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1. Introduction

In this paper we give a method to construct quaternion-Kähler compact
flat manifolds. Given any Bieberbach group Γ with holonomy group F and
translation lattice Λ and φ : F → Rn/Λ, a 1-cocycle modulo Λ, we form dφΓ,
a Bieberbach group of dimension 2n, having holonomy group F and such
that the holonomy group commutes with an invariant orthogonal complex
structure J on Rn. As a second step, we enlarge dφΓ into a Bieberbach
group with holonomy group F × Z2, in such a way that the new element of
order 2 in the holonomy group anticommutes with J . By applying either of
these procedures twice, we obtain families of hyperkähler flat manifolds and
quaternion Kähler flat manifolds.

In order for the second construction to work, we need a normality condi-
tion and a result in [6], therefore we will need to restrict ourselves to certain
Bieberbach groups with holonomy group F ' Zk2. However, the family of
such Bieberbach groups is still very large (see Section 2). Our main result is
Theorem 3.5 (see also Corollary 3.6) which will be used in Section 4 to give
many families of quaternion Kähler manifolds of dimensions n ≥ 8, which
admit no Kähler structure (see Example 4.1) or no hyperkähler structure
(see Example 4.2). This will follow from the explicit calculation of the Betti
numbers of the manifolds involved.

2. Certain Bieberbach groups with holonomy group Zk2
A Bieberbach group Γ is a crystallographic group (i.e. a discrete cocom-

pact subgroup of I(Rn)) which is torsion-free. Hence the action of Γ on
Rn is without fixed points and the quotient MΓ := Γ\Rn is a compact flat
Riemannian manifold with fundamental group Γ. If v ∈ Rn, let Lv denote
translation by v. By Bieberbach’s first theorem, if Γ is a crystallographic
group then Λ = {v : Lv ∈ Γ} is a lattice in Rn. The translation lattice
LΛ = {Lv : v ∈ Λ} is a normal and maximal abelian subgroup of Γ and the
quotient F := LΛ\Γ is a finite group which represents the linear holonomy
group of the flat Riemannian manifold MΓ and is called the holonomy group
of Γ. We will usually write Λ in place of LΛ throughout this paper.

Any element γ ∈ I(Rn) decomposes uniquely γ = BLb, with B ∈ O(n)
and b ∈ Rn and the lattice Λ is B-stable for each BLb ∈ Γ. The restriction
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to Γ of the canonical projection from I(Rn) to O(n), mapping BLb to B, has
kernel Λ and the image is a finite subgroup of O(n), called the point group
of Γ. We shall often identify the holonomy group F with the point group
of Γ. The action of F on Λ defines an integral representation of F , usually
called the holonomy representation.

In this paper, for technical reasons, we will be working only with Bieber-
bach groups with holonomy group Zk2. In Section 3 we will make use of the
following result from [6], Proposition 2.1 (see also [9], Proposition 1.1).

Proposition 2.1. Assume that Γ = 〈γ1, . . . , γk,Λ〉 is a subgroup of Aff (Rn),
with γi = BiLbi, bi ∈ Rn, Bi ∈ Gl(n,R) such that 〈B1, . . . , Br〉 ' Zk2 and Λ
is a lattice in Rn stable by the Bi’s. Then Γ is torsion-free with translation
lattice Λ if and only if the following two conditions hold:

(i) For each pair i, j, 1 ≤ i, j ≤ k, (Bi − Id)bj − (Bj − Id)bi ∈ Λ.
(ii) For each I = (i1, . . . , is) with 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ k, let

Bi1Lbi1 . . . BisLbis = BILb(I) ∈ Γ, with BI := Bi1 . . . Bis and b(I) =
Bis . . . Bi2bi1 +Bis . . . Bi3bi2 + · · ·+Bisbis−1 + bis . Then

(BI + Id) b(I) ∈ Λ \ (BI + Id) Λ.

Finally, if Γ satisfies conditions (i) and (ii), then Γ is isomorphic to a
Bieberbach group with holonomy group F ' Zk2.

Remark 2.2. We note that the statement in [6] asserts only the sufficiency
of conditions (i), (ii) for Γ to be torsion-free with translation lattice Λ, but
the converse can be proved, essentially, by reversing the argument given
there. Also, although the result in [6] is stated for subgroups of I(Rn), its
proof is valid under the more general conditions above.

We will use a family of Bieberbach groups, introduced in [12] for F ' Z2
2,

that will play a main role in the construction of quaternion flat manifolds
in the next section.

Definition 2.3. Let Γ be a Bieberbach group with holonomy group F ' Zk2
and translation lattice Λ. Then Γ is in class F if b ∈ 1

2Λ, for any BLb ∈ Γ,
and there is a decomposition of Λ: Λ =

∑r
j=1 Λj ⊕

∑t
i=1 Λr+i, where Λj =

Ze2j−1 ⊕ Ze2j (1 ≤ j ≤ r), Λr+i = Ze2r+i (for 1 ≤ i ≤ t) are F -stable and
the holonomy action is given as follows.

For each BLb ∈ Γ and 1 ≤ j ≤ r, B|Λj is either ±Id, or the map ±V ,
where V exchanges e2j−1 and e2j and, if 1 ≤ i ≤ t, then Be2r+i = ±e2r+i.
Furthermore, each Λj is F -indecomposable, that is, for each j there is some
B ∈ F which acts by ±V on Λj .

Remark 2.4. We note that if γ = BLb ∈ Γ with B ∈ O(n) , b ∈ Rn,
we may write b = b+ + b− where Bb± = ±b± and since F ' Zk2, then
γ2 = L(B+Id)b = L2b+ , hence 2b+ ∈ Λ. However, it may be the case that
2b− /∈ Λ, so we need the assumption that 2b ∈ Λ. It can be shown that if the
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holonomy representation is diagonal (i.e. r = 0) then Γ can be conjugated
in I(Rn) to a group Γ′ such that 2b ∈ Λ for each γ, so in this case this
assumption is not necessary (see [9], Section 1). It follows from the known
classification (see [1]) that it is also not needed in low dimensions n ≤ 4.

Although Definition 2.3 may seem rather restrictive, we shall next list
many known examples of Bieberbach groups satisfying those conditions,
showing that the family F is actually very large.

Example 2.5. We first use the known classification in low dimensions to
describe the Bieberbach groups with holonomy group Zk2 for n ≤ 4. We
refer to [1], p. 408, for a full list of fixed-point-free crystallographic groups
in dimensions ≤ 4.

If n = 2, the only non-abelian Bieberbach group is, up to conjugation by
Ψ in Aff(Rn), the Klein bottle group: Γ = 〈BL e1

2
,Λ〉 where Be1 = e1, Be2 =

−e2. Thus F ' Z2 and r=0.
If n = 3, there are 3 Bieberbach groups with F ' Z2, two of them

with diagonal holonomy (see [14] or [1]). Namely, Γ1 = 〈B1L e1
2
,Λ〉,Γ2 =

〈B2L e1
2
,Λ〉, Γ3 = 〈B3L e3

2
,Λ〉, where B1 =

[
1
−1
−1

]
, B2 =

[
1
−1

1

]
, and

B3 =
[
V

1

]
, where V interchanges e1 and e2. Also, there are 3 Bieberbach

groups with holonomy group Z2
2, all of them with diagonal holonomy rep-

resentation, namely: Γ1 = 〈B1L e1
2
, B2L e3

2
,Λ〉, Γ2 = 〈B1L e1

2
, B2L e2+e3

2

,Λ〉,

Γ3 = 〈B1L e1
2
, B′1L e2+e3

2

,Λ〉, where B1, B2 are as before and B′1 =
[−1

1
−1

]
.

Here Γ3 is the so called Hantzsche-Wendt group.
If n = 4 there are 5 groups with F = Z2 (3 of them with r = 0 and 2 with

r = 1). They correspond to families II, III in [1], p 408. Also, there are 26
groups with F ' Z2

2, 21 of them in F , where 8 are of diagonal type (r = 0)
and 13 have r = 1. There are five groups which have a more complicated
holonomy representation and are not in class F . These are denoted by
IV/04/01/04/005 (p.83), IV/04/01/06/004 (p.84), V/05/01/06/006 (p.90),
V/05/01/07/004 (p.90), V/05/01/10/004 (p.90) in [1]. We note that, out
of the 26 groups with holonomy group Z2

2, 17 belong to family IV and 9 to
family V of the list in [1], p 408. Finally, still for n = 4, there are 12 groups
with F ' Z3

2, all of them in F , with diagonal holonomy representation and
all non-orientable (they all belong to family V in [1], p.408).

Example 2.6. The groups studied in [6], Section 3, have F = Zk2, and
belong to family F , for all n ≥ 5, 2 ≤ k ≤ n − 3. Also, in the case when
F ' Z2

2, a subfamily of F is considered in [11] (see also [5]) and it is shown
that its cardinality grows polynomially with n. On the other hand, the
Hantzsche-Wendt groups in [8] have F ' Zn−1

2 (n odd) they are of diagonal
type, and their number h(n) grows exponentially with n.



4 ISABEL G. DOTTI AND ROBERTO J. MIATELLO

Example 2.7. We now give an example to show that for each n, r, t with
n = 2r+ t, there exists a Bieberbach group Γr,t belonging to family F , with
holonomy group F ' Zr+t−1

2 and where r, t play the role of r, t in Definition
2.3. We let Λ be the canonical lattice, decomposed as in Definition 2.3.

For 1 ≤ h ≤ r let Bh ∈ O(n) be such that Bh|Λj = V δh,j and Bhe2r+i =
e2r+i, for 1 ≤ j ≤ r, 1 ≤ i ≤ t. Let B′k ∈ O(n) be such that B′kei =
(−1)δ2r+k,iei, for 1 ≤ k ≤ t − 1, 1 ≤ i ≤ n. Choose b1 = e3+e4

2 ,. . . , br−1 =
e2r−1+e2r

2 , br = e2r+1

2 , b′1 = e2r+2

2 , b′2 = e2r+3

2 ,. . . , b′t−1 = en
2 .

Set Γr,t = 〈BhLbh , B′kLb′k ,Λ : 1 ≤ h ≤ r, 1 ≤ k ≤ t− 1〉.
It is not hard to verify that Γr,t satisfies conditions (i), (ii) of Proposition

2.1 and defines a torsion free group with translation lattice Λ which belongs
to family F .

Remark 2.8. In the previous examples we listed Bieberbach groups with
holonomy group Zk2 which are in class F , except only for the 5 groups listed in
Example 2.5 for n = 4, which have holonomy group Z2

2. On the other hand,
Nazarova has shown that Z2

2 has indecomposable integral representations
with arbitrarily large rank ([10]). Using these representations one can obtain
Bieberbach groups with holonomy group Z2

2 for any n ≥ 5, which are not in
the class F (see also [12], where all Bieberbach groups with holonomy group
Z2

2 and n = 5 are classified).

3. Construction of quaternion Kähler flat manifolds.

A Riemannian manifold is quaternion Kähler if its holonomy group is
contained in Sp(n)Sp(1). It is known that quaternion Kähler manifolds
are Einstein, so the scalar curvature s splits these manifolds according to
whether s > 0, s = 0 or s < 0. Ricci flat quaternion Kähler manifolds
include hyperkähler manifolds, that is, those with full holonomy group con-
tained in Sp(n). Such a manifold can be characterized by the existence of
a pair of integrable anticommuting complex structures, compatible with re-
spect to the Riemannian metric, and parallel with respect to the Levi-Civita
connection.

The simplest model of hyperkähler manifolds (and in particular, of quater-
nion Kähler manifolds) is provided by R4n with the standard flat metric
and a pair J,K of orthogonal anticommuting complex structures. This hy-
perkähler structure descends to the 4n-torus TΛ := Λ\R4n, for any lattice Λ
in R4n. If MΓ = Γ\R4n is a compact flat manifold such that the holonomy
action of F = Λ\Γ centralizes (resp. normalizes) the algebra generated by
J,K, then MΓ inherits a hyperkähler (resp. quaternion Kähler) structure.

In [3] we introduced a ”doubling” procedure for Bieberbach groups which
allows to produce many flat hyperkähler (even Clifford Kähler) manifolds.
In particular, we showed that any finite group is the holonomy group of a
hyperkähler flat manifold. The main goal of this paper is to give a variant
of this construction which produces quaternion Kähler manifolds which are
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generically not Kähler. The construction will apply to a large family of
Bieberbach groups, including those in family F (see Section 2). A similar
construction should work for Bieberbach groups with more general holonomy
groups (using for instance Proposition 1.1 in [MR2]). However, the family to
be considered will be sufficiently large to give many rather simple examples
of quaternion Kähler flat manifolds which admit no Kähler structure.

Let Γ be a Bieberbach group with holonomy group F and translation
lattice Λ ⊂ Rn. Let φ : F → Rn be a 1-cocycle modulo Λ, that is, φ
satisfies φ(B1B2) = B−1

2 φ(B1) + φ(B2), modulo Λ, for each B1, B2 ∈ F .
Then φ defines a cohomology class in H1(F ; Rn/Λ) ' H2(F ; Λ) and one
may associate to φ a crystallographic group with holonomy group F and
translation lattice Λ. Furthermore, this group is torsion-free if and only if
the class of φ is a special class (see [4]).

Definition 3.1. Let Γ be a Bieberbach group with holonomy group F and
translation lattice Λ ⊂ Rn. Let φ : F → Rn be any 1-cocycle modulo Λ.
We let dφΓ be the subgroup of I(R2n) generated by elements of the form[
B 0
0 B

]
L(φ(B),b) and L(λ,µ), for γ = BLb ∈ Γ and (λ, µ) ∈ Λ⊕ Λ.

Proposition 3.2. (compare with [3], Theorem 3.1) Let Γ, φ and dφΓ be as
in Definition 3.1. Then

(i) dφΓ is a Bieberbach group with holonomy group F , translation lattice
Λ⊕ Λ and dφΓ\R2n is a Kähler compact flat manifold.

(ii) If Γ\Rn has a locally invariant Kähler structure, then dφΓ\R2n is
hyperkähler. In particular, if φ′ : F → R2n is any 1-cocycle modulo Λ ⊕ Λ,
then dφ′dφΓ\R4n is hyperkähler. Any finite group is the holonomy group of
a hyperkähler compact flat manifold.

Proof. Given any two elements δ1, δ2 ∈ dφΓ with δ1 =
[
B1 0
0 B1

]
L(φ(B1),b1),

δ2 =
[
B2 0
0 B2

]
L(φ(B2),b2), we have δ1δ2 =

[
B1B2 0

0 B1B2

]
L(φ(B1B2),b(B1B2))L(µ,µ′)

where b(B1B2) = B−1
2 b1 + b2 and µ, µ′ ∈ Λ.

This implies, since Λ is B-stable for each BLb ∈ Γ, that a generic element
in dφΓ can be written δ =

[
B 0
0 B

]
L(φ(B)+λ,b+µ), for some BLb ∈ Γ, λ, µ ∈ Λ.

Furthermore we have a homomorphism ψ : dφΓ → F defined by ψ(δ) = B,
having kernel Λ ⊕ Λ. It follows that dφΓ is a crystallographic subgroup of
I(R2n) with holonomy group F and translation lattice Λ⊕ Λ. Furthermore
there is an exact sequence of groups

1→ Λ→ dφΓ→ Γ→ 1

where the second map is given by δ → γ = BLbLµ, which has kernel Λ⊕{0},
where δ =

[
B 0
0 B

]
L(φ(B)+λ,b+µ), as above.

This implies that dφΓ is torsion-free, since Γ and Λ are torsion-free.
Furthermore, the O(2n)-component of any element in dφΓ commutes with

the complex structure J2n in R2n given by J2n(v1, v2) = (v2,−v1), thus
dφΓ\R2n is a Kähler compact flat manifold. If Γ\Rn is already Kähler, that
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is, if the holonomy action of F commutes with J ′n, a translation invariant
complex structure on Rn, we put J ′2n =

[
J ′n
−J ′n

]
, getting a second com-

plex structure which anticommutes with J2n, hence we have a hyperkähler
structure on T 2n. Since the holonomy action of dφΓ commutes with both
J2n and J ′2n it follows that dφΓ\R2n is hyperkähler. This says in particular,
that for any Bieberbach group Γ, if φ′ is as in (ii) in the statement, then
dφ′dφΓ\R4n is hyperkähler. Since by a wellknown theorem of Auslander-
Kuranishi (see [14], for instance) any finite group is the holonomy group of
a compact flat manifold, it follows that any finite group is the holonomy
group of a hyperkähler compact flat manifold.

Remark 3.3. In this paper we shall work mostly with the choice φ = 0 and
we shall then write d0Γ. Other natural choice is to let φ be the 1-cocycle
associated to Γ, as in [3]; we denote dφΓ by dΓ in this case.

It is clear that the procedure in (ii) of Proposition 3.2 can be iterated.
If we assume that φ = 0, for simplicity, and we set dm0 Γ = d0dm−1

0 Γ, we
get that dm0 Γ is a Bieberbach subgroup of I(R2mn) with holonomy group
F , diagonal holonomy representation and translation lattice Λ⊕ · · · ⊕ Λ︸ ︷︷ ︸

2m

.

Furthermore the holonomy representation commutes with m anticommuting
complex structures on R2mn, hence dm0 Γ\R2mn has a Clifford structure of
order m (compare [3], 3.1).

We wish to enlarge dφΓ into a Bieberbach group dq,φΓ in such a way
that some element in the holonomy group of dq,φΓ anticommutes with the
complex structure J2n in R2n. Once this is done, then by repeating the
procedure twice, we shall get a Bieberbach group such that any element in
the holonomy group will either commute or anticommute with each one of a
pair of anticommuting complex structures, hence the quotient manifold will
be a quaternion Kähler flat manifold which in general, will not be Kähler.
In Theorem 3.5 we will show that this can be done for a class of Bieberbach
groups with holonomy group Zk2 which includes any group Γ ∈ F (Section
2).

Definition 3.4. Let Γ be a Bieberbach group with holonomy group F ' Zk2,
with translation lattice Λ and such that b ∈ 1

2Λ for any γ = BLb ∈ Γ. Let
φ : F → Rn be a 1-cocycle modulo Λ. Set En =

[
Id
−Id

]
∈ I(R2n). Set

dq,φ(Γ, v) = 〈dφΓ, EnL(v,0)〉, where v ∈ Rn.

As we shall see, under rather general conditions, dq,φ(Γ, v) contains dφΓ as
a normal subgroup of index 2, hence if v ∈ Rn can be chosen so that dq,φ(Γ, v)
is torsion free, Mdq,φ(Γ,v) will be a compact flat manifold with holonomy
group F × Z2 having as a double cover the Kähler manifold MdφΓ (see
Definition 3.1). Furthermore F commutes with J , but En only anticommutes
with J . If we use this construction twice we will get a Bieberbach group
d2
q(Γ, v, u) := dq,φ′(dq,φ(Γ, v), u) ⊂ I(R4n) such that the holonomy group
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normalizes two anticommuting complex structures, J1, J2, on R4n, hence
d2
q(Γ, v, u)\R4n will be a quaternion Kähler manifold. Thus, our main goal

will be to give conditions on v ∈ Rn that ensure that dq,φ(Γ, v) is torsion
free. We also note that if n is even, Mdq,φ(Γ,v) will always be orientable.

Theorem 3.5. Let Γ, φ be as in Definition 3.4. Then
(i) If v ∈ Rn is such that 2v ∈ Λ and satisfies

(B − Id)v ∈ Λ for each γ = BLb ∈ Γ,

then dq,φΓ is a crystallographic group with translation lattice Λ⊕ Λ
and holonomy group Zk+1

2 . Furthermore, dq,φΓ is torsion-free if and
only if v /∈ Λ and for each γ = BLb ∈ Γ we have:

(B + Id)(φ(B) + v) ∈ Λ \ (B + Id)Λ, or (B − Id)b /∈ (B − Id)Λ.

(ii) If every element in the holonomy group F commutes or anticom-
mutes with a translation invariant complex structure and v satisfies
the conditions in (i), then dq,φ(Γ, v)\R2n is quaternion Kähler.

(iii) If v satisfies the conditions in (i) we have that β1(dq,φ(Γ, v)\R2n) =
β1(Γ\Rn) and β2(dq,φ(Γ, v)\R2n) = 2β2(dq,φ(Γ, v)\R2n). Hence, if
β1(Γ\Rn) is odd, or if β2(Γ\Rn) = 0 and if F satisfies the condition
in (ii), then dq,φ(Γ, v)\R2n is quaternion Kähler and not Kähler.

(iv) Assume φ = 0 and Γ ∈ F (see Definition 2.1). Then the vector
v = 1

2

∑n
i=1 ei satisfies the conditions in (i), hence dq,0(Γ, v) is a

Bieberbach group. Furthermore, dq,0(Γ, v) ∈ F .

Proof. We first show that dφΓ is a normal subgroup of index 2 of dq,φ(Γ, v).
We note that for any γ = BLb ∈ Γ, we have:

EnL(v,0)

[
B

B

]
L(φ(B),b) (EnL(v,0))

−1 =
[
B

B

]
L(φ(B),b) L(µ,µ′)

with µ = (B − Id)v, µ′ = −2b. Now µ, µ′ ∈ Λ by the choice of v and Γ,
hence dφΓ is a normal subgroup of dq,φ(Γ, v). Furthermore, since 2v ∈ Λ,
any element in dq,φ(Γ, v) can be written uniquely in one of the following
forms:

(1)
[
B

B

]
L(φ(B)+λ,b+λ′) ,

[
B
−B

]
L(φ(B)+v+λ,−b+λ′)

with λ, λ′ ∈ Λ, γ = BLb ∈ Γ. This implies that if we map the elements
of the second (resp. first) type to −1 (resp. 1) we get an epimorphism
π : dq,φ(Γ, v)→ Z2 with kernel dφΓ. Thus, there is an exact sequence

1→ dφΓ→ dq,φ(Γ, v)→ Z2 → 1,

hence dq,φ(Γ, v) is a crystallographic group.
The general expression of the elements of dq,φ(Γ, v) given in (1) ensures

that the translation lattice of Γ is Λ⊕Λ and the holonomy group is F ×Z2.
We now find conditions on v, Γ for dq,φ(Γ, v) to be torsion-free. Proposi-

tion 2.1 (ii) requires that 2v ∈ Λ \ 2Λ and secondly (using the general form
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(1) of an element in dq,φ(Γ, v) which is not in dφΓ), that for any BLb ∈ Γ
one of the following holds:

(B + Id)(φ(B) + v) ∈ Λ \ (B + Id)Λ or (B − Id)b ∈ Λ \ (B − Id)Λ.

Since we know that (B + Id)b ∈ Λ (Γ has translation lattice Λ) and 2b
lies in Λ, the previous condition is equivalent to the one asserted in (i).

The proof of (ii) is the same as the one given in the proof of the analogous
assertion in Proposition 3.2, (i).

In order to prove (iv), we will need some general properties of the elements
of Γ ∈ F . We keep the notation from Section 2 (see Definition 2.3).

(a) For any BLb ∈ Γ, B|Λj = ±Id or ±V , for 1 ≤ j ≤ r. Indeed, since
for any j there is some element B′Lb′ ∈ Γ which acts by ±V on Λj and
B commutes with B′, then B|Λj must commute with V , hence the only
possibilities are B|Λj = ±Id or B|Λj = ±V , since B′ ∈ O(n). Furthermore,
Be2r+i = ±e2r+i, for 1 ≤ i ≤ t.

(b) Since 2b ∈ Λ for any BLb ∈ Γ then, modulo Λ, we have that 2b =∑2r+t
j=1 ajej , with aj = 0, 1 for all j. We claim that a2j−1 = a2j for 1 ≤ j ≤ r,

that is:

(2) b =
1
2

r∑
j=1

cj(e2j−1 + e2j) +
1
2

t∑
i=1

die2r+i

for some coefficients cj , di in {0, 1}, for all j. We note that this expression
implies in particular that (B ± Id) b ∈ Λ.

Let pj denote the projection onto Λj according to the decomposition in
Definition 2.2. To show that b can be written as in (2) we note that if
BLb ∈ Γ satisfies B|Λj = ±V , then, the projection pj of b on Λj must be
either 0, or e2j−1+e2j

2 , modulo Λ. Indeed, since (B+ Id)pjb ∈ Λ, one can not
have pjb equal to e2j−1

2 or e2j
2 .

Now we assume that j is such that B acts on Λj by ±I. Let B′Lb′ ∈ Γ
be so that B′ acts on Λj by ±V . We have seen already that pjb′ is either 0
or e2j−1+e2j

2 . Since BLbB′Lb′ = BB′LB′b+b′ , we have that (BB′+ Id)(B′b+
b′) ∈ Λ. We claim that this implies that pjb is either 0 or e2j−1+e2j

2 . Since
(BB′ + Id) acts on Λj by ±V + Id, then we have that, mod Λ,

pj(BB′ + Id)(B′b+ b′) = (B +B′)pjb+ (BB′ + Id)pjb′ ≡ (±I +±V )pjb,

since (±B′ + Id)pjb′ ∈ Λ. It thus follows that (±V +±Id)pjb ∈ Λ, and this
clearly implies that, modulo Λ, pjb is either 0 or e2j−1+e2j

2 as asserted. This
concludes the proof of (b).

(c) For any BLb ∈ Γ, b = b+ + b− where Bb± = ±b±; now Γ torsion-
free implies b+ 6= 0 (otherwise (BLb)2 = Id). Furthermore, b+ must have a
nonzero projection onto some Λj (1 ≤ j ≤ r) where B acts by Id, or it must
have a nonzero projection onto some space Re2r+i (1 ≤ i ≤ t), where e2r+i
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is fixed by B. To prove this assertion we note that if pjb := e2j−1+e2j
2 and

B|Λj = ±V , then pj(B + Id)b = (e2j−1 + e2j) = (B + Id)e2j−1 ∈ (B + Id)Λ,
if B acts by V , or else pj(B + Id)b = 0, if B acts by −V . This says that for
this j, pjb+ does not satisfy condition (ii) in Proposition 2.1. Therefore b
must necessarily have some nonzero projection of the form asserted above.

Now we are in a position to prove (iv) in the theorem. If we choose v =
1
2

∑2r+t
i=1 ej , then 2v ∈ Λ\2Λ. Furthermore by (c), (B+Id)|Λj = 2Id, for some

1 ≤ j ≤ r, or else B+Id fixes e2r+i for some 1 ≤ i ≤ t. In the first case we see
that pj(B+ Id)v = e2j−1 + e2j which is not in (B+ Id)Λj = Z2(e2j−1 + e2j).
In the second case, p2r+i(B + Id)v = e2r+i /∈ (B + Id)Zei = Z2ei. Thus,
this choice of v satisfies all the conditions in (i) of the theorem, for Γ to be
torsion-free. Hence (iv) is proved.

Concerning (iii), we note that by [7], the Betti numbers of a compact
flat manifold with fundamental group Γ are given by βj(MΓ) = dim ΛjRnF,
where the F -invariants are taken with respect to the rational holonomy
action of F . We note that the action over Q is always diagonal, for Γ
with holonomy group Zk2. Thus β1(MΓ) is the dimension of the space of
F -fixed vectors in Rn. In our case, since En acts by −Id on each ei for
n+ 1 ≤ i ≤ 2n, it follows that β1(Mdφ,qΓ) = β1(MΓ). The assertion on β2 is
checked similarly, by observing that the F × Z2-fixed vectors on Λ2R2n are
obtained by taking the exterior product of two vectors v, v′ lying both either
in
∑n

1 Rei, or in
∑2n

n+1 Rei, and where v, v′ are such that each element in F
acts by multiplication either by 1, or by -1, on both of v, v′. This concludes
the proof of the theorem.

Corollary 3.6. In the notation of Theorem 3.5, assume v ∈ Rn is such
that dq,φ(Γ, v) is a Bieberbach group. Let φ′ be a cocycle on F modulo Λ ⊕
Λ. If u ∈ R2n can be chosen so that d2

q,φ,φ′(Γ, v, u) := dq,φ′(dq,φ(Γ, v), u)
is torsion-free, then the quotient of R4n by d2

q,φ,φ′(Γ, v, u) is a quaternion
Kähler manifold. In particular, if Γ is a Bieberbach group in F and we
take φ = 0, v =

∑n
i=1 ei and u =

∑3n
i=2n+1 ei, then dq,0(Γ, v) ∈ F and

d2
q,0,0(Γ, v, u)\R4n is a quaternion Kähler manifold.

Remark 3.7. As it will be seen in the next section (see Examples 4.1, 4.2)
the vector v satisfying the conditions in the theorem is by no means unique,
in general.

Remark 3.8. Properties (b) and (c) in the proof of Theorem 3.5 imply that
for any Γ ∈ F with holonomy group Zk2, the relation k ≤ r+t must hold. In-
deed, by (c), the subgroup S of 1

2Λ generated by {b : BLb ∈ Γ, for some B ∈
O(n)} coincides with the subgroup generated by {bi : 1 ≤ i ≤ k}, in the
notation of Proposition 2.1. Hence if F ' Zk2, then S has rank at most
k. Now, it is easy to see that since Γ is torsion-free, bi1 + · · · + bih 6= 0,
mod Λ, hence the rank must be exactly k. Furthermore, it follows from
(b) in the theorem, that S is contained in the subgroup Sr,t generated by
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{ e2j−1+e2j
2 , e2r+i2 : 1 ≤ j ≤ r, 1 ≤ i ≤ t}, which has rank r + t. We also

note that if r = 0, then S can not have rank t, since F ' Zt2, would imply
−Id ∈ F , hence Γ can not be torsion-free. Therefore we must have k ≤ t−1,
if r = 0. Actually, all examples known to us indicate that any Γ ∈ F should
satisfy the relation k ≤ r + t− 1. If this relation held, it would then follow
that the rank of S is at most r + t− 1. We note that, since the groups Γr,t
in Example 2.7 satisfy k = r + t− 1, a better inequality than k ≤ r + t− 1
can not be obtained.

4. Quaternion Kähler flat manifolds of low dimensions

We will now illustrate the construction and results in the previous section
by looking at several particular Bieberbach groups in low dimensions. In
almost all cases we will use φ = 0 and we will write d2

q,0(Γ, v, u) in place of
dq,0(dq,0(Γ, v), u). Furthermore it will be convenient, for any C in O(n), to
denote by C ′ ∈ O(2n) the matrix C ′ =

[
C
C

]
. Also, C ′′ ∈ O(4n) will have

a similar meaning and Λn will denote the canonical lattice in Rn.

Example 4.1. We let first Γ be the Klein bottle Bieberbach group, for
n = 2. By applying dq,0 twice to Γ, we shall obtain several 8-dimensional
compact flat manifolds with holonomy group Z3

2 which are quaternion Kähler
and not Kähler. This will follow from the explicit computation of the real
cohomology.

We take Γ = 〈BLb,Λ2〉, where B =
[

1
−1

]
, b =

e1

2
. Then Γ\R2 is a

Klein bottle. If v = 1
2(m1e1 +m2e2), m1,m2 ∈ Z, then

dq,0(Γ, v) = 〈B′Lb′ , E2L(v,0),Λ4〉,

with B′ =
[

1
−1

1
−1

]
, E2 =

[
1

1
−1
−1

]
and b′ =

e3

2
.

We wish to find all m1,m2 ∈ Z such that the conditions in (i) of Theorem
3.5 are satisfied, so that dq,0(Γ, v) is torsion-free.

The first condition in (i) clearly holds for any choice of v since (B−Id)v =
−m2e2 ∈ Λ2. Furthermore, v ∈ 1

2Λ \Λ if and only if at least one of the mi’s
is odd. We also need that (B + Id)v = m1e1 /∈ (B + Id)Λ2 = Z2e1, hence
m1 must be odd. Thus, the possible solutions, modulo Λ2 are v1 = e1

2 and
v2 = e1+e2

2 . By computing the first integral homology groups in both cases,
one can show that these solutions lead to flat manifolds non homeomorphic
to each other.

We now form d2
q,0(Γ, vi, u) with i = 1, 2 and u = 1

2

∑4
j=1mjej , with

mj ∈ Z to be determined. Again we need that at least one of the m′js be
odd. We now consider the second condition in (i) for each choice of v.

We have that

d2
q,0

(
Γ,
e1

2
, u
)

= 〈B′′L e7
2
, E′2L e5

2
, E4 L(u,0), Λ8〉
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d2
q,0

(
Γ,
e1 + e2

2
, u

)
= 〈B′′L e7

2
, E′2L e5+e6

2

, E4 L(u,0), Λ8〉

where

B′′ =


1
−1

1
−1

1
−1

1
−1

 E′2 =

[
Id2
−Id2

Id2
−Id2

]
E4 =

[
Id4

−Id4

]
.

The first condition in (i) is clearly satisfied in both cases, for any choice of
u ∈ 1

2Λ, since the matrices B′, E2 are diagonal. For the second condition we
also need:

(B′ + Id)u = m1e1 +m3e3 /∈ (B′ + Id)Λ4 = Z2e1 ⊕ Z2e3),

(E2 + Id)u = m1e1 +m2e2 /∈ (E2 + Id)Λ4 = Z2e1 ⊕ Z2e2),
(B′E2 + Id)u = m1e1 +m4e4 /∈ (B′E2 + Id)Λ4 = Z2e1 ⊕ Z2e4).

These conditions are satisfied if and only if, either m1 is odd, or if each
one of m2,m3 and m4 are odd. This yields the following solutions modulo
Λ4: either u = uQ = e1+eQ

2 , where eQ =
∑

j∈Q ej and Q runs through all
subsets of {2, 3, 4}, or u = u′ := e2+e3+e4

2 . We get 9 distinct solutions, the
same set for both choices v = v1, v = v2. It will be convenient to order the
subsets Q as follows: ∅, {2}, {3}, {4}, {2, 3}{2, 4}{3, 4}, {2, 3, 4} and then to
set uj = uQ, for j = 1, . . . , 8 according to this ordering, letting u9 = u′.

In this way we obtain 18 Bieberbach groups Γi,j := d2
q,0(Γ, vi, uj) with

1 ≤ i ≤ 2, 1 ≤ j ≤ 9, so that the quotients Γi,j\R8 are quaternion Kähler
manifolds. We note that none of these manifolds is Kähler, since for all
i, j, β1(Γi,j\R8) = β1(Γ\R2) = 1 and β2(Γi,j\R8) = 2β2(Γ\R2) = 0, by (iii)
in Theorem 3.5. We also note that some of the groups may possibly be
isomorphic to each other, however we will see later that many of them are
pairwise non isomorphic, by computing Γi,j/[Γi,j ,Γi,j ] in each case.

We shall first determine all Betti numbers, by giving generators of ΛhR8F,
for 1 ≤ h ≤ 8.

It is clear that the space of F -invariants in R8 is spanned by e1 and
furthermore Λ2R8 F = 0. If h = 3, it is easy to see that a basis for the
F -invariants is given by e3 ∧ e5 ∧ e7, e2 ∧ e3 ∧ e4, e3 ∧ e6 ∧ e8, e2 ∧ e5 ∧ e6, e2 ∧
e7 ∧ e8, e4 ∧ e6 ∧ e7, e4 ∧ e5 ∧ e8, hence β3 = β5 = 7.

By Poincaré duality we have that χ(Γi,j\R8) = 2−2β1+2β2−2β3+β4 = 0,
hence (since β1 = 1, β2 = 0, β3 = 7) we get β4 = 2β3 = 14. We may check
this value by finding a basis for the F -invariants in Λ4R8. This is given
by vectors of the form ei ∧ ej ∧ ek ∧ el, with {i, j, k, l} running through
the sets {1, 3, 5, 7}, {2, 4, 6, 8}, {1, 2, 5, 6}, {3, 4, 7, 8}, {2, 3, 5, 8}, {1, 2, 3, 4},
{5, 6, 7, 8}, {1, 3, 6, 8},{1, 2, 7, 8}, {2, 4, 5, 7}, {1, 4, 6, 7}, {2, 3, 6, 7}, {2, 4, 5, 7}
and {1, 4, 5, 8}.

Summing up, we get that the Poincaré polynomial of each one of the flat
manifolds Γi,j\R8 is p(t) = 1 + t+ 7t3 + 14t4 + 7t5 + t7 + t8.
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We thus have 2-fold coverings Md2
0Γ →MΓij , where Md2

0Γ is hyperkähler,
by Proposition 3.2, and MΓi,j does not admit any Kähler structure, since
β1(MΓi,j ) = 1, for all i, j.

To conclude this example, we shall show that many of the manifolds
MΓij are non homeomorphic to each other, by computing the first integral
homology groups, H1(MΓij ,Z) ' Γij/[Γij ,Γij ].

We first consider the case when i = 1, j 6= 9. Set γ1 = B′′L e7
2
, γ2 =

E′2L e5
2
, γ3 = E4L e1+eQ

2

with Q ⊂ {2, 3, 4} and eQ =
∑

j∈Q ej . We have that

[γ, Lek ] = L2ek , if γ = BLb and Bek = −ek. Also, we compute that

(3) [γ1, γ2] = Le7 , [γ1, γ3] = L
e7+(B′′−Id)

eQ
2

, [γ2, γ3] = L
e5+(E′2−Id)

eQ
2

.

We note that e′′Q := (B′′ − Id) eQ2 and e′Q := (E′2 − Id) eQ2 equal minus the
orthogonal projections of eQ onto the spaces Re2 + Re4 and Re3 + Re4,
respectively. If j = 9, then γ3 = E4L e2+e3+e4

2

and the commutation relations

are the same as in the case when j = 8, since e1 is fixed by B′′, E′2 and E4.
We therefore have, for 1 ≤ j ≤ 9,

[Γ1,j ,Γ1,j ] = 〈Le7 , Le7+e′′Q
, Le5+e′Q

, L2ej : j 6= 1〉.

Taking into account that γ2
1 = Le7 , γ

2
2 = Le5 , γ

2
3 = Le1+eQ (resp. γ2

3 =
Le2+e3+e4 if j = 9), we determine the groups Γ1,j/[Γ1,j ,Γ1,j ] ' H1(MΓ1,j ,Z)
for each 1 ≤ j ≤ 9. These are given in the following table:

Q [Γ1,j ,Γ1,j ] H1(MΓ1,j ,Z)
∅ 〈Le7 , Le5 , L2ej : j 6= 1〉 Z⊕ Z7

2

{2} 〈Le7 , Le2 , Le5 , L2ej : j 6= 1〉 Z⊕ Z6
2

{3} 〈Le7 , Le5+e3 , L2ej : j 6= 1〉 Z⊕ Z4 ⊕ Z6
2

{4} 〈Le7 , Le4 , Le5 , L2ej : j 6= 1〉 Z⊕ Z6
2

{2, 3} 〈Le7 , Le2 , Le5+e3 , L2ej : j 6= 1〉 Z⊕ Z4 ⊕ Z5
2

{2, 4} 〈Le7 , Le2+e4 , Le5+e4 , L2ej : j 6= 1〉 Z⊕ Z4 ⊕ Z5
2

{3, 4} 〈Le7 , Le4 , Le5+e3 , L2ej : j 6= 1〉 Z⊕ Z4 ⊕ Z5
2

{2, 3, 4} 〈Le7 , Le2+e4 , Le5+e3+e4 , L2ej : j 6= 1〉 Z⊕ Z4 ⊕ Z5
2

j = 9 〈Le7 , Le2+e4 , Le5+e3+e4 , L2ej : j 6= 1〉 Z⊕ Z2
4 ⊕ Z4

2

We thus get 5 different values for H1(MΓ1,j ,Z), namely Z ⊕ Zh2 , with
h = 6, 7, Z⊕ Z4 ⊕ Zk2, with k = 5, 6 and Z⊕ Z2

4 ⊕ Z4
2.

We now consider the case of Γ2,j . Then γ1 = B′′L e7
2
, γ2 = E′2L e5+e6

2

, γ3 =

E4L e1+eQ
2

with Q ⊂ {2, 3, 4} and eQ =
∑

j∈Q ej , if 1 ≤ j ≤ 8. If j = 9, then

γ3 = E4L e2+e3+e4
2

. We have that [γ, Lek ] = L2ek , if γ = BLb and Bek = −ek.
Also, we compute that

(4) [γ1, γ2] = L−e7−e6 , [γ1, γ3] = Le7+e′′Q
, [γ2, γ3] = Le5+e6+e′Q
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We have

[Γ2,j ,Γ2,j ] = 〈Le7+e6 , Le7+e′′Q
, Le5+e6+e′Q

, L2ej : j 6= 1〉,

and furthermore, γ2
1 = Le7 , γ

2
2 = Le5+e6 , γ

2
3 = Le1+eQ , 1 ≤ j ≤ 8 and

γ2
3 = Le2+e3+e4 , if j = 9. We thus get that the groups Γ2,j/[Γ2,j ,Γ2,j ] '
H1(MΓ2,j ,Z) are as given in the following table:

Q [Γ2,j ,Γ2,j ] H1(MΓ2,j ,Z)
∅ 〈Le7+e6 , Le7 , Le5+e6 , L2ej : j 6= 1〉 Z⊕ Z7

2

{2} 〈Le7+e6 , Le7+e2 , Le5+e6 , L2ej : j 6= 1〉 Z⊕ Z4 ⊕ Z5
2

{3} 〈Le7+e6 , Le7 , Le5+e6+e3 , L2ej : j 6= 1〉 Z⊕ Z4 ⊕ Z5
2

{4} 〈Le7+e6 , Le7+e4 , Le4+e5+e6 , L2ej : j 6= 1〉 Z⊕ Z2
4 ⊕ Z4

2

{2,3} 〈Le7+e6 , Le7+e2 , Le5+e6+e3 , L2ej : j 6= 1〉 Z⊕ Z2
4 ⊕ Z4

2

{2,4} 〈Le7+e6 , Le7+e2+e4 , Le5+e6+e4 , L2ej : j 6= 1〉 Z⊕ Z2
4 ⊕ Z4

2

{3,4} 〈Le7+e6 , Le7+e4 , Le5+e6+e4+e3 , L2ej : j 6= 1〉 Z⊕ Z2
4 ⊕ Z4

2

{2,3,4} 〈Le7+e6 , Le7+e2+e4 , Le5+e6+e3+e4 , L2ej : j 6= 1〉 Z⊕ Z2
4 ⊕ Z4

2

j = 9 〈Le7+e6 , Le7+e2+e4 , Le5+e6+e3+e4 , L2ej : j 6= 1〉 Z⊕ Z3
4 ⊕ Z3

2

In this case we see that, in addition to the groups obtained in the case
i = 1, we get the group Z⊕ Z3

4 ⊕ Z3
2. Thus, among the 18 groups obtained,

6 of them have different first integral homology groups. Actually, most of
the groups Γi,j should be pairwise non-isomorphic. To check this one should
verify whether the cohomology classes in H2(F,Λ) corresponding to different
Γi,j ’s are semilinearly equivalent (see [4], Theorem 2.2).

Example 4.2. We now apply dq,0 to Γ1,Γ2, two 4-dimensional Bieberbach
groups with holonomy group Z2, such that Γi\R4 has a locally invariant
Kähler structure, for i = 1, 2. The resulting manifolds will not admit a
hyperkähler structure.

Let Γ be the Klein-bottle group from Example 4.1. We set

Γ1 = dΓ = 〈B′L e3
2
,Λ4〉, Γ2 = 〈ALa,Λ4〉, with A =

[
V

1
−1

]
, a =

e3

2
.

It is clear that Γ1 is torsion-free and Kähler (see Proposition 3.2 (i)) and the
same is true of Γ2 since (A + Id)a = e3 /∈ (A + Id)Λ4 = Z(e1 + e2) ⊕ Z2e3.
To see that Γ2 is Kähler we note that if Q = 1√

2

[
1 1
1 −1

]
then conjugation of

A by Q1 =
[
Q

Id2

]
yields A1 =

[
1
−1

1
−1

]
. Since the complex structure

Jo :=
[

0 Id2
−Id2 0

]
commutes with A1, then J̃ := Q−1

1 JoQ1 commutes with A.
We note that Q is orthogonal.

We now determine all vectors v ∈ R4 such that dq,0(Γi, v) are Bieberbach
groups, i = 1, 2. By Theorem 3.5 (iii), v = 1

2

∑4
1 ei has this property for

both Γ1,Γ2. As in Example 4.1 we set v = 1
2

∑4
1miei and look for the values

of mi ∈ {0, 1} so that (i) in Theorem 3.5 holds. Clearly (B′ − Id)v ∈ Λ4 for
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any v of this form. However (A− Id)v ∈ Λ4 implies that both m1,m2 must
have the same parity.

The second condition in (i) will be satisfied for Γ1,Γ2, if and only if,
respectively,

(B′ + Id)v = m1e1 +m3e3 /∈ (B′ + Id)Λ4 = Z2e1 ⊕ Z2e3

(A+Id)v =
m1 +m2

2
e1+

m1 +m2

2
e2+m3e3 /∈ (A+Id)Λ4 = Z(e1+e2)⊕Z2e3.

This implies that the solutions for Γ1 are the vectors v such that m1 or
m3 is odd, that is, all vectors of the form v = eQ

2 , where eQ =
∑

j∈Q ej with
Q ⊂ {1, 2, 3, 4}, Q 6= ∅, {2}, {4}, {2, 4} (a total of 12 solutions).

In the case of Γ2, the solutions are the vectors such that m1 and m2 have
the same parity and m3 is odd, that is, v = eQ

2 , where Q is one of {3}, {3, 4},
{1, 2, 3}, {1, 2, 3, 4} (4 solutions).

For simplicity we shall write Γi,Q := dq,0(Γi, v) where i = 1, 2 and Q ⊂
{1, 2, 3, 4} is such that v = eQ

2 satisfies the conditions above, so that Γi,v is
torsion-free. The real cohomology is the same for all manifolds dq,0Γi,Q\R8,
i = 1, 2, since the holonomy representation over Q is the same in all cases.
The Betti numbers are as usual given by βh = dimΛhR8F, 1 ≤ h ≤ 8. Clearly
the fixed space for h = 1 and h = 2 is generated, respectively, by {e1, e3}
and by {e1 ∧ e3, e2 ∧ e4, e5 ∧ e7 and e6 ∧ e8}. For h = 3, the invariants are
obtained by taking exterior products of the form ei∧ ej ∧ ek where either all
three, or one, of i, j, k are ≤ 4. In the first case we get the vectors e1∧e2∧e4

and e2 ∧ e3 ∧ e4, while in the second there are 2
(

4
2

)
= 12 possibilities, hence

β3 = 14. Similarly, we compute that β4 = 1 + 42 + 22 + 1 = 22. Thus,
the Poincaré polynomial of the manifolds dq,0Γi,Q\R8, i = 1, 2 is given by
p(t) = 1+2t+4t2 +14t3 +22t4 +14t5 +4t6 +2t7 +t8. We note that the Euler
characteristic equals χ = 2− 2β1 + 2β2− 2β3 +β4 = 2− 4 + 8− 28 + 22 = 0,
as it should be.

We conclude this example by computing the first integral homology groups
of the manifolds dq,0Γi,Q\R8, i = 1, 2.

We have that Γ1,v = 〈B′′L e7
2
, E4Lv,Λ8〉, Γ2,v = 〈A′L e7

2
, E4Lv,Λ8〉, where

as usual A′ =
[
A 0
0 A

]
. Furthermore we compute that

[B′′L e7
2
, E4Lv] = Le7−p(eQ), [A′L e7

2
, E4Lv] = Le7−p′(eQ),

where p, p′ denote the orthogonal projections onto Re2 + Re4 and Re4 re-
spectively, for i = 1, 2. Hence we get that

[Γ1,v,Γ1,v] = 〈Le7−p(eQ), L2ej : j 6= 1, 3〉,

[Γ2,v,Γ2,v] = 〈Le7−p′(eQ), L2(e1−e2), L2ej : j 6= 3〉.

Since p(eQ) = 0 (resp. p′(eQ) = 0) if and only if Q ⊂ {1, 3} (resp. Q = {3}
or Q = {1, 2, 3}) and taking into account that γ2

1 = Le7 , γ2
3 = LeQ and
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(AL e7
2

)2 = Le7 , we conclude that

Γ1,v/[Γ1,v,Γ1,v] '
{

Z2 ⊕ Z6
2 if Q ⊂ {e1, e3}

Z2 ⊕ Z4 ⊕ Z5
2 if Q 6⊂ {e1, e3}

Γ2,v/[Γ2,v,Γ2,v] '
{

Z2 ⊕ Z6
2 if 4 /∈ Q

Z2 ⊕ Z4 ⊕ Z5
2 if 4 ∈ Q.

We finally note that, if Γ is the Klein bottle group we have 2-fold coverings
Md2Γ → MΓ1,Q

, where Md2Γ is hyperkähler and MΓ1,Q
is Kähler and not

hyperkähler, since β1(MΓ1,Q
) = 2 is not divisible by 4.

Example 4.3. In the examples discussed so far, the group Γ considered
lies in the family F . However, examination of particular cases shows that
the construction also applies to many groups Γ not in F . We shall see in
this last example that, for some choice of φ, there exists a vector v so that
conditions (i) in Theorem 3.5 are satisfied for all flat manifolds of dimension
n = 4, having holonomy group Z2

2, which do not lie in family F . We note,
however, that in one case there will be no solution if we choose φ = 0.

The groups in dimension n = 4, which are not in class F are listed as
IV:04/01/04/005, IV:04/01/06/004, V:05/01/06/006, V:05/01/10/004 and
V:05/01/07/004 in [1], but for simplicity, we shall denote them respectively
by Γi, 1 ≤ i ≤ 5. We have Γi = 〈AiLai , BiLbi ,Λ4〉, where Λ4 is the canonical
lattice in R4 and Ai, Bi, ai, bi are given respectively as follows:

A1 =
[

1 0 0 −1
0 1 0 0
0 0 1 1
0 0 0 −1

]
, a1 = e2

2 , B1 =
[

1 0 0 0
0 1 0 0
0 0 −1 −1
0 0 0 1

]
, b1 = e1

2

A2 =
[

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 −1

]
, a2 = e3

2 , B2 =
[

1 0 1 0
0 1 0 0
0 0 −1 0
0 0 0 1

]
, b2 = e2+e4

2

A3 =
[ 0 −1 1 0
−1 0 1 0
0 0 1 0
0 0 0 −1

]
, a3 = e1+e3+e4

2 , B3 =
[ 0 1 −1 0

0 1 0 0
−1 1 0 0
0 0 0 −1

]
, b3 = e1+e2

2

A4 =
[

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

]
, a4 = e3+e4

2 , B4 =
[ 1 0 −1 0

0 1 −1 0
0 0 −1 0
0 0 0 −1

]
, b4 = e1

2

A5 =
[

1 0 0 1
0 1 0 1
0 0 −1 0
0 0 0 −1

]
, a5 = e1+e3

2 , B5 =
[

1 0 0 0
0 −1 0 −1
0 0 −1 −1
0 0 0 1

]
, b5 = e1

2

We shall next show that in all cases except one, if we take φ = 0, there
exists v satisfying the conditions in Theorem 3.5, (i).

We note that 2b ∈ Λ for any BLb ∈ Γi, in all five cases. Also, (i) requires
that (Ai − Id)v and (Bi − Id)v lie in Λ, for 1 ≤ i ≤ 5 and this will impose
some restrictions on v in each case. We note that, if (Ai−Id)v and (Bi−Id)v
lie in Λ, then (AiBi − Id)v = Ai(Bi − Id)v + (Ai − Id)v ∈ Λ. The second
condition in (i) requires that for each BLb ∈ Γi (1 ≤ i ≤ 5) we have
(B + Id)v /∈ (B + Id)Λ or (B − Id)b /∈ (B − Id)Λ. We set v = 1

2

∑4
j=1mjej

with mi ∈ Z and at least one of the mi’s odd. We note that, since only the
class of v modulo Λ matters, we may assume that mj = 0, 1 for each i. For
each Γi, 1 ≤ i ≤ 5 one computes:
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Case of Γ1:

(A1 − Id)v = 1
2(−m4, 0,m4,−2m4)

(B1 − Id)v = 1
2(0, 0,−2m3 −m4, 0)

(A1 + Id)v = 1
2(2m1 −m4, 2m2, 2m3 +m4, 0)

(A1 + Id)Λ = {(2n1 − n4, 2n2, 2n3 + n4, 0) : nj ∈ Z}
(B1 + Id)v = 1

2(2m1, 2m2,−m4, 2m4)
(B1 + Id)Λ = {(2n1, 2n2,−n4, 2n4) : nj ∈ Z}
(A1B1 + Id)v = 1

2(2m1 −m4, 2m2,m4, 0)
(A1B1 + Id)Λ = {(2n1 − n4, 2n2, n4, 0) : nj ∈ Z}

We see that the first equation implies that m4 must be even. If furthermore
m2 is odd, all conditions in (i) of Theorem 3.5 hold. For instance v = e2

2 is
a solution.

Case of Γ2:

(A2 − Id)v = 1
2(m4, 0, 0,−2m4)

(B2 − Id)v = 1
2(m3, 0,−2m3, 0)

(A2 + Id)v = 1
2(2m1 +m4, 2m2, 2m3, 0)

(A2 + Id)Λ = {(2n1 + n4, 2n2, 2n3, 0) : nj ∈ Z}
(B2 + Id)v = 1

2(2m1 +m3, 2m2, 0, 2m4)
(B2 + Id)Λ = {(2n1 + n3, 2n2, 0, 2n4) : nj ∈ Z}
(A2B2 + Id)v = 1

2(2m1 +m3 +m4, 2m2, 0, 0)
(A2B2 + Id)Λ = {(2n1 + n3 + n4, 2n2, 0, 0) : nj ∈ Z}

We see that the first and second equations imply that m3 and m4 must be
even and the second condition in (i) of Theorem 3.5 forces m2 to be odd.
These are the only conditions on v. The vector v = e2

2 is a solution.

Case of Γ3:

(A3 − Id)v = 1
2(−m1 −m2 +m3,−m1 −m2 +m3, 0,−2m4)

(B3 − Id)v = 1
2(−m1 +m2 −m3, 0,−m1 +m2 −m3,−2m4)

(A3 + Id)v = 1
2(m1 −m2 +m3,−m1 +m2 +m3, 2m3, 0)

(A3 + Id)Λ = {(n1 − n2 + n3,−n1 + n2 + n3, 2n3, 0) : nj ∈ Z}
(B3 + Id)v = 1

2(m1 +m2 −m3, 2m2,−m1 +m2 +m3, 0)
(B3 + Id)Λ = {(n1 + n2 − n3, 2n2,−n1 + n2 + n3, 0) : nj ∈ Z}
(A3B3 + Id)v = 1

2(0,−m1 +m2 +m3,−m1 +m2 +m3, 2m4)
(A3B3 + Id)Λ = {(0,−n1 + n2 + n3,−n1 + n2 + n3, 2n4) : nj ∈ Z}

Now the first two equations imply that m1 +m2 +m3 is even and we easily
see that if we take v = e2+e3+e4

2 , all conditions in Theorem 3.5 are satisfied.

Case of Γ4:

(A4 − Id)v = 1
2(m2 −m1,m1 −m2, 0,−2m4)

(B4 − Id)v = 1
2(−m3,−m3,−2m3,−2m4)

(A4 + Id)v = 1
2(m1 +m2,m1 +m2, 2m3, 0)

(A4 + Id)Λ = {(n1 + n2, n1 + n2, 2n3, 0) : nj ∈ Z}
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(B4 + Id)v = 1
2(2m1 −m3, 2m2 −m3, 0, 0)

(B4 + Id)Λ = {(2n1 − n3, 2n2 − n3, 0, 0) : nj ∈ Z}
(A4B4 + Id)v = 1

2(2m1 −m4, 2m2, 2m3 +m4, 0)
(A4B4 + Id)Λ = {(2n1 − n4, 2n2, n4, 0) : nj ∈ Z}
(A4 − Id)a4 = (0, 0, 0,−1) /∈ (A4 − Id)Λ, (B4 − Id)b4 = 0.

We see in this case that the first two equations impose many restrictions,
namely, m1,m2 must have the same parity and m3 must be even. On the
other hand, one immediately sees that for any v which satisfies these restric-
tions, one has that (B4 + Id)v ∈ (B4 + Id)Λ. Hence there is no v in this case
which verifies all conditions. (We note that, since (A4− Id)a4 /∈ (A4− Id)Λ,
we need not check the condition on (A4 + Id)v.) However, we shall see that
if we form dφΓ, with φ the 1-cocycle associated to Γ (see Remark 3.3), then
there is a solution. We have:

(A4 + Id)(v+a4) = 1
2(m1 +m2,m1 +m2, 2m3 + 2, 0) /∈ (A4 + Id)Λ =

{(n1 + n2, n1 + n2, 2n3, 0) : nj ∈ Z}, since m3 is even.
(B4 + Id)(v+ b4) = 1

2(2m1−m3 + 2, 2m2−m3, 0, 0) /∈ (B4 + Id)Λ =
{(2n1−n3, 2n2−n3, 0, 0) : nj ∈ Z} for any choice of v, since m1 and
m2 have the same parity.
(A4B4+Id)(v+bA4B4) = 1

2(m1+m2+m3,m1+m2+m3, 0, 2m4+2) /∈
(A4B4 + Id)Λ = {(n1 + n2− n3, n1 + n2− n3, 0, 2n4) : nj ∈ Z}, if we
choose v = e1+e2

2 (here bA4B4 = B4a4 + b4).
We note that v = e1+e2

2 is the only solution to all equations.

Case of Γ5:
(A5 − Id)v = 1

2(m4,m4,−2m3,−2m4)
(B5 − Id)v = 1

2(0,−2m2 −m4,−2m3 −m4, 2m4)
(A5 + Id)v = 1

2(2m1 +m4, 2m2 +m4, 0, 0)
(A5 + Id)Λ = {(2n1 + n4, 2n2 + n4, 0, 0) : nj ∈ Z}
(B5 + Id)v = 1

2(2m1,−m4,−m4, 2m4)
(B5 + Id)Λ = {(2n1,−n4,−n4, 2n4) : nj ∈ Z}
(A5B5 + Id)v = 1

2(2m1 +m4, 0, 2m3 +m4, 0)
(A5B5 + Id)Λ = {(2n1 + n4, 0, 2n3 + n4, 0) : nj ∈ Z}

We see that the first equation implies that m4 is even. We may take m1 = 1
and m2 = 0 and all conditions in (i) of Theorem 3.5 are satisfied. Hence
v = e1

2 is a solution. We note in particular that (A5B5 + Id) e12 = e1 /∈
(A5B5 + Id)Λ, since 2n1 + n4 and 2n3 + n4 always have the same parity.
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