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Abstract

We study normal forms of scalar integrable dispersive (non necessarily Hamil-

tonian) conservation laws via the Dubrovin-Zhang perturbative scheme. Our

computations support the conjecture that such normal forms are parametrised

by infinitely many arbitrary functions that can be identified with the coeffi-

cients of the quasilinear part of the equation. More in general, we conjecture

that two scalar integrable evolutionary PDEs having the same quasilinear part

are Miura equivalent. This conjecture is also consistent with the tensorial be-

haviour of these coefficients under general Miura transformations.

1 Introduction

The Dubrovin-Zhang perturbative approach is concerned with the classification prob-

lem of evolutionary PDEs (in the scalar case) of the form

ut = X(u, ux, ...), i = 1, . . . , n, (1.1)

where the functions X(u, ux, ...) are differential polynomials in the jet variables ux,

uxx, . . . . Introducing a rescaling of independent variables of the form x → ǫx and

t → ǫt, the equation (1.1) takes the form

ut =
∑

k≥−1

ǫkFk+1(u, ux, ..., u(k), . . . ), (1.2)
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where the functions Fk are homogeneous differential polynomials of suitable degree

and we adopt the notation u(k) := ∂k
xu. It is also assumed that

F0(u) ≡ 0.

Hence, we will focus on a class of evolutionary PDEs of the form

ut =
∑

k≥0

ǫkFk+1(u, ux, ..., u(k), . . . ), (1.3)

where the r.h.s is a formal power series in ǫ and it does not necessarily truncate.

Introducing a gradation such that functions depending on the single variable u have

degree zero and monomials of the form u(k) have degree k, it is straightforward to

check that the differential polynomial Fk has degree k. For instance, we have

F1 = V (u)ux

F2 = A(u)uxx +B(u)u2
x.

The Burgers equation

ut = uux + ǫuxx (1.4)

and the Korteweg-de Vries (KdV) equations

ut = uux + ǫ2uxxx (1.5)

are two celebrated examples of exactly integrable nonlinear PDEs of the form (1.3).

As the r.h.s. of equation (1.3) is allowed to be an infinite power series in ǫ, the

class of equations under study also includes non-evolutionary examples such as the

Camassa-Holm equation [8]

ut − ǫ2uxxt = −3uux + ǫ2(uuxxx + 2uxuxx). (1.6)

Indeed, the Camassa-Holm equation (1.6) can be recast in the evolutionary form via

the transformation

v = u− ǫ2uxx = (1− ǫ2∂2
x)u,

whose formal inverse is given by

u = (1− ǫ2∂2
x)

−1v = 1 + ǫ2vxx + ǫ4vxxxx + . . . .

One of the main problem in the theory of integrable PDEs is to classify equations (or

systems of equations) of the form (1.3) up to equivalence under the so-called Miura

transformations

u → ũ = M0(u) +
∑

k

ǫkMk(u, ux, . . . ), degMk = k.
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Hence, the classification problem of integrable equation of the form (1.3) is reformu-

lated in terms of a classification problem of equivalence classes of integrable equations

with respect to Miura transformations. The Dubrovin-Zhang perturbative scheme

aims at the reconstruction of higher order integrable corrections (both dispersive and

dissipative ) starting from the quasilinear PDE of Hopf type (the dispersionless limit)

ut = f(u)ux.

Within this scheme, the various perturbative approaches developed so far mainly

differ in the kind of additional structures possessed by the dispersionless limit and

that are required to be preserved by the perturbation procedure.

Let us consider for instance the Hopf equation ut = uux. It is clearly integrable

as it possesses infinitely many symmetries parametrised by an arbitrary function

of one variable g(u). The most general approach to the classification of integrable

deformations of the Hopf equation is based of the request that all deformed symmetries

uτ = g(u)ux + ... commute with the deformed Hopf equation ut = uux + ... [22, 16].

The classification of integrable conservation laws is based on the simple observation

that the Hopf hierarchy consists of conservation laws on the form ut = ∂x (G(u)) and

one may require that the deformation of the integrable hierarchy preserves the form of

conservation law, i.e. ut = ∂x (G(u) + ...). The general classification of scalar viscous

conservation laws has been recently discussed in [3].

A special class of conservation laws is given by Hamiltonian equations. These are

equations of the form ut = ∂x(G(u)+ . . . ) such that the deformed currents G(u)+ . . .

can be written as variational derivatives w.r.t. the variable u, i.e.

ut = ∂x
δ

δu

(
∫

(h0(u) + . . . ) dx

)

.

At the dispersionless level all equations of Hopf hierarchy are Hamiltonian w.r.t. the

operator ∂x that defines a Poisson bracket of hydrodynamic type [10]. This observa-

tion suggests to deform the Hamiltonians, requiring that they remain in involution

w.r.t. the Poisson bracket. This approach has been first proposed and developed

in [11].

An alternative classification procedure relies on the observation that Hopf type

equations possess a bi-Hamiltonian structure. This suggests to classify integrable

deformations according to the existence of a deformed bi-Hamiltonian structure [12,

19, 13, 16, 17, 18].

A common feature of these different approaches is that deformations are parametrised

by arbitrary functions. Clearly, the numbers of the functional parameters involved

crucially depends on the problem at hand. In this paper, following [3] we consider

the case of scalar conservation laws extending the analysis to the case of dispersive
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conservation laws. Besides the undeniable relevance of conservation laws in physical

applications, our focus is also motivated by the fact that, within the more general

context of systems of PDEs of hydrodynamic type, the class of integrable diagonaliz-

able equations [23] coincide with the class of diagonalisable systems of conservation

laws [21].

A key observation of the present work is that for scalar evolutionary PDEs the

coefficients corresponding to the quasilinear terms have a tensorial nature. More

precisely, given a PDE of the form

ut = X1(u)ux + ǫ(X2(u)uxx + . . . ) + ǫ2(X3(u)uxxx + . . . ) + . . .

the coefficients X1(u), X2(u), etc. of the quasilinear terms are invariant under Miura

transformations of the form:

u → v = u+
∑

k

ǫkMk(ux, uxx, . . . ) (1.7)

It is thus natural to expect that these coefficients play a crucial role in the classification

problem. We also observe that the above transformations, which can be seen as

perturbation of the identity, trivially preserve the dispersionless limit.

Based on results of the present paper combined with results already existing in

the literature we formulate the following conjecture:

Conjecture 1.1 Two scalar integrable evolutionary PDEs admitting the same quasi-

linear part are Miura equivalent.

According to this conjecture the number of free functional parameters appearing

in deformations coincide with the number of independent functions in the quasilinear

part of the equation.

2 Tensorial coefficients

In this Section we analyse in more detail the transformation properties of quasilinear

terms in evolutionary equations of the form

ut = X(u, ux, uxx, . . . ) = X1(u)ux + ǫ(X2(u)uxx + . . . ) + ǫ2(X3(u)uxxx + . . . ) +O(ǫ3)

(2.1)

under a Miura tranformation of the following type

u → v = M0(u) +
∑

k

ǫkMk(ux, uxx, . . . ). (2.2)
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Observing that the vector field X(u, ux, uxx, . . . ) in equation (2.1) transforms accord-

ing to the rule

X(u, ux, ...) → X̃(v, vx, ...) =

(

∂v

∂u
+

∂v

∂ux

∂x +
∂v

∂uxx

∂2
x + . . .

)

Xu=u(v,vx,... ) (2.3)

where u = u(v, vx, . . . ) is the inverse of Miura transformation (2.2), we show that the

coefficients of leading derivatives X1(u), X2(u), etc in (2.1) are not affected by the cor-

rections to the leading part M0(u) of the Miura transformation (2.2). More precisely,

these coefficients transform as tensors w.r.t the leading term of the transformation

and in particular are invariant if such a leading term is the identity, i.e.

u → v = u+
∑

k

ǫkMk(ux, uxx, . . . ). (2.4)

We can prove the following

Theorem 2.1 Under the Miura transformation (2.2), the coefficients X1(u), X2(u), X3(u), ...

of the quasilinear terms in the right hand side of (2.1) transform as

Xk(u) → X̃k(v) = Xk(u(v))

where u(v) is the inverse of the dispersionless limit of (2.2).

Proof. First of all we observe that quasilinear terms in the differential polynomial

X̃(v, vx, ...) = X̃1(v)vx + ǫ(X̃2(v)vxx + . . . ) + ǫ2(X̃3(v)vxxx + . . . ) +O(ǫ3)

are completely determined by quasilinear terms in the differential polynomial

X̃(u, ux, ...) =

(

∂v

∂u
+

∂v

∂ux

∂x +
∂v

∂uxx

∂2
x + . . .

)

X(u, ux, ...) (2.5)

= X̃1(u)ux + ǫ(X̃2(u)uxx + . . . ) + ǫ2(X̃3(u)uxxx + . . . ) +O(ǫ3).

Observing that the inverse of (2.2) is of the form

u = N0(v) +
∑

k≥1

ǫkNk(v, vx, . . . ) (2.6)

it can be easily proved by induction that term X̃k(v)v(k) (i.e. the quasilinear term in

X̃(v, vx, ...) of degree k) is determined by quasilinear terms in X̃(u, ux, ...) of degree

less than or equal to k. Hence, in the following we will focus our analysis on quasilinear

terms of X̃(u, ux, ...) only. Let us now write the Miura transformation (2.2) as

u 7→ v = M0(u) +
∑

k≥1

ǫk(ak(u)u(k) +Rk(u, ux, . . . )), (2.7)
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where the homogenous part of the k−th degree Mk(u, ux, . . . ) has been decomposed

into the quasilinear part and the remainder. We check by a direct calculation that

quasilinear term of X̃mu(m) of X̃(u, ux, ...) computed by using the formula (2.5) are

not affected by the reminder Rk.

Let us now write the vector field X(u, ux, . . . ) as

X =
∑

l≥1

ǫl−1Xl(u)u(l) +NQ

where NQ denotes the non-quasilinear part of X(u, ux, . . . ) and compute the trans-

formed vector field (2.5)

X̃(u, ux, . . . ) =

(

∂F0(u)

∂u
+
∑

k≥1

ǫkak(u)∂
k
x +R1

)(

∑

l≥1

ǫl−1Xl(u)u(l) +NQ

)

where R1 accounts the terms produced by the remainders Rk in (2.7) and terms of

the type
∑

k≥1 ǫ
k ∂ak(u)

∂u
u(k). Observing that the action of R1 on X(u, ux, . . . ) always

produces non-quasilinear terms we have

X̃(u, ux, . . . ) =
∑

l≥1

ǫl−1Xl(u)

(

∂F0(u)

∂u
u(l) +

∑

k≥1

ǫkak(u)u(k+l) +NQ1

)

+NQ2, (2.8)

where NQ1 denotes non-quasilinear terms produced by R1 and NQ2 stays for remain-

ing non quasilinear terms. We can now evaluate explicitly quasilinear terms in (2.8).

Observing that

∂l
xv =

∂F0

∂u
u(l) +

∑

k

ǫk(ak(u)u(k+l)) +R,

where R contain products of at least two derivatives of u, we have that the bracket

in (2.8)
∂F0(u)

∂u
u(l) +

∑

k≥1

ǫkak(u)u(k+l) +NQ1

is equal to

∂l
xv +NQ1−R

and therefore

X̃(v, vx, . . . ) =
∑

l≥1

ǫl−1Xl(u)|u=u(v)∂
l
xv + . . . ,

where the dots stands for non-quasilinear terms, and u = u(v) is the inverse of the

dispersionless part of the Miura transformation.

We have also the following

Corollary 2.2 If two evolutionary PDEs are Miura equivalent and have the same

dispersionless limit then their quasilinear parts coincide.

Obviously, the converse statement is in general not true. However we conjecture

that it is valid if one restricts to the class of integrable equations (see Conjecture 1.1).
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3 Scalar conservation laws

This Section is devoted to the study of integrable scalar conservation laws of the form

ut = ∂x

[

g(u) +

∞
∑

k=1

ǫkωk(u, ux, ...)

]

, (3.1)

where ωk are differential polynomials of degree k.

For the sake of simplicity we will focus on the case g(u) = u2. The general case

can be treated in an analogous way.

In virtue of Conjecture (1.1), equivalence classes (with respect to the action of the

Miura group) of integrable scalar equations are labelled by the independent coeffi-

cients of the quasilinear part. Depending on the class of the equations considered, it

might happen that only a subset of the coefficients of the quasilinear part are sufficient

to determine all the others. The following analysis provides evidence of the fact that

this is the case for independent coefficients of the quasilinear part in conservation laws

of the form (3.1). We will call them central invariants by analogy with the central

invariants introduced in [13].

We follow the approach presented in [3] for viscous conservation laws, that is the

case ω1 6= 0 in (3.1), and extend it to dispersive conservation laws where only even

powers in the formal parameter ǫ appear in (3.1). The main steps of this approach

can be summarised as follows:

1. Reduce of (3.1) to its normal form

ut = ∂xω̃u2 = ∂x

[

u2 + ǫa(u)ux +
∑

k>1

ǫkω̃k(u, ux, . . . )

]

(3.2)

where
∂ω̃k

∂ux

= 0, ∀k > 1.

This reduction is always possible and it is unique (see [3]).

2. Impose the integrability condition, i.e. the requirement that there exists a family

of conservation laws

uτ = ∂xω
def
f = ∂x

[

f(u) +

∞
∑

k=1

ǫkfk(u, ux, ...)

]

(3.3)

that commute with (3.1). We note that, as shown in [4, 3], this is equivalent

to require that the 1-forms ωu2 and ωf(u) are in involution w.r.t. the Poisson

bracket

{α, β} :=
∑

j

∂j+1
x β

∂α

∂u(j)

− ∂j+1
x α

∂β

∂u(j)

= 0. (3.4)
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In general one imposes the commutativity up to a fixed order in ǫ and one

derives relations that express the terms fk appearing in (3.3) as functions of

the terms a(u) and ωk appearing in (3.2) and of the leading term f(u) in (3.3).

Depending on the structure of the equation (3.2) under consideration, there

might be different constraints among a(u) and the coefficients in ωk, as we will

see below. The presence or absence of these constraints will single out the

independent coefficients of the quasilinear part.

3.1 The viscous case

Let us briefly review the case of a scalar conservation law with viscosity studied in [3]

and that corresponds to the assumption a(u) 6= 0 in (3.2). The procedure outlined

above leads to the following

Theorem 3.1 Up to O(ǫ6), the quasilinear part of ωdef

u2

u2 + ǫa(u)ux + ǫ2b1(u)uxx + ǫ3c1(u)uxxx + ǫ4d1(u)u4x + ǫ5e1(u)u5x +O(ǫ6) (3.5)

is uniquely determined by a(u). More precisely we have

b1 = (a2/2!)′, c1 = (a3/3!)′′, d1 = (a4/4!)′′′, e1 = (a5/5!)′′′′ . . .

As a consequence, up to order O(ǫ5), a(u) is the only independent coefficient and

it is named viscous central invariant in [3]. Furthermore, the coefficients fk of the

symmetries (3.3) are also completely determined by a(u) and by the leading term of

the symmetries f(u).

This result suggests the following

Conjecture 3.2 The quasilinear part of a viscous conservation law (3.2) is uniquely

determined by a(u).

Accordingly the main Conjecture in the case of scalar viscous conservation laws can

be formulated as follows:

Conjecture 3.3 Two integrable viscous conservation laws (3.2) admitting the same

viscous central invariant a(u) are Miura equivalent.

Therefore, if this conjecture is true, for scalar viscous conservation laws (3.2) there

exists only one independent coefficient in the quasilinear part of the equation.
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3.2 Dispersive case

The case of dispersive conservation laws arises as a branching in the classification

procedure that corresponds to the choice a(u) = 0. The difference with the viscous

case (see Theorem 3.1) is remarkable as the classification suggests the existence of

infinitely many free functional parameters. Let us assume for simplicity that the

coefficients in front of all odd powes of ǫ vanish (we will justify later this assumption).

In this case the current in (3.2) reads as

ωdef

u2 = u2 + ǫ2b1(u)uxx + ǫ4
[

c1(u)u4x + c2(u)u
2
xx

]

+

+ ǫ6
[

d1(u)u6x + d2(u)uxxu4x + d3(u)u
2
xxx + d4(u)u

3
xx

]

+

+ ǫ8
[

e1(u)u8x + e2(u)uxxu6x + e3(u)u5xuxxx + e4(u)u
2
4x+

+e5(u)u4xu
2
xx + e6(u)u

2
xxxuxx + e7(u)u

4
xx

]

+ . . . ,

(3.6)

and the current in (3.3)

ωdef
f = f(u) + ǫ2

[

B1(u)uxx +B2(u)u
2
x

]

+

+ ǫ4
[

C1(u)u4x + C2(u)uxuxxx + C3(u)u
2
xx + C4(u)u

2
xuxx + C5(u)u

4
x

]

+ ǫ6
[

D1(u)u6x +D2(u)uxu5x +D3(u)uxxu4x +D4(u)u
2
xu4x +D5(u)u

2
xxx+

+D6(u)uxuxxuxxx +D7(u)u
3
xuxxx +D8(u)u

3
xx +D9(u)u

2
xxu

2
x +D10(u)uxxu

4
x+

+D11(u)u
6
x

]

+ . . .

(3.7)

The integrability condition, that is the involutivity conditions on the associated 1-

forms

{ωdef

u2 , ωdef

f(u)} = 0, ∀ f(u)

up to the order O(ǫ12), gives the following set of constraints

At order ǫ0 no conditions are enforced.

At order ǫ2, B1 and B2 are expressed in terms of b1 and f .

At order ǫ4, C1, C2, C3, C4 and C5 are expressed in terms of b1, c1, c2 and f .

At order ǫ6 the terms Di, i = 1, .., 11 are given as functions of b1, c1, c2, d1, d2, d3, d4
and f .

At order ǫ8 the terms Ei, i = 1, .., 22 are expressed as functions of the small letters

(coefficients of ωdef

u2 ) and f . Moreover there appear constraints that express c2 in
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terms of b1, c1 and d1

c2 =
1

144

1

b21

[

117

(

∂2b1
∂u2

)

b31 − 84b21

(

∂b1
∂u

)2

+ 670

(

∂b1
∂u

)

c1 − 330b21

(

∂c1
∂u

)

+ 560b1d1 − 800c21

]

(3.8)

and d3 and d4 in terms of b1, c1, d1 and d2.

At order ǫ10 all the terms Fi, i = 1, .., 42 are expressed as functions of the small

letters (coefficients of ωdef

u2 ) and f . Moreover there appears a constraint that gives d2
in terms of b1, c1 and d1. Furthermore the coefficients e2, e4, e5, e7, f4 and f6 also

are determined in terms of the other coefficients of ωdef

u2 .

At order ǫ12 all the coefficients Gi, i = 1, .., 77 are expressed as functions of the small

letters (coefficients of ωdef

u2 ) and f . Moreover there appear constraints that give e3, e6,

part of the f ′
is and part of g′is in terms of the remaining coefficients of ωdef

u2 , namely

those coefficients that are still free.

Summarizing, the coefficients c2, d2, d3, d4, e2, e3, e4, e5, e6, e7 of ωdef

u2 are uniquely de-

termined in terms of b1, c1, d1, e1 and eventually of higher order small letters.

Above results are summarised in the following

Theorem 3.4 Up to O(ǫ12), all the coefficients of the quasilinear part of (3.6) are

independent.

For the sake of simplicity, we have imposed from the very beginning that in the

case of a(u) = 0 only even powers of ǫ are present. However one can check that this

assumption is not restrictive and it follows directly from computations, at least up to

the sixth order.

Above results lead to the following

Conjecture 3.5 The quasilinear part of an integrable dispersive conservation law

contains only even powers of ǫ and all the coefficients of the quasilinear part are

independent.

3.3 Are all dispersive conservation laws Hamiltonian?

In [11] it was proved that Hamiltonian conservation laws can be reduced to the form

ut = ∂x

[

u2

2
+

ǫ2

24

(

2cuxx + c′u2
x

)

+ ǫ4
(

2pu(4) + 4p′uxuxxx + 3p′u2
xx + 2p′′u2

xuxx

)

+O(ǫ6)

]

(3.9)
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where p(u) and c(u) are arbitrary functions. Equation (3.9) is brought to the normal

form (3.2), up to O(ǫ6),

ut = ∂x

[

u2

2
+

ǫ2

12
c(u)uxx + ǫ4

(

2p(u)u(4) +
4c′(u)2 + 3cc′′

1152
u2
xx

)

+O(ǫ6)

]

(3.10)

by means of the Miura transformation

ũ = u+ ǫ∂x
(

ǫα(u)ux + ǫ2
(

β0(u)uxxx + β1(u)uxuxx + β2(u)u
3
x

)

+O(ǫ4)
)

,

where the coefficients α(u), β0(u), β1(u) and β2(u) are given by

α(u) = −c′(u)

24

β0(u) = −p′(u) +
c′(u)2 − c(u)c′′(u)

384

β1(u) = −p′′(u)

2
+

5c′(u)c′′(u)− 6c(u)c′′′(u)

1152

β2(u) =
3c′′(u)2 + 2c′(u)c′′′(u)− 4c(u)c(IV )(u)

3456
.

Hence, the coefficients of the normal form (3.6) can be uniquely expressed in terms

of the invariants c(u) and p(u). In particular, we have

b1(u) =
c(u)

12

c1(u) = 2p(u)

c2(u) =
4c′(u)2 + 3c(u)c′′(u)

1152

If, for instance, c(u) is a non vanishing constant then the equation reads as

ut = ∂x

[

u2

2
+

ǫ2

24
(2cuxx) + ǫ4

(

2pu(4)

)

+O(ǫ6)

]

(3.11)

Then, the relation (3.8) results into a constraint on the coefficient d1 that is con-

sequently no longer free being uniquely determined in terms of the two functional

parameters c(u) and p(u), i.e.

d1(u) =
1

7

p(u)

c(u)

[

480p(u)− 67

4
c′(u)

]

+
1

112
c(u)

[

11p′(u) +
13

720
c′(u)2 − 7

960
c(u)c′′(u)

]

.

Comparing this result with the one presented in Theorem 3.4, it follows that integrable

hierarchies of dispersive conservation laws in general are not Hamiltonian with respect

to the Poisson operator ∂x or with respect to a Poisson operator related to ∂x by a

Miura transformation. This fact does not exclude a priori the possibility that a single

equation of the hierarchy is Hamiltonian. An example of this type is the Sawada-

Kotera hierarchy, where the SK equation is Hamiltonian but none of its symmetries

can be obtained as a Hamiltonian deformation.
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4 Examples

The classification procedure discussed above turns out to be consistent with alter-

native definitions of integrability (e.g. S-integrability, existence of a bi-Hamiltonian

structure, Backlund transformations) and reproduces a number of relevant examples

known in the literature. Given the general integrable conservation law in the form

ut = ∂x
[

u2 + ǫ2b1(u)uxx + ǫ4 (c1(u)u4x + ...) +

+ǫ6 (d1(u)u6x + ...) + ǫ8 (e1(u)u8x + ...) + ...
]

.
(4.1)

for particular choices of the free functional parameters we easily recover a few exam-

ples well known in the literature. The list below is not meant to be complete.

KdV equation. In the particular case of constant central invariants we could repro-

duce two important examples. The choice

b1 = const. c1(u) = d1(u) = · · · = 0

gives the celebrated Korteweg-de Vries equation.

Hodge KdV equation. The following example of constant central invariants

b1 =
|B2|
2

c1 =
|B4|
4

d1 =
|B6|
6

...

where B2 = 1
6
, B4 = − 1

30
, ... are Bernoulli numbers corresponds to the intriguing

example of the Hodge KdV equation that appeared in study of Gromow-Witten in-

variants in Topological Field Theory [6, 7].

Camassa-Holm and Degasperis-Procesi equations. In the case of linear central

invariants we have the Camassa-Holm equation

ut − ǫ2uxxt = −3uux + ǫ2(uuxxx + 2uxuxx)

and Degasperis-Procesi equation [9]

ut − ǫ2uxxt = −4uux + ǫ2(uuxxx + 3uxuxx).

Notice that these two equations do not appear in the evolutionary form, but can be

brought to the evolutionary form via formal inversion of the operator 1 − ∂2
x. They

can also be reduced to the same dispersionless limit via a rescaling of the dependent

variable u. In both cases the central invariants have the form

b1(u) = c1(u) = d1(u) = · · · = cu

12



but the value of constant c is different and thus as a consequence of Conjecture 1.1

they are not expected to be Miura equivalent.

We conclude this section presenting a list of examples of integrable equations sharing

one and the same quasilinear part and that are known to be Miura equivalent.

KdV vs mKdV equation

Let us consider the Korteweg-de Vries equation

ut = 2uux + ǫ2uxxx (4.2)

and the modified KdV equation in the form

vt = −3v2vx + ǫ2vxxx. (4.3)

We observe that, introducing the transformation of the dependent variable v =

±
√

−2w/3, the equation (4.3) takes the form

wt = 2wwx + ǫ2
(

wxxx −
3

2w
wxwxx +

3

4w2
w3

x

)

, (4.4)

whose quasilinear part coincides with KdV equation (4.2). Hence the Conjecture 1.1

is consistent with the very well known fact that there exists the Miura transformation

mapping the equation (4.2) into (4.3) (see e.g.[1]), that is explicitly given by

u = −3

2

(

v2 + ǫ
√
2vx

)

.

KdV vs Gardner equation

The Gardner equation

vt = ∂x
(

v2 − αv3 + ǫ2vxx
)

(4.5)

is completely integrable and it is known to be Miura equivalent to the KdV equa-

tion (4.2) via the following invertible transformation [20]

u = v − 3

2
αv2 − 3

2

√
2αǫvx.

We note that this transformation clearly does not preserve the dispersionless limit.

In order to verify the consistency the Conjecture 1.1 with the above classical result

it is first necessary to reduce the dispersionless part of Gardner’s equation (4.5) to

the Hopf equation. This is done by introducing the variable w such that v = (1 ±√
1− 6αw)/(3α), such that the equation (4.5) takes the form

wt = 2wwx + ǫ2
(

wxxx +
9α

1− 6αw
wxwxx +

27α2

(1− 6αw)2
w3

x

)

.
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We immediately see that the above equation and the KdV equation (4.2) share one

and the same quasilinear part.

SK vs KK equation

A direct comparison of Sawada-Kotera and

ut = ∂x

[

5

3
u3 + ǫ2(5uuxx) + ǫ4(uxxxx)

]

Kaup-Kuperschmidt equations

ut = ∂x

[

5

3
u3 + ǫ2

(

5uuxx +
15

4
u2
x

)

+ ǫ4(uxxxx)

]

clearly show that these two equation possess the same quasilinear part and as a con-

sequence of Conjecture (1.1) they are expected to be Miura equivalent. Indeed, such

a Miura transformation exists and was discovered by Fordy and Gibbons ([15]).

5 Concluding remarks

In this paper we focussed our attention on the study of equivalence classes of integrable

dispersive conservation laws with respect to Miura transformations. The analysis of

transformation properties of quasilinear terms in the deformation and the results

from the perturbative approach suggest that equations sharing one and the same

quasilinear part are also Miura equivalent. This seems to be a general principle.

The table (1) aims at providing a summary of currently known classification results

of scalar integrable PDEs. We have also included the case of bi-Hamiltonian structures

although in this case the invariant parameter is not directly related to the quasilinear

part of the corresponding equations.

Type of deformations Numbers of invariants References

General viscous deformations 2 (conjecture) [16]

General dispersive deformations [22]

Viscous conservation laws 1 (conjecture) [3]

Dispersive conservation laws ∞ (conjecture) present paper

Hamiltonian conservation laws ∞ (conjecture) [11, 14]

Bi-Hamiltonian structures 1 (proved in [18]) [12, 19, 17, 18, 2]

Table 1: Summary of known and conjectured results in the scalar case.
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A part from the bi-Hamiltonian case where results at any order are already avail-

able, other results have been proved so far only up to a certain order in the deforma-

tion parameter ǫ. The number of independent functions parametrising the quasilinear

part depends on the type of deformations. In the case of dispersive conservation laws

apparently the coefficients of the quasilinear part can be arbitrarily chosen. A sim-

ilar freedom has been observed for Hamiltonian conservation laws [14]. Notice that

Miura transformations involved in this case are canonical and the comparison with

dispersive conservation laws is not immediate (as explained in Section 3.3). Viscous

deformations turns out to be much more rigid being parametrised by a single func-

tion of one variable for viscous conservation laws [3] and by two functions for general

viscous equations [16].

We point out that although there is a certain flexibility in the choice of the func-

tional parameters that characterise the deformation, it is more convenient to choose

invariant parameters as they allow a direct comparison between different equations

not necessarily brought to their normal form.

We conclude mentioning that the case of integrable systems of conservation laws

of the form

ui
t = ∂x

[

f i(u) + ǫ(Ai
j(u)u

j
x) + ǫ2(Bi

j(u)u
j
xx + C i

jk(u)u
j
xu

k
x) +O(ǫ3)

]

, i = 1, . . . , n.

is completely open. For instance, even the generalization of the notion of normal form

is not straightforward. Moreover it is not difficult to check that the coefficients of the

quasilinear part do not transform as tensors under a general Miura transformation.

We plan to tackle this case in a future publication.
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