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Abstract

Let G be a connected graph with vertex set V = {v1, . . . , vn}. The distance d(vi, vj) between two vertices
vi and vj is the number of edges of a shortest path linking them. The distance matrix of G is the n × n
matrix such that its (i, j)-entry is equal to d(vi, vj). A formula to compute the determinant of this matrix
in terms of the number of vertices was found when the graph either is a tree or is a unicyclic graph. For
a byciclic graph, the determinant is known in the case where the cycles have no common edges. In this
paper, we present some advances for the remaining cases; i.e., when the cycles share at least one edge. We
also present a conjecture for the unsolved cases.
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1 Introduction

A graph G = (V,E) consists of a set V of vertices and a set E of edges. We will

consider graphs without multiple edges and without loops. Let G be a connected

graph on n vertices with vertex set V = {v1, . . . , vn}. The distance between vertices

vi and vj , denoted d(vi, vj), is the number of edges of a shortest path from vi to vj .

The distance matrix of G, denoted D(G), is the n× n symmetric matrix having its

(i, j)-entry equal to d(vi, vj). Sometimes, we use di,j to denote d(vi, vj).

Distance matrices have been widely studied in the literature. The motivation to

start investigating these matrices is due to the connection with a communication

problem (see [4,6] for more details). In an early article, Graham and Pollack pre-

sented a remarkable result on the determinant of the distance matrix of a tree T on

n vertices [4]. They proved that its determinant only depends on n, being equal to

(−1)n−1(n− 1)2n−2. Graham and Hoffman [5] found a formula for the determinant

of the distance matrix of a graph in terms of its 2-connected components. Fourty

years later, Bapat and Sivasubramanian took advantage from this result to present

a formula for the determinant of the distance matrix of a block graph [2]. Graham

and Lovász [6] obtained a formula for the inverse of the distance matrix of a tree.

Bapat, Kirkland and Neumann [1] extended the result to the case of weighted trees.

In the same article they also found a formula to compute the determinant of the

distance matrix of a unicyclic graph. Specifically, they proved that the determi-

nant is zero when its only cycle has an even number of edges, and if the graph

has 2k + 1 +m vertices and a cycle with 2k + 1 edges, the determinant is equal to

(−2)m
[
k(k + 1) + 2k+1

2 m
]
. In an attempt to generalize previous results in con-

nections with trees, Gong, Zhang and Xu presented some advances in the direction

of finding a formula for the determinant of a bicyclic graph [3], considering those

bicyclic graphs with two edge-disjoint cycles. Nevertheless, the case of a bicyclic

graph with two cycles sharing at least one edge remains open. In this article we

present some advances in this direction. In addition, conjectures about the formulas

to deal with the uncovered cases are presented.

This paper is organized as follows. In Section 2 we present some basic notations,

preliminary results, and we briefly describe previous results in connection with

the determinant of the distance matrix of a bicyclic graph. In Sections 3 and 4

we consider the determinant of the distance matrix of a θ-graph and a θ-graph

plus a pendant vertex. In Section 5 we present formulas for the determinant of

certain bicyclic graphs, where the cycles have at least one common edge. Finally,

in section 6, we conjecture a formula of the determinant for the remaining cases.
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2 Definitions and preliminary results

A tree is a connected acyclic graph. A unicyclic graph is a connected graph with as

many edges as vertices. A bicyclic graph is a graph obtained by adding an edge to

a unicyclic graph.

The path and the cycle on n vertices are denoted by Cn and Pn, respectively.

We use Bn to denote the set of all bicyclic graphs on n vertices. We will define some

special bicyclic graph, particularly important in order to determine the determinant

of a graph in Bn. Consider a copy of Cp and a copy of Cq having a vertex a1 and

al, respectively. We denote by B(l, p, q) the graph obtained by joining a1 and al by

a path a1, . . . , al of length l − 1; if l = 1 we identify vertex a1 with vertex al. We

call such a graph an ∞-graph. Let Pl+1, Pp+1, Pq+1 be three vertex disjoint paths,

l ≥ 1 and p, q ≥ 2, each of them having endpoints, vl1, v
l
2, v

p
1 , v

p
2 , v

q
1, v

q
2, respectively.

We denote by θ(l, p, q)-graph, or simply θ-graph, the graph obtained by identifying

the vertices vl1, v
p
1 , v

q
1 as one vertex, and proceeding in the same way for vl2, v

p
2 , v

q
2

Let G be a graph . We denote by G+uv the graph that arises from G by adding

an edge uv /∈ E(G). The neighborhood of a vertex v and the degree of a vertex

v will be denoted by NG(v) and dG(v), respectively. When the context is clear we

simply use N(v) or d(v). A pendant vertex of G is a vertex v of degree 1 and its

incident edge is called a pendant edge. Two vertices u and v will be called twins if

N(u) \ {v} = N(v) \ {u}. Let S be a subset of vertices of G, we denote by G[S],

the subgraph of G induced by S. Given a matrix A, A(i|j) stands for the matrix

obtained from A by deleting the row i and the column j. We use S(A) to denote

the spectrum of A. By ei we denote a vector having a 1 on the i-th coordinate and

0’s in the remaining coordinates.

Clearly, the graph family Bn can be partitioned into two graph subfamilies. One,

denoted B∞
n , is the subfamily of those graphs having an ∞-graph, denoted by H∞,

as a subgraph; the other one, denoted Bθ
n, is the subfamily of those graphs having

a θ-graph, denoted by Hθ, as a subgraph. Notice that, the graph obtained by

deleting H∞ (respectively Hθ) is an acyclic graph. It means that these graphs are

those obtained from a graph H∞ ∈ B∞
n (respectively a graph Hθ ∈ Bθ

n) by adding

pendant trees.

The following two lemmas essentially reduce the problem of computing the de-

terminant of a graph G ∈ Bn to finding the determinant of a graph H either in B∞
n

or in Bθ
n.

Lemma 2.1 [3, Lemma 2.3] Let G be a graph. If H is the graph obtained from a

graph G by adding a pendant vertex to any vertex of G, then det(D(H)) is invariant,

regardless of which vertex of G has been connected to the pendant vertex by an edge.

Lemma 2.2 [3, Lemma 2.4] Let G1 and G2 be two graphs with vertex sets

{v1, v2, . . . , vk} and {vk+1, vk+2, . . . , vn}, respectively. Let G be the graph obtained

from G1 and G2 by adding an edge between vertices v1 and vn, and let H be graph

obtained from G1 and G2 by identifying vertices v1 and vn and then adding a pendent

vertex from v1 (or vn). Then, det(D(G)) = det(D(H)).
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Fig. 1. Graph B(1, p, q) = P (p, q, 1) on the left and graph P (p, q, 2) on the right.

By Lemma 2.1, if a graph G ∈ B∞
n has H = B(l, p, q) as induced subgraph,

then det(D(G)) is equal to the determinant of the graph H ′ obtained from H by

identifying a vertex of degree 1 of a path on m vertices with the vertex of degree 4

of B(1, p, q); where m = n−p− q+1. From now on we will denote such a graph H ′

by P (p, q,m). Therefore, the problem of computing the determinant of the distance

matrix of a bicyclic graph G having two edge-disjoint cycles as induced subgraph

can be reduced to the problem a computing the determinant of D(P (p, q,m)). It

can be also proved that computing such a determinant can be reduced to computing

f(0) = det(D(P (p, q, 1))) and f(1) = det(D(P (p, q, 2))) (see Figure 1). This claim

is deduced from the following result.

Lemma 2.3 [3, Lemma 2.2] Suppose that the sequence f(0), f(1), · · · , f(n) satisfies
the following linear recurrence relation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(m) = −4f(m− 1)− 4f(m− 2)

f(0) = f0

f(1) = f1.

Then

f(m) =
(
2(m− 1)f0 +mf1

)
(−2)(m−1).(1)

Having previously computed f(0) and f(1) and then proving that f(m) =

det(D(P (p, q,m + 1))) satisfies Equation 1 for each positive integer m, it is easy

to find a formula to the determinant of any bicyclic graph having B(p, q, l) as an

induced subgraph.

Theorem 2.4 [3, Theorem 3.4] Let G be an arbitrary bicyclic graph on p + q +

m − 1 vertices containing B(p, q, l) as an induced subgraph with m ≥ l − 1. Then

det(D(G)) = 0 if one of the integers p or q is even, and otherwise

det(D(G)) =

[
(pq − 1)(p+ q)

4
+

m

2
pq

]
(−2)m.

Next, we will state two technical results needed to deal with those cases of graphs

in which there are at least two twin vertices.
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Lemma 2.5 Let G be a connected graph with vertex set {v1, v2, . . . , vn}. If v1 and

v2 are twins, then S(D(G)) = {−d1,2} ∪ S(R), where

R =

⎛
⎜⎜⎜⎝

d2,1 01,n−2

...
...

dn,1 01,n−2

⎞
⎟⎟⎟⎠+D(H),

and H = G[{v2, . . . , vn}]. In addition,

det(D(G)) = −d1,2(det(D(H)(1|1)) d2,1 + 2det(D(H))).

Proof. Multiplying the matrix D(G) by the elementary matrix

P =

⎛
⎜⎜⎜⎝

1 −1 01,n−2

0 1 01,n−2

0n−2,1 0n−2,1 In−2

⎞
⎟⎟⎟⎠

on the left and by P−1 on the right, we obtain the first part of this result. The

second part of this result can be easily proved expanding the determinant of this

new matrix, which clearly has the same determinant as D(G). �

Corollary 2.6 Let G and H be graphs defined as in Lemma 2.5. If det(D(H)) �= 0,

then

det(D(G)) = −d1,2 det(D(H))(d2,1((D(H))−1)1,1 + 2).

3 θ-graphs

In order to cover all the cases necessary to find a formula for computing the de-

terminant of a distance matrix of a bicyclic graph, it remains to consider those

bicyclic graphs with two cycles sharing at least one edge; i.e., those graphs having

a θ-graph as induced subgraph. Below, we give details of those cases that need to

be considered in order to completely solve the problem:

• θ(1, p, q), where p and q are even positive integers.

• θ(2, 2, q), where q is either equal to 2 or an odd positive integer greater than 1.

• θ(l, p, q) such that:

· l = 1 and at least one of p and q is an odd integer greater than 1,

· l = p = 2 and q is an even integer greater than 3, or

· l ≥ 2, p ≥ 3, and q ≥ 3.

The idea to find the desired formula in each of the cases is considering the

determinant of a graph isomorphic to θ(l, p, q) and a graph isomorphic to θ(l, p, q)

plus a pendant edge incident to one of its vertices of degree 3. Then, by applying

Lemma 2.3, we will be able to compute the determinant of a graph obtained from
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θ(l, p, q) by identifying one vertex of degree one of a path of length m with one

of the vertices of degree three on θ(l, p, q). In the sequel, we will denote such a

graph F (l, p, q,m). Notice that Lemma 2.1 guarantees that the determinant of the

distance matrix of this graph agrees with the determinant of the distance matrix of

any bicyclic graph on l+p+q+m−1 vertices, having θ(l, p, q) as induced subgraph.

It is easy to verify by means of direct calculation that det(θ(2, 2, 2)) = −16.

v1 v2

v3 vk+3

vk+4v2k+4

Fig. 2. θ(2, 2, 2k + 1)

Let us label the vertices of θ(2, 2, 2k + 1) as in Figure 2. Clearly, v1 and v2
are twins. Besides, θ(2, 2, 2k + 1) − v1 = C2k+3, det(D(C2k+3)) = (k + 1)(k + 2),

and ((D(C2k+3))
−1)1,1 = −2+ 2k+3

(k+1)(k+2) (see [1]). By combining these observations

with Corollary 2.6 the result below follows.

Lemma 3.1 For every positive integer k, det (D(θ(2, 2, 2k + 1))) = 4(k2 + k − 1).

Lemma 3.2 Let l, p and q be integers satisfying one of the following conditions:

• l = 1 and, at least, p = 2k − 1 or q = 2k − 1 for some k ≥ 2,

• l = p = 2 and q = 2k − 2 for some k ≥ 3,

• l ≥ 2, p ≥ 3, and q ≥ 3.

Then,

det(D(θ(l, p, q))) = 0.

Proof. (Sketch.) We will split the proof into three cases.

(i) We consider the graph θ(1, p, q), where p = 2k−1 or q = 2k−1 for some k ≥ 2,

and having its vertices labeled as in Figure 3.

v1 vk

vk+1v2k

Fig. 3. θ(1, p, q)

(ii) We consider the graph θ(2, 2, q) with its vertices labeled as in Figure 4, where

q = 2k − 2 for some k ≥ 3.
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v2k+1

v1 vk−1

vk

vk+1v2k−1

v2k

Fig. 4. θ(2, 2, q)

(iii) We consider the graph θ(l, p, q), where l ≥ 2, p ≥ 3 and q ≥ 3. Clearly, at

least two of the three parameters (l, p and q) have the same parity. Hence,

l + p = 2k, l + q = 2k, or p + q = 2k, for some k ≥ 3. Accordingly, two cases

should be considered: two of the parameters are even integers or two of the

parameters are odd integers (see Figure 5).

v1 vj vk

vk+1v2k−j+1v2k

v2k+1

vn

Odd case

v1 vj vk−1

vk

vk+1v2k−jv2k−1

v2k

v2k+1

vn

Even case

Fig. 5. θ(l, p, q) with l ≥ 2, p ≥ 3 and q ≥ 3

For all those graphs considered in cases (i) and (iii) (where two paths connecting

vertices of degree three have odd lengths) it can be proved that d(v1, vi)−d(vk, vi)−
d(v2k, vi)+d(vk+1, vi) = 0, for every 1 ≤ i ≤ n. Hence the vector e1−ek+ek+1−e2k
is an eigenvector associated with the eigenvalue 0 for the distance matrix of these

graphs. Analogously, it can be proved that, for all those graphs considered in

cases (ii) and (iii) (where two paths connecting vertices of degree three have even

lengths), d(v1, vi)− d(vk−1, vi)− d(v2k−1, vi) + d(vk+1, vi) = 0, for every 1 ≤ i ≤ n.

Hence the vector e1 − ek−1 + ek+1 − e2k−1 is an eigenvector associated with the

eigenvalue 0 of the distance matrix for these graphs. �

4 θ-graphs plus a pendant vertex

Recall that F (l, p, q, 1) stands for the graph obtained from θ(l, p, q) by adding a

pendant edge incident to one of its vertices of degree 3. Below we give details of

those cases to be considered in order to cover all the cases.

• F (l, p, q, 1), where p and q are even positive integers.

• F (2, 2, q, 1), where q is either equal to 2 or an odd positive integer greater than

1.

• F (l, p, q, 1) such that:

· l = 1 and at least one of p and q is an odd integer number greater than 1,
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· l = p = 2 and q is an even integer greater than 3, or

· p ≥ 2, p ≥ 3, and q ≥ 3.

v3

v1

v4

v2

v5

v6

Fig. 6. F (2, 2, 2, 1)

Let us label the vertices of F (2, 2, 2, 1) as in Figure 6. Clearly, vertices v3, v4
and v5 satisfy conditions of Lemma 2.5. Hence, by applying this lemma repeatedly,

we conclude that det(F (2, 2, 2, 1)) = 48.

v1 v2

v3 vk+3

vk+4v2k+4

v2k+5

Fig. 7. F (2, 2, 2k + 1, 1)

Let us label the vertices of F (2, 2, 2k + 1, 1) as in Figure 7. Clearly, v1 and

v2 satisfy the hypothesis of Lemma 2.5. In addition, H = G[{v2, . . . , v2k+5}] is
isomorphic to C2k+3 plus a pendant vertex, det (D(H)) = −2((k + 1)(k + 2) +
2k+3
2 ) = −2k2 − 8k − 7 and (D(H))−1)1,1 = −4k2−12k−4

2k2+8k+7
(see [1] for more details).

By combining these observations with Corollary 2.6 the result below follows.

Lemma 4.1 Let k be a positive integer, then det (D(F (2, 2, 2k+1, 1))) = 4(−2k2−
4k + 3).

Lemma 4.2 Let l, p and q be integers satisfying one of the following conditions:

• l = 1 and either p = 2k − 1 or q = 2k − 1 for some k ≥ 2,

• l = p = 2 and q = 2k − 2 for some k ≥ 3,

• l ≥ 2, p ≥ 3, and q ≥ 3.

Then, det(D(F (l, p, q, 1))) = 0.

Proof. (Sketch.)

We split the proof into the three cases described below.

(i) We consider the graph F (1, p, q, 1), where p = 2k − 1 or q = 2k − 1 for some

k ≥ 2; with all its vertices labeled as in Figure 8.
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v1 vk

vk+1v2k

vn+1

Fig. 8. F (1, p, q, 1)

(ii) We consider F (2, 2, q, 1) with its vertices labeled as in Figure 9, where q = 2k−2

for some k ≥ 3.

v2k+1

v1 vk−1

vk

vk+1v2k−1

v2k

vn+1

Fig. 9. F (2, 2, q, 1)

(iii) We consider F (l, p, q, 1) where l ≥ 2, p ≥ 3, and q ≥ 3. Hence at least two of

the three parameter (l, p and q) have the same parity, meaning that at least

one of the following conditions holds for some k ≥ 3: l+ p = 2k, l+ q = 2k, or

p+q = 2k. Accordingly, two cases should be considered: two of the parameters

are even integers or two of the parameters are odd integers (see Figure 10).

v1 vj vk

vk+1v2k−j+1v2k

v2k+1

vn

vn+1

Odd case

v1 vj vk−1

vk

vk+1v2k−jv2k−1

v2k

v2k+1

vn

vn+1

Even case

Fig. 10. F (l, p, q, 1), where l ≥ 2, p ≥ 3, and q ≥ 3.

In the cases (i) and (iii) (where the induced subgraph θ(l, p, q) has two paths

connecting vertices of degree three with odd lengths), it can be proved that

d(v1, vi)− d(vk, vi)− d(v2k, vi) + d(vk+1, vi) = 0 for every 1 ≤ i ≤ n+ 1. Therefore

the vector e1 − ek + ek+1 − e2k belongs to the kernel of the matrix D(F (l, p, q, 1)).

For cases (ii) and (iii) (where the induced subgraph θ(l, p, q) has two paths

connecting vertices of degree three with even lengths), it can be proved that

d(v1, vi) − d(vk−1, vi) − d(v2k−1, vi) + d(vk+1, vi) = 0 for all 1 ≤ i ≤ n+ 1. Hence

the vector e1 − ek−1 + ek+1 − e2k−1 belongs to the kernel of D(F (l, p, q, 1)). �
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5 Determinant of the distance matrix of graphs in Bθ
n

Recall that graphs in Bθ
n have a θ-graph as induced subgraph. By Lemma 2.1, we

obtain the following result.

Lemma 5.1 Let G be a bicyclic graph on p + q + l + m − 1 vertices having

θ(p, q, l) as an induced subgraph for some integers p, q and l. Then det(D(G)) =

det(D(F (p, q, l,m))).

By Lemma 2.3 we know that

det
(
D(F (p, q, l,m))

)
= −4 det

(
D(F (p, q, l,m− 1))

)
− 4 det

(
D(F (p, q, l,m− 2))

)
.

Therefore, combining lemmas 2.1 and 5.1 we obtain the following results.

Lemma 5.2 Let G be a bicyclic graph on m+ p+ q+ l− 1 vertices having θ(p, q, l)

as an induced subgraph for some integers p, q and l. Then,

det(D(G)) =
(
2(m− 1) det(D0) +m det(D1))

)
(−2)(m−1),

where D0 = D(F (p, q, l, 0)) and D1 = F (G(p, q, l, 1)).

Notice that F (p, q, l,0) = θ(l, p, q).

Summarizing, we were able to compute the determinant of those bicyclic graphs

enumerated in the following result, whose proof is obtained by combining Lemma 5.2

with results and observations presented in Sections 3 and 4.

Theorem 5.3 Let G be a bicyclic on m+ p+ q+ l− 1 vertices containing θ(p, q, l)

as an induced subgraph for some integers p, q and l. Then:

(i) If l = p = q = 2, then det(D(G)) = −8(m+ 2)(−2)m.

(ii) If l = p = 2 and q is an odd positive integer greater than 1, then det(D(G)) =

(n2 − 6n+ 4 + 2m(n− 5))(−2)m, where n = p+ q + l − 1.

(iii) det(D(G)) = 0 whenever one of the following conditions holds:

(a) l = 1 and at least one of p and q is an odd integer greater than 1;

(b) l = p = 2 and q is an even integer greater than 3; or

(c) l ≥ 2, p ≥ 3, and q ≥ 3.

6 Conjectures

We leave unsolved the problem of computing the determinant of those bicyclic

graphs on l + p+ q +m− 1 vertices having θ(l, p, q) as induced sugraph such that

l = 1 and p and q are even integers. Nevertheless, in those cases we have strong ev-

idence, supported by numerical experiments performed in Sage, to conjecture that

det(D(θ(1, p, q)) = − (p+q)2

4 and det(D(F (1, p, q, 1)) = (p+q+1)2−1
2 , having consid-

ered all respective graphs up to 500 vertices. If our conjecture were true we could

conclude the following.
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Conjecture 6.1 Let G be a bicyclic graph on p+q+m vertices containing θ(1, p, q)

as induced sugraph, such that p and q are even positive integers. Then, det(D(G)) =

−n(n+ 2m)(−2)m−2, where n = p+ q.

If Conjecture 6.1 were true, then from [3, Theorem 3.4] and Theorem 5.3, it

would follow that the determinant of a bicyclic graph only depends on the number

of vertices and the length of its cycles.
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