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Abstract

We propose a new approach to data driven constraint programming. By extending

the relational model to handle constraints and variables as first class citizens, we are

able to express first order logic SAT problems using an extended SQL which we refer

to as SAT/SQL. With SAT/SQL, one can efficiently solve a wide range of practical

constraint and optimization problems. SAT/SQL integrates both SAT solver and

relational data processing to enable efficient and large scale data driven constraint

programming.

Furthermore, our research presents two novel meta-programming operators: MIN-

REPAIR and MIN-CONFLICT which are iterative debugging facilities for constraint

programming with SAT/SQL.

Keywords: constraints; databases; algebra; optimization; satisfiability
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Chapter 1

Introduction

Constraint Programming (CP) has been a part of the academic research within the

area of classical Artificial Intelligence (AI) in Computer Science (CS) since the 1960s

[39,47]. Since then there has been a number of research breakthroughs in the area of

CP [2,15,36,43]. CP allows one to express complex problems such as those classified in

the Non-deterministic Polynomial (NP) complexity space, these are a form of problem

known as a Constraint Satisfaction Problem (CSP).

There are a number of CSPs which CP can solve. A well known CSP is the N-

Queens problem [45]. Scheduling is another problem that can be modelled as a CSP

and can be used in practice. A feasible solution to the scheduling problem would be

a complete schedule that contains no conflicts in events and any other constraints

that may exist in the particular problem. Another area that uses CSPs to prove or

disprove the correctness of algorithms is known as formal verification. There many

works which cover CP methods for performing formal verification in detail [10,19,33].

Alongside CP, databases have been a big part of the technology field through-

out its evolution. This evolution has also seen the birth of many different kinds

1https://www.oracle.com/ca-en/database/
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of database systems. The most notable kind of database system is the relational

database. Starting with the prototype System R [48] and Oracle DB1 as the first

commercial release in 1979 [29]. With the relational database system came the Struc-

tured Query Language (SQL). SQL is the standard language for interfacing directly

with relational database systems. Even today, relational database systems are at the

forefront of the majority of data-driven systems.

1.1 Motivation

The motivation comes in two pillars of problems to solve, structured data management

with relational databases and the development in CP for Satisfiability (SAT) solvers.

With the recent rise in big data, it becomes important for database systems to han-

dle complex challenges. One of these challenges is the problem of ensuring the safety

and data quality within the contents of database systems. A Database Management

System (DBMS) in modern times contains features of limited integrity checking, but

it lacks the tasks of optimizing the integrity of the data and ensuring the satisfaction

of the constraints within the data. The challenge with incorporating these features

by traditional means into a DBMS is due to the computational complexity which is

required to perform these tasks, which is NP-complete.

Now we look at what SAT solvers have to play in this. SAT solvers are great

solutions to optimization problems which are considered NP-complete. Though there

is some work which explores this avenue, such as [34], there has been little done to

bring the potential of SAT solvers into the data processing pipeline. In addition, there

has been a rise in programming languages using read-evaluate-print-loop (REPL)

mechanisms to provide a more iterative and interactive programming experience.

From this, there is motivation to develop a new data processing framework which

2



merges the technologies of both databases and CP. Due to the popularity of relational

database systems, this work focuses on the solution for relational database systems.

This framework would present a method of performing SAT solving against database

relations. This would involve modification of both how one would interact with the

DBMS and the data structure of the relations within the DBMS as well.

To go along with this, we propose improvements to be made to the REPL environ-

ment for CP. As we merge SAT solvers and relational DBMSs to show this benefit,

so too does it become beneficial to provide an effective REPL experience to the CP

aspect of interacting with this theoretical DBMS.

1.2 Approach

This section will outline the overall approach taken throughout the thesis research.

First, we describe the idea of Data-Driven Constraint Programming. Second, we de-

scribe how the idea of extending SQL to include constraint manipulation. Third, we

describe the support methods given for iterative and interactive constraint program-

ming.

1.2.1 Data Driven Constraint Programming

Data Driven Constraint Programming derives a CP model right from pure data. Lets

say we have the following constraints:

ci ← x > 5 (1.1)

cj ← x ≤ y ∧ y 6= 5 (1.2)

3



Where x and y are variables part of CP model. Now lets ask could we express

these constraints ci and cj as data? Could we create, update, or delete ci and cj

within a database? The answer is yes to all.

A constraint in itself can be treated as a data structure that defines the type of

constraint to enforce and the members to enforce the constraint upon. For instance, ci

is defined as a greater than (>) constraint with the variable x as the left-hand member

and the constant 5 as the right-hand member. To create a constraint is simply to

define the components. To update a constraint, we can change the components,

such as the case for ci we could change the constant right-hand member 5 to 3,

we could change the constraint type from greater than to less than (<), and so on.

To delete a constraint, we can either delete the top-level constraint or a constraint

component. For instance, for cj we could either delete cj all together or remove the

y 6= 5 component.

So we can treat constraints as data, how about data as constraints? The answer

to this is also yes, however, the solution is more of a complex one. Similar to writing

constraints as data, there needs to be able to parse the data into constraints. For

instance, if we have a piece of data with greater than defined as the constraint type,

the variable x as the left-hand component, and 5 as the right-hand component, then

this could be parsed into a constraint which enforces x > 5. The parser or data

reader would need to identify the data structure and which attributes to look for

when building the constraint. This would be accompanied by a constraint builder,

which would build a constraint from the attributes parsed in whichever CP framework

that is used.

In our work, we present a proof of concept framework which meets all the criteria

mentioned above. This framework is able to create, update, and delete constraints

as data. The framework also can dynamically parse constraints from data with both

4



predefined and user-defined data structure templates.

1.2.2 Constraint Manipulation in SQL

SQL is an efficient, popular, complete, and elegant language for interfacing with

relational databases. For these reasons, we would want to reuse what is already a

good language. SAT/SQL is what we propose as an extension of the existing SQL

with CP added. Additions would include constraint operators and the ability to add

CP typed fields.

A concept of this language using relational algebra was proposed and shown in

our previous work [51]. In this work, we defined a relational model with constraints.

We started by referring to the typical relational model from many relational DBMSs

such as PostgreSQL2. Then defined the types that would be added to the relational

model, these include:

• VAR[τdata]

• CONSTRAINT

Where VAR[τdata] is the CP variable type for the relational model and τdata is the

data type for the CP variable, which would be a type from the traditional relational

model. These extended types would be assigned to field within relations and views,

which would be containing the CP members. SAT/SQL would allow for querying

fields with these extended types familiarly and naturally compared to standard SQL.

Using similar concepts from Section 1.2.1, SAT/SQL can be used to run queries

against a capable DBMS to utilize the CP features. For example, one can create a

new relation using the CREATE statement from SQL with both traditional data types

along with the extended type VAR to define CP variable typed attributes, as shown in

2https://www.postgresql.org/
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CREATE TABLE T (

name TEXT,

submissions INTEGER,

groupId? VAR[INTEGER]

);

(a) Creating a Constraint Relation.

INSERT INTO T(name, submissions, groupId)

VALUES (

‘Michael Valdron’,

250,

new_var()

);

(b) Insert a New Constraint Variable.

SELECT name,

submissions,

groupId? :>: 3 :and: groupId? :<: 7 as c

FROM T;

(c) Create Constraint from Relation.

Figure 1.1: SAT/SQL Examples.

Figure 1.1a. One can also create new tuples within a relation using the INSERT INTO

statement from SQL which will create CP variables under VAR typed attributes, as

shown in Figure 1.1b. Creating constraints from such a relation is also possible using

the SELECT statement from SQL to create expressions that can contain some VAR

typed attributes and extended operators which will form the constraints, as shown in

Figure 1.1c. Extended operators in SAT/SQL are shown and discussed in Chapter 4.

Figure 1.1c also provides an example of using SAT/SQL to create a data repre-

sentation of a constraint as mentioned in Section 1.2.1, further showing the use of

Data-Driven Constraint Programming. SAT/SQL is the core of bring the relational

DBMS and the SAT Solver together. More on SAT/SQL will be discussed further in

detail in Chapter 4, with many case studies.
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1.2.3 Iterative and Interactive Constraint Programming

With the modernization of programming languages comes environments such as the

REPL. Various DBMSs even provide a REPL environment for performing SQL queries,

such as PostgreSQL. Though the REPL environment can provide an iterative and in-

teractive programming experience, there are still many REPL which need improving

informativeness in error checking. The CP also have been lacking in this aspect in

the iterative and interactive environment.

In our work, we provide improvements in informativeness within the area Iterative

and Interactive Constraint Programming. These improvements come in two method-

ologies, Conflict Detection and Optimal Conflict Repair. Conflict Detection has some

algorithm which takes a CP model as input and returns the identified minimal conflict

constraint group found amongst the overall constraints in the model in the form of a

set known as a min-conflict set. Optimal Conflict Repair has some algorithm which

takes the same input as an algorithm for Conflict Detection, however, the return set

is a set of constraints which if pruned from the overall constraints would fix a conflict

in the model, this set is also known as the min-repair set. Both the concepts of the

min-conflict set and min-repair set are discussed briefly in our other work [51].

With these methodologies, we provide a better iterative and interactive constraint

programming experience in both SAT/SQL and other REPL environments. These

methodologies will be discussed more in Chapter 5.

1.3 Contribution

Our work contributes to two areas of CS, namely CP and databases. For CP, we

see additional work in data driven CP models including data driven SAT solvers.

We also see the iterative and interactive environment improved with the ability to

7



compute the min-conflict set and min-repair set in real time. For databases, we bring

a conceptual extension of SQL, SAT/SQL, and the idea of a DBMS which works with

the additions brought by SAT/SQL.

The contributions also provide the benefit of CP integration into databases via

the SAT/SQL extension language. With the iterative and interactive constraint pro-

gramming features we present for improving the CP experience, we also bring that

same benefit to SAT/SQL. As with standard SQL along with various DBMSs in to-

day’s market, SAT/SQL will also have a REPL environment along with iterative and

interactive constraint programming improvements for the CP additions within the

language.

1.4 Outline

We have provided a summary of what this literature will cover in greater detail in the

upcoming chapters. This section will outline the upcoming chapters in chronological

order. The outline is as follows:

• Chapter 2 provides background on CP concepts and mathematical logic.

• Chapter 3 goes into the background of relational data management and SQL.

• Chapter 4 defines SAT/SQL with detail and demonstrates SAT/SQL with case

studies.

• Chapter 5 shows the methodologies for providing Iterative and Interactive cod-

ing to CP. The contents of this chapter include Conflict Detection, Conflict

Repair, and a case study to demonstrate.

• Chapter 6 provides the implementation and evaluation details for the experi-

mentation of the methodologies.

8



• Chapter 7 goes into detail on the related work in SAT Solvers. The related

work’s main focus is contributions in iterative and interactive programming

with CP or SAT Solvers.

• Lastly, Chapter 8 summarizes the outcome of all research done and describes

the directions we would like to see the work go in.

9



Chapter 2

Constraints & Mathematical Logic

Before one could get deep into the core content of the work done in this literature, we

must look at some of the subject matter that makes up areas that this work utilizes.

We shall begin looking into key points behind CP and SAT solvers.

In this chapter, we will present an overview of the background found in Constraints

and Mathematical Logic. In the following sections, we present the preliminary con-

cepts in Propositional Logic, Integer Variables in CP, and Optimization.

Also, we will present examples of modelling using these concepts.

2.1 Propositional Logic

In this section, we visit the background of Propositional Logic and the use of

this subject with NP-complete problems. The content in this literature assumes that

the reader has knowledge in Logic and Complexity Theory. We recommend the

literatures [4, 35, 46] to fill in any knowledge gaps these preliminary areas. We also

refer to the literature [46] for the background in Propositional Logic.

Definition 1 (Propositional Logic (PL)). Naturally pure boolean and also referred to

10



as Propositional Calculus, expresses statements for problems within a boolean state-

ment. As [46] defines it, logical rules which defines mathematical statements.

One can apply PL in many situations. For example, we have a supervisor who

organizes a meeting with an employee. Let us say we have a statement which states

the following, employee does not miss meeting with the supervisor. The following

mathematical expression shows this example in PL form:

S =⇒ E (2.1)

Equation 2.1 shows PL representation of the statement, S is the boolean which

indicates if the supervisor shows up, and E indicates if the employee shows up. If

the supervisor does not show up, meaning S is false, it matters not if the employee

shows up as there is no meeting to miss. If the supervisor does show, meaning S is

true, the employee must show not to miss a meeting, meaning E must be true for

Equation 2.1 to be true in this case.

Though this a simple example, there are many more challenging problems in PL.

We move on to two critical concepts for dealing with such problems.

2.1.1 Conjunctive & Disjunctive Normal Form

Most problems are more extensive and may contain multiple statements to define it.

Thus, we need ways of connecting these mathematical statements.

p ∧ q ∧ r ∧ . . . (2.2)

Equation 2.2 shows a logical expression in a form referred to as a Conjunctive

Normal Form (CNF). A CNF expression is true when all members of the expression

hold true. Let us conciser a CNF with three members, p∧q∧r. If p, q, and r are true
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then in this case p∧ q∧ r would also be true. Now lets say r is false, this would mean

the expression simplified to True ∧ True ∧ False, therefore the whole expression is

now false.

p ∨ q ∨ r ∨ . . . (2.3)

Now we have Equation 2.3, which shows an expression in a form referred to as a

Disjunctive Normal Form (DNF). A DNF expression yields true if any of the members

within the expression yield true. Let us conciser a DNF with three members, p∨q∨r.

Now lets say p and q are true and r is false, this would mean the expression simplified

to True ∨ True ∨ False, therefore the whole expression is true. If all members are

false, False ∨ False ∨ False, then the whole expression would be false.

2.1.2 Truth Tables

Truth Tables are a great way to break down PL expressions into subexpressions to

verify which each of these evaluates for every outcome permutations. Each column in

a Truth Table represents the permutations of outcomes for a component. Each row

of a Truth Table shows the outcomes for every possible permutation of the expression

components.

Table 2.1 shows an example the construction of a Truth Table for the expression

p ∧ (q ∨ ¬r). Notice that the outcomes of variable components p, q, and r match the

number of the permutations of outcomes possible (number of rows). The permuta-

tions, in this case, 2Vn where Vn = 3 variables, yields 9 permutations of outcomes,

which allows us to create the rows and columns for the variable components which

are shown in the first view of Table 2.1. Next, we fill an additional column(s) for

single component(s) subexpressions. In this case, we only have one single component

12



p q r ¬r q ∨ ¬r p ∧ (q ∨ ¬r)
T T T ? ? ?
T T F ? ? ?
T F F ? ? ?
T F T ? ? ?
F T T ? ? ?
F F T ? ? ?
F T F ? ? ?
F F F ? ? ?

p q r ¬r q ∨ ¬r p ∧ (q ∨ ¬r)
T T T F ? ?
T T F T ? ?
T F F T ? ?
T F T F ? ?
F T T F ? ?
F F T F ? ?
F T F T ? ?
F F F T ? ?

p q r ¬r q ∨ ¬r p ∧ (q ∨ ¬r)
T T T F T ?
T T F T T ?
T F F T T ?
T F T F F ?
F T T F T ?
F F T F F ?
F T F T T ?
F F F T T ?

p q r ¬r q ∨ ¬r p ∧ (q ∨ ¬r)
T T T F T T
T T F T T T
T F F T T T
T F T F F F
F T T F T F
F F T F F F
F T F T T F
F F F T T F

Table 2.1: Truth Table construction of the logical expression p ∧ (q ∨ ¬r).
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subexpression, ¬r, seen in the second view of Table 2.1. Then, we keep going up in

subexpression size until we reach the entire expression, see the third view of Table 2.1

for q ∨ ¬r. The last view of Table 2.1 has the shows the complete Truth Table with

all broken down component outcomes with the addition of the full expression.

We revisit Equation 2.1 for the example statement in Section 2.1, we can produce

the following Truth Table:

S E S =⇒ E

T T T

T F F

F T T

F F T

Even though we can use a simple expression such as Equation 2.1 for constructing

a Truth Table, it is unnecessary as the permutations of outcomes for this expression

would be relatively simple in itself to identify. Truth Tables are at their best when

using expressions with multiple levels of components, such as shown in Table 2.1.

More examples of Truth Tables can be found in [46].

2.2 Modelling using PL

In this section, we revisit the concepts of PL seen in Section 2.1 and in [46] to show how

to model problems with PL. This section’s content provides the core fundamentals

one would need to enter the understanding of how basic CP models work. Throughout

this section, we will look at a few complex problems to demonstrate using the concepts

of PL to solve those said problems.

Problem 1 (Scheduling). Three people are trying to schedule a meeting with each

other. The individuals comprise Jack, Jill, and Joe. Jack is available to meet any-
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where and any day except Wednesday. Jill is only available to meet in Toronto on

Monday, Tuesday, and Wednesday, but can meet anywhere on Thursday and Friday.

Joe is only available to meet in Oshawa on Monday and Friday. Where is a common

meeting place, and when should they meet?

In Problem 1, we have a scheduling problem between three individuals. We have

common variables of the meeting, which could constraint each person from attending.

These variables are a place p and the day of week d. The possible values of days in

the problem are D = {M,T,W,R, F} such that d ∈ D. The possible locations in the

problem are P = {T,O} such that p ∈ P, T as Toronto, and O as Oshawa. Next, we

need to model the statements which express the limits of each person. We first define

a function m(d, p), which gets a boolean that indicates if a meeting can happen on

the day d and at place p. Second, we express these statements in mathematical logic

in the form of PL which will enforce our model’s constraints.

C1 =
∧
p∈P

¬m(W, p) (2.4)

C2 =
∧

d∈(D−{R,F})

¬m(d,O) (2.5)

C3 =

 ∧
d∈(D−{M,F})

∧
p∈P

¬m(d, p)

 ∧ ¬m(M,T ) ∧ ¬m(F, T ) (2.6)

C = C1 ∧ C2 ∧ C3 (2.7)

The equations above show the overall model of constraints in the form of PL.

Equation 2.4 expresses the restriction of Jack which cannot meet on Wednesdays.

Equation 2.5 shows Jill’s restriction, in which she can only meet in Toronto on some
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days then can meet anywhere other days. Equation 2.6 shows the restriction of

Joe, who can only meet in Oshawa on certain days. All restrictions are shown as

constraints C1, C2, and C3 respectively. Each constraint shows if the person the

constraint represents can make it to a meeting.

Different from the other equations, Equation 2.7 shows the overall CNF for the

model C. If C is true then a meeting can happen whereas if C is false then no meeting

is possible. This is standard component of SAT solvers and any constraint which is

added to a SAT solver model is then placed in a CNF expression.

For the next step in solving this problem, we turn to the use of Truth Tables.

Since this problem is large, we will break the Truth Table for this model into parts,

and not all the outcomes will be shown. Table 2.2 and Table 2.3 shows the Truth

Table split into parts. The first three outcomes are shown along with an outcome i,

which shows the only outcome with C as true. From this Truth Table, we can see

that outcome i has all constraints as true. When looking at the tabular views which

show the outcomes for the model boolean variables, we see that all variables except

m(F,O) are false. This outcome shows that the only day and place feasible for these

individuals to meet is Friday and Oshawa, respectively.

2.3 PL with Integer Variables

In Section 2.2, we took a look at modelling a problem over PL using pure boolean

expressions. We can model problems in PL with integers as well. In this section, we

take a look at adding integers to the mix. Many problems in CP use integer variables

either in pure integer problems or as an indexed representation for choices. Using

integers in PL also can lead one to explore other forms of logic programming such as

Linear Programming (LP) and Mixed Integer Programming (MIP).
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# m(M,T ) m(T, T ) m(W,T ) m(R, T ) m(F, T )
1 T T T T T
2 T T T T T
3 T T T T T

. . . . . . . . . . . . . . . . . .
i F F F F F

. . . . . . . . . . . . . . . . . .

# m(M,O) m(T,O) m(W,O) m(R,O) m(F,O)
1 T T T T T
2 T T T T F
3 T T T F F

. . . . . . . . . . . . . . . . . .
i F F F F T

. . . . . . . . . . . . . . . . . .

# ¬m(M,T ) ¬m(T, T ) ¬m(W,T ) ¬m(R, T ) ¬m(F, T )
1 F F F F F
2 F F F F F
3 F F F F F

. . . . . . . . . . . . . . . . . .
i T T T T T

. . . . . . . . . . . . . . . . . .

Table 2.2: Truth Table (Part 1) for Problem 1.
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# ¬m(M,O) ¬m(T,O) ¬m(W,O) ¬m(R,O) ¬m(F,O)
1 F F F F F
2 F F F F T
3 F F F T T

. . . . . . . . . . . . . . . . . .
i T T T T F

. . . . . . . . . . . . . . . . . .

#
∧
d∈(D−{M,F})

∧
p∈P ¬m(d, p)

1 F
2 F
3 F

. . . . . .
i T

. . . . . .

# C1 C2 C3 C
1 F F F F
2 F F F F
3 F F F F

. . . . . . . . . . . . . . .
i T T T T

. . . . . . . . . . . . . . .

Table 2.3: Truth Table (Part 2) for Problem 1.
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Consider the following statements:

1. Greg is older than Sally.: Equation 2.8

2. Greg is at most 25 years old.: Equation 2.9

3. Sally is at least 16 years old.: Equation 2.10

g > s (2.8)

g ≤ 25 (2.9)

s ≥ 16 (2.10)

With these statements, we consider two integer variables, Greg’s age g ∈ Z and

Sally’s age s ∈ Z. To satisfy the first statement translate to the PL expression shown

in Equation 2.8. The next two statements define the bounds in the problem, referring

to that Sally is at least 16, and Greg is at most 25. For this specific case, we could

express these bounds in two different ways. The first method of expressing the bounds

is to keep the definition of the variables to be members of Z space, therefore translate

the statements to the PL expressions shown in Equation 2.9 and Equation 2.10.

Another way of expressing these statements is to define the variables with a bounded

range, such that g ∈ [16, 25] and s ∈ [16, 25]. Since we know that no person in this

problem can exceed these bounds the range [16, 25] works, therefore Equation 2.9 and

Equation 2.10 would be unnecessary. If Equation 2.8 did not exist however then the

first method of expressing Equation 2.9 and Equation 2.10 would be the only valid

one.
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Now, what if we are dealing with a collection of integer numbers X ⊂ Z? Let us

say we have the following statements:

1. All numbers in the collection X must be different.

2. Some numbers in the collection X can be even numbers.

3. Numbers in collection X must total to 100.

For these statements, we could use expressions with quantifiers as such:

∀x ∈ X,∀y ∈ X(x 6= y) (2.11)

∃x ∈ X(x mod 2 ≡ 0) (2.12)

∑
x∈X

x = 100 (2.13)

There is an issue with all three of these equations. Using quantifiers puts the

expressions in first-order logic, which we cannot use in practical logic programming.

We go more in detail with the issue of first-order logic in Section 2.4. For this

example, we shall convert from our first-order logical expressions to expanded logical

expressions, as shown below:

X1 6= X2 ∧X1 6= X3 ∧ . . . ∧X1 6= Xn ∧X2 6= X3 ∧ . . . ∧Xn−1 6= Xn (2.14)

X1 mod 2 ≡ 0 ∨X2 mod 2 ≡ 0 ∨ . . . ∨Xn mod 2 ≡ 0 (2.15)
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S E N D

+ M O R E

---------

M O N E Y

Figure 2.1: Send More Money Cryptarithmetic Problem

X1 +X2 + . . .+Xn = 100 (2.16)

Problem 2 (Cryptarithmetics). A classical problem commonly used as show case

CP [1]. We define a phrase then the resultant word. For this problem, let us use the

one outlined by Nareyek [1] and shown in Figure 2.1. We start by defining variables

for each letter in the problem; S, E, N , D, M , O, R, and Y . The letter to integer

variables will make up a system of linear equations calculate the resultant number

for the word. To solve the problem, assign integers to the letters such that the words

making up the phrase sum to the resultant word, shown in Figure 2.1.

Now lets look at Problem 2, which uses integers within PL. To start this prob-

lem, let L be the set of letters {S,E,N,D,M,O,R, Y } such that we can define an

expression that ensures all letters are assigned different integers, such as we defined

Equation 2.14. The expression is as follows:

L1 6= L2 ∧ L1 6= L3 ∧ . . . ∧ L1 6= Ln ∧ L2 6= L3 ∧ . . . ∧ Ln−1 6= Ln (2.17)

Equation 2.17 ensures all letter integers and the integer results of the words will

not be the same as each other. Next, we define the expressions for each word:
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w1 = 1000S + 100E + 10N +D

w2 = 1000M + 100O + 10R + E

w3 = 10000M + 1000O + 100N + 10E + Y

Where w1 is the integer variable for the word SEND, w2 is the integer variable for

the word MORE, and w3 is the integer variable for the word MONEY. The expressions

include variables for all letters and coefficients that start at 1 then scale up by a factor

of 10 for each term. Notice that the same letters which share different words also

share the same variable between the linear equations. This crossing of letters between

words means the solution choice for a letter would need to satisfy every word in which

that letter occurs.

These linear expressions will yield integer results for w1, w2, and w3. We need to

identify the phrase and the resultant word. w1 and w2 are part of the phrase. w3 is

the resultant word, which means that w3 is the sum of the phrase. We will need one

more expression for this:

w1 + w2 = w3 (2.18)

This last expression, Equation 2.18, enforces the sum on w1 and w2 to equal w3.

This also enforces the letters in common to find solutions which makes this equation

work. This problem complex and falls under the NP-complete complexity space [21].

The good news is SAT solvers are perfect for solving problems within the NP-complete

space. We ran this model on a SAT solver and got this solution for the letters:
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{S = 9, E = 5, N = 6, D = 7,M = 1, O = 0, R = 8, Y = 2}

Let us check if the letters solution from the SAT solver produces a feasible solution

when we use them with our expressions:

w1 = 1000S + 100E + 10N +D

w1 = 1000(9) + 100(5) + 10(6) + (7)

w1 = 9567

w2 = 1000M + 100O + 10R + E

w2 = 1000(1) + 100(0) + 10(8) + (5)

w2 = 1085

w3 = 10000M + 1000O + 100N + 10E + Y

w3 = 10000(1) + 1000(0) + 100(6) + 10(5) + (2)

w3 = 10652

w1 + w2 = w3

(9567) + (1085) = (10652)

10652 = 10652

Indeed, subbing the solution we got into the expressions provides us with a pos-
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sible answer. Adding integers to PL expressions give us a general understanding of

modelling constraints in CP and SAT solvers.

2.4 First-Order Logic

Back in Section 2.3, we mentioned that Equation 2.11, Equation 2.12, and Equa-

tion 2.13 were in first-order logic which therefore could not be used in the form these

expressions were in. In this section, we briefly discuss first-order logic and why there

is an issue with using it when creating logical expressions such as PL expressions.

2.4.1 Predicates and Quantifiers

Predicates are functions with some operation to done on the arguments, which will

have a boolean result:

P (x) ∧Q(x)

Quantifiers perform an operation which relates to the quantity of something.

This description is not very clear, so let us discuss some types and examples of

quantifiers to shed more light on them. In mathematics, there are two types of

quantifiers one can use in first-order logical expressions [46]:

• Universal Quantifiers ‘∀’

• Existential Quantifiers ‘∃’

Universal Quantifiers state that in a logical expression that all members of

some domain hold true to the expression. For example, let d be the representation of

a member of some domain D:
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∀(d ∈ D)(d > 2) (2.19)

Equation 2.19 shows that all d from the domain D must be greater than 2. Ex-

istential Quantifiers state that in a logical expression that some members of some

domain hold true to the expression. For example, let us reuse the same members in

Equation 2.19:

∃(d ∈ D)(d > 2) (2.20)

Equation 2.20 shows that some d from the domain D must be greater than 2. From

Equation 2.19 and Equation 2.20, we indeed see that there is a semantic relationship

imposed on every member of d.

2.4.2 Completeness and Undecidability

In 1929, a Ph.D. student and famous mathematician Kurt Gödel proved the Gödel’s

Incompleteness Theorem for his Ph.D. dissertation [30]. Gödel’s Incomplete-

ness Theorem proves that there is a relationship between the semantics and prov-

ability of the expressions within first-order logic.

So from Gödel’s Incompleteness Theorem, we take away that first-order logic

is only semidecidable where the first-order components of expression must have mean-

ing to be complete. Without meaning, the first-order expressions are incomplete thus

are undecidable, which is the issue posed by first-order logic.

In the later Chapter 4, we show how we can work with problems which would call

for the use of first-order logical statements using our SQL language extension that

solves this completeness and undecidability issue.
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2.5 Optimization with Integer Programming

In this section, we now add Optimization to our PL modelling. We can find a solution

using CP which is most optimal in accedence to the model given. Some CSPs need

this for solving the problem entirely, meaning that a feasible solution is not enough.

Optimization in SAT solvers is done using an objective function. This objective

function is actually an Integer Linear Programming (ILP) expression which constructs

a puseudo-Boolean (PB) constraint. The PB constraint enforces the SAT solver to

look for the solution that meets the objective of the PB constraint. There are two

objectives one can invoke on ILP expressions as the objective function; minimize and

maximize. When the objective is to minimize, the solver will push towards minimizing

the resultant value of the ILP expression. When the objective is to maximize, the

solver will push towards maximizing the resultant value of the ILP expression.

x1 + x2 + . . .+ xn (2.21)

Let φ be the objective function of a SAT solver. Expressing a minimize objective

function can be done on the ILP expression shown in Equation 2.21:

φ(x)← min
x∈Zn

(x1 + x2 + . . .+ xn) (2.22)

Such that x is a vector in Zn that contains every variable xi, these are the inputs

of the function. We can also express the maximize objective function similarly as

follows:

φ(x)← max
x∈Zn

(x1 + x2 + . . .+ xn) (2.23)

The variable vector x in Equation 2.22 and Equation 2.23 is in Zn, however, we
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can also have x be a vector of boolean variables in Bn or any vector space An such

that An ⊆ Zn. Let us use a CSP for to demonstrate objective functions in SAT

solvers:

v← 〈67, 150, 200, 160, 80, 25, 190, 14, 25〉 (2.24)

w← 〈10, 15, 50, 25, 5, 10, 5, 5, 20〉 (2.25)

wc ← 80 (2.26)

Problem 3 (Knapsack). We have a Knapsack which we need to fill. Each item

to place into the Knapsack has a value and a weight. The Knapsack has a maxi-

mum capacity of weight which the total weight cannot exceed. The objective is to fill

the Knapsack with enough items, which maximizes all the items’ total value without

exceeding total weight. Given the constants in Equation 2.24, Equation 2.25, and

Equation 2.26 select the items {{v0, w0}0, . . . , {vn, wn}n} such that the total value

x1v1 + x2v2 + . . .+ xnvn is optimally max with the restriction of the total weight not

exceeding the capacity x1w1 + x2w2 + . . . + xnwn ≤ wc. For more details and history

of the Knapsack Problem see survey by Assi [5].

The Knapsack Problem shown as Problem 3 is a perfect small problem to model

which requires an objective function φ to solve with a SAT solver. Let the model for

Problem 3 look like the following:

Constants:

v,w, wc (2.27)
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Variables:

x : Bn (2.28)

Objective:

φ(x)← max
x∈Zn

(x1v1 + x2v2 + . . .+ xnvn) (2.29)

Constraints:

c← x1w1 + x2w2 + . . .+ xnwn ≤ wc (2.30)

A variable xi within x defined in Equation 2.28 indicate if we choose item i to be

added to the Knapsack. The capacity restriction wc against the item weights w is

defined in Equation 2.30 as c, which is the only constraint in the model. Our objective

function φ(x) is defined Equation 2.29. φ(x) creates an objective for a solver to strive

for, in this case maximizing the sum of item values v. With an objective φ(x) and

a constraint c this model should now be able to provide an optimal solution to the

Knapsack Problem.

Let us say we have this solution, denoted as Sx, for the variables in x:

Sx ← 〈1, 1, 0, 1, 1, 1, 1, 1, 0〉 (2.31)

Let us check if Sx along with the constants from Equation 2.24, Equation 2.25,

and Equation 2.26 produces a overall solution S which is optimal:
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x1w1 + x2w2 + . . .+ xnwn ≤ wc

(10) + (15) + (0)(50) + (25) + (5) + (10) + (5) + (5) + (0)(20) ≤ 80

10 + 15 + 25 + 5 + 10 + 5 + 5 ≤ 80

75 ≤ 80

TRUE

It appears that our variable solution Sx holds true for the constraint. Calculating

φ(x) with Sx and the same constants yields the following objective value φv(x):

φ(x)← max
x∈Zn

(x1v1 + x2v2 + . . .+ xnvn)

φv(x)← x1v1 + x2v2 + . . .+ xnvn

← (67) + (150) + (0)(200) + (160) + (80) + (25) + (190) + (14) + (0)(25)

← 67 + 150 + 160 + 80 + 25 + 190 + 14

← 686

We get with solution Sx an objective value φv(x) of 686 and a total weight
n∑
i=0

wi

of 75. Well we have a feasible answer, but the question is Sx optimal? You will find

that the answer is yes, if we were to try this on every other combination of values for

the variables in x then we would either get infeasible answers or feasible non-optimal

answers (φv(x) < 686). In SAT solvers, algorithms are used to find the optimal

solution Sx using the ILP expression φ(x) by the maximum value found in the search

space.

29



This chapter has given an overview of the Constraints and Mathematical Logic

preliminaries one would need to understand to read the chapters starting with Chap-

ter 4. In Chapter 3, we discuss the relational data model and SQL preliminaries.
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Chapter 3

Relational Data Management

Relational Database Systems are the most common databases in the industry, and

relational data is the most common data model used along with objects. Relational

Data Management is the job of modern relational DBMSs, providing structure and

integrity to the relational data. In this chapter, we provide an overview of the Re-

lational Data Model background and the standard way of interfacing with relational

DBMSs, SQL. The fundamental knowledge in these topics will be essential when

reading our literature starting with Chapter 4.

3.1 Relational Data Model

This section provides background on the Relational Data Model found in relational

DBMSs and relational data files such as Comma Seperated Values (CSV) files. We

recommend the text by Ramakrishnan et al. [44] for full in-depth knowledge into the

Relation Model and Databases as a whole. We also recommend the text by Connolly

et al. [16] for the relational DBMS background as it provides knowledge essential for

academic and industrial use cases of relational DBMSs.
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a1 a2 . . . am
t1 t1[a1] t1[a2] . . . t1[am]
t2 t2[a1] t2[a2] . . . t2[am]
. . . . . . . . . . . . . . .
tn tn[a1] tn[a1] . . . tn[am]

Table 3.1: Visual representation of a relation T .

There are many definitions given for the Relational Model (RM), but one which

stands out is a definition given by Edgar F. Codd [11, 20], the first to propose the

relational data model, who states that RM is a method of managing data in a format

which is consistent with first-order predicate logic. Later in Chapter 4, we will revisit

this definition as it poses a interesting challenge seen within Section 2.3 and discussed

in Section 2.4.

Data within the RM is in the form of transactions, also known as tuples, which

have columns which are attributes, a tabular format. Various DBMSs, datasets,

and other data structure entities use the RM as the data model. In DBMSs, the

RM is expanded to include groups of data structures. These data structures include

Relations and Views. Let us discuss these RM groups.

A Relation (or Table) are the groups of the tabular data which the database stores.

Relations contain the raw data, in other words, the data on the disk. Relational

DBMSs are type strict, meaning attributes within relations have data types. Every

DBMS has its data types and some common ones, such as INT or VARCHAR. For

instance, PostgreSQL1 would not have the exact same data types as Oracle2, but will

have some in common. Now let us go into the relational algebra3 to describe the

structure for relations.

Let us start with a relation T . T contains tuples T [t1, t2, . . . , tn] and attributes

1PostgreSQL Data Types
2Oracle Data Types
3See Chapter 4 of the text by Ramakrishnan [44] for background in relational algebra.
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id : INT first name: TEXT last name: TEXT company : TEXT
t1 1023432 Bob Smith That Awesome Business
t2 1302443 Michael Valdron Ontario Tech University
. . . . . . . . . . . . . . .
tn 1453212 Sarah Nickle Organization Z

Table 3.2: Visual representation of data in a relation named Persons.

T (a1, a2, . . . , am). Each attribute aj has a name denoted as nameattr(aj) and a data

type τaj . Every tuple ti represents data entries within T . In every ti there is are cells

for each aj denoted as ti[aj] which contains data pertaining to the specifics of aj in

ti. Due to the type strict nature of Relational DBMSs ti[aj] has to be restricted to

the type τaj . We can see a visual representation of T as Table 3.1.

Table 3.2 shows a relation named Persons with attributes id, first name, last name,

and company. The tuples Persons[t1, t2, . . . , tn] represents transactional records of

persons in companies. Relations store the raw data records for which they represent,

as such Persons would store all of these records within. There can be many tuples

within relations and likely many attributes, which can be overwhelming for anyone

or even computers to process anything out of these relations. Lucky for a long time,

we have a solution to this.

A view (sometimes referred to as a Result Set) results from performing data

aggregation against the tuples within a relation or relations. Views build at runtime,

which shows the results of queries against databases. Views provide one with the

ability to grab the data desired and aggregated data one wishes to produce from the

raw records within relation(s). All these aspects of views allow one to remove the

visual complexity typically found in relations and even be chained off themselves.

The chaining of views can remove further visual complexity and preserve particular

views with commonly used resultant data for reusability. Let us go into relational

algebra to describe views and data aggregation.
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a′1 a′2 . . . a′m′

t′1 t′1[a
′
1] t′1[a

′
2] . . . t′1[a

′
m′ ]

t′2 t′2[a
′
1] t′2[a

′
2] . . . t′2[a

′
m′ ]

. . . . . . . . . . . . . . .
t′n t′n[a′1] t′n′ [a′1] . . . t′n′ [a′m′ ]

Table 3.3: Visual representation of a view V produced by a query qc.

Let V represent a view, such that V = T onc T
′ onc . . . where onc is a conditioned

join operation performed upon the relations T , T ′, . . . which can be one to many

relations. It is important to specify that views are generated at runtime with a query

qc, therefore we can also denote a view V to be produced as qc : (T × T ′ × . . .) 7→ V

and denote an invoke as qc(T × T ′ × . . .) = V . Just as relations, a view V has n′

tuples V [t′1, t
′
2, . . . , t

′
n′ ] and m′ attributes V (a′1, a

′
2, . . . , a

′
m′). We denote most of V ’s

members with a ’′’ suffix to differentiate from the members of relations. A visual

representation of V can be seen in Table 3.3.

Table 3.4 shows a view OntarioTech which shows everyone in relation Persons,

seen in Table 3.2, that is associated with the company ‘Ontario Tech University’. This

view is produced by a select query which can be expressed using relational algebra:

πa(σc(Persons)) = OntarioTech

Where c is the condition company = ′Ontario Tech University′ and π is the pro-

jection on attributes in a which only include first name, last name, and company from

the relation Persons. Also, there only is one tuple t′1 (or t2 in Persons) which shows

up in result set.

There are caveats with views, however. Since the view runs a query upon fetching

view data, query optimization is essential when it is complicated. One method of

optimization is to create an index for each relation. An index defines an attribute
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first name: TEXT last name: TEXT company : TEXT
t′1 Michael Valdron Ontario Tech University

Table 3.4: Visual representation of OntarioTech view.

or attributes whose values can quickly access their corresponding tuple. This kind of

works like keys do in Hash Tables. It is best to choose an attribute or attributes that

have unique values for uniquely identifying the tuples due to how an index works.

Efficient use of these can significantly improve the performance of queries and view

construction.

3.2 Structured Query Language

In the previous section, we talked about the standard RM and all the forms of data

sources which utilizes it, such as relational DBMSs. In this section, we discuss the

query language which interfaces with most relational DBMSs. The texts by Ramakr-

ishnan [44] and Connolly [16] contain some information on SQL. We recommend

the readings of Fontaine [24] for further background and applications in SQL. More

education in SQL can be found in online resources4.

Structured Query Language (SQL) is the standard language used by relational

DBMSs for performing queries against the database. SQL was created by Donald

Chamberlin and Raymond Boyce back in 1974 [9]. Based off of relational algebra and

is considered a declarative language (and partial procedural) [44], SQL was proposed

for using with Codd’s relational model [11] within database Systems. Though Codd

had argued that SQL deviates away from his original relational model principles [14],

SQL has taken to be the standard language in use for relational database system in

the industry [9].

4SQL background, examples and tutorials can be found at https://www.w3schools.com/sql/.
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Relational DBMSs have their own slight variation of SQL statements, for these

examples we will use PostgreSQL relational DBMS. Other DBMSs will have similar

statements, see other sources which are specific to the relational DBMS of choice if

not PostgreSQL.

Recall that we denote σc as a select query with a c condition. In relational algebra,

we can this to express the following select statement:

πa(σc(T )) on πb(σd(R)) : a ⊆ T (a1, a2, . . . , am),b ⊆ R(b1, b2, . . . , bm′)

Where we have an overall condition c on relation T , an overall condition d on

relation R, a selection of attributes a from the source relation T , a selection of at-

tributes b from the source relation R, and join operator on. In SQL, this expression

is translated into the block of source, which is known as a SELECT statement:

SELECT T. a1 , T. a2 , . . . , R. b1 , R. b2 , . . .

FROM T

NATURAL JOIN R

WHERE c AND d ;

Notice that our join of the relations T on R produced a NATURAL JOIN statement5

within our SELECT statement. Let us focus on single relation SELECT statements for

the remainder of this topic.

Let us revisit relation Persons shown in Table 3.2 and the view OntarioTech seen

in Table 3.4 from Section 3.1. The view OntarioTech is created from a query expressed

in relational algebra as:

πfirst name,last name,company(σcompany=′Ontario Tech University′(Persons))

5See Appendix B.5 for more details on JOIN statements.
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We can express this equation using an SQL SELECT statement:

SELECT f i r s t name , last name , company

FROM Persons

WHERE company=‘Ontario Tech Un ive r s i ty ’ ;

This query will produce a tabular view similar to the view OntarioTech. It is

important to note that this query does not create a view rather than the raw result

set behind the view OntarioTech. We will revisit the rest of the query, which creates

the view from the raw result set seen here. Now to continue, in SQL we can change the

query to one that gets all tuples where company contains the substring ‘University’:

SELECT f i r s t name , last name , company

FROM Persons

WHERE company LIKE ‘% Un ive r s i ty%’ ;

CREATE statements in SQL allows for us to create Databases, Schemas, Relations,

and Views within a relational DBMS6. For creating a relation, let us revisit the

relation named Persons shown in Table 3.2. For this relation, we have attributes

with their data types in an ordered list below:

1. id : INT

2. first name: TEXT

3. last name: TEXT

4. company : TEXT

CREATE statements creating relations use the term table to refer to a relation by

the keyword TABLE:

6See Appendix A.1 for database and schema creation details.
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CREATE TABLE Persons (

id INT,

f i r s t n a m e TEXT,

last name TEXT,

company TEXT

) ;

This CREATE statement creates an empty relation with the attributes with their

data types enforced readily for appending tuples, which we shall get into later. CREATE

statements creating views use SQL SELECT statements for fetching a result set of one

or many relations:

CREATE VIEW OntarioTech AS (

SELECT f i r s t name , last name , company

FROM Persons

WHERE company=‘Ontario Tech Un ive r s i ty ’

) ;

As mentioned in Section 3.1, views are predefined but fetch the result set at

runtime, so every time one queries a view, the SQL SELECT behind the view must run

as well.

A INSERT INTO statement in SQL allows for us to create a tuple or tuples within

a relation:

INSERT INTO Persons ( id , f i r s t name , last name , company )

VALUES (

1302443 ,

‘ Michael ’ ,

‘ Valdron ’ ,
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‘ Ontario Tech Un ive r s i ty ’

) , . . . ;

When using the INSERT INTO statement, the tuple to be inserted must follow the

data types of the attribute(s) and the constraint(s) within the destination relation.

The ALTER TABLE statement allows for one to modify aspects of a relation. One

can modify the attributes (columns) of some relation by adding new ones with ADD,

deleting current ones with DROP, or changing attribute data types with an additional

ALTER. In PostgreSQL, the ALTER TABLE statement is quite complex in how many

relation modification actions can be performed, for more on ALTER TABLE visit the

web resources7 of the DBMS of choice. We have provided an example of changing the

data type of an attribute:

ALTER TABLE Persons

ALTER f i r s t n a m e TYPE VARCHAR( 1 5 0 ) ;

The UPDATE statement allows us to change values within tuples. When using up-

date, it is also essential to use the WHERE clause to pick out a specific tuple. Otherwise,

all tuples for the given attribute(s) will update:

UPDATE Persons

SET f i r s t n a m e =‘John ’ , company=‘That Awesome Bus iness ’

WHERE id =1302443;

Similar to the UPDATE statement, the DELETE statement uses the WHERE clause to

remove a specific tuple from the target relation:

DELETE FROM Persons

WHERE id =1023432;

If WHERE is not specified, DELETE will remove all tuples in the target relation.
7PostgreSQL: https://www.postgresql.org/docs/12/sql-altertable.html
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Chapter 4

SAT/SQL: The Constrained

Structured Query Language

In this chapter, we look at the first focus of our research, an extension of SQL which

incorporates members of CP and SAT solving capability. With the SQL extension

also includes the need to properly both express CP members as data and incorporate

data into constraint declaration. The extension of SQL includes additional operators

which creates CP variables and constraints. This extension is able to perform Create

Read Update Delete (CRUD) operations against constraint relations and views.

Let us begin with a formal definition of the proposed SQL extension.

Definition 2 (SAT/SQL). Given SQL, a query language for the use of interfacing

with relational database system, we define an extension of this language which provides

the ability of using Relational Constraints within relational DBMSs.

SQL is highly expressive language for performing procedures on data within re-

lational databases and with SAT/SQL one can retain this same expressiveness when

performing complex problem solving with data-driven CSPs. It is also due to the pop-

ularity of SQL as a query language that we choose it for the the base of SAT/SQL.
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Type Group Origin
VAR CP Entity SAT/SQL

CONSTRAINT CP Entity SAT/SQL
FLOAT R SQL

INTEGER Z . . .
TEXT G1 . . .

VARCHAR G1 . . .
TIMESTAMP G1 . . .

ENUM 〈Z+, G1〉 . . .
. . . . . . . . .

Table 4.1: SAT/SQL Type List.

Even though we choose SQL, one could use this idea to achieve the similar results

using different languages or even data model.

For SAT/SQL, we continue off our other work [51] which defines an extension of

the RM to includes members of CP, called the Constraint Relational Model (CRM).

We also demonstrated the use of creating and using constraint relations (Definition 3)

within the CRM [51].

Definition 3 (Constraint Relation). A given relational database relation is a con-

straint relation if there is an attribute typed as a CP member.

4.1 Including CP Members with Data

For CP members to exist within relations, encoding these members would need to be

done. The resulting encoding for these CP members would lead to the extension of

attribute types to include the following CP entity types:

• VAR[τdata]

• CONSTRAINT

1G is Character Group
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Where τdata ⊆ Z is the primitive data type of the CP variable’s result. A attribute

type τ for each attribute in a constraint relation can be any standard SQL types and

the extended SAT/SQL types as shown in Table 4.1. With the extension of types, we

can create constraint relations using the SAT/SQL:

CREATE TABLE T (

a INTEGER,

b TEXT,

x? VAR[INTEGER]

) ;

As seen above, we can create a constraint relation T which has columns a, b, and

x?. Columns a and b have standard SQL types whereas column x? has the extended

type VAR[INTEGER] which creates a column which accepts CP variables in every

tuple, each with a initial domain of Z.

We now have our constraint relation, but we still need to populate it with tuples.

In section 3.2 showed how we insert into a relation using SQL, in SAT/SQL this

would be similar but now we have to create CP variables. We create variables using

the new_var operator:

INSERT INTO T(a , b , x ?)

VALUES (67 , ‘ Michael ’ , new var ( ) ) ;

As shown here, we use new_var operator as a constructor of sorts for creating the

CP variable entity within the constraint relation. In the previous case, we know that

the type of the attribute x? is VAR[INTEGER] so new_var can be called without

arguments, however, if the type of x? is just VAR for instance then we would pass a

type hint as such:
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INSERT INTO T(a , b , x ?)

VALUES (67 , ‘ Michael ’ , new var (INTEGER) ) ;

The argument INTEGER would ensure that the CP variable created for this record

has the domain of Z. This operation can be done with any compatible τdata.

4.2 Constraint Operators

We can now create constraints to enforce x? within our constraint relation T . In

SAT/SQL we create constraints using an extension of constraint operators shown

in Table 4.2. To separate the operators in SAT/SQL from those in standard SQL,

we use a notation of :operator:, that is the operator surrounded by colons. To

demonstrate these operators’ use, let us say we want to specify a more restricted

domain for x? from T to be between [a, b]. In mathematical logic, we can create the

following expression for every instance of x?:

∀x?(x? > a ∧ x? < b)

This equation, of course, uses first-order logic, which causes issues as described

in Section 2.4. There is no way in mathematical logic to express this equation for

relational data without resorting to first-order logic. SAT/SQL provides a solution

for this by thinking in terms of relational algebra [44] with notation used in SQL.

Therefore, we can express this using a SELECT statement:

SELECT ( x? :> : a : and : x? :< : b )

FROM T;

With this SAT/SQL statement we produce a constraint entity for each record from

T which enforces an and constraint on two other constraint entities which enforce the
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Operator Name Description
:=: Equality Operator Creates an equality constraint on two

literals such that lh = rh is enforced.
:!=: Inequality Operator Creates an inequality constraint on two

literals such that lh 6= rh is enforced.
:>: Greater Than Opera-

tor
Creates a greater than constraint on
two literals such that lh > rh is en-
forced.

:<: Less Than Operator Creates a less than constraint on two
literals such that lh < rh is enforced.

:>=: Greater or Equal To
Operator

Creates a greater or equal to constraint
on two literals such that lh ≥ rh is en-
forced.

:<=: Less or Equal To Op-
erator

Creates a less or equal to constraint on
two literals such that lh ≤ rh is en-
forced.

:not: Negate Operator Creates a negation of a constraint c
such that ¬c is enforced.

:or: Or Operator Creates a or constraint on two other
constraints, c1 and c2, such that c1 ∨ c2
is enforced.

:and: And Operator Creates an and constraint on two other
constraints, c1 and c2, such that c1 ∧ c2
is enforced.

:xor: Exclusive Or Operator Creates an exclusive or constraint on
two other constraints, c1 and c2, such
that c1 ⊕ c2 is enforced.

:imply: Implementation Oper-
ator

Creates an implementation constraint
on two other constraints, c1 and c2,
such that c1 =⇒ c2 is enforced.

:different: All Different Operator Creates an all different constraint on a

set of literals L such that
|L|∧
i=0

li 6= li+1.

Table 4.2: SAT/SQL Constraint Operators.
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Operator Name Description
:+: Addition Operator Creates a literal that represents the re-

sult of an addition operation on multi-
ple literals l1 + l2 + . . ..

:-: Subtraction Operator Creates a literal that represents the re-
sult of a subtraction operation on mul-
tiple literals l1 − l2 − . . ..

:*: Multiplication Opera-
tor

Creates a literal that represents the re-
sult of a multiplication operation on
two literals lh× rh.

:/: Division Operator Creates a literal that represents the re-
sult of a division operation on two lit-
erals lh

rh
.

:not: Negate Operator Creates a negation of a literal l such
that ¬l is the new literal.

Table 4.3: SAT/SQL Expression Operators.

bounds a and b on every CP variable in the x? attribute. SAT/SQL places the overall

and constraint entity in the result set of this query. We can also create a view V from

this result set with CREATE VIEW:

CREATE VIEW V( c CONSTRAINT) AS

(SELECT ( x? :> : a : and : x? :< : b )

FROM T) ;

This statement produces a tabular view with a single attribute c typed CON-

STRAINT to hold all the constraint entities retrieved in the result of the SELECT

statement. These statements show we can use propositional logic in conjunction with

SQL notation to perform CP on relational data. This results in form of an extension

of relational algebra which we called constraint relational algebra [51].
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4.3 Expression Operators

In CP, not all expressions are purely logical as well. For this we introduce expression

operators shown in Table 4.3. These operators share the same notation as constraint

operator (Table 4.2) but produce a literal entity for the result of the expression rather

than a constraint entity. To start, we can use another constraint relation R created

from the following SAT/SQL statement:

CREATE TABLE R (

x? VAR[INTEGER] ,

y? VAR[INTEGER]

) ;

We can see the following expression in propositional logic:

4x? + 2y? ≤ 0

We can express this using a SAT/SQL statement:

CREATE VIEW V( c CONSTRAINT) AS

(SELECT ( (4 : ∗ : x ?) :+: (2 : ∗ : y ?) :<=: 0)

FROM R) ;

The :<=: operator creates our constraint to enforce but made of multiple ex-

pressions with expression operators. The terms 4 :*: x? and 2 :*: y? create two

literals used in term1 :+: term2 that also creates a literal for the constraint. These

expression operators allow for the use of arithmetic to be done in constraint expres-

sions within SAT/SQL while keeping to relational operations.

46



Operator Name Description
:sum: Summation Operator Performs aggregate summation of

all the literals in a passed at-
tribute a such that sum(a) =
|a|∑
i=0

ai, then produces a literal for

the result of the summation.
:count: Count Operator Performs aggregate count of all

the literals in a passed attribute
a such that count(a) = |a|, then
produces a literal for the result of
the count.

:every: Every Operator Creates a constraint aggregation
that enforces that all literals from
the attribute hold true to the in-
ner constraint entity c, as such
every(c) = ∀a : c(a).

:some: Some Operator Creates a constraint aggregation
that enforces that some literals
from the attribute hold true to
the inner constraint entity c, as
such some(c) = ∃a : c(a).

:distinct: Distinct Operator Creates a constraint aggregation
that enforces that all literal at-
tributes will result in different so-
lution values.

:countdistinct: Count Distinct Opera-
tor

Creates a combination of the
Count Constraint and the Dis-
tinct Constraint.

:sumdistinct: Distinct Summation
Operator

Creates a combination of the
Summation Constraint and the
Distinct Constraint.

Table 4.4: SAT/SQL Aggregation Operators.
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4.4 Aggregation Operators

Like in SQL, SAT/SQL can perform aggregation operations (Table 4.4) on constraint

relations, both constraint aggregation and traditional aggregation. Consider the fol-

lowing scenario. We want to enforce that the summation of a particular attribute

x? in relation T over all tuples T [t1, t2, . . . , tn] is equal to a constant a. In a logical

expression, this would yield to be first order logic:

a =
n∑
i=0

ti[x?]

If we recall from earlier, we can create literals and constraints using extension op-

erators within the projection of the SELECT statements. In SQL, we can use traditional

aggregation operators within the projection:

SELECT SUM(A) AS sum A

FROM T;

The same principle applies for SAT/SQL constraint aggregation operators (Ta-

ble 4.4) as well:

SELECT ( :sum : ( x ?) :=: a ) AS c

FROM T;

We can also perform traditional SQL aggregation with SAT/SQL constraint ag-

gregation:

SELECT organ i za t i on ,

COUNT(∗ ) AS row count ,

( :sum : ( x ?) :=: a ) AS c

FROM T

GROUP BY o r ga n i z a t i on ;
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The above statement will group all records by organization attribute and get the

number of records per organization, row_count. Along with the number of records,

each organization will sum up the CP variables in x? then enforce an equality con-

straint for each result with a constant a. This operation will create a constraint per

organization.

4.5 Goal Statements

In the previous sections, we demonstrated how to build CP models using SAT/SQL

operators. Of course, once we build our CP model in our data, we need to produce

solutions from that model. In SAT/SQL, we need to explicitly create entities called

Goals in order to create a solution space from our model.

Definition 4 (Goal). An abstraction of constraints to form a common enforced objec-

tive. Such as with constraints, Goals are enforced and conditions must be met in order

to be satisfiable. In SAT/SQL, this entity also adds model members to the underlying

solver as well as creating a grouping for scoped solving.

A DBMS using SAT/SQL would have a global registry, which stores all indices

to variables which are stored in relations and views [51]. The DBMS would have

a global variable scope V which contains all variables created by queries, such as

CREATE TABLE or CREATE VIEW:

V = {v1, v2, . . . , vn}

Such as with variables, Goals also have a global scope. The global goal scope G

stores the created Goals modelled as key-constraint pair:
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k 7→ θ(x1, x2, . . . , xn)

Let k be the unique key for the Goal, and θ be the constraint. The global goal

scope is modelled with these key-constraint pairs:

G = {ki 7→ θi : i = 1 . . .m}

In SAT/SQL, we can add a Goal to G with the CREATE GOAL statement:

CREATE GOAL [name] AS θ

The name is the key for the goal. If we do not specify a name the DBMS will

create a randomized string as the name. We can also create multiple Goals from

constraints in SELECT statements:

CREATE GOALS AS

SELECT a1, a2, . . . , ai, θ

FROM . . .

Once we have the Goals created in G we now have a complete CP program denoted

as 〈G, V 〉. In SAT/SQL, we solve for a solution with the SOLUTION operator in a

SELECT statement:

SELECT x ? , y ? , . . .

FROM SOLUTION(R) . . . ;

Where x?, y?, . . . are the variable attributes to solve, and R is the parent constraint

relation. When SOLUTION(R) is executed in the above SELECT statement, attributes

x?, y?, . . . in the statements result set is the produced solution for x?, y?, . . . in R.
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city state
San Francisco CA
Los Angeles CA
Las Vegas NV
Salt Lake City UT
. . . . . .

(a) Cities.

city activity
San Francisco Shopping
San Francisco Hiking
Los Angeles Shopping
Los Angeles Restaurant
Las Vegas Shopping
Las Vegas Theatre
Salt Lake City Hiking
. . . . . .

(b) CityActivities.

Table 4.5: Travel Planning Relations.

4.6 Case Studies

Now we will dive into some case studies to demonstrate the use and advantages of

using SAT/SQL. Our case studies comprise of CSPs of our design to best match real-

world problems. We will now go into our case studies and CSPs Travel Planning and

Segment Coloring.

4.6.1 Travel Planning

The first case study we looked at in our other work [51], which solves a CSP called

Travel Planning. We redefine the Travel Planning CSP in Problem 4. We shall go

over the steps to solve the CSP described in Problem 4 and build up a model for it

using SAT/SQL statements.

Problem 4 (Travel Planning). We want to plan a road trip across the states in

the United States. We have created a few relations in Table 4.5, Cities shown in

Table 4.5a lists the cities with their states and CityActivities shown in Table 4.5b

lists the city-activity pairs. We want to plan the road trip under the following criteria:

1. The trip lasts three days, and we need to visit a different city per day.
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day city?
1 ?
2 ?
3 ?

(a) TravelPlan.

day time act?
1 morning ?
1 afternoon ?
2 morning ?
2 afternoon ?
3 morning ?
3 afternoon ?

(b) ActivityPlan.

Table 4.6: Travel Planning Constraint Relations.

2. We need to visit at least two states on our trip.

3. We need to do two activities per day, one in the morning and one in the after-

noon.

4. We want to at least experience five different ones for the duration of the trip.

We have the two relations Cities and CityActivities shown in Table 4.5 that

shows the travel information for our travel plan. Now we need the relations for the

travel plan itself. In our travel plan, we have two types of choices: the city for the day

and the two activities for the city. To solve with SAT we would create CP variables for

each of those choices. We can use constraint relations to achieve this using SAT/SQL.

Our first constraint relation is TravelPlan (Table 4.6a), which assigns a city to a day:

CREATE TABLE TravelPlan (

day INTEGER,

c i t y ? VAR[INTEGER]

) ;

Our second constraint relation is ActivityPlan (Table 4.6b), which assigns an

activity to a day and time of day:

CREATE TABLE Act iv i tyPlan (
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day INTEGER,

time ENUM( ‘ morning ’ , ‘ a f t e rnoon ’ ) ,

act ? VAR[INTEGER]

) ;

Now with our constraint relations created, we start creating our constraints men-

tioned in Problem 4. The first constraint that we shall denote as c1 enforces the

rule that all the cities in attribute city? from TravelPlan. In SAT/SQL, c1 can be

created by using the :distinct: aggregation operator (Table 4.4) in a SELECT. For

our constraints to be added to the SAT solver program 〈G, V 〉 within the DBMS, we

need to express our constraints as goals. We can create a goal for c1 by using the

following statement:

CREATE GOAL AS

SELECT : distinct : ( c i t y ?) AS c1

FROM TravelPlan ;

The second constraint that we shall denote as c2 enforces the rule that we need

to visit at least two different states. This constraint is more complex and will need a

view, shown in Table 4.7a, that connects our city? variables to a collection of new

variables for the states, state?:

CREATE VIEW Trave lP lanStates AS

SELECT day , c i t y ? , new var ( ) AS s t a t e ?

FROM TravelPlan ;

The view attribute state? will have the CP variable type VAR[INTEGER]. This

view will connect the selected city value in city? to a state value in state?. To en-

force the selected city to match the proper state, we need to join our view TravelPlanStates

to the relation Cities shown in Table 4.5a:
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CREATE GOALS AS

SELECT C i t i e s . name AS c i ty , C i t i e s . s t a t e AS s t a t e

( c i t y ? :=: c i t y :=>: s t a t e ? :=: s t a t e ) AS cs

FROM Trave lP lanStates

NATURAL JOIN C i t i e s ;

These additional goals are created from an addition constraint cs that enforces

valid city to state relationships in solutions. Now we can create a goal for c2 with the

following statement:

CREATE GOAL AS

SELECT : c o u n t d i s t i n c t : ( s t a t e ?) :>=: 2 AS c2

FROM Trave lP lanStates ;

The third constraint that we shall denote as c3 enforces the rule that we need an

activity in the morning and another in the afternoon. Like with c2, c3 is complex

and will need another view, shown in Table 4.7b, that separates morning and after-

noon activities as their own attributes act_morng? and act_aftn? respectively from

constraint relation ActivityPlan:

CREATE VIEW Act iv i tyPlan2 AS

SELECT day ,

M. act ? AS act morng ? ,

A. act ? AS a c t a f t n ?

FROM Act iv i tyPlan M

NATURAL JOIN Act iv i tyPlan A

WHERE M. time = ‘ morning ’

AND A. time = ‘ a f t e rnoon ’ ;
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day city? state?
1 ? ?
2 ? ?
3 ? ?

(a) TravelPlanStates.

day act morng? act aftn?
1 ? ?
2 ? ?
3 ? ?

(b) ActivityPlan2.

Table 4.7: Travel Planning Views.

With the view ActivityPlan2, we now can create goals for c3 with the following

statement:

CREATE GOALS AS

SELECT act morng ? : ! = : a c t a f t n ? AS c3

FROM Act iv i tyPlan2 ;

The fourth constraint that we shall denote as c4 enforces the rule that we need to

do at least five different activities for our entire trip. This constraint will have a similar

expression to c2 but can be enforced directly on constraint relation ActivityPlan.

We can create a goal from c4 with the following statement:

CREATE GOAL AS

SELECT : c o u n t d i s t i n c t : ( act ?) :>=: 5 AS c4

FROM Act iv i tyPlan ;

Now we have created goals for all four rules c1, c2, c3, c4 it appears that we have

completed our CP model. However, there is still one more hidden rule we have not

yet accounted for, and it involves the relation CityActivities (Table 4.5b), which

we have not used yet. We need to enforce that the chosen activity must be available

in the chosen city for the day slot. We can create goals for this using the following

SAT/SQL statement:

CREATE GOALS AS

SELECT C i t y A c t i v i t i e s . c i ty , C i t y A c t i v i t i e s . act
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: some : ( c i t y ? :=: c i t y :=>: act ? :=: act ) AS c ca

FROM Trave lP lanStates

NATURAL JOIN C i t i e s ;

We denote this overall constraint as cca that will ensure all activities chosen are

available for all the cities chosen in each day slot. Now with the CP model complete

for the CP program 〈G, V 〉 we can now solve for a solution for each constraint relation.

We can use the following SAT/SQL statement for getting a solution for TravelPlan:

SELECT ∗ FROM SOLUTION( TravelPlan ) ;

We can use a similar SAT/SQL statement for getting a solution for ActivityPlan:

SELECT ∗ FROM SOLUTION( Act iv i tyPlan ) ;

Since TravelPlan and ActivityPlan constraint relations are connected in 〈G, V 〉,

the first use of the SOLUTION would solve the solution space for all 〈G, V 〉, which also

includes ActivityPlan. This means the second use of the operator SOLUTION will

only fetch the solution values for the variables in ActivityPlan rather than solve

them again.

The result sets of each of these queries would be a bit cumbersome to read. There-

fore, the following statement could better the viewing experience:

CREATE VIEW Trave lP lanSo lut ion AS

SELECT

T. day ,

T. c i t y ?

M. act ? AS act morng ? ,

A. act ? AS a c t a f t n ?

FROM SOLUTION( TravelPlan ) T

NATURAL JOIN SOLUTION( Act iv i tyPlan ) M
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day city? act morng? act aftn?
1 San Francisco Shopping Hiking
2 Los Angeles Restaurant Shopping
3 Las Vegas Theatre Casino

Table 4.8: TravelPlanSolution View.

NATURAL JOIN SOLUTION( Act iv i tyPlan ) A

WHERE M. time = ‘ morning ’

AND A. time = ‘ a f t e rnoon ’ ;

Table 4.8 shows a valid result that the above view might produce. Therefore, this

study shows that we can solve this CSP with data using SAT/SQL.

4.6.2 Segment Coloring

For the second case study, we shall look at a solution to the CSP Segment Coloring,

which is defined in Problem 5. We shall go over the steps to solve the CSP described

in Problem 5 and build up a model for it using SAT/SQL statements.

Problem 5 (Segment Coloring). We have a collection of segments S. Each segment

s will be assigned a position which does not overlap each other and a color sc. The

colors to assign are finite and include red, blue, yellow, and green. If |S| exceeds

or is the same number of colors available to assign, then all colors must be used

on all segments. Segments adjacent to each other must not have the same color,

Equation 4.2.

We shall start by creating the constraint relations, shown in Table 4.9, for our

segments. Our first constraint relation Segments, shown in Table 4.9a, contains all

the base segment data such as the bounds, length, and segment identifier:

CREATE TABLE Segments (
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id start? length end?
1 ? 23 ?
2 ? 44 ?
3 ? 12 ?

. . . . . . . . . . . .

(a) Segments.

id color?
1 ?
2 ?
3 ?

. . . . . .

(b) SegmentColor-
ing.

Table 4.9: Segment Coloring Constraint Relations.

id INTEGER,

s t a r t ? VAR[INTEGER] ,

l ength INTEGER,

end? VAR[INTEGER]

) ;

Our second constraint relation SegmentColoring, shown in Table 4.9b, contains

the CP variables for assigning the colors:

CREATE TABLE SegmentColoring (

id INTEGER,

c o l o r ? VAR[ enum( ‘ red ’ , ‘ b lue ’ , ‘ ye l low ’ , ‘ green ’ ) ]

) ;

With our constraint relations, we can start to enforce the constraints and goals.

We first need to ensure that all of the bounds in our segments, which are attributes

start? and end? follow the rules for segments. These rules will be our first goal g1.

There two of these rules, which are:

1. The length of segment sl must be consistent with the start bound ss and the

end bound se: sl = se − ss.

2. The length of segment sl must be a positive integer: sl ≥ 0.
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We can let c1 be the constraint expression sl = se − ss and c2 be the constraint

expression sl ≥ 0. Both of c1 and c2 make up g1. In SAT/SQL, we express g1 to

enforce these constraints on all segment records:

CREATE GOALS AS (

SELECT l ength :=: end? :− : s t a r t ? AS c1 ,

l ength :>=: 0 AS c2

FROM Segments

) ;

Second, we need to address no overlapping segments, as mentioned in Problem 5.

We can address no overlapping segments with the following:

c3 ← sei ≤ ssj ∨ sej ≤ ssi (4.1)

Where i and j belong to the combination of segment index pairs
(|S|

2

)
. We can

enforce the constraint in Equation 4.1 to the segments as our second goal g2 using

SAT/SQL:

CREATE GOALS AS (

SELECT ( S1 . end? :<=: S2 . s t a r t ?

: or : S2 . end? :<=: S1 . s t a r t ?) AS c3

FROM Segments S1 , Segments S2

WHERE S1 . id < S2 . id

) ;

The above SAT/SQL performs S×S with the additional WHERE clause that applies

that order does not matter for
(|S|

2

)
. Third, we need to address the first coloring

assignment goal g3 that enforces different colors for adjacent segments. The constraint

expression c4 for g3 is shown below:
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c4 ← adj(si, sj) =⇒ sci 6= scj (4.2)

Where i and j are the segment indices for S × S. The predict adj(si, sj) results

as true if the two segments si and sj are not adjacent to each other. In this case,

segments are adjacent to each other if si and sj side by side:

adj(si, sj)← sei = ssj (4.3)

With Equation 4.3, we can simplify Equation 4.2 down to:

c4 ← sei = ssj =⇒ sci 6= scj (4.4)

Equation 4.4 shows the c4 expression with the 1D function for adj(si, sj) (Equa-

tion 4.3). We can apply c4 as g3 in a SAT/SQL statement:

CREATE GOALS AS (

SELECT ( S1 . end? :=: S2 . s t a r t ?

:=>: SC1 . c o l o r ? : ! = : SC2 . c o l o r ?) AS c4

FROM ( Segments S1

LEFT JOIN SegmentColoring SC1

ON S1 . id = SC1 . id ) ,

( Segments S2

LEFT JOIN SegmentColoring SC2

ON S2 . id = SC2 . id )

) ;

Because we store our segment coloring information in the separate constraint

relation SegmentColoring (Table 4.9b), we use LEFT JOIN clauses to connect the
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segment coloring variables to the base segment records in Segments (Table 4.9a). We

can consider the primary key attribute id in SegmentColoring to be a foreign key

that points to id in Segments.

Fourth, we need to enforce our final goal g4, which ensures the utilization of all

colors if the segments match the total colors available. To start, let Sc be the set of

coloring variables for each segment, such that sc ∈ Sc. Let distinct be a function that

returns the variable results with distinct values:

distinct : Sc 7→ S ′c

Where S ′c is the set of variable results from Sc with distinct values. We can use

distinct(Sc) with the constraint expression c5 for g4:

c5 ← (|S| = ncolors) =⇒ (|distinct(Sc)| ≥ ncolors) (4.5)

Where ncolors is the number of color assignments. The expression c5 can be ex-

pressed in g4 with a SAT/SQL statement:

CREATE GOAL AS (

SELECT

COUNT(∗ ) AS NumSegs ,

(NumSegs :>=: 3

:=>: : c o u n t d i s t i n c t : ( c o l o r ?) :>=: 3) AS c5

FROM SegmentColoring

) ;

In this case, ncolors = 3. The constraint relation SegmentColoring will have |S|

records, therefore no JOIN with Segments is needed.

Now that we have all our goals created, we can now get the solution to our
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id start? length end? color?
1 0 23 23 red
2 23 44 67 blue
3 67 12 79 yellow
4 79 4 83 green
5 83 7 90 red

. . . . . . . . . . . . . . .

Table 4.10: Segment Coloring Solution View.

constraint relations with the following SAT/SQL statement, which will produce the

result set shown in Table 4.10:

SELECT S . id , S . s t a r t ? , S . length , S . end? , SC . c o l o r ?

FROM SOLUTION( Segments ) S

NATURAL JOIN SOLUTION( SegmentColoring ) SC

ORDER BY S . s t a r t ? ;
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Chapter 5

Iterative and Interactive

Constraint Programming with

SAT/SQL

In the previous chapter, we have seen that we can build models for CSPs within rela-

tional databases using constraint relational algebra. This ability creates the possibility

of better support for scalable optimization problems in a real-time application.

Of course, with better scalability comes the potential of infeasible CP models. As

constraints scale up, the more likely it is to run into conflicting constraints within

the model, thus creating infeasibility. Same as with finding problems within code,

debugging will to find conflicts within CP model. We propose operators that can

perform such a debugging procedure to better support iterative and interactive CP.

The underlying operations for these operators would utilize the underlying solver used

to solve the CSP the operation targets.

Referring back to Chapter 4, a relational constraint program 〈G, V 〉 will have a

collection of goals (k, θ) ∈ G which add a constraint enforcement over the variables
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V , where k is the unique identifier for the constraint θ. As with all CP models, these

cumulates to a CNF expression
∧

(k,θ)∈G
θ.

As we mention in our previous work [51], there are several reasons which a rela-

tional constraint program 〈G, V 〉 could be infeasible:

• Error(s) in the relational constraint queries

• Inherit conflicts in the data

• Unreasonable expectations of the goals

One could use our methods for finding these such problems with infeasibility as

one would find problems with any iterative and interactive debugging method.

In the upcoming sections, we will first define Goal Types which will differentiate

goals for when enforcement of constraints in CP models is not mandatory. Then

lastly, we will define conflict sets, repair sets, and a max-sat solution method for

assisting with debugging CP programs as well as relational constraint programs such

as mentioned in Chapter 4. Within these sections, we will also define the relationships

between all of these concepts.

5.1 Goal Types

In many SAT solvers, such as CP-SAT [42], constraints have the property of being

enforceable or optional. For the goals in the upcoming sections, we will follow a

similar pattern with two types of goals:

• required goals: Greq

• optional goals: Gopt
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Required goals Greq and optional goals Gopt are collections which cumulate to

the overall collection of goals G within the CNF, such that G = Greq ∪ Gopt and

Greq ∩Gopt = ∅. In this case, 〈Greq, V 〉 needs to be feasible in order to get a solution

whereas 〈G, V 〉 could be feasible but not necessarily.

5.2 MIN-CONFLICT Sets

In the case of an infeasible constraint program G, our first objective is to localize

the source of conflict. This objective leads to the first concept conflicting sets and

minimal conflicting sets.

Definition 5 (Conflicting Sets). Let C ⊆ G be subset of the goals in G, that contains

the required goals Greq ⊆ C. We say that C is conflicting, or that C is a conflicting

set if (C, V ) is on solution. Furthermore, the set C is minimally conflicting, or a

minimal conflicting set if no strict subsets of C are conflicting.

We will denote C be the set of all minimal conflicting sets.

Example 1. Consider the following G:

type key goal

required g0 x1 + x2 + x3 + x4 ≤ 10

optional g1 x1 ≥ 7

optional g2 x2 ≥ 4

optional g3 x3 ≥ 3

optional g4 x4 ≥ 3

• C0 = {g0, g1, g2, g3, g4} is conflicting, but it’s not minimal.

• C1 = {g0, g1, g3, g4} ⊂ C0 is minimally conflicting since no subset.
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• Minimally conflicting sets are not unique. The conflicting set with the fewest

optional goals is C3 = {g0, g1, g2}.

Fact 1. Finding a conflicting set is NP-complete.

In case that Greq is feasible, but G is infeasible, it is helpful to understand the

source of the conflicts in Gopt. Finding a minimal conflicting set C∗ can be very

helpful to the user. We introduce the conflict detection operator:

con : G 7→ C∗

WhereGreq ⊆ C∗ ⊆ G is a minimally conflicting set. Following the NP-completeness

of satisfiability [26], finding any conflicting set is NP-complete, and so is finding a min-

imal conflicting set. Fortunately, we can utilize existing efficient solvers to implement

the con operator, as shown later.

5.3 MIN-REPAIR Sets

Another way to assist the user in resolving conflicts is to automatically compute

repairs to an infeasible problem.

Definition 6 (Repair sets). Let R be a set of goals such that R ⊆ Gopt. We say that

R requires G, or that R is a repair set if G−R becomes feasible. If, furthermore, no

strict subsets of R repairs G, then we say that R minimally repairs G, or that R is a

minimal repair set of G.

From Definition 6, we define the minimal repair operator as:

require : G 7→ R∗

66



Where R∗ is a minimal repair of G. The repair sets are optional goals where

removal from G will make the overall program 〈G, V 〉 feasible.

Example 2. Continue with Example 1. Observe:

• R0 = {g2, g3, g4} repairs G, but it’s not minimal.

• R1 = {g2, g3} is a minimal repair.

• R2 = {g1} is a minimal repair with the fewest optional goals.

Fact 2. Finding repair sets is NP-complete.

Let us look at the relations between conflicting sets and repair sets. Recall that

C is the set of all minimal conflicting sets.

Theorem 1.
⋃
C is a repair set.

To prove Theorem 1, we establish a more straightforward claim.

Proposition 1. Any subset of goals, X ⊆ G such that X∩
⋃
C = ∅ must be satisfiable.

Proof. We can prove by contradiction. If X is not satisfiable, then X must be a

conflicting set, and hence must overlap with some minimal conflicting sets in C, which

leads to a contradiction to the assumption that X ∩
⋃
C = ∅.

Proof of Theorem 1. Using Proposition 1, we can conclude that:

(
G−

⋃
C
)

is satisfiable

By the definition of repair sets, we see that
⋃
C is a repair set.

We should remark that
⋃
C is not necessarily minimal.
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Example 3. We can demonstrate in Example 1 that the minimal conflicting sets are:

C = {{g1, g2}, {g1, g3, g4}}

So, the repair we get is: ⋃
C = {g1, g2, g3, g4}

Corollary 1. Every minimal repair set R is such that:

R ∩
⋃
C 6= ∅

The corollary relates minimal repairs to the conflicting sets. We will be utilizing

this relation to construct efficient algorithms to compute minimal conflicting sets.

5.4 The MAX-SAT Solution

A MAX-SAT problem is a constraint satisfaction problem (G, V ) with an additional

objective function over the variables:

h : solution(V )→ R

So, a MAX-SAT problem is given as (G, V, h). A solution to the MAX-SAT

problem is an assignment of variables V such that h(assignment) is maximized while

satisfying the goals in G.

While MAX-SAT is also NP-complete, recent advances in optimization and con-

straint satisfaction libraries [42] has made MAX-SAT very efficient and practical for

many real-life scale problems. Using MAX-SAT we can find a minimal repair set.

• For each θi ∈ Gopt, we create a fresh 0/1 variable bi.
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• For each θi ∈ Gopt, we construct a new required goal:

φi = ((bi = 1) =⇒ θi)

• Construct a new set of goals:

G′ = Greq ∪ {φi} V ′ = V ∪ {bi}

• Construct an objective function:

h = maximize(
∑
i

bi)

Theorem 2. Given a solution to MAXSAT(G′, V ′, h):

assignment : V ′ → values

The set

{θi : bi = 0} ⊆ Gopt

is a minimal repair.

Thus, Theorem 2 provides an algorithmic way to implement the minimal repair

operator:
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Algorithm 1: repair(G, V )

Input: Goals G, Variables V
let G′ = G
let V ′ = V
for i← 0 to |Gopt| do

bi = new var()
φi = ((bi = 1) =⇒ θi : θi ∈ Gopt)
V ′ = V ′ ∪ {bi}
G′ = G′ ∪ {φi}

end
let h = maximize(

∑
i

bi)

MAXSAT(G′, V ′, h)
return {θi : bi = 0}

5.5 Finding MIN-CONFLICT Sets from a MIN-

REPAIR Set

In this section, we describe an algorithmic heuristics to compute conflict sets from

minimal repairs.

Let R be a minimal repair of G. Based on Corollary 1, we know that R overlaps

with some minimal conflicting sets. Our algorithm will identify subsets of R as

candidates of conflicting sets. For each identified candidate sets, we enlarge them

incrementally until a conflicting set is found.

Given a set of goals, X, we will denote V (X) as the set of variables used in X.

First, we observe the following:

Proposition 2. Suppose C = C1 ∪ C2 and V (C1) ∩ V (C2) = ∅. If C is a conflicting

set, then each Ci is also conflicting.

This means we can partition R into R = {R1, R2, . . . } based on the variables:

V (Ri)∩ V (Rj) = ∅ for all i 6= j. Each Ri is treated as a candidate seed, and will lead

to the discovery of a conflicting set.
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Example 4. Consider the problem given in Example 1 and Example 2. The repair

sets are:

• R1 = {g2, g3}

• R2 = {g1}

The MAX-SAT will try to satisfy a maximal number of goals, and R2 will be

determined to be a minimal repair. We will use R2 as the seed to generate a conflicting

set. We then partition R2 into subsets, each with non-overlapping variables. In this

case, there is only one subset in the partition, {R2}.

Once we identify Ri as the repair, we will augment it by one goal at a time until

we find a conflict. We want to use is to add the most restrictive goal to be added at

each time.

Definition 7 (Incremental addition). Let X ⊂ G be a subset of goals. We define

incremental addition to X as the goal φX in X such that V (φX) has the most overlap

with V (X).

φX = argmax
θ∈G−X

|V (θ) ∩ V (X)| (5.1)

We can now define a heuristic algorithm that constructions a conflicting set from

the candidate seed Ri.

Algorithm 2: grow-to-conflict(Ri)

Input: A subset of goals Ri

let C = Ri

while C is satisfiable do
C = C ∪ {φC}

end
return C
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Now, we can complete the algorithm that maps a minimal repair to one or more

conflicting sets.

Algorithm 3: find-conflicting-sets(R)

Input: A minimal repair set R
let C = ∅
for Ri ∈ parition(R) do

let C = grow-to-conflict(Ri)
C = C ∪ {C}

end
return C

Example 5. In our running example, the minimal repair is found by MAX-SAT

which is partitioned into just one subset {g1}.

If we apply grow-to-conflict{g1}, the two goals added will be:

• φ{g1} = g0.

• φ{g1,g0} = g2.

Thus, the final conflicting set identified is: {g0, g1, g2}.

5.6 Case Study

In this section, we shall present a short case study using the methods presented in this

chapter’s prior sections. For this case study let us revisit Segment Coloring described

in Problem 5.

Example 6. From Problem 5, we construct the following relational constraint model

Θ:
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• A global variable scope V =
⋃
i

{ssi ∈ Z} ∪ {sei ∈ Z} ∪ {sci ∈ [0, 4)}.

• A global goal scope G = {g1, g2, g3, g4}.

For Example 6, we will extend Problem 5 to include an additional goal g5 which

will enforce a total length tl of all segments:

g5 ←
∑
i

sli = tl (5.2)

The model Θ will contain three segments s1, s2, s3 which will have predefined

lengths sl1, s
l
2, s

l
3. Equation 5.2 shows that g5 enforces a relationship between tl and

the segment lengths such that if this conditions is not met the model Θ will become

infeasible.

Example 7. Let us present an infeasible condition for Θ:

• tl = 50

• sl1 = 15

• sl2 = 25

• sl3 = 15

Using Example 7, let us use our support operations defined in the previous section.

We define the overall program model as the following:

〈G, V 〉 =

〈
{g1, g2, g3, g4, g5},

3⋃
i=1

{ssi ∈ Z} ∪ {sei ∈ Z} ∪ {sci ∈ [0, 4)}

〉
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The first step is to find the minimum repair set from G using Algorithm 1:

repair(G, V ) = R∗

repair(G, V ) = {gi : bi = 0}

= {g5}

∴ R∗ = {g5}

Now that we have our minimum repair set R∗, the second step is to partition R∗

into subsets R such that we can select a candidate seed set Ri using the intuition

from Corollary 1 and Proposition 2:

R∗ = {g5}

apply partition : R∗ 7→ R

partition({g5}) = {{g5}}

apply selectc : R 7→ Ri

select({{g5}})c = {g5}

∴ Ri = {g5}

Since |R∗| = 1, R∗ itself can be the candidate Ri and does not iterate to other

candidates1.

The third step is to build conflict sets from Ri using grow-to-conflict(Ri) (Al-

1detailed in Algorithm 3 iteration.
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sil ≥ 0

g1

sissil

g5

sie

sil

tl = ∑i sil

sil = sie - sis

Figure 5.1: Conflict on {g1, g5}

gorithm 2) and the heuristic By Overlap (Equation 5.1):

φ{g5} = argmax
θ∈G−{g5}

|V (θ) ∩ V ({g5})|

= g1

C = {g1} ∪ {g5}

= {g1, g5}

Applying {g5} to Equation 5.1 finds a neighboring goal not in {g5} which has the

most literals in common. In this case, g1 is the only goal with related literals to {g5}

so the resultant conflict set C will be {g1, g5}. The literal relationships between g1

and g5 can be seen in Figure 5.1. Since there are no more partitions in R we can

assert that C = {C} as all conflicting sets.

In conclusion, the results of this case study as follows:

• MIN-REPAIR Set: R∗ = {g5}

• Conflicting Sets of Θ: C = {{g1, g5}}

Furthermore, this case study demonstrates the effectiveness of the application of

our methods on CSPs, such as Segment Coloring (Problem 5).

75



Chapter 6

Experiments

We have presented our approach to our work in the previous chapter. We have shown

methods of iterative and interactive debugging for data-driven CP models. In this

chapter, we shall utilize a data built CSP to evaluate our methods. We also will

evaluate various SAT solvers and demonstrate the reasoning behind our choice in the

solver.

First, we will go over the CSP problem that we use in our evaluation along with

our experimental setup, Section 6.1. Lastly, we will go over all the experiments and

their results in detail, Section 6.2.

6.1 Implementation

In this section, we go over the overall setup for our experimental evaluation of our

methods. First, by providing a formal definition of the Random k-SAT CSP. Then

lastly, providing an overview of our technical setup for running our experiments.

76



6.1.1 The Random k-SAT Problem

Propositional CSPs consist of a CNF of DNF clauses with bitwise terms. The k-SAT

Problem is one Propositional CSP which defines the size of each DNF clause. We can

define a k -SAT CNF as the following:

C ← l0 ∧ l1 ∧ . . . ∧ lN (6.1)

Where C is the CNF and L = {l0, l1, . . . , lN} are the disjunctive clauses. Each l

will have a k number of literals that make up the disjunctive expression. We can see

an example of an l below:

lk ←
k∨
v∈ν

v (6.2)

Where v ∈ ν are the member literals of the disjunctive expression l and ν is the

set of literals in the CSP model. Each v have a domain of {0, 1} and could consist of

negations of these literals:

lk ← ¬vi ∨ vj ∨ ¬vz ∨ . . . (6.3)

The Random k-SAT CSP is a variant of the k -SAT CSP, which have L randomly

generated [27]. The parameters includes N , V , k, and p:

N Number of disjunctive clauses to be generated.

V Number of model variables to be generated.

k Size of each disjunctive clause to be generated.

p Probability of the clause literals not being negated.

The members of each l are chosen uniformly from ν [27] where a random factor

of p chooses the negations of these choices.

For our experimentation, we will use the Random k -SAT problem. This CSP
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shall demonstrate the effectiveness of both the solver of choice and the MAX-SAT

algorithm we use for our CP debugging methods.

6.1.2 Technical Setup

We ran our experiments on a system with 2 × Xeon(R) E5-2630 v3 @ 2.40GHz 8-

core CPUs and 64 GB of RAM running Ubuntu 20.04 LTS. We implement our

base experiment source in Clojure 1.101. Our SAT solver of choice is CP-SAT2

from Google’s OR-Tools suite [42].

6.2 Evaluation

This section will take a look at the results found in the benchmarking done with our

methods and supporting methods. We will start by looking at how the MAX-SAT

problem performs with varying clauses N , literal sizes in clauses k, and variables sizes

V . Next, we present our findings for our MIN-REPAIR operation under varying N ,

k and V including stats for all. Finally, we present findings for our MIN-CONFLICT

operation comparing the algorithm’s heuristics.

6.2.1 MAX-SAT

For MAX-SAT evaluation, we performed three rounds of experimentation. Each

round, we varied N , V , and k over a degree of bins. We measured the runtime

duration (in seconds) for each bin for the MAX-SAT problem to be solved.

In our first round, we vary N over {100, 200, 500, 1000, 2000, 5000} which are the

1Clojure runs on the Java Virtual Machine (JVM). For more details on the Clojure programming
language visit https://clojure.org/.

2CP-SAT is written in C++. For more details on this solver visit
https://developers.google.com/optimization/cp.
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Figure 6.1: MAX-SAT Benchmarks

bins. V and k are constants of 10 and 3 respectively. We observe from this round

that as N grows over the bins, the duration only increases at a steady rate, as seen

in Figure 6.1a.

In our second round, we vary k over {10, 20, 50, 100, 200, 500} which are the bins.

N is now constant with a value of 5000, the maximum value in the bins from the first

round. Since V must be greater than or equal to k we decided to vary V by k × 10

which results to {100, 200, 500, 1000, 2000, 5000}. In this round, we found that the

runtime duration of varying k grew much larger when k ≥ 100 than the durations

found in the first round, as seen in Figure 6.1b.

In our third round, we vary V over {10, 20, 50, 100, 200, 500} which are the bins.

We now have N and k as constants for this round with values 1000 and 5, respectively.

We observe from the results of this round that the increasing variables have no effect
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on the runtime duration until V ≥ 100 where the duration proliferates even before

reaching V = 500, as seen in Figure 6.1c.

To summarize these results, the MAX-SAT runtime duration scales gracefully as

N increases, however, scales much faster as V and k increases too. All results in

Figure 6.1 show a polynomial growth in runtime. These findings are a joyous find

for MAX-SAT as typically large CSPs will have more constraints than variables and

constraint literals. With the MAX-SAT findings being satisfying, let us continue

to MIN-REPAIR which will use MAX-SAT to find the least amount of unsatisfying

constraints.

6.2.2 MIN-REPAIR

This section will go over the experimental results of the benchmarking done with

our implementation of MIN-REPAIR. Similar to our benchmarking of the MAX-SAT

implementation we ran MIN-REPAIR in three rounds for varying N , V , and k. We

vary these parameters over a set of bins. For each bin, we measure the runtime

duration (in seconds) which it took to run MIN-REPAIR.

In our first round, we vary N over a set of bins {100, 200, 500, 1000, 2000, 5000},

same as the first round of MAX-SAT. V and k are constants with the values of 10

and 3, respectively. In this round, we observe the gradual polynomial growth that we

have seen with MAX-SAT, see Table 6.1a and Figure 6.2a, with even 5000 randomly

generated clauses finding a repair set within half of a second.

In our second round we vary k over a set of bins {10, 20, 50, 100, 200, 500} continu-

ing the pattern from MAX-SAT benchmarking. As before, we also vary V over k×10

due to the rule of V ≥ k. N is a constant with a value of 5000, the maximum from

the first round. We observe in this round, seen in Table 6.1b and Figure 6.2b, that

the runtime duration becomes even worse than in MAX-SAT and maximizes at 10
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num clauses duration
count 6.000000 6.000000
mean 1466.666667 0.131402

std 1865.118406 0.163400
min 100.000000 0.006937
25% 275.000000 0.023375
50% 750.000000 0.069048
75% 1750.000000 0.167592
max 5000.000000 0.434791

(a) Varying Clauses.

num lit duration
count 6.000000 6.000000
mean 146.666667 2.793674

std 186.511841 3.632811
min 10.000000 0.305031
25% 27.500000 0.561936
50% 75.000000 1.328637
75% 175.000000 3.104134
max 500.000000 9.797402

(b) Varying Clause Literals.

num variables duration
count 6.000000 6.000000
mean 146.666667 0.134009

std 186.511841 0.113054
min 10.000000 0.055149
25% 27.500000 0.062508
50% 75.000000 0.088157
75% 175.000000 0.148767
max 500.000000 0.349659

(c) Varying CP Variables.

Table 6.1: Repair Set Results.

seconds with k = 500 further showing the complexity problem with large constraint

clauses in the MAX-SAT model. This is ok however as 500 literals in a single clause

is quite large and uncommon to see in CSPs.

In our third round we vary V over a set of bins {10, 20, 50, 100, 200, 500}. N and

k are constants in this round with values 1000 and 5 respectively. We observe in this

round, seen in Table 6.1c and Figure 6.2c, that the runtime duration maintains the

similar results to MAX-SAT where the duration remains steady until V ≥ 100 then

grows by larger quantities.

To summarize these results, the MIN-REPAIR runtime duration we see a similar

pattern to the MAX-SAT results. These results are good news as we have a method

for MIN-REPAIR which has gradual polynomial growth. Now let us process the
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Figure 6.2: MIN-REPAIR Benchmarks

results for MIN-CONFLICT which uses the MIN-REPAIR procedure.

6.2.3 MIN-CONFLICT

This section will go over the experimental results of the benchmarking done with

our implementation of MIN-CONFLICT. We utilize two heuristics for the MIN-

CONFLICT process:

• Randomly

• By Overlap

By Overlap is the hueristic we defined in Equation 5.1 we will denote as φoX .

Randomly is a hueristic which builds the conflicting set randomly with Algorithm 2

and the Randomly hueristic equation φrX :
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size random duration random size overlap duration overlap
count 50.000000 50.000000 50.000000 50.000000
mean 140.160000 1.146695 40.120000 0.304075

std 30.958405 0.286401 10.813144 0.089717
min 94.000000 0.715329 22.000000 0.168039
25% 117.000000 0.914972 32.250000 0.246340
50% 139.000000 1.157183 39.000000 0.282325
75% 153.750000 1.285555 44.750000 0.336757
max 238.000000 1.965448 66.000000 0.552254

Table 6.2: Conflict Set Results

φrX = (G−X)i : i ∼ U(0, |G−X|) (6.4)

We use Randomly as a comparison heuristic to By Overlap in our benchmarking.

We ran our implementation of Algorithm 3 on both heuristics over 50 iterations.

In order to provide a more realistic case of conflicts to find, we create two k -SAT

problems such that we have a satisfiable problem P and an unsatisfiable P ′:

• Parameters for P include N = 200, V = 1000, k = 3, and p = 0.5.

• Parameters for P ′ include N = 100, V = 10, k = 3, and p = 0.5.

We then create a merged problem ρ where ρ = P ∪P ′. This merge process creates

a problem that will contain the clause conflicts in P ′ but more clauses that are no

conflicts.

From our findings benchmarking ρ seen in Table 6.2, Figure 6.3a, and Figure 6.3b

we can see that By Overlap runs much more efficiently than Randomly averaging

304.08 milliseconds (less than half a second) per iteration versus Randomly which is

averaging at 1.15 seconds. Not only is duration lower for By Overlap, but the cardi-

nalities of the conflict sets as well. Where Randomly averages in cardinality at about

140 constraints per conflict, By Overlap averages at only around 40 constraints per
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Figure 6.3: MIN-CONFLICT Benchmarks

conflict. These results are great because the fewer constraints found in the conflicts,

the fewer fixes to be done to the clauses to create satisfiability.
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Chapter 7

Related Work

This chapter will provide information on related works in the field of research behind

this literature. We will show some influential and recent works done in SAT solvers

and CP. We will also present works mostly focused on works done in Iterative and

Interactive Debugging for CP.

7.1 SAT Solvers

In this section, we go over some notable SAT solvers which have some direct or indirect

contribution towards the SAT engine we use in our work. Other known solvers include

but are not limited to MINISAT [22], Tinisat [31], FznTini [32], and BEE [40]. More

information on SAT solvers can be found in recent surveys [2, 43].

OR-Tools CP-SAT [42]. CP-SAT is an open-sourced solver that is part of the OR-

Tools 1 suite of Operations Research (OR) technologies developed by Perron L. and

Furnon V. at Google. CP-SAT is one of the most modern efficient SAT solvers to date

1The website and resources for the OR-Tools suite can be found at
https://developers.google.com/optimization/.
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and uses various modern SAT solver components to achieve this [3,6,17,25,38,52]. It

has won the top three places in its ability to solve many of the problems in the recent

MiniZinc challenges [49,50]. The efficiency and modernization in the implementation

of CP-SAT are why we choose to target our work.

Glucose [6]. Glucose is a well known open-sourced SAT solver heavily based on

another solver called MINISAT [22]. Glucose was created by Audemard G. and Simon

L. in collaboration between University Lille-Nord de France and University Paris-Sud.

A revolutionary Boolean SAT Solver for the modern age which improves the Conflict

Directed Clause Learning (CDCL) algorithms by identifying certain clauses called

‘Glue Clauses’ when performing propagation.

Chaff [41]. One of the more well known SAT solvers, Chaff was developed by

Moskewicz M., Madigan C., Zhao Y., Zhang L., and Malik S. as a collaboration be-

tween University of California (UC Berkeley), Massachusetts Institute of Technology

(MIT), and Princeton University. Chaff is a revolutionary Boolean SAT Solver for

its time in its efficiency. It achieved this by the optimization of Boolean Constraint

Propagation (BCP) algorithm and the Variable State Independent Decaying Sum

(VSIDS) decision heuristics.

7.2 Iterative and Interactive Debugging

In this section, we go over some previous Iterative and Interactive Debugging works

done. These works consist of prior techniques for debugging constraints, providing

visualizations for representing constraints and their relationships, and annotating

constraints as data.
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A Visualization Tool for Constraint Program Debugging. [28] This work

is done by authors F. Goualard and F. Benhamou from Institut de Recherche en

Informatique de Nantes in Nantes, France. In this work, the authors propose a

conceptual solution for debugging Constraint Programming by allowing the CNF to

be reduced to a smaller set, then creating visualization(s) off of these constraints.

The authors refer this constraint set as an S-Box.

CLPGUI: A Generic Graphical User Interface for Constraint Logic Pro-

gramming. [23] Constraint Logic Programming Graphical User Interface (CLPGUI)

is a constraint programming visualization suite created by F. Fages, S. Soliman, and

R. Coolen from Projet Contraintes in Le Chesnay, France. CLPGUI provides both

user interfaces and visualizations for Constraint Programming systems. CLPGUI is

demonstrated by using the Constraint Programming systems GNU-Prolog [18] and

SICStus-Prolog [8], however, the authors claim it can be ported to be used with other

Constraint Programming systems as well. The system generates the constraint sys-

tem model’s visualizations by sending model data over to CLPGUI using XML data

structures when solving the solution space. CLPGUI displays annotations for the

variables specified by the Constraint Programming system, which allows the user to

distinguish the variables being visualized by CLPGUI.

7.3 Using SAT in the Relational Model

In this section, we will go over a few works that aim to solve the objective of the work

done in Chapter 4.

Combining relational algebra, SQL, constraint modelling, and local search. [7]

Marco Cadoli and Toni Mancini wrote this literature at Università di Roma in Rome,
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Italy. In this work, the authors argue the importance of combining relational algebra

and SQL with constraint modelling and local search for large NP-complete problems.

As a result of this argument, they propose CONSQL which takes on a similar role to

SAT/SQL introduced in Chapter 4 of this literature.

Solving SQL Constraints by Incremental Translation to SAT. [37] This

literature was written by Robin Lohfert, James Lu, and Dongfang Zhao at Emory

University in Atlanta, GA, USA. For this work, the authors demonstrate that by

using a technique, one can implement an engine for the query language, CONSQL [7].
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Chapter 8

Conclusions

In this chapter, we will summarize the contributions the work in this literature adds

to relational databases and iterative and interactive debugging in constraints.

8.1 Summary

In summary we provide the following contributions:

• A Relational Constraint Framework for supporting data-driven constraint pro-

gramming in the relational model using the SQL extension SAT/SQL.

• A set of Iterative and Interactive Relational Constraint Debugging methods

which provide the following:

– A process using MAX-SAT modelling for finding a minimum repair set

which is a need for performing automatic constraint repair.

– Building conflict sets efficiently by using the found minimum repair set.

Using SAT/SQL, we see the potential for creating a simplified modelling language

for performing CP in relational data sources and the data pipeline. We see from
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Chapter 6, positive results in using our CP debugging operators in the relational con-

straint model. From these same results, we see that MIN-REPAIR using MAX-SAT

can perform efficiently over lots of constraints in polynomial time to find a minimum

repair set. Expanding on this, we also provided a procedure for MIN-CONFLICT

operator which builds conflict sets more efficiently than naive approaches [51] and

approaches used in related work [28].

8.2 Future Work

This section will go over the future work we hope to see a rise from work done in our

literature. Possible continuing work includes:

• We would like to see static analysis and query optimization to be done on the

language extension SAT/SQL to ensure proper standardization and implemen-

tation of the SAT/SQL.

• We would like to see an assessment of SAT/SQL in the effectiveness of syntax

using the number of lines, speed of writing, and an average number of errors

introduced into the constraint program.

• We would like to see an implementation of visualizations for the support opera-

tors’ results to cover the interactive component of the debugging process. These

visualization implementations could be similar to the ones in use from previous

works [23,28].
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Appendix A

Relational Data Model Extras

A.1 CREATE Databases and Schemas

We can use a CREATE SQL statement to create a database named HumanResources :

CREATE DATABASE HumanResources ;

Schemas have the same statement as databases only with the keyword SCHEMA

instead of DATABASE:

CREATE SCHEMA HiringManagers ;

A.2 Primary and Foreign Keys

The use of keys in relational DBMSs is not quite the same as keys in the Hash Table

data structure, which is more similar to indices in relational DBMSs. The main keys

known in relational DBMSs are Primary Keys and Foreign Keys. Let us begin

with Primary Keys.

A Primary Key is an attribute or set of attributes which uniquely identifies tuples

within a relation. This key creates a constraint known as an entity integrity constraint
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that enforces that all value sets within the Primary Key must be unique and will not

allow tuples to be inserted into the relation if it would violate this constraint. There

are two other keys which derive from this one. A surrogate key is a key which is only

useful at uniquely identifying tuples rather than having inherent meaning behind

it. A composite key can uniquely identify tuples by using two or more attribute

combinations. The attribute id from Table 3.2 makes a good candidate for a Primary

Key as all its values uniquely identify each of the tuples. To do this in SQL, we can

create a primary key which includes the attribute id :

CREATE TABLE Persons (

id INT NOT NULL PRIMARY KEY,

f i r s t n a m e TEXT,

last name TEXT,

company TEXT

) ;

We can also define the primary key as a constraint:

CREATE TABLE Persons (

id INT NOT NULL,

f i r s t n a m e TEXT,

last name TEXT,

company TEXT,

PRIMARY KEY ( id )

) ;

The primary key constraint can also be named, such as ‘PK Person’:

CREATE TABLE Persons (

id INT NOT NULL,
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f i r s t n a m e TEXT,

last name TEXT,

company TEXT,

CONSTRAINT PK Person PRIMARY KEY ( id )

) ;

A Foreign Key (or Reference Key) is an attribute which is shared with another

relation creating a relationship between the relations that share this attribute. This

key creates a constraint known as an referential integrity constraint that enforces that

all values within this attribute must in the tuples of the relation which the Foreign

Key is pointing to. To illustrate this let us say that a is an attribute in relation T that

is a Foreign Key and that a′ is the target attribute in relation T ′. This means that

t1[a], t2[a], . . . , tn[a] must contain values in t′1[a
′], t′2[a

′], . . . , t′n′ [a′] if tuples t ∈ T and

tuples t′ ∈ T ′. Though Foreign Keys does not imply entity integrity constraints as

Primary Keys do, they can still also be Primary Keys which enforce entity integrity

constraints. This means that as long as a Foreign Key is not a Primary Key you can

have duplicate values.

A.3 Normalization

The normalization of database relations is the process of following strict group rules,

known as normal forms, set for the structure and integrity of the data within. It

was proposed by Codd as to allow for data to be queried and manipulated by using a

language defined in first-order logic [11]. The common normal forms are Unnormalized

Form (UNF), First Normal Form (1NF) [11], Second Normal Form (2NF) [12], Third

Normal Form (3NF) [12], and Boyce-Codd Normal Form (BCNF) [13]. For our work

we will focus on relations with normal forms up to 3NF and BCNF. For more details
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on these normal forms and more normal forms see Chapter 19 of Ramakrishnan et.

al. [44] and Chapter 8 Connolly et. al. [16].

A.4 Other Relational Data Formats

As mentioned in Chapter 3, there are other forms of data storage which follow the

Relational Data Model that are not relational DBMSs. Another form of data which

follows the relational data model is CSV files. CSV contain values separated by

commas in rows separated by newlines, hence the name ‘Comma Separated Values.’

The lines in CSV files would be the tuples, and the columns of values separated by

commas would be the attributes. In CSV files, unlike relational databases, the files

themselves are considered the relations. CSV files will sometimes have a header row

where each of the values is the attribute names.

There are more methods of using the relational data model. For example, one

can use Object data sources in a relational format. In this case, one would typically

set up a collection of objects where each object is considered a tuple. The keys or

member accessors of the object would be the attributes. The overall data structure

would be one relation. This could be implemented in a DBMS such as MongoDB 1

or a data files such as JavaScript Object Notation (JSON) 2 files.

The advantage of using these other data formats is that scalability is less com-

plicated, meaning one does not have to construct structure before constructing the

database. However, this comes as a double-edged sword, where the drawback is that

it does not enforce well-structured data, which can lead to dirty data and lack of

integrity within the data. Data sources such as MongoDB and JSON files do not

enforce the relational data model either, which means they can be using an entirely

1https://www.mongodb.com/
2https://www.json.org/
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different data model. Therefore with these methods, it is up to the client side’s pro-

grammer to these data sources if a data model such as the relational data model is

to be enforced.
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Appendix B

Aggregation Queries

Let us go into the additional clauses we can use with our SELECT statements to

aggregate our results. We will use Table B.1 for our target relation called Employees.

B.1 DISTINCT Clause

The DISTINCT clause is an additional operation to the SELECT statement to grab only

tuples that would have unique values in the selected attributes. This clause can be

expressed in relational algebra. However, there is no need to ensure uniqueness as

relational algebra implies this already. For example, let us say we wanted to grab all

the values of country. In relational algebra, we only need to do the following:

πcountry(Employees)

In a SQL SELECT statement, however, this would give duplicate tuples. With

the DISTINCT clause, the result set would be the same as the above relational algebra

expression. We see here the SQL equivalent of this relational algebra expression, with

Table B.2 being the result set of this query:
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id name company country
5436 Imogene J. Stephenson Donec Egestas PC United States
2431 Aurelia Y. Anderson Auctor Nunc Corporation United States
8769 Clementine U. Mcintyre Ac Libero Nec Institute Chile
7445 Renee E. Barry Dictum Eu Inc. Korea, South
7359 Belle B. Britt Purus Maecenas Associates Canada

Table B.1: Relation of Employees called Employees.

SELECT DISTINCT country

FROM Employees ;

B.2 LIMIT Clause

A LIMIT clause is appended to the SQL SELECT statement when wanting to get a

certain number of n tuples. An example of the LIMIT clause is shown below with a

result set shown in Table B.3:

SELECT DISTINCT country

FROM Employees

LIMIT 3 ;

B.3 Aggregate Functions

In SQL SELECT statements we can perform mathematical aggregation operations on

individual attributes or entire tuples. These operations in SQL include the following:

• MAX - Results in the maximum value of all tuples possible for given attribute.

• MIN - Results in the minimum value of all tuples possible for given attribute.

• COUNT - Results in the count of all tuples possible, optionally for given attribute.
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country
United States

Chile
Korea, South

Canada

Table B.2: Result set of distinct re-
sults from Employees.

country
United States

Chile
Korea, South

Table B.3: Result set limited to 3
records from Employees.

• SUM - Results in the summation of all tuples possible for given attribute.

• AVG - Results in the average value of all tuples possible for given attribute.

Notice the phrase all tuples possible, this statement implies that the number of

tuples in the same aggregation depends on how one is to set up the rest of SQL

statement. For example, the COUNT aggregation applied to all attributes which will

result in the total number of tuples in the source relation:

SELECT COUNT(∗ ) AS num employees

FROM Employees ;

However, we see a statement with the same COUNT aggregation applied, but with

a GROUP BY aggregation clause applied country attribute:

SELECT country , COUNT(∗ ) AS num employees

FROM Employees

GROUP BY country ;

This statement will therefore result in several tuples for every country value.

B.4 GROUP BY Clause

The GROUP BY clause in SQL statements will group tuples based on an attribute. This

clause is mainly used in sceneries, where an aggregate operation is being performed.
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B.5 JOIN Clauses

JOIN clauses are when one wants to combine multiple relations in a single result set

by a common attribute. There are several joins which can be performed between

multiple, such as:

• INNER JOIN - Result set contains the intersecting tuples of the multiple rela-

tions.

• LEFT JOIN - Result set contains all tuples from first relation with intersecting

tuples from the second.

• RIGHT JOIN - Inverse of the LEFT JOIN.

• FULL JOIN - Result set contains all tuples from all relations.

Consider an additional conceptual relation named Companies with attributes id

and company name. Now imagine that attribute company in relation Employees was

actually a numeric company ID. We want to display all the tuples from our Employees

relation but only need the tuples in Companies, which allows us to fetch the company

names for the Employees tuples. For this we can use a LEFT JOIN:

SELECT Employees . name , Companies . company name

FROM Employees

LEFT JOIN Companies

ON Employees . company=Companies . id ;

A unique form of join called a NATURAL JOIN connects multiple relations by an

already known connection between attributes with matching characteristics (same

name and data type) or an equality already specified in the WHERE clause.
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B.6 UNION Clause

The UNION clause provides the ability to fetch a result set with all tuples in from two

other result sets. This statement is written by using two SELECT statements. There

are some restrictions to using this clause. The restrictions are as follows:

• The two source result sets must have the same number of attributes selected.

• The data types of these attributes must be similar in nature.

• The ordering of the attributes must match one another in each result set.

Consider an additional conceptual relation named Clients which has similar at-

tributes to Employees. We can use UNION to merge the result sets:

SELECT name , company , country

FROM Employees

UNION

SELECT name , company , country

FROM C l i e n t s ;
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[30] Gödel, K. Die Vollständigkeit der Axiome des logischen Funktionenkalküls.
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