEDBACK                            

AND ITS APPLICATION TO SECURE COMMUNICATION 

In this Section, the considered discrete-time 
hyperchaotic systems are the Baier-Klein map, which can be 
expressed as [18]: 

2
1 2 3

2 1

3 2

1 2

1 0 1 1 76

1

1

2

( ) ( ) . ( ) .

( ) ( )

( ) ( )

( ) ( ) ( )

m m m

m m

m m

m m m

x k x k x k

x k x k

x k x k

y k x k x k

                        (26)  

and the Hitzel-Zele map, which can be expressed as [24-25]: 

1 2

2
2 2 3

3 1 2

1 2

1 0 3

1 1 07 1

1 0 3

2

( ) . ( )

( ) . ( ) ( )

( ) ( ) . ( )

( ) ( ) ( )

s s

s s s

s s s

s s s

x k x k

x k x k x k

x k x k x k

y k x k x k

                        (27)  

 
Remark. The hyperchaotic attractors of master system (26) 
and slave system (27), Figure 2, with the initial values 

0 1 1 0 5( ) .
T

mx  and 0 1 5 0 2 0 1( ) . . .
T

sx  

illustrate that state variables ( )mix k  and ( )six k  are 

bounded [25], such that: 2 2 1 3,  ,  , , .mi six x i  

-2 -1 0 1 2

-2
0

2
-2

0

2

xm1(k)xm2(k)

xm
3(

k)

-0.5
0

0.5
-2

0
2

-1

0

1

xs1(k)xs2(k)

xs
3(

k)

 
Figure 2. Hyperchaotic attractors of the Baier-Klein  

and the Hitzel-Zele maps 
 

Let us consider the following master and slave Baier-
Klein and Hitzel-Zele hyperchatic systems [18,24-25]: 

 the master system: 

1( ) (.) ( ) ( )

( ) ( ) ( )

m m m t

m m t

x k A x k RV k

y k Cx k V k
                       (28) 

with: 

20 0 1

1 0 0

0 1 0

( ) .

(.)

m

m

x k

A                                   (29) 

and: 

2 1 0C                                                     (30) 
 the slave system: 

1( ) (.) ( ) ( ) ( )

( ) ( )

s s s y m s

s s

x k A x k K y k y k

y k Cx k
        (31) 

with: 

2

0 0 3 0

0 1 07 1

1 0 3 0

.

(.) . ( )

.

s sA x k                                   (32) 

and 1 2 3 ,
T

y y y yK k k k  the linear output feedback 

gain to be found. 
Let us consider the synchronization error ( ),e k  between 

systems (28) and (31): 

1 3( ) ( ) ( ),  , ,i mi sie k x k x k i                         (33) 
Then, it comes the following instantaneous characteristic 

matrix (16) of the so obtained dynamical error system (33): 

1 2 1

2 2

3 3

2 0

1 2 0

2 1 0

( )

( ), ( )

y m y

c m s y y

y y

k x k k

A x k x k k k

k k

 

                                                                           (34) 
such that: 

2 2 3

2

1 2 3

1 2

0 3 0 1 1 76

1 07 1

0 7

( ) ( ) . . ( ) .

( ), ( ) ( ) . ( ) ( )

( ) . ( )

s m m

m s s s s

s s

x k x k x k

G x k x k x k x k x k

x k x k

 

                                                                                          (35) 
By the use of the vectorial norm (17), the overvaluing 

system associated to (34) is characterized by the 

instantaneous matrix ( ), ( ) ,c m sM A x k x k  given by 

(36): 

1 2 1

2 2

3 3

2 0

1 2 0

2 1 0

( )

( ), ( )

y m y

c m s y y

y y

k x k k

M A x k x k k k

k k
 

                                                                           (36) 
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As it is noted in the above-cited Remark, states variables 
of the master hyperchaotic system are bounded such as: 

2 2( ) ;mx k  thus, we have: 

2 1 12( )m y yx k k k                                         (37)  

So, it comes a new overvaluing system characterized by 

the constant matrix ,oM  defined by: 

1 1

2 2

3 3

2 2 0

1 2 0

2 1 0

y y

o y y

y y

k k

M k k

k k

                           (38)  

A circular permutation on the components of oM  and 

the choice of the constant parameter 3yk  as following: 

3 31 0 1  y yk k                                           (39)  

makes the matrix (38) under the forced arrow form. 
By referring to the proposed Theorem, both 

synchronization conditions (22) and (23) become: 

2

2 1

1

2

1 0

1 2 2
1 2 0

1

y

y y

y

y

k

k k
k

k

                      (40)  

From several possibilities relatively to the linear gain 

matrix ,yK  let choose the following one: 

0 15 12 35 1 00. . .
T

yK                                      (41)  

obtained by using fmincon instruction of Matlab, in order to 

consider the most optimized linear gain matrix .yK  

This constant gain matrix will be used, in the next 
Section, to test a secure signal transmission. 
 

IV. SIMULATION RESULTS AND COMMENTS 

The efficiency of the proposed method for designing the 
adapted hybrid output feedback together with various 
numerical simulations studies are presented in this Section. 

From Figure 3., one can see that the responses of master 
system (28) and slave system (31), obtained when the 
control is turned off, show that both states are not yet 
synchronized. To overcome this, the third order Baier-Klein 
and Hitzel-Zele maps synchronization is applied using the 

gain yK  given in (41) for initial conditions of master 

system (28) and slave system (31): 

0 0 1 1 0 5 0 5 0 2 0 3( ), ( ) . , . . . .
T T

m sx x  

Figure 4. illustrates the effectiveness of the proposed 
method based on the use of aggregation techniques 
associated to the forced arrow form matrix for system 
description. 

0 5 10 15 20 25 30
-2

0

2

xm
1,

xs
1

 

 
xm1

xs1

0 5 10 15 20 25 30
-2

0

2

xm
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xs
2

 

 
xm2
xs2

0 5 10 15 20 25 30
-2

0

2

xm
3,

xs
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Samples k

 

 
xm3
xs3

 
Figure 3. Evolutions of the master and slave Baier-Klein  

and Hitzel-Zele maps state responses when controller is switched off 
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Figure 4. Time responses of spatiotemporal chaos synchronization  

of master Baier-Klein and slave Hitzel-Zele state variables 

 
For the encryption 2 0 01 5,  . ,  h q  and the 

sampling time 0 01.  ,T s  the hyperchaotic signal of the 
transmitter, including information signal 

sin 0 3( ),  ( ) . ,t tm k m k k  is sent to the receiver and the 

information signal ( )rm k  is recovered approximately by 

the proposed output feedback as shown in Figure 5. (a). and 
Figure 5. (b). 

( ),my k  sent in the public channel between the transmitter 

and the receiver, is given in Figure 5. (e). and the obtained 
transmitter and receiver keys, respectively in, Figure 5. (c). 
and Figure 5. (d). 

One can observe that precisely, when the master and 

slave systems are synchronized i.e., ( ) ( );s mx k x k  it 

follows ( ) ( ),  ( ) ( )r t r tK k K k V k V k  as .k  

To avoid the distortion of the recovered messages 

( ),rm k  at transient regime, a solution is to transmit an 

adapted delayed ( ).tm k  
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Figure 5. An example of hyperchaotic cryptography  

using the 3D Baier-Klein and Hitzel-Zele maps 
 

V. CONCLUSION 

In this paper, a hybrid output feedback controller for the 
synchronization of wide class of discrete-time hyperchaotic 
systems via a transmitted signal is designed. The design is 
based on the use of aggregation techniques for convergence 
study and forced arrow form matrix for system description. 
Conventional cryptographic methods and synchronization of 
hyperchaotic systems have been combined in order to 
design efficient hyperchaotic-based secure communication 
systems. The validity of the proposed synchronization and 
secure communication scheme is confirmed by numerical 
simulation results when third order Baier-Klein and Hitzel-
Zele maps are used. Finally, it is worth pointing out that the 
problem of improving time synchronization is a challenging 
one and will be investigated in a future work. 
 

REFERENCES  

[1] L. M. Pecora, T. L. Carroll, “Synchronization in chaotic systems”, 
Physics Revue Letters, vol.  64, n° 8, pp. 821-824, 1990. 

[2] T. L. Carroll, L. M. Pecora, “Synchronizing chaotic circuits”, IEEE 
Transactions on Circuits and Systems, vol. 38, n° 4, pp. 453-
456, 1991. 

[3] I.Belmouhoub, M. Djemaï, J.P. Barbot, “Cryptography by discrete-
time hyperchaotic systems” IEEE-CDC, Proceedings of the 42nd IEEE 
Conference on Decision and Control, vol. 2, pp. 1902-1907, 2003. 

[4] M. Djemaï, J.P. Barbot, D. Boutat, “New type of data transmission 
using a synchronization of chaotics systems” International Journal of 
Bifurcations and Chaos, vol. 15, n° 1, pp. 1-17, 2005. 

[5] I. Belmouhoub, M. Djemaï, “Synchronization of discrete-time chaotic 
systems for secured data transmission”, in Chaos in Automatic 
Control: From Theory Towards Engineering Application, Edited by 
W. Perruquetti and J.P. Barbot, CRC Press Book, pp. 527-551, 2005. 

[6] R. Kharel, K. Busawon, Z. Ghassemlooy, “Secure digital 
communication using discrete-time chaotic systems via indirect 
coupling synchronization”, in American Control Conference, 
Baltimore, Maryland, USA, 2010. 

[7] Y. Uyaro lu, I. Pehlivan, “Nonlinear Sprott94 case a chaotic equation: 
synchronization and masking communication applications”, 
Computers and Electrical Engineering, vol. 36, n° 6, pp. 1093-1100, 
2010. 

[8] Ö. Morgül, M. Feki, “A chaotic masking scheme by using 
synchronized chaotic systems”, Physics Letters A, vol. 251, n° 3, pp. 
169-176, 1999. 

[9] S. Bowonga, F. M. Kakmenib, M. S. Siewe, “Secure communication 
via parameter modulation in a class of chaotic systems”, 
Communication in Nonlinear Science and Numerical Simulations, 
vol. 12, n° 3, pp. 397-410, 2007. 

[10] K. Fallahi, H. Leung, “A chaos secure communication scheme based 
on multiplication modulation”, Communication in Nonlinear Science 
and Numerical Simulations, vol. 15, n° 2, pp. 368-383, 2010. 

[11] H. Dedieu, M. P. Kennedy, M. Hasler, “Chaos shift keying: 
modulation and demodulation of a chaotic carrier using 
selfsynchronizing chua’s circuit”, IEEE Transactions on Circuits and 
Systems II: Analog Digital Signal Process, vol. 40, n° 10, pp. 634-
642, 1993. 

[12] W. Liu, Z. Wang, M. Ni, “Controlled synchronization for chaotic 
systems via limited information with data packet dropout”, 
Automatica, vol. 49, n° 8, pp. 2576-2579, 2013. 

[13] G. Grassi, D. A. Miller, “Theory and experimental realization of 
observer-based discrete-time hyperchaos synchronization”, IEEE 
Transactions on Circuits and Systems I: Fundamental Theory and 
Applications, vol. 49, n° 3, pp. 373-378, 2002. 

[14] G. Millerioux, J. Daafouz, “An observer-based approach for input-
independent global chaos synchronization of discrete-time switched 
systems”, IEEE Transactions on Circuits and Systems I: Fundamental 
Theory and Applications, vol. 50, n° 10, pp. 1270-1279, 2003. 

[15] G. P. Jiang, W. K. S. Tang, G. Chen, “A simple global synchronization 
criterion for coupled chaotic systems”, Chaos, Solitons and Fractals, 
vol. 15, n° 5, pp. 925-935, 2003. 

[16] G. Grassi, D. A. Miller, “Dead-beat full state hybrid projective 
synchronization for chaotic maps using a scalar synchronizing 
signal”, Communication in Nonlinear Science and Numerical 
Simulations, vol. 17, n° 4, pp. 1824-1830, 2012. 

[17] T. L. Liao, S. H. Tsai, “Adaptive synchronization of chaotic systems 
and its application to secure communication”, Chaos, Solitons and 
Fractals, vol. 11, n° 9, pp. 1387-1396, 2000. 

[18] S. Hammami, “Hybrid synchronization of discrete-time hyperchaotic 
systems based on aggregation techniques for image encryption”, in 
the IEEE 14th International Conference on Sciences and Techniques of 
Automatic Control and Computer Engineering, Sousse, Tunisia, pp. 
325-330, 2013. 

[19] S. Hammami, K. Ben Saad, M. Benrejeb, “On the synchronization of 
identical and non-identical 4-D chaotic systems using arrow form 
matrix”, Chaos, Solitons and Fractals, vol. 42, n° 1, pp. 101-112, 
2009. 

[20] S. Hammami, M. Benrejeb, M. Feki, P. Borne, “Feedback control 
design for Rössler and Chen chaotic systems anti-synchronization”, 
Physics Letters A, vol. 374, n° 28, pp. 2835-2840, 2010. 

[21] S. Hammami, M. Benrejeb, “Coexistence of synchronization and anti-
synchronization for chaotic systems via feedback control”, Chaotic 
Systems, Croatia: Editions INTECH, pp. 203-224, 2011. 

[22] S. Hammami, “Secure image transmission via nonlinear observer-
based chaotic synchronization”, Archives Des Sciences, vol. 66, n° 7, 
pp. 100-115, 2013. 

[23] S. Hammami, “Security analysis of high dimensional chaotic-based 
cryptosystem via its key sensitivity study”, Journal of Information 
Security Research, vol. 4, n° 4, pp. 183-194, 2013. 

[24] X. S. Yang, “Concepts of synchronization in dynamical systems”, 
Physics Letters A, vol. 260, n° 5, pp. 340-344, 1999. 

[25] G. Baier, M. Klein, “Maximum hyperchaos in 
generalized Hénon circuit”, Physics Letters A, vol. 151, n° 67, pp. 
281-284, 1990. 

[26] I.Belmouhoub, M. Djemaï, J.P. Barbot, “Observability quadratic 
normal forms for discrete-time systems”  IEEE Transactions on 
Automatic Control, vol. 50, n° 7, pp. 1031-1038, 2005. 

[27] M. Djemaï, J.P. Barbot, I. Belmouhoub, “Discrete time normal form 
for left invertibility problem”, in EJC Issue, in European Journal of 
Control, vol. 15, n° 2, pp. 194-204, 2009. 

 
 
 
 

2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP)

1059


