ABELIAN HYPERCOMPLEX STRUCTURES ON CENTRAL EXTENSIONS OF H-TYPE LIE ALGEBRAS

MARÍA LAURA BARBERIS

ABSTRACT. It is the aim of this work to give a characterization of the 2-step nilpotent Lie algebras carrying abelian hypercomplex structures. In the special case of trivial extensions of irreducible H-type Lie algebras this characterization is given in terms of the dimension of the commutator subalgebra. As a consequence, we obtain the corresponding theorem for arbitrary H-type Lie algebras, extending a result in [1].

1. Preliminaries

We start by giving the basic definitions. An *abelian* complex structure on a real Lie algebra $\mathfrak g$ is an endomorphism of $\mathfrak g$ satisfying

(1)
$$J^2 = -I, \qquad [Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g}.$$

The above conditions automatically imply the vanishing of the Nijenhuis tensor, that is, J is integrable. By an abelian hypercomplex structure we mean a pair of anticommuting abelian complex structures. Our main motivation for studying abelian hypercomplex structures comes from the fact that such structures provide examples of homogeneous HKT-geometries (where HKT stands for hyper-Kähler with torsion, cf. [4]).

It was proved in [1] that if $\dim [\mathfrak{g},\mathfrak{g}] \leq 2$ then every hypercomplex structure on \mathfrak{g} must be abelian. To complete the classification of the Lie algebras \mathfrak{g} with $\dim [\mathfrak{g},\mathfrak{g}] \leq 2$ carrying hypercomplex structures (cf. [1]) it remained to give a characterization in the case when \mathfrak{g} is 2-step nilpotent and $\dim [\mathfrak{g},\mathfrak{g}] = 2$: this is obtained by taking m = 2 in Corollary 1.2 below.

It is a result of [3] that the only 8-dimensional non-abelian nilpotent Lie algebras carrying abelian hypercomplex structures are trivial central extensions of H-type Lie algebras. We show that this does not hold for higher dimensions: there exist 2-step nilpotent Lie algebras which are not of type H carrying such structures.

Let $(\mathfrak{n}, \langle , \rangle)$ be a two-step nilpotent Lie algebra endowed with an inner product \langle , \rangle and consider the orthogonal decomposition $\mathfrak{n} = \mathfrak{z} \oplus \mathfrak{v}$, where \mathfrak{z} is the center of \mathfrak{n} and $[\mathfrak{v}, \mathfrak{v}] \subseteq \mathfrak{z}$. Define a linear map $j : \mathfrak{z} \to \operatorname{End}(\mathfrak{v}), z \mapsto j_z$, where j_z is determined as follows:

(2)
$$\langle j_z v, w \rangle = \langle z, [v, w] \rangle, \quad \forall v, w \in \mathfrak{v}.$$

Observe that $j_z, z \in \mathfrak{z}$, are skew-symmetric so that $z \to j_z$ defines a linear map $j: \mathfrak{z} \to \mathfrak{so}(\mathfrak{v})$. Note that $\mathrm{Ker}(j)$ is the orthogonal complement of $[\mathfrak{n},\mathfrak{n}]$ in \mathfrak{z} . In particular, $[\mathfrak{n},\mathfrak{n}]=\mathfrak{z}$ if and only if j is injective. Conversely, any linear map j:

¹⁹⁹¹ Mathematics Subject Classification. Primary 17B30, 53C15; Secondary 32C10, 53C56.

 $[\]it Key\ words\ and\ phrases.$ Two-step nilpotent, hypercomplex, hyperhermitian.

The author was partially supported by CONICET (Argentina).

 $\mathbb{R}^m \to \mathfrak{so}(k)$ gives rise to a 2-step nilpotent Lie algebra \mathfrak{n} by means of (2). It follows that the center of \mathfrak{n} is $\mathbb{R}^m \oplus (\cap_{z \in \mathbb{R}^m} \operatorname{Ker} j_z)$ and $[\mathfrak{n},\mathfrak{n}] \subseteq \mathbb{R}^m$ where equality holds precisely when j is injective. We say that $(\mathfrak{n},\langle\;,\rangle)$ is irreducible when \mathfrak{v} has no proper subspaces invariant by all $j_z, z \in \mathfrak{z}$.

We show in the following lemma that a two-step nilpotent Lie algebra carrying an abelian complex structure amounts to a linear map $j: \mathfrak{z} \to \mathfrak{u}(k)$ (where dim $\mathfrak{v} = 2k$ and $\mathfrak{u}(k)$ denotes the Lie algebra of the unitary group U(k)).

Lemma 1.1. Let \mathfrak{n} be a 2-step nilpotent Lie algebra carrying an abelian complex structure J. Then, for any Hermitian inner product \langle , \rangle on \mathfrak{n} , the endomorphisms $j_z, z \in \mathfrak{z}$, defined as in (2), commute with J.

Proof. Given a Hermitian inner product $\langle \ , \ \rangle$ on $\mathfrak n$ decompose $\mathfrak n = \mathfrak z \oplus \mathfrak v$ where $\mathfrak v$ is the orthogonal complement of $\mathfrak z$. It follows from (1) that J leaves $\mathfrak z$ stable and therefore, since J is orthogonal, also $\mathfrak v$ is J-stable. We show next that the restriction of J to $\mathfrak v$ commutes with the endomorphisms $j_z, z \in \mathfrak z$:

$$\langle Jj_zv, w \rangle = -\langle j_zv, Jw \rangle = -\langle z, [v, Jw] \rangle$$

= $\langle z, [Jv, w] \rangle = \langle j_zJv, w \rangle$

for all $v, w \in \mathfrak{v}, z \in \mathfrak{z}$, and this implies $Jj_z = j_z J$ for every $z \in \mathfrak{z}$.

As a consequence of the above lemma we obtain the following corollary, where we denote by $\mathfrak{sp}(k)$ the Lie algebra of the symplectic group Sp(k):

Corollary 1.2. Every injective linear map $j: \mathbb{R}^m \to \mathfrak{sp}(k)$ $(m \leq k(2k+1))$ gives rise to a two-step nilpotent Lie algebra \mathfrak{n} with $\dim[\mathfrak{n},\mathfrak{n}] = m$ carrying an abelian hypercomplex structure. Conversely, any two step nilpotent Lie algebra carrying an abelian hypercomplex structure arises in this manner.

Proof. Given $j: \mathbb{R}^m \to \mathfrak{sp}(k)$, fix $0 \leq s \leq 3$ with $s+m \equiv 0 \pmod{4}$, set $\mathfrak{n} = \mathbb{R}^s \oplus \mathbb{R}^m \oplus \mathbb{R}^{4k}$ (orthogonal direct sum) with the canonical inner product on each summand and define the Lie bracket on \mathfrak{n} by

$$\langle z, [v, w] \rangle = \langle j_z v, w \rangle, \quad \forall v, w \in \mathbb{R}^{4k}, \ z \in \mathbb{R}^m$$

and $\langle z, [\mathfrak{n}, \mathfrak{n}] \rangle = 0$ for $z \in \mathbb{R}^s$ ($\mathbb{R}^s \oplus \mathbb{R}^m$ is central). Let J_{α} , $\alpha = 1, 2$ be the anticommuting complex endomorphisms of \mathbb{R}^{4k} defining $\mathfrak{sp}(k)$, that is, $\mathfrak{sp}(k) = \{T \in \mathfrak{so}(4k) : TJ_{\alpha} = J_{\alpha}T, \ \alpha = 1, 2\}$. Extend J_{α} to all of \mathfrak{n} with arbitrary (orthogonal) anticommuting endomorphisms on $\mathbb{R}^s \oplus \mathbb{R}^m$ satisfying $J_{\alpha}^2 = -I$. This defines an abelian hypercomplex structure on \mathfrak{n} . Observe that $[\mathfrak{n},\mathfrak{n}] = \mathbb{R}^m$ since j is injective.

Conversely, if \mathfrak{n} is a two-step nilpotent Lie algebra carrying an abelian hypercomplex structure J_1 , J_2 , then there exists an inner product $\langle \ , \ \rangle$ on \mathfrak{n} which is hyperhermitian, that is, Hermitian with respect to both, J_1 and J_2 . Let \mathfrak{v} denote the orthogonal complement of \mathfrak{z} in \mathfrak{n} and consider the linear map j defined by (2). It follows that j is injective on $[\mathfrak{n},\mathfrak{n}]$ and, from the above lemma, its image is contained in $\mathfrak{sp}(k) = \{T \in \mathfrak{so}(4k) : TJ_{\alpha} = J_{\alpha}T, \ \alpha = 1, 2\}$, where dim $\mathfrak{v} = 4k$. In particular, dim $[\mathfrak{n},\mathfrak{n}] \leq \dim \mathfrak{sp}(k) = k(2k+1)$.

Remark 1.3. Using the same idea as in the above corollary it is possible to construct hypercomplex structures on certain solvable Lie algebras. In fact, given a two step nilpotent Lie algebra $(\mathfrak{n}, \langle , \rangle)$ set $\mathfrak{s} = \mathbb{R}a \oplus \mathfrak{n}$ with [a, z] = z, $\forall z \in \mathfrak{z}$, $[a, v] = \frac{1}{2}v$, $\forall v \in \mathfrak{v}$, where the inner product on \mathfrak{v} is extended to \mathfrak{s} by decreeing $a \perp \mathfrak{v}$ and

 $\langle a, a \rangle = 1$. This solvable extension of \mathfrak{n} has been studied by various authors ([2]). In the special case when $\dim \mathfrak{z} \equiv 3 \pmod{4}$, $\dim \mathfrak{v} = 4k$ and the the endomorphisms $j_z, z \in \mathfrak{z}$, defined as in (2), belong to $\mathfrak{sp}(k)$, it can be shown that \mathfrak{s} carries a hypercomplex (hyperhermitian) structure. The procedure is analogous to that in the preceding corollary (one can easily check the integrability conditions using results of [1]). It should be noted that these structures cannot be abelian and the corresponding metrics are not hyper-Kähler (since they are not flat).

2. A SPECIAL CLASS OF TWO-STEP NILPOTENT LIE ALGEBRAS

Let $(\mathfrak{n}, \langle \ , \rangle)$ be a two-step nilpotent Lie algebra with the orthogonal decomposition $\mathfrak{n} = \mathfrak{z} \oplus \mathfrak{v}$ as before and the endomorphisms $j_z, z \in \mathfrak{z}$, as in (2). Then $(\mathfrak{n}, \langle \ , \rangle)$ is said to be an H-type algebra (or a Lie algebra of Heisenberg type, cf. [6]) if for any nonzero z in \mathfrak{z} we have that $j_z^2 = -\langle z, z \rangle I$. In this case, the linear map $j: \mathfrak{z} \to \operatorname{End}(\mathfrak{v})$ extends to an algebra homomorphism $j: \operatorname{Cl}_m \to \operatorname{End}(\mathfrak{v})$, where $m = \dim \mathfrak{z}$ and Cl_m denotes the real Clifford algebra associated to $(\mathfrak{z}, \langle \ , \rangle)$. The extended homomorphism j is a unitary representation of Cl_m on \mathfrak{v} , in other words, \mathfrak{v} becomes a Cl_m -module with the elements of unit length in \mathfrak{z} acting as orthogonal transformations of \mathfrak{v} . Conversely, any unitary representation of the Clifford algebra Cl_m on a real vector space \mathfrak{v} gives rise to an H-type Lie algebra in the obvious way ([7]).

We say that two H-type algebras are isomorphic if there is an orthogonal Lie isomorphism between them.

Let $(\mathfrak{n}, \langle , \rangle)$ be a trivial central extension of an H-type algebra, that is, $(\mathfrak{n}, \langle , \rangle)$ is a two step nilpotent Lie algebra such that $[\mathfrak{n}, \mathfrak{n}] \oplus \mathfrak{v}$ is of type H. The following theorem shows that, when $(\mathfrak{n}, \langle , \rangle)$ is irreducible, the existence of an abelian complex or hypercomplex structure on $(\mathfrak{n}, \langle , \rangle)$ depends on $m = \dim [\mathfrak{n}, \mathfrak{n}]$.

Theorem 2.1. Let $(\mathfrak{n}, \langle , \rangle)$ be a trivial central extension of an H-type algebra and let $m = \dim [\mathfrak{n}, \mathfrak{n}]$. Assume that $(\mathfrak{n}, \langle , \rangle)$ is irreducible.

- (i) $(\mathfrak{n}, \langle , \rangle)$ carries an abelian complex structure such that \langle , \rangle is Hermitian if and only if dim $\mathfrak{z} \equiv 0 \pmod{2}$ and $m \equiv 1, 2, 3, 4$ or $5 \pmod{8}$.
- (ii) $(\mathfrak{n}, \langle , \rangle)$ carries an abelian hypercomplex structure such that \langle , \rangle is hyperhermitian if and only if dim $\mathfrak{z} \equiv 0 \pmod 4$ and $m \equiv 2, 3$ or $4 \pmod 8$.

The above complex structures arise naturally by extending certain endomorphisms which belong to the algebra $\mathcal{K}_m = \{T \in \operatorname{End}(\mathfrak{v}) : TS = ST \ \forall S \in \mathsf{Cl}_m\}$. We devote the next section to the study of this algebra (see, for example, [9] Chapter I, §5).

Remark 2.2. The Lie algebras obtained from an injective linear map $j: \mathbb{R}^m \to \mathfrak{sp}(1)$ with $m \leq 3$, as in Corollary 1.2, are trivial extensions of H-type algebras. This follows from the identification of $\mathfrak{sp}(1)$ with the space of pure imaginary quaternions (see also [3]).

Remark 2.3. Let d_m denote the dimension of any irreducible Cl_m -module and take k such that 4k is not a multiple of d_m and $k(2k+1) \geq m$. Then the Lie algebras arising from any injective linear map $j: \mathbb{R}^m \to \mathfrak{sp}(k)$ such that $\cap_{z \in \mathbb{R}^m} \mathrm{Ker} \, j_z = \{0\}$ are not trivial extensions of H-type algebras. For example, take m = 10 and k = 2 (in this case $d_{10} = 64$; see Table 1).

2.1. **The algebra** $\mathcal{K}_{\mathbf{m}}$. We start by recalling the definition of the Clifford algebra $\mathsf{Cl}_m = \mathsf{Cl}(E, \langle \;, \rangle)$, where E is an m dimensional real vector space endowed with an inner product $\langle \;, \; \rangle$. Fix an orthonormal basis e_1, \ldots, e_m of E and define Cl_m as the algebra generated by $1, e_1, \ldots, e_m$ with relations

$$e_i e_j + e_j e_i = 0, \quad i \neq j,$$
 $e_i^2 = -1, \quad i = 1, \dots, m.$

Let $\mathcal{T}(E)$ be the tensor algebra of E and \Im the two-sided ideal of $\mathcal{T}(E)$ generated by the elements $x \otimes x + \langle x, x \rangle 1$ for $e \in E$. Then the Clifford algebra Cl_m is defined to be the quotient $\mathcal{T}(E)/\Im$ and dim $\mathsf{Cl}_m = 2^m$ (see [5] or [9] for details).

Let \mathfrak{v} be an irreducible Cl_m -module. We want to study the algebra $\mathcal{K}_m = \{T \in \mathsf{End}(\mathfrak{v}) : TS = ST \ \forall S \in \mathsf{Cl}_m\}$. We observe that, being a real division associative algebra, \mathcal{K}_m must be isomorphic to either \mathbb{R} , \mathbb{C} or \mathbb{H} .

Recall from [9] that when $m \not\equiv 3$ or 7 (mod 8) there is exactly one irreducible Cl_m -module \mathfrak{v} up to isomorphism. If $m \equiv 3$ or 7 (mod 8) there are two equivalence classes of irreducible Cl_m -modules \mathfrak{v}_1 , \mathfrak{v}_2 which give rise to isomorphic (irreducible) H-type algebras, so for our purposes we may assume $\mathfrak{v} = \mathfrak{v}_1$.

2.1.1. $\mathbf{m} \not\equiv \mathbf{3}$ or $\mathbf{7} \pmod{8}$. Assume first that $m \not\equiv 3$ or $\mathbf{7} \pmod{8}$. It follows from [9] that Cl_m is the real algebra $M_n(\mathbb{F})$ of $n \times n$ \mathbb{F} -matrices for some n, where $\mathbb{F} = \mathbb{R}$, \mathbb{C} or \mathbb{H} , and $\mathfrak{v} = \mathbb{F}^n$ (see Table 1). The action of Cl_m on \mathfrak{v} is given by matrix multiplication, viewing \mathbb{F}^n as $n \times 1$ matrices. It then follows that when $\mathbb{F} = \mathbb{R}$ then \mathcal{K}_m is the centralizer of $M_n(\mathbb{R})$ in $M_n(\mathbb{R})$, hence $\mathcal{K}_m = \mathbb{R}$. It follows from [9] that this happens precisely when $m \equiv 6$ or $8 \pmod{8}$.

We next study the cases $\mathbb{F} = \mathbb{C}$ or \mathbb{H} . Consider the inclusions $M_n(\mathbb{C}) \hookrightarrow M_{2n}(\mathbb{R})$ and $M_n(\mathbb{H}) \hookrightarrow M_{4n}(\mathbb{R})$ given as follows:

$$(3) \quad A+iB \mapsto \left(\begin{array}{cc} A & -B \\ B & A \end{array}\right), \quad A+iB+jC+kD \mapsto \left(\begin{array}{ccc} A & -B & -C & -D \\ B & A & -D & C \\ C & D & A & -B \\ D & -C & B & A \end{array}\right)$$

where A, B, C, D are real $n \times n$ matrices. It then follows that when $\mathbb{F} = \mathbb{C}$ (resp. $\mathbb{F} = \mathbb{H}$) \mathcal{K}_m is the centralizer of $M_n(\mathbb{C})$ (resp. $M_n(\mathbb{H})$) in $M_{2n}(\mathbb{R})$ (resp. $M_{4n}(\mathbb{R})$). It can be shown by direct calculation that this centralizer equals \mathbb{C} (resp. \mathbb{H}) when $\mathbb{F} = \mathbb{C}$ (resp. $\mathbb{F} = \mathbb{H}$). We observe that $\mathbb{F} = \mathbb{C}$ precisely when $m \equiv 1$ or 5 (mod 8) and $\mathbb{F} = \mathbb{H}$ when $m \equiv 2$ or 4 (mod 8) (cf. [9]).

2.1.2. $\mathbf{m} \equiv \mathbf{3}$ or $\mathbf{7} \pmod{8}$. If $m \equiv 3 \pmod{8}$ then $\mathsf{Cl}_m = M_n(\mathbb{H}) \oplus M_n(\mathbb{H})$ for some n (Table 1) and we can take $\mathfrak{v} = \mathbb{H}^n \oplus 0$ with the obvious action. It follows that $\mathcal{K}_m = \mathbb{H}$.

On the other hand, when $m \equiv 7 \pmod{8}$ then $\mathsf{Cl}_m = M_n(\mathbb{R}) \oplus M_n(\mathbb{R})$ for some n (Table 1) and we can take $\mathfrak{v} = \mathbb{R}^n \oplus 0$. It follows that $\mathcal{K}_m = \mathbb{R}$.

The above paragraphs can be summarized as follows (see also Table 1):

Proposition 2.4. Let \mathfrak{v} be an irreducible Cl_m -module. Then

$$\mathcal{K}_m = \begin{cases} \mathbb{R} & \text{if } m \equiv 6, 7 \text{ or } 8 \pmod{8}, \\ \mathbb{C} & \text{if } m \equiv 1 \text{ or } 5 \pmod{8}, \\ \mathbb{H} & \text{if } m \equiv 2, 3 \text{ or } 4 \pmod{8}. \end{cases}$$

2.1.3. The inner product on \mathfrak{v} . It follows from the irreducibility of the Cl_m -module \mathfrak{v} that it admits a unique inner product (up to a positive multiple) such that the elements of unit length in E act by orthogonal transformations. This inner product is given as follows (cf. [10]):

$$\langle v, w \rangle = \begin{cases} v^t w & \text{if } \mathbb{F} = \mathbb{R}, \\ \Re e(v^t \bar{w}) & \text{if } \mathbb{F} = \mathbb{C} \text{ or } \mathbb{H} \end{cases}$$

where $\mathfrak{v} = \mathbb{F}^n$ is thought of as $n \times 1$ matrices, v^t denotes the transpose of $v \in \mathbb{F}^n$ and \bar{w} is the conjugate of $w \in \mathbb{F}^n$. Let $O(\mathfrak{v})$ denote the orthogonal group of endomorphisms of \mathfrak{v} relative to $\langle \ , \ \rangle$ and set $\mathcal{C} = \{J \in \operatorname{End}(\mathfrak{v}) : J^2 = -1\}$. The aim is to obtain a parametrization of the intersection $\mathcal{K}_m \cap O(\mathfrak{v}) \cap \mathcal{C}$, which could be empty (in fact, this is the case when $\mathbb{F} = \mathbb{R}$). We study first $\mathcal{K}_m \cap O(\mathfrak{v})$ (see also [9], Chapter I, §5.16).

Lemma 2.5.

$$\mathcal{K}_m \cap O(\mathfrak{v}) = \begin{cases} \mathbb{Z}_2 & \text{if } \mathbb{F} = \mathbb{R}, \\ U(1) & \text{if } \mathbb{F} = \mathbb{C}, \\ Sp(1) & \text{if } \mathbb{F} = \mathbb{H}. \end{cases}$$

Proof. Let I denote the identity $n \times n$ matrix and $C_{\mathcal{B}}(\mathcal{A})$ the centralizer of \mathcal{A} in \mathcal{B} . Using the inclusions (3) and the inner product on \mathfrak{v} , it is not hard to verify the following equalities:

$$C_{M_n(\mathbb{R})}(M_n(\mathbb{R})) \cap O(\mathfrak{v}) = \{\pm I\} \cong \mathbb{Z}_2,$$

$$C_{M_{2n}(\mathbb{R})}(M_n(\mathbb{C})) \cap O(\mathfrak{v}) = \left\{ \begin{pmatrix} aI & -bI \\ bI & aI \end{pmatrix} : a, b \in \mathbb{R}, \ a^2 + b^2 = 1 \right\} \cong U(1),$$

$$C_{M_{4n}(\mathbb{R})}(M_n(\mathbb{H})) \cap O(\mathfrak{v}) = \left\{ \begin{pmatrix} aI & bI & cI & dI \\ -bI & aI & -dI & cI \\ -cI & dI & aI & -bI \\ -dI & -cI & bI & aI \end{pmatrix} : a, b, c, d \in \mathbb{R},$$

$$= a, b, c, d \in \mathbb{R},$$

$$= a^2 + b^2 + c^2 + d^2 = 1$$

$$= Sp(1).$$

Corollary 2.6.

$$\mathcal{K}_m \cap O(\mathfrak{v}) \cap \mathcal{C} = \begin{cases} \emptyset & if \ \mathbb{F} = \mathbb{R}, \\ \mathbb{Z}_2 & if \ \mathbb{F} = \mathbb{C}, \\ the \ 2\text{-sphere} \ S^2 & if \ \mathbb{F} = \mathbb{H}. \end{cases}$$

Proof. We must intersect the sets obtained in the previous lemma with C. We thus obtain

$$\begin{split} C_{M_n(\mathbb{R})}(M_n(\mathbb{R})) \cap O(\mathfrak{v}) \cap \mathcal{C} &= \emptyset, \\ C_{M_{2n}(\mathbb{R})}(M_n(\mathbb{C})) \cap O(\mathfrak{v}) \cap \mathcal{C} &= \left\{ \pm \left(\begin{array}{cc} 0 & -I \\ I & 0 \end{array} \right) \right\} \cong \mathbb{Z}_2, \\ C_{M_{4n}(\mathbb{C})}(M_n(\mathbb{H})) \cap O(\mathfrak{v}) \cap \mathcal{C} &= \left\{ \left(\begin{array}{ccc} 0 & bI & cI & dI \\ -bI & 0 & -dI & cI \\ -cI & dI & 0 & -bI \\ -dI & -cI & bI & 0 \end{array} \right\} : \begin{array}{c} b, c, d \in \mathbb{R}, \\ b^2 + c^2 + d^2 = 1 \end{array} \right\} \cong S^2. \end{split}$$

$m \pmod{8}$	n	Cl_m	v	\mathcal{K}_m	$\mathcal{K}_m \cap O(\mathfrak{v})$	$\mathcal{K}_m \cap O(\mathfrak{v}) \cap \mathcal{C}$
1	16^q	$M_n(\mathbb{C})$	\mathbb{C}^n	\mathbb{C}	U(1)	\mathbb{Z}_2
2	16^q	$M_n(\mathbb{H})$	\mathbb{H}^n	\mathbb{H}	Sp(1)	S^2
3	16^q	$M_n(\mathbb{H}) \oplus M_n(\mathbb{H})$	\mathbb{H}^n	\mathbb{H}	Sp(1)	S^2
4	$2(16)^q$	$M_n(\mathbb{H})$	\mathbb{H}^n	\mathbb{H}	Sp(1)	S^2
5	$4(16)^q$	$M_n(\mathbb{C})$	\mathbb{C}^n	\mathbb{C}	U(1)	\mathbb{Z}_2
6	$8(16)^q$	$M_n(\mathbb{R})$	\mathbb{R}^n	\mathbb{R}	\mathbb{Z}_2	Ø
7	$8(16)^q$	$M_n(\mathbb{R}) \oplus M_n(\mathbb{R})$	\mathbb{R}^n	\mathbb{R}	\mathbb{Z}_2	Ø
8	16^{q+1}	$M_n(\mathbb{R})$	\mathbb{R}^n	\mathbb{R}	\mathbb{Z}_2	Ø

Table 1

Table 1 summarizes the above results. The integer q is obtained from m = 8q + r where $1 \le r \le 8$.

Proof of Theorem 2.1. (i) Assume J is an abelian complex structure on $(\mathfrak{n}, \langle , \rangle)$ such that \langle , \rangle is Hermitian. Since J leaves \mathfrak{z} stable, it follows that dim $\mathfrak{z} \equiv 0 \pmod{2}$. Lemma 1.1 says that $J \in \mathcal{K}_m \cap O(\mathfrak{v}) \cap \mathcal{C}$, which is nonempty if and only if $m \equiv 1, 2, 3, 4$ or 5 (mod 8) by Corollary 2.6. This proves the if part of (i). For the only if part, fix an endomorphism $J \in \mathcal{K}_m \cap O(\mathfrak{v}) \cap \mathcal{C}$, which always exists when $m \equiv 1, 2, 3, 4$ or 5 (mod 8), and extend J to all of \mathfrak{n} with any orthogonal endomorphism of \mathfrak{z} satisfying $J^2 = -I$.

(ii) It follows from Corollary 2.6 that there exists a pair of anticommuting endomorphisms in $\mathcal{K}_m \cap O(\mathfrak{v}) \cap \mathcal{C}$ if and only if $m \equiv 2, 3$ or 4 (mod 8). This proves the if part of (ii). For the only if part, extend a pair of anticommuting endomorphisms $J_1, J_2 \in \mathcal{K}_m \cap O(\mathfrak{v}) \cap \mathcal{C}$ with anticommuting orthogonal endomorphisms of \mathfrak{z} satisfying $J_{\alpha}^2 = -I$, $\alpha = 1, 2$.

3. General H-type algebras

Let $(\mathfrak{n}, \langle , \rangle)$ be an H-type algebra with center \mathfrak{z} , dim $\mathfrak{z} = m$, and let \mathfrak{v}_0 denote an irreducible Cl_m -module. It is well known that \mathfrak{v} , the orthogonal complement of \mathfrak{z} , is formed by taking several copies of \mathfrak{v}_0 (cf. [8]). The precise situation is as follows.

If $m \not\equiv 3$ or 7 (mod 8) then the general H-type algebra is, modulo isomorphisms, $\mathfrak{n} = (\mathfrak{v}_0)^r \oplus \mathfrak{z}$ with bracket

$$[v, w] = [v_1, w_1] + \cdots + [v_r, w_r]$$

for $v = (v_1, \ldots, v_r)$, $w = (w_1, \ldots, w_r) \in (\mathfrak{v}_0)^r$, where the bracket on each copy of \mathfrak{v}_0 is given by the Cl_m -module structure on \mathfrak{v}_0 .

If $m \equiv 3$ or 7 (mod 8) then the general H-type algebra is, modulo isomorphisms, $\mathfrak{n} = (\mathfrak{v}_0)^p \oplus (\mathfrak{v}_0)^q \oplus \mathfrak{z}$ with bracket

$$[(v,x),(w,y)] = [v_1,w_1] + \dots + [v_p,w_p] - [x_1,y_1] - \dots - [x_q,y_q]$$

for $v = (v_1, \ldots, v_p)$, $w = (w_1, \ldots, w_p) \in (\mathfrak{v}_0)^p$, $x = (x_1, \ldots, x_q)$, $y = (y_1, \ldots, y_q) \in (\mathfrak{v}_0)^q$, where two pairs of exponents p, q and r, s give isomorphic algebras if and only if $\{p, q\} = \{r, s\}$.

Table 2 is obtained from the results in the previous section.

We now state the general theorem about existence of abelian complex and hypercomplex structures on trivial central extensions of H-type Lie algebras. The proof,

Table	2
-------	---

$m \pmod{8}$	v	\mathcal{K}_m	$\mathcal{K}_m \cap O(\mathfrak{v})$
1 or 5	$(\mathfrak{v}_0)^r$	$\mathfrak{gl}(r,\mathbb{C})$	U(r)
2 or 4	$(\mathfrak{v}_0)^r$	$\mathfrak{gl}(r,\mathbb{H})$	Sp(r)
6 or 8	$(\mathfrak{v}_0)^r$	$\mathfrak{gl}(r,\mathbb{R})$	O(r)
3	$(\mathfrak{v}_0)^p\oplus(\mathfrak{v}_0)^q$	$\mathfrak{gl}(p,\mathbb{H})\oplus\mathfrak{gl}(q,\mathbb{H})$	$Sp(p) \times Sp(q)$
7	$(\mathfrak{v}_0)^p\oplus(\mathfrak{v}_0)^q$	$\mathfrak{gl}(p,\mathbb{R})\oplus\mathfrak{gl}(q,\mathbb{R})$	$O(p) \times O(q)$

which is analogous to that of Theorem 2.1, follows from Table 2. Observe that when $m \equiv 2,3$ or 4 (mod 8) (case (ii) below) then there is no obstruction (except for the obvious ones) for the existence of such structures. The integers p,q and r below are those introduced at the beginning of this section (see also Table 2).

Theorem 3.1. Let $(\mathfrak{n}, \langle , \rangle)$ be a trivial central extension of an H-type algebra and let $m = \dim [\mathfrak{n}, \mathfrak{n}]$.

- (i) If $m \equiv 1$ or $5 \pmod 8$ then $(\mathfrak{n}, \langle \ , \rangle)$ carries an abelian complex structure such that $\langle \ , \ \rangle$ is Hermitian if and only if $\dim \mathfrak{z} \equiv 0 \pmod 2$. It carries an abelian hypercomplex structure such that $\langle \ , \ \rangle$ is hyperhermitian if and only if $\dim \mathfrak{z} \equiv 0 \pmod 4$ and $r \equiv 0 \pmod 2$.
- (ii) If $m \equiv 2, 3$ or 4 (mod 8) then $(\mathfrak{n}, \langle , \rangle)$ carries an abelian complex structure such that \langle , \rangle is Hermitian if and only if $\dim \mathfrak{z} \equiv 0 \pmod 2$. It carries an abelian hypercomplex structure such that \langle , \rangle is hyperhermitian if and only if $\dim \mathfrak{z} \equiv 0 \pmod 4$.
- (iii) If $m \equiv 6$ or 8 (mod 8) then $(\mathfrak{n}, \langle , \rangle)$ carries an abelian complex structure such that \langle , \rangle is Hermitian if and only if $\dim \mathfrak{z} \equiv 0 \pmod 2$ and $r \equiv 0 \pmod 2$. It carries an abelian hypercomplex structure such that \langle , \rangle is hyperhermitian if and only if $\dim \mathfrak{z} \equiv 0 \pmod 4$ and $r \equiv 0 \pmod 4$.
- (iv) If $m \equiv 7 \pmod 8$ then $(\mathfrak{n}, \langle \ , \ \rangle)$ carries an abelian complex structure such that $\langle \ , \ \rangle$ is Hermitian if and only if $\dim \mathfrak{z} \equiv 0 \pmod 2$, $p \equiv 0 \pmod 2$ and $q \equiv 0 \pmod 2$. It carries an abelian hypercomplex structure such that $\langle \ , \ \rangle$ is hyperhermitian if and only if $\dim \mathfrak{z} \equiv 0 \pmod 4$, $p \equiv 0 \pmod 4$ and $q \equiv 0 \pmod 4$.
- **Remark 3.2.** The hyperhermitian metrics just considered, which are obtained as the riemannian product of the euclidean metric by a metric of Heisenberg type, are not flat. Therefore, these metrics are not hyper-Kähler.

Remark 3.3. Let $(\mathfrak{n}, \langle , \rangle)$ be a trivial central extension of an H-type algebra and N the corresponding connected, simply connected nilpotent Lie group with Lie algebra \mathfrak{n} endowed with the left invariant metric induced by \langle , \rangle . It is well known that N admits a discrete cocompact subgroup Γ (cf. [8], [10]). Any invariant complex or hypercomplex structure on N induces one on the compact nilmanifold $\Gamma \backslash N$. Theorem 3.1 thus extends Corollary 1.4 in [1], yielding a rich family of compact hyperhermitian nilmanifolds (which are not hyper-Kähler, by the preceding remark).

References

- (1) M. L. Barberis and I. Dotti Miatello, Hypercomplex structures on a class of solvable Lie groups, Quart. J. Math. Oxford (2), 47 (1996), 389–404.
- (2) E. Damek and F. Ricci, Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal. 2 (1992), 213–248.
- (3) I. Dotti Miatello and A. Fino, Abelian hypercomplex 8-dimensional nilmanifolds, preprint.
- (4) G. Grantcharov and Y. S. Poon, Geometry of hyper-Kähler connections with torsion, preprint, math.DG/9908015.
- (5) D. Husemoller, Fibre bundles, Springer Verlag, 1975.
- (6) A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147–153.
- (7) A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Ded. 11 (1981), 127–136.
- (8) A. Kaplan, *Lie groups of Heisenberg type*, Rend. Sem. Mat., Univers. Politecn. Torino, Fascicolo Speciale (1983), 117–130.
- H. B. Lawson and M. L. Michelsohn, Spin geometry, Princeton University Press, 1989.
- (10) C. Riehm, Explicit spin representations and Lie algebras of Heisenberg type, J. London Math. Soc. (2), 29 (1984), 49–62.

FAMAF, Universidad Nacional de Córdoba, Ciudad Universitaria, (5000) Córdoba, Argentina

E-mail address: barberis@mate.uncor.edu