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Efficient Feature Selection and Classification
Vehicle Detection

Xuezhi Wen, Ling Sha&enior Member, IEEBNei Fang and Yu Xue

Abstract—The focus of thiswork ison the problem of Haar-like
feature selection and classification for vehicle detection. Haar-like
features are particularly attractive for vehicle detection because
they form a compact representation, encode edge and structural
information, capture information from multiple scales, and
especially can be computed efficiently. Due to the large-scale
nature of the Haar-like feature pool, we present a rapid and
effective feature selection method via AdaBoost by combining a
sample’s feature value with its class label. Our approach is
analyzed theoretically and empirically to show itsefficiency. Then
an improved normalization algorithm for the selected feature
values is designed to reduce the intra-class difference while
increasing the inter-class variability. Experimental results
demonstrate that the proposed approaches not only speed up the
feature selection process with AdaBoost but also yield better
detection performance than the state-of-the-art methods.

Index Terms—Haar-like features, SVM, AdaBoost, weak
classifier, vehicle detection.

I. INTRODUCTION
Vision-based vehicle detection for driver assistance

This work was supported by the Jiangsu Planned ProjectPdstdoctoral

received considerable attention over the last 15 years. There are
at least three reasons for the booming research in this field: 1)
the startling losses both in human lives and finance caused by
vehicle accidents, 2) the availability of fedsiltechnologies
accumulated within the last 40 years of computer vision
research, and 3) the exponential growth in processor speeds that
have paved the way for running computation-intensive
video-processing algorithms even on a low-end PC in real-time.
On-board vehicle detection systems have high computational
requirements as they need to process the acquired images in
real-time or close to real-time for instant driver reaction.
Searching the whole image to locate potential vehicle locations
is prohibitive for real-time applications. The majority of
methods reported in the literature follow two basic steps: 1)
hypothesis generation (HG) where the locations of possible
vehicles in an image are hypothesized and 2) hypothesis
verification (HV) where tests are performed to verify the
presence of vehicles in an image (see Fig. 1
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Fig. 1. Vehicle deteatin process.

The input to the HV step is the set of hypothesized locations
from the HG step. During HV, tests are performed to verify the
correctness of a hypothesis. Approaches to HV can be
classified mainly into two categories: 1) template-based and 2)
appearance-based. Template-based methods use predefined
Information Science and Technology, Nanjing 210044in€ (e-mail: patterns from the vehicle class_, and perform Correlatlor.]'
ww_pub@163.0m). Appearance-based methods, which are also called machine

L. Shaois with the Department of Computer Science and Digital€@rning methods, on the other hand, learn the characteristics of
Technologies, Northumbria University, Newcastle uponel\NE1 8ST, U.K. the vehicle class from a set of training images which should
(e-mail: ling.shao@ieee.org). capture the variability in vehicle appearance. Usually, the

W. Fang is with Jiangsu Engineering Center of Netwbft&nitoring, variabili f the non-vehicl | is al m [ imorov
Nanjing University of Information Science and TechiggioNanjing 210044, ariability of the non-vehicle class is also modeled to improve
the performance.

China, and with School of Computer and Software, jiNgnUniversity of

Information Science and Technology, Nanjing 210044in& and also with  The HV step acts as an important role for vehicle detection.

gfgt.ecﬁ?gd;ﬁgﬁ?thos%;Z:,Vg%gi'n?févy\;]are Technolodlanjing University, Template-based mgthods need to use thousands _of predefined
Y. Xue is with Jiangsu Engineering Center of Network Maritig, Nanjing ~ Patterns of the vehicle class and perform correlation between

University of Information Science and Technology, Nemj210044, China, the test image and the template, which makes them

and also wih School of Computer and Software, Nanjing Universify Otime-consuming. In addition, template-based methods are

Information Science and Technology, Nanjing 210044jin€&. (e-mail: . . L .
xueyu@nuist.edu.gn sensitiveto the varying background (e.g., buildings, bridges

1051-8215 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://lwww.ieee.org/publications_standards/publications/rights/index.html for more information.


mailto:ww_pub@163.com
mailto:ling.shao@ieee.org

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation informe
10.1109/TCSVT.2014.2358031, IEEE Transactions on Circuits and Systems for Video Technology

IEEE Transactions on Circuits and Systems for Video Technology 2

and guardrails). Therefore, the appearance-based validatglabal features such as those described in [7]-[13] perform
approaches have become more attractfileere are at leasvb  reasonably well, an inherent problem with global feature
fundamental challenges faced by the appearance-basadraction approaches isthatthey are sensitive to local or global
validation methodsthe processing time and accuracy. image variations (e.g., viewpoint changes, illumination

In this paper we focus on the investigation of the changes, and partial occlusion).

appearance-based validation approaches to HV. Seeking th&ocal featurespn the other hand, are less sensitive te th
solutions to boost the vehicle detection accuracy and reduce dfifects faced by global features. Moreover, geometric
false alarm rate while considering the real time, we proposedrdormation and constraints in the configuration of different
machine learning algorithm based on Haar-like features alatal features can be utilized either explicitly or implicitly. An
SVM. Specifically, we first design a ddrlike featurs overcomplete dictionary of Haar wavelet features was utilized
extraction method to represent a vehigledges and structures,in [14] for vehicle detection. They argued that this
and then propose a rapid feature selection algorithm usirgpresentation provided a richer model and spatial resolution
AdaBoost due to the large pool ohéklike features. Finally, and that it was more suitable for capturing complex patterns.
we present an improved normalization method for featu®un et al. went one step further by arguing that the actual values
values. Experimental results demonstrate that the proposedhe wavelet coefficients are not very important for vehicle
approaches not only speed up the feature selection process wétection. They proposed using quantized coefficients to
AdaBoost but also outperform the stafethe-art methods in improve detection performance [15]. Using Gabor filters for
termsof classification ability. vehicle feature extraction was investigated in [16]. Gabor filters

The rest of the paper is organized as follows. In Sectjon [L7] provide a mechanism for obtaining orientation and scale
we review the related work for vehicle detectibp using related features. The hypothesized vehicle subimages were
appearance-based approaches. In Section Ill, we presentdiided into nine overlapping subwindows, and then Gabor
algorithm for computing Barlike features. A fast feature filters were applied on each subwindow separately
selection method based on AdaBoost is reported in Section furthermore, Sun et a[18] combined Haar wavelet with
Section V gives an introduction of SVMs and introduces dgabor features to describe the properties of a veftele
improved normalization method for the original feature valudgvariant feature transform (SIFT) features [19] were used in
while training SVM. The experimental results and analysis até0] to detect the rear faces of vehicles. 2d][ the histogram

described in Section VBection VII concludes this paper.  ©f oriented gradients (HOG) features were extracted in a given
image patch for vehicle detection. In [22], a combination of
II. RELATED WORK speeded pirobust features (SURF) [23] and edges was used to
Machine learning methods are becoming increasing@letGCt vehicles in the blind spot.

popular for their high performance, good robustness and eas;The _main drawback of the above local features is that they
operation, which have been applitsl many fields (such as @€ quite slow to compute. In recent yedhere has been a
image retrieval, image annotation, visual recognition arf§iansition from complex image features such as Gabor filters
vehicle detection) [1]-[4]. HV using machine learning method@nd HOG to simpler and efficient feature sets for vehicle
is treated as a two-class pattern classification problem: vehiélgtection. Haarlike features are sensitive to vertical,
versus non-vehicle. In general, machine learning methoBgrizontal, and symmetric structures, and they can be computed

consist of two processes: (1) feature representation and teisiciently, making them well suited for real-time detection of

classification. vehicles[24], also demonstrated by their good performance in
. the object detection literatur§25]-[27]. Accordingly, we
A Feature representation choose Harlike features as the feature representation for our

Given the huge intra-class variabilities of the vehicle classehicle detection system.
one feasible approach is to learn the decision boundary ba%ed
on training a classifier using the feature sets extracted from a T o )
training set. Various feature extraction methods have beenClassification can be broadly split into two categories:
investigated in the context of vehicle detection. Based on tHiCriminative and ~generative methods. Discriminative

method used, the features extracted can be classified as eifi@¢Sifiers, which learn a decision boundary between two
globalor local. classes, have been more widely used in vehicle detection.

. . . Generative classifiers, which learn the underlying distribution
Global features are obtained by considering all the pixels n ) : )
a given class, have been less common in the vehicle

an image. Usually dimensionality reduction techniques [p] [detection literature. While in [28] and [29] artificial neural

are required for the high-dimensional features. Wu and Zhan e : .
N . network classifiers were used for vehicle detection, they have

[7] used standard Principal Component Analysis (PCA) for
. ) . ..recently fallen somewhat out of favor. Neural networks have

feature extraction, together with a nearest-neighbor classifier -
) : many parameters to tune, and the training tends to converge to a
reporting an 89 percent accuracy on a vehicle dataset. Howeyer ) .
: ) : S ocal optimum. The research community has moved toward
their evaluation database was quite small (93 vehicle images

and 134 non-vehicle images), which makes it difficult to dras assifiers whose training converges to a global optimum over

any useful conclusions. Although detection schemes based ‘O training set, such as SVMs and AdaBoost. SVMs have been
y ' 9 Wiraely used for vehicle detection. 18Q] and [31], SVM was

Classification
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used to classify feature vectors consisting of Haar wavelgives a few examples of Haar-like features for the description
coefficients. The combination of HOG features and the SVMf a vehiclés appearancg4].

classifer has been also used [82], [33] and [28]. The  For a given image, the regiasf interest (ROI), i.e., the
HOG-SVM formulation was extended to detect and Calcula%hic|e region' is Segmented using shadewnmetry and
vehicle orientation using multiplicative kernels Bd]. Edge aspect ratio information according to [30] [31]. Considering the
features were classified for vehicle detection using SV [ property of the structure of a vehicle, we add the diagonal
and B6]. In [37], vehicles were detected using Haar and Gab@gatures which are described i46] [47], and the whole
featureS, using SVM for classification. AdaBoost has been al%apnke feature poo| we dep'oy is summarized in Table |. The

widely used for classification, largely owing to its integratiorprocedure for computing the Haar-like feature pool is shown in
with cascade classification in [R3n [38], AdaBoost was used A(gorithm 1.

for detecting vehicles based on symmetry feature scores. I~ TABLE |
[39], edge features were classified using AdaBoost. The
combination of Haar-like feature extraction and AdaBoost

THE NUMBER OF FEATURES FOR AN IMAGE PATCH WITH SIZE 082x32

classification has been used to detect rear faces of vehicles Featuretype w/h  Featurenumber
[40]-[44]. @ @) 2/1; 112 13904
In addition, Szegedy et al49 defined a multi-scale (9); (10) 2/1; 1/2 7,260
inference procedure which is able to produce high-resolutiol (3); (5) 3/1:1/3 9,570
object deteairs based on deep neural networks (DNNs). (4); (6) 41 1/4 7176
ICompa:Ed tWi'[th tthe pi'pular Ad?fo?s'F (':Iass:cﬁg\r/s,\,ASVM isr (11); (13) 3/1: 1/3 5.184
slower in the test stage. However, the training o is muc ! _
faster than that of AdaBoost classifiers. Similarly, although (12y 14) 41118 3944
DNNs can yield strong results for object detection, these result (7): (15) 3/3; 313 5,025
come at heavy computational costs during training. Therefore ®) 212 5,456
we choose SVM as the classifier in this paper. Total 57,519

I E=RInl In_N NCIN".

W@ e e G e @ Algorithm 1 Computing the biarlike feature pool
L B A O
A ROI image patch in RGB color space
© (10) (an (12) (13) (14) (15) Begin
1) Normalize ROI to 32x3 grayscale
2) Compute the upright and rotated integral images

3) Compute all Harlike feature values with the
integral images according to Table |

End begin
Output
Haarlike feature pool

Fig. 2. Haar-like feature prototypes used in outhoét upright ones (the fii
row), rotated ones (the second row).

IV. FEATURE SELECTION

The scale of the obtained Haar-like featpoml is far more
than the pixels of 32X 32 gray scale image. Even though each
feature can be quickly computed, the whole process is still quite
time-consuming. In fact, only a few features among them play
) ) ) ) an important role for classification, which can be regarded as
Rather than using pixels, Viola et §5]-[27] used simple qy features. The AdaBoost algorithm is an effective way to
Haarfeature prototypes to extract features to encode an imaggec these key features. The traditional feature selection and

patch for human face detection (the first row of Fig. 2). The proposed one via AdaBoost are detailed respectively as
further lower the false alarm rate at a given hit rate, Lienhart gfjows.

al. [46] [47] introduced new Haar featupgototypes by rotating

these simple ondsy 45 degrees (the second row of Fig. 2), an@d Traditional feature selection

the results proved to be effective. Hence we take all of theseThe traditional feature selection process with the AdaBoost
simple and rotated prototypes. And we speed up the featalgorithm is illustratedn Algorithm 2 according to [48].

extraction procedure using an intermediate representation T@gorithm 2 The AdaBoost algorithm for feature selectior
the image patch- integral image (see [25] for details). Fig. 3

Fig. 3. Haar-like featurexamples for describingvehicles
appearance.

Ill. HAAR-LIKE FEATURE EXTRACTION
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Input
1) A training set:
{(x. vt % eX,y; -4+, i=12---,n
where n is the size of the training set
2) x; denotes the feature vector of itle sample
3) y; denotes the class label of e sample
4) X denotes the feature space
Begin
1) Initialize weights:w; (i) =1/n i=12---,n
2) H=null ///l Key feature set

3 Fort=1toT
(1) Normalize the weights:

n
we (i) =w (i) / D W) i=12--,n
i=1
(2) For each featurg, train a weak classifie
f;.
(3) The errore; of a classifierf; is evaluated

as follows:

€j :Zn:V\/t,iK(Xi)
i1

0 f.(x)=vV
wherezc(xi)z{1 ! ellse '

(4) Choose the classifief, with the lowest
errorg, and H =H J{t}

(5) Computea, = % n((l=z,)/ &,).

(6) Update the weights:
Wi, () =w (i) * expa; f (%) Yi))
End for

]
4)F () =sign(Y_ e, f; (x))
t=1

method and the traditional one lies in stage (1): the traditional
method only uses the feature values to generate the latent
classification locations, and the proposed approach generates
the latent classification locations by combining the feature
values with thi class labelswithout loss of generality, Figh
presents an example of the difference between the two methods
for the given ten feature values.

For the traditional method, it uses the exhaustive method to
generate the latent classification locations. Specifically, istake
the middle location of every two adjacent feature values as the
latent classification location, whereas the proposed method
takes the class labels into account, i.e., only the middle location
of the two adjacent feature vakiwith different labelsis
consideed as the latent classification location.

() O‘Q O

.‘Q‘Q‘.‘.‘.‘.

b)) OO0 e e e o

Fig. 4. The difference between the traditional featurectEn metho
and the proposed appria The hollow and solid circles denote !
different classes respectively. (a) The traditionaiuieaselection methc
(b) The proposed feature selection approach.

C. Theoretical analysis for the proposed approach

In the last subsection, we have presented the proposed
feature selection method which coimés the feature values
with thdr class labels. In this subsection, we theorectically
analyze our approach in terms of the property of the class labels.
For convenience, we assunieils the latent classification
location, and the classification results of the left|adre
A(A e {~1+1) ; on the contrary, the results of the right|of
are -1, and the classification errar can be computed as Eq.

().
g:%zwj (fo)-y, )P (1)
j=1

wherew; is thejth samples weight, f (x;) e {-1+1} is the
classification resulon thejth sample, andy; e {~1+1} is the

real class label of thgh sample. So

End begin 1<
Output g:Z(;Wi(f(Xj)_yi)z)
1)Key feature seH e n
2)AdaBoost classifiel (x) = Z(;Wj (ﬂ —Y;j )2 + j;llvj (— A=Y, )2) (2)

From Algorithm 2, we can find that the time of feature 1< 1 n -1
selection is mostly consumed on finding the weak classifiers. In = —ij (/12 + yf)+—/‘t[ z Wy, —ij y]}
general,at each iterationgenerating weak classifiers consists 4 =1 2 j=1
of three stages considering each feat(lfpgenerate the latent

As w;

n
classification Ioca_ti_ons., 2) compute the classification esror , andy; are knownijyj is also known. From
each latent classification location, and (3) select the best =t

classifier (weak classifier) which has the lowest error n 4 n n
2 2
B. Proposed feature selection ij Yi = ZWJ Yi+ ZWJ‘ y; and 2% =vyj =lZWJ =1,
j=1 =1

The difference between the proposed feature selection” J=+1

j=I+1
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we can computeg as follows:

1 n ) ) 1 n 1-1
E:Z;Wj (/1 +Y] )+§i Z;ijj —Zzle Y
j= j= j=

1 1 n -1
=E+§/1 ij Y —ZZWJ Yi
j=1 j=1
Let’s discuss the different cases 4f.
(1) When A =1, (3) turnsinto (4):

1 1 n 1-1
-1 =
-1

So finding min(¢) is to computemax(ij yi) - As
j=1

®3)

(4)

-1
w; >0, only wheny,; =1 andy, ; =-1, doesij Yi
j=1
reach the maximum.

(2) When 4 = -1, (3) turnsinto (5):

1 1 n 1-1
j=1 j=1

-1
So finding min(e) is to computemin(ij y;) - Only
j=1
Ks;
when y,; =-1 and y,,; =1, does Zijj reach the
j=1
minimum.

traditional feature selection method need to compute the
classification errors of 19 latent classification locations, while
the proposed method computes the classification errors of only
3latent classification locations, which saves much training.time
The larger scale the training datasgtthe more consumed
training time the proposed appoach saves. Therefore, the
proposed method would be more advantageous for a larger
number of training samples.

V. SVM CLASSIFIER

SVMs are primarily two-class classifiers that have been
shown to be an attractive and more systematic approach to
learning linear or non-linear decision boundaries [89).[If
the training examples from two classes cause the two classes
margin to be maximal, then the classification hyperplane
satisfies the following equation:

f(x)=iy|aik(x,xi)+b (6)
i=1

where x,x; e R" are n-dimensional input feature vectonsy
is the number of exampley; €{-1,+1} is the label of théth
example and k(x, x;) is a kernel functionWe use the radial
basis function (RBF) as the kernel function whiglefined as:
Jx—x*
k(x, %) =expt-———) (7
25

A. Data normalization

Data normalization is an essential step for most object
detection algorithms that learn the statistical characteristics of
attributes extracted from the object imageshich can
effectively reduce the within-class variation and increase the
between-class variabilityData normalization is to scale the

The above analysis demonstrates that our proposed feat(é/€s of each continuous attributes into a well-proportioned
selection method by combining feature values with their clas@nge such that the effect of one attribute cannot dominate the

labelsis reasonable and effective.

(al) Ol@

k) O|®

(a2) OO‘O‘O‘.‘.‘.‘.‘.‘O‘O‘O‘O‘O‘O‘.‘.‘.‘.‘.

®2) OO0 OO 00000

.....‘OOOOOO

Fig. 5. An example for the analysis of the adaptability of firepose
approach with the number of the training samplesaasl20 respectively. T
hollow and solid circles denote two different classepeetively. (al) and (3
denote the traditional feature selection method. @id (b2) denote o
proposed feature selection approach.

D. Scalability

others. A statistical normalization method was use8ihgnd
[52] to convert the data into a standard normal distribution
while a min-max normalization method was adopted in [53] to
directly convert the datato a range of 0 and 1.

The statistical normalization is defined as:
X —H
(o2

8)

where ¢ is the mean oh values for a given attribute, and

ois its standard deviation. However, by usihg statistical
normalization, the data set should follow a Normal distribution.

The mn-max normalization is defined as:

X —min(x;)
" max(x ) — min(x; )

9)

Normally xi' is set to zero if the maximum is equal to the
minimum. However, the m-max normalization method is

According to the above theoretical analysis, the scalability §nsitive to the lighting condition if it is directly used to the

the proposed approach is further illustratedrig. 5 -- the

image data.
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In order to overcome the problem faced by thie-max
normalization we present an improved normalization algorithm
based on the m-max normalizatiormethod The main idea
follows this observationthe actual feature values are not very
important for vehicle detection. In fact, the magnitudes indicatt
local oriented intensity differences, and this information could
be very different even for the same vehicle under differen
lighting conditions. The proposed method firstly computes the
magnitudes of the obtained feature values, which is the mai
difference from the traditional methods, and then normalize %
the magnitudes to [0, 1] by using thénamax method. The &5
detailed process is presented in Algorithm 3.

(b) Non-vehicle samples.
Fig. 6. Examples of training images.

Algorithm 3 The improved normalization algorithm
Input

Atraining set{x ,y: } (i € -1+3) ,

where x, = (Vig,---, vy, )", (I <<m)

Begin
For j=1to |
For k=1to n
Compute the absolute valu|a7:jk| .
v
End for e o
: =
max_value = maxkljk|k:1} (b) Non-vehicle samples.
) ] n Fig. 7. Examples of test images of Test data II.
min_value = rn{ |Vik|k71}
For k=1to n VI. EXPERIMENTAL RESULTS AND ANALYSIS
, qvjk‘_mm_va,ue) To evalua_te_ the proposed qpproaches, we apply them 'Fo a
Vik = (max_value-min_valug monocular-vision based detection system for static rear-vehicle
End for images. This system includes two modules. The first module
End f aims to segment ROIs accurately according3@ [31]. The
n 9r second module, which is the focus of this paper, performs
End begin classification on the ROIs. Vehicle existence validation is a
Output two-class pattern classification problem: vehicle vs.

The normalized feature vector set:

. . DT
X =iz, vy) =100

non-vehicle.
Different videos recorded by a camera mounted on a vehicle

are collected for evaluating the presented algorithms, and the

videos are taken on different daytime scenes, including

B. Training process highway, urban common roaq, urban narrow rced. S_ome

' roads are covered with japanning, smear, etc. At the first stage,

After performing the improved normalization operation, alb3 gg7 samples from the same videos were collected for
feature values are normalized [@l] . Then the normalized training and testing, and 17,647 samples were selected
feature vector set is used to train the RBF-SVM classifier wittandomly for training, including 8,774 vehicle samples
cross-validation to select the optimal parametersnd C . (positive samples) and 8,873 non-vehicle samples (negative
C. Testing process samples), and _the remainjng 6,040 sampleg (denoted as Test

: data 1) for testing which include 4,266 vehicle samples and

For a given test ROl image patahke first normalize itto a 1 774 non-vehicle samples. At the second stage, 29,698
32x32 grayscale patctand then compute the feature valuegamples from different videos with the samples at the first stage
according to the selected Haar-like features and normalize tf)gre collected for only testing (denoted as Test data I1), which
feature values tq01] according to the improved normalizationjncjude 7, 901 vehicle samples (positive samples) and 4,602
algorithm shown inAlgorithm 3. Finally, we construct the non-vehicle samples (negative samples). The vehicle samples
normalized feature valuég a vector and input it to the trainedat both the first stage and the second stage include various kinds
RBF-SVM classifier, and then obtain the classification result.of vehicles such as camsucks and buses as well as different
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colors such as red, blue, black, gray and white. Furthermore, thi¢h the best performance by applying 5-fold cross-validation.
vehicle samples include both vehicles near the vehicle mountthile selecting Harlike features with AdaBoost, we select
with the camera and those that are far. The non-vehicle samgstures by choosing the classifier with the best performance
at both stages include roads, buildings, green planterough applying 5-fold cross-validation and select 600
advertisement boards, bridges, traffic signs, guardrails, andfeatures from 57,519 features. TABLE Il shows the evaluation
on. Fig 6 shows some training examples of vehicle antesults. Fig. 8 shows the ROCs (Receiver Operating
non-vehicle images, anfdig. 7 shows some test examples ofCharacteristic Curves) of the seven vehicle detection methods
vehicle and non-vehicle images at the second stage. on Test data Il

To evaluate the performance of the approaches, the trudn addition, two public image data sets are also used to
positive rate (or vehicle detection rate) and false positive evalute the above machine learning methods. As shown in
] ) Table 111, the first set is published by Massachusetts Institute of
rate T, were recorded. They are defined in Eq. (10). Technology Center for Biological and Computational Learning
N N (MIT CBCL) Group, which consists of the rear- and
=—T f=—%FF (10) frontal-viewed vehicle images, and the secondssgtiblished
Nrp + Nen Nep+ Ny by California Institute of Technology (Caltech) Vision Group
whereNs , Nep, Ny and Np are the numbers of the which consists of the rear-viewed vehicle images (1999 and

objects identified as true positives, false positives, trg001 versions). The vehicles in the databases have a wide

negatives and false negatives respectively. Three experimeff&ety of sizes and in-plane or coftplane orientations and
are conducted on a PC (CPU: Inter(R) Core2(TM) 2.13GHA™® shot against diverse background scenes with different

Memory: 2GB Operating System: Windows 7, Implementatior{!ghti”g conditions and degrees of occlusion. TABLE IV shows
Matlab 2012b). the evaluation results.

In the second experiment, we use three schemes: (1) the
atistical normalizatiofi51] [52], (2) nmin-max normalization
rfgs] and (3) our proposed method to normalize the data. The

) . - . ormalized data as well as the original data are then fed into the
reasonably well in vehicle classification and for which the co 9

n be obtained or reproduced rdina to the original rBF-SVM classifier for training and testing. With different
can be obtained or reproduced according 1o the origina p"jlpeaﬁ'ribute normalization schemes, the overall detection results

The second experiment compares the designed normalizat}ﬁg presented ifiig. 9andFig. 10

algorithm for the feature vector set to other normalization

tp

The first experiment aims to validate the performance i&
classification accuracy of the proposed machine learni
method compared to the statkthe-art ones which perform

methods. The third experiment aims to validate the tim TABLE Il
efficiency of the proposed feature selection algorithm with th EVALUATION RESULTS OF 7 VEHICLE DETECTION METHODS
AdaBoost compared to the statkthe-art selection algorithms Methods Test data | Test data I
and the traditional one. All ROIs are normalized toxX32 t, fp t, fp
grayscale image patches.

i . . . - PCA + SVM [7] 96.95% 6.14% 88.74% 5.37%

In the first experiment, since different datasets will induct
Gabor+SVM [16] 96.13% 6.54% 9095%  4.82%

different optimal parameters for feature extraction methods al
classifiers, we select the optimal parameters in terms of tI ~ Wavelet + SYM[15] 96.34% 6.43% 8741% 511%
classification ability. For the feature extraction of PZA we Wavelet + Gabor +SVM
choose the first 79 eigenvectors associated with the first (18]

biggest eigenvalues which generate the best classificati H:;‘;é”'ggst&?ﬁ%de" 07.09% 13.19% 9366% 1110%
accuracy. For the feature extraction of Gali@i, we select 6 )

angles and 4 orientations. For the feature extraction of wavel Haarlike + AdaBoost[24] 97.43%  4.33%  9228%  3.63%
we select the simplest Haar Wavelet and perfar@+level Proposed method ~ 97.70%  344%  9410%  3.26%
decomposition, and then remove the HH part of the first level
according to[15]. For the feature extraction of the Gabor
combining with wavelet according {&8], the computation of
the Gabor features is similar tt6], and the wavelet features is
similar to[15]. For the extraction of Haar-like features, 57,519
features were obtained from e&82x32 grayscale image patch
[24]. While training the RBF-SVM classifier, we use 5-fold
cross-validation to select the best parametesnd C . While

96.81% 5.64% 9156%  3.98%

True Positive Rate
o
>
L

training the cascaded AdaBoost, the vehicle detection accuracy 0l Gabors SV |
ratio is required to be not smaller than 99.9% and the fals P Voot oabors SV |
alarm (classify non-vehicle to vehicle) ratio is not bigger than o1l vy |
50% at the current stage, and the false alarm (classify JEENE———SS
non-vehicle to vehicle) ratio of the cascaded classifier is False Positive Rate

required to be not bigger thd®% and we select the classifier Fig. 8. The ROCs of the seven detection methods ondaestl.
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TABLE Il
TWO PUBLIC TESTING DATABASES

MIT CBCL Caltech rear-viewed
vehicle database
(1999 and 2001
versions)

Vehicle images 439 652
Image size 128*128 pixels 240*360 pixels
TABLE IV

EVALUATION RESULTS ON THE TWO PUBLIC DATA SETS

Caltech rear-viewec
vehicle database

Methods MIT CBCL (1999 and 2001
versions)
t p t p
PCA + SVM [7] 88.33% 86.59%
Gabor+SVM [16] 91.46% 90.24%
Wavelet + SVM [15] 91.29% 90.24%
}/:\L/zsa]velet + Gabor +SVM 91.81% 91.06%
- +
Haarike e 4;:]ascade‘ 93.38% 92.38%
Haar-like + AdaBoost [24] 93.55% 92.89%
[54] 94.20%
Proposed method 95.47% 94.41%
1 —=
08 ‘,f" 1
07f ,." g
% 0sf ':" R
E 0.4t ;'I E
- 0.3 ;; g
0_21-" Original
H Statistical
01 Min-max |
Qurs
UU U.IW U.I2 [!13 U.I4 UjE U.IG U.IT Ujﬂ U.IQ 1

False Positive Rate

Fig. 9. The ROCs of different normalization methodSTest data |.

True Positive Rate

Original
""""" Statistical

0 L L

0 01 02 03

Fig. 10. The ROCs of different normalization methods on tesa II.

L L L
04 0.5 0.6
False Positive Rate

TABLE V

EVALUATION RESULTS BEFORBAFTER THEADABOOSTALGORITHM BEING
IMPROVED

AdaBoost Training time (hours)

Before improved 117.43+0.5
Improved [55] 107.27+£0.9
Our improved 10191+0.7

In the third experimentye compare the proposed rapid feature
selection algorithnwith that in [59 and the traditional one. We
conduct the experiment in 5 random trials. In each trial, we
randomly divided the training sample set into 5 subsets and
perform 5-fold cross-validation. TABLE V shows the mean time
as well as the variance of the three methods

From TABLE I, one can conclude that, compared to the
stateof-the-art detection methods, the proposed algorithm
produces not only a higher vehicle detection ratg put also a

lower false positive ratef(p) on both Test data | and Test data

II. On Test data IlI, although the vehicle detection rate of the
proposed algorithm is only 0.44% better than that of the method
in [46] and [47], but the false positive ratef () of the

proposed algorithm is 7.84% lower than that achieved by the
method in the literatures. From Fig. 8, one can conclude that the
proposed algorithm shows the best performance among all

mettods

From TABLE 1V, one can conclude that the proposed
algorithm shows its superiority on the two public data sets
compared to the other methods. In TABLE 1V, all methods
have better classification results on MIT CBCL than on the
Caltech rear-viewed vehicle data set, because most of the
vehicle images in MIT CBCL are frontal-viewed vehicles
which are more similar to our training samples in distribution.

From Fig. 9 and Fidl0, one can conclude that, compared to
the original data, attribute normalization improves the
classification performance significantly, and compared to the
other two popular normalization methods in vehicle detection,
our improved normalization algorithm is the best choice for
RBF-SVM classifier on both Test data | and Test data l& Th
original data is sensitive to the illumination and easily
dominatedby the too big attribute values in classification, and
the statistical normalization method requires that the attribute
data should follow a Normal distribution, which is not always
satisfied in real applicatien Although the nn-max
normalization directly used on the original attribute data
overcomes the dominatioof the too big attribute values in
classificationit is still sensitive to illumination. The improved
normalization method overcomes the above two problems.

From the evaluation in Tables Il and, I can be observed
that the improvement achieved by using the proposed system is
only slightly better than that of the statbthe-art methods
That’s becauseghose methods can learn sufficient knowledge
from the large scale training dataset effectively and present
good performance. The enhanced performance of the proposed
system is due to its use of all typedHatarlike features, which
improves the tolerance of the vehicle validation process
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towards geometric variance and partial occlusion, and {1 S. L. Phung, D. Chai, and A. BouzerdouffA distribution-based
application of improved attribute normalization, which reduces face/non-face classification techniguéust. J. Intell. Inf. Process. Syst.,

the intra-class differences while increasing the inter-cla vol. 7, no. 3/4, pp. 132138, 2001.
9 ?fl] A. N. Rajagopalan, P. Burlina, and R. Chellaftdigher order statistical

variability and makes the validation process easier. learning for vehicle detection in images Proc. IEEE Int. Conf. Comput.

From TABLE V, one can conclude that the proposed feature Vis., 1999, vol. 2, pp. 12041209.
selection method saves more than 15 hours in training time tHa# Z. Sun, G. Bebis, and R. MillerObject detection using feature subset
from the traditional one, and saves more than 5 hours comparece'ection, Patterm Recognit, vol. 37, no. 11, pp. 236576, Nov. 2004.

; ; ; :[13] K. K. Sung and T. Poggid;Example-based learning for view-based
with the method which relies on the Forward Feature SEIeCtIHﬁhuman face detectiSpnlEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no.

(FFS) algorithm to speed up the feature selection Wlth 1, pp. 39- 51, Jan. 1998.
AdaBoost [55] leading to a more efficient feature selectiony;s ¢ papageorgiound T. Poggio, “A Trainable System for Object
process. Detectior?, Int’l J. Computer Vision, vol. 38, no 1, pp. 15-33, 2000.
[15] Z. Sun, G. Bebis, and R. MilléfQuantized wavelet features and support
VIl. CONCLUSION vector machines for on-road vehicleetattion”, 7th International
] ) Conference on Control, Automation, Robotics and Visi@d02, pp.
In this paper, we have proposed a solution based on1641-1646.
Haarlike features and RBF-SVM for vehicle detection. Firstly[16] Z. Sun, G. Bebis, and R. MillefDn-road vehicle detection using Gabor

due to the huae pool of adrlike features a fast feature fil_tel’s and support vector avhines”, International Conference on Digital
ge p > Signal Processing, 2002, pp. 1019-1022.

lection algorithm via AdaB h n pr . i
se ECt.O. algorit a AdaBoost . a? bee P Oposed li%] D. Tao, X. Li, X. Wu, S.J. MaybankGeneral tensor discriminant analysis
comblnlng a sample _fea'_:ure Value_ with its class label. Then, and Gabor features for gait recognitiptfEEE Trans. Pattern Anal. Mach.
an improved normalization algorithm for feature values has Intell, vol. 29, no. 10, pp. 1700-1712007.

been presented, which can effectively reduce theirwilass [18] Z. Sun, G. Bebis, and R. MillefImproving the performance of on-road

variation and increase the between-class variabilitye Th vehicle detection by combining Gabor and wavelgtifes”, The IEEE 5th
International Conference on Intelligent TranspatatSystems, 2003p.

experimental results show that the proposed approaches nofzq. 135
only ;pgedq up the feature selection process but also showed; p. Lowe, “Object recognition from local scale-invariant feattirgsProc.
superiority in vehicle classificaiton abilitycompared d the Int. Conf. Comput. Vis., 1999, pp. 1150.157.
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