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Abstract

Consider any subvariety of BL-algebras generated by a single BL-chain which is
the ordinal sum of the standard MV-algebra on [0,1] and a basic hoop H. We
present a geometrical characterization of elements in the finitely generated free
algebra of each of these subvarieties. In this characterization there is a clear
insight of the role of the regular and dense elements of the generating chain. As
an application, we analyze maximal and prime filters in the free algebra.
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1. Introduction

Basic Fuzzy Logic (BL for short) was introduced by Hajek in [19] to formalize
fuzzy logics in which the conjunction is interpreted by a continuous t-norm on
the real segment [0, 1] and the implication by its corresponding adjoint. The
equivalent algebraic semantics for BL, in the sense of Blok and Pigozzi, is the
variety of BL-algebras BL ([19], [11]), that contains MV-algebras, Godel algebras
and Product algebras as proper subvarieties. Many algebraic properties of BL-
algebras correspond to logical properties of BL. One of these properties, and what
is our concern, is that the elements of free algebras in BL are in correspondence
with equivalence classes of formulas in the logic. This is why many attempts
to study free algebras in subvarieties of BL-algebras have been accomplished in
the last decades. Some of these studies, as [14] and [7], describe free algebras
in subvarieties of BL-algebras from an structural point of view, considering the
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representation of the algebra as weak boolean product of directly indecomposable
BL-algebras over the Stone space corresponding to a free Boolean algebra. Some
others provide a functional description of the elements in the free algebra. The
most famous of such descriptions is the one of free algebras in the variety of
MV-algebras presented by McNaughton in [22], which has been broadly used
to investigate different aspects of Lukasiewicz’s many-valued logic (see [13] and
[25]). The case of Godel functions is studied in [18] and functions in product
logic are characterized in [15]. The functional description of the one-generated
free BL-algebra is presented in [23] and it is generalized for the case of finitely
many generators in [1] (see also [4]). The key point in these characterizations
of free BL-algebras is that any n-generated BL-algebra is in the subvariety of
BL-algebras generated by n + 1-copies of the standard MV-chain on the real unit
segment [0, 1], thus McNaughton functions can be used to describe the elements
of the free algebra. But since the generating chain changes as the number of
generators of the free algebra increases, the description of the functions on the
algebra is recursive and it is hard to use it for further applications.

Our aim is to present a functional representation of the finitely generated
free algebras in subvarieties of BL-algebras generated by a single BL-chain. The
generating chain & is the ordinal sum of the standard MV-algebra [0, 1]pmv
and an arbitrary totally ordered basic hoop H, in symbols & = [0, 1]pv € H.
Therefore we are presenting a characterization of infinitely many free algebras in
infinitely many subvarieties of BL-algebras. In particular, we are providing an
alternative description of the free n-generated BL-algebra. The main advantage
of this approach, is that unlike the work done in [1] and [4], when the number
n of generators of the free algebra increase the generating chain remains fixed.
This provides a clear insight of the role of the two main blocks of the generating
chain in the description of the functions in the free algebra: the role of the
regular elements and the role of the dense elements.

Once we fixed the chain H we denote MS the subvariety of BL-algebras
that is our concern. To describe functions in the free algebra Freepys(n) we
first decompose the domain of the functions 6™ = ([0, 1jpmv @ H)™ in a finite
number of pieces. In each piece a function in Freeys(n) coincides either with
a McNaughton function or a function in the free algebra in the subvariety of
basic hoops generated by H. Our description of functions in the free algebra
in terms of the functions in the free algebras associated with the two blocks
of the generating chain paves the way to understand some elements of the free
BL-algebra. For example, we present a complete characterization of prime and
maximal filters in the free BL-algebra.

The paper is organized as follows: In Section 2 we present all the background
on hoops, BL-algebras and free algebras necessary to understand the main
results of the paper. To have a geometrical intuition, in Section 3, we provide
the characterization of the free algebras for the cases of one and two generators.
These cases illustrate the behavior of term-functions in the different regions of the
domain. Later, in Section 4 we present the general case, i.e., a characterization
of free algebras in n generators. As an application, in the last section we analyze



prime and maximal filters in these free algebras.

2. Preliminaries

2.1. Hoops and BL-algebras

A basic hoop is an algebra A = (A,-,—, T) of type (2,2,0), such that
(A,-, T) is a commutative monoid and for all z,y, z € A:

Lo—=x=T,

2.z (x=y)=y-(y =),
Jx—=(y—2)=(x-y) — 2

4. ((z=y)—=2) - (y—=z)—=2)—=2=T.

A lattice order is defined in A by z <y iff x — y = T and the residuation
condition that holds in A is

roy<ziff z <y — 2.

A BL-algebra is a bounded basic hoop, that is, it is an algebra A = (A, -, —
, L, T) of type (2,2,0,0) such that (A, -, —, T) is a basic hoop and L is the least
element of L(A).

The varieties of BL-algebras and basic hoops will be denoted by BL and BH,
respectively. It is well known that both varieties are congruence distributive and
congruence permutable.

As usual, three other important operations are defined in every BL-algebra
A. They are the negation and the lattice operations that are given by

r=x— 1,

zAy=z-(x —y)=y-(y =),
rVy=(z—=y) =y A((y—z)—>2).

Totally ordered BL-algebras, better known as BL-chains play a central role
in the study of BL because they generate the whole variety and every proper
subvariety ([2], [11]). Due to their importance, BL-chains have been deeply
investigated ([2]) and different representation theorems for BL-chains can be
found, most of them involving the decomposition into simpler structures which
can be carried out considering the following ordinal sum construction ([2]):
let A; be a BL-chain and As a totally ordered basic hoop, and assume that
A1NAs = {T}. The ordinal sum is the BL-chain A; ® A5 where the operations
-, — are given by:

oy ifxy € A;;
ry=<% x ifxe Ay\{T}, y e Ay;
Yy inyAl\{T}7l'€A2.



T ifxe A\{T}, y € Ax;
T—y = x—;y ifxyeA;
Yy ifyGAl,xEAg.

Observe that in the ordinal sum A; @ A, all the elements in A; \ {T} are
less than all the elements in the second summand As, as it is in the ordinal sum
of posets.

We will recall one of the representations that we think is the most suitable
to attack our problem, the one that decomposes each BL-chain into regular and
dense elements. Given a BL-algebra A, we can consider the set

MV(A)={z e A: -~z =2z}

The algebra MV (A) = (MV(A),-,—, L, T) is an MV-algebra ([13]) which is a
subalgebra of A whose elements are called regular elements of A.
If we also consider the set

DA)={xe€A: -z =1},

the basic hoop D(A) = (D(A),-,—, T) contains all the dense elements of A.

Lemma 2.1. ([11, Theorem 3.3.1]) For each BL-chain A, we have

AZMV(A)®D(A).

Then for every element x in a BL-chain A we have that either:
r€D(A)so -—x=Tand ~—zx—z==z (1)

or
x€MV(A)so ——z=zxzand ~—z —>a=T (2)

and T is the only element which is both: dense and regular. Because of this,
every x € A satisfies
2= (~mw) - (- @),

where ~—xz € MV (A) and =~z — x € D(A), then we can write any element of
A as a product of two elements, one in each hoop of this decomposition.

2.2. Free algebras and term functions

For any £ € N, a BL-term in the variables zi,...,z; is a propositional
formula in the language {-,—, T, L} whose variables are among x1, ..., 2 (see
[12, Chapter II]). A hoop term is a BL-term without the element L.

As usual, given a BL-term 7 involving n variables xy,...,z, and a BL-
algebra A the corresponding term-function 7o : A™ — A is defined inductively
as follows:



o If 7 = x; for some ¢ = 1...n, then 7o = 7, i.e., the projection to the
ith-coordinate. If 7 = L, 74 is the constant function L and analogously if
T=T.

e if 7, v are BL-terms, then (7-v)a = 7a -va and (7 — v)A = TA — vVA.

Given a variety V of algebras which is generated by a single algebra A, the
free algebra of V on n generators Freey(n) is isomorphic to the subalgebra of
functions from A™ into A generated by the n-ary projections 7y, ..., over the
variables x1,...,z,. In other words, Freey(n) coincides with the algebra of
equivalence classes of n variable term-functions in the language of the algebras
of V.

2.8. Functions of the free MV-algebra

We assume that the reader is familiar with the standard MV-algebra [0, 1]avv
([13]). This algebra is generic in the variety MV of MV-algebras and hence the
free n-generated MV-algebra Freeay(n) is the subalgebra of functions from
[0, 1)}y to [0, 1]mv generated by the projections. These functions, known as
McNaughton functions, can be described as follows:

Definition 2.2. ([22]) A continuous function f : [0,1]* — [0,1] is a Mec-
Naughton function over [0,1]" if and only if there are finitely many linear
polynomials py,...,p; with integer coefficients such that, for every z € [0, 1]"
there is ¢ € {1...,1} such that f(z) = p;(Z).

Theorem 2.3. The free n-generated MV-algebra Freepqy(n) is isomorphic to
the algebra of n-ary McNaughton functions.

The description of Freexqy(n) as an algebra of continuous functions defined
in the real unit interval allows the use of geometrical and topological techniques
to study properties and characteristics of MV (see [25]).

We recall some of the definitions and results for the algebra Freeaqy(n) given
in [25] that will be needed in the next sections.

Definition 2.4. A point z € R" is rational if all its coordinates are rational
numbers, and a simplex T is called rational if every vertex of 1" is a rational
point. Given a rational point & = (z1,...,2,) € Q", we denote by den(Z) to
the least common denominator of its coordinates, and by & to the integer vector

T = {(xy -den(x),...,z, - den(z),den(z)).
We say that a rational simplex 7' C R™ with vertices vy, ..., v, with m <n
is unimodular if the set {v1,...,v;,} can be extended to a basis of the free

abelian group Z"*!.

A rational simplicial complex is said to be unimodular if every simplex in
it is unimodular.

We also say that a triangulation is unimodular if its associated rational
simplicial complex is unimodular.



Remark 2.5. Unimodular simplexes (complexes) are also known as regular
simplexes (complexes), but we use the word unimodular in this work to avoid
confusion with the regular elements in our generating chain.

Theorem 2.6. (Corollary 2.10 of [25]) Let ) # P C [0,1]™. Then the following
conditions are equivalent:

1. P is the support of some unimodular complex A.
2. P = f~1(1) for some f € Freepy(n).
3. P is a rational polyhedron.

The next theorem is a consequence of Theorem 2.8 of [25] and the De
Concini-Processi Lemma:

Theorem 2.7. Let P C R" be a rational polyhedron and let A1, Ao be two
unimodular triangulations of P. Then there is a unimodular triangulation A of
P, called a refinement of A1 and Asy, such that for each Ty € Ay and Ty € Ay
there is a finite family of simplexes S;,i € I in A such that Ty NTy = J;c; Si-

Remark 2.8. The previous results imply that for any f € Freeaqy(n) there is
a unimodular triangulation A of [0, 1]™ such that f is linear over each simplex
of A.

Definition 2.9. Given a rational polyhedra P C [0,1]" and Zq,...,Z, rational
points contained in P, we say that a rational triangulation A of P respects
{Z1,...,Z,} if Z1,...,Z, are vertices of some simplexes of A.

Remark 2.10. As a consequence of Theorem 2.8 of [25] it can also be proved
that for any simplicial complex I C [0,1]™ and & a rational point contained in
[0,1]™ there is a unimodular subdivision Kz of I which respects z.

Finally, we recall that if A is a unimodular triangulation of a rational
polyhedron P € [0,1]" and T' € A is a simplex, the set of faces of T' is the set of
elements S € A such that S C T. The set of proper faces of T', that is S € A
such that S C T will be denoted by Fr.

3. Characterization of free algebras: cases of one and two generators.

The subvariety of BL that we are planning to work with is going to be called
MS and it is the variety generated by the BL-chain

where H is a fixed non-trivial totally ordered basic hoop. Then we have
MV(S) = [0,1]mv and D(6&) = H. We denote by H the subvariety of ba-
sic hoops generated by H. Observe that the bottom element in & is 0 and the
top element is 1 which is in [0, 1]prv N H.



Our goal is to present a geometrical and functional description of the free alge-
bra with n generators in MS. That algebra, which we will be called Freeas(n)
is the subalgebra of functions from G™ to & generated by the n projection
functions 71,...m,. We will characterize term-functions evaluated in &" in
terms of functions of Freexy(n) and Freey(m), with m < n.

It is important to recall that if S is a subalgebra of & and f is a term-function
in Freeps(n), then for any € S™ then f(z) € S. In particular, f(1) € {0,1}.

3.1. Freems(1)

The case of the free algebra in one generator is an easy generalization of
the description of the free algebra of one generator given in [23] (see also [1]),
because that is a particular case when H = [0, 1]pry. Thus we give the explicit
form of the functions in the algebra but we omit the proof.

Lemma 3.1. Let f € Freeay (1) and h € Freey(1) be such that f(1) = h(1) =
1. Then the function

f(l’) Zf x € [O, I]MV
F(z) = (3)
h(z) if reH

is in Freepms(1l). Conversely, for every function § € Freeams(1l) such that
F(1) = 1, there are two functions f € Freeapmy(l) and h € Freey (1) which

satisfy (3).

Lemma 3.2. If f € Freepmy(l) is a function such that f(1) = 0 then the
Sfunction
f(l’) Zf S [O, 1]MV
F(x) = (4)
0 if reH

is in Freepms(l). Conversely, if F € Freepms(1) is such that F(1) = 0, then
there is a function f € Freeay (1) which satisfies (4).

So we have described all the functions in Freeas(1).

Remark 3.3. For the case of H = [0, l]pv, Freeams(l) is the free BL-algebra
with one generator ([23]). In the next figure we can see two examples of functions
of this free BL-algebra. Note that in the first case, F(1) = 0 and hence F(x) =0
for every x in the second summand of the generating chain, and in the second
function, since F(1) = 1 then the restriction of F to the second summand
coincides with a function g € Freeay(n) with g(1) = 1.
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3.2. Freems(2)
To pave the way for the general case, we first present the details of the case
of two generators. Recall that the chain that generates our variety is
S =1[0,1]mv ® H.
So we have to describe term-functions from &2 to &. To achieve this aim, we will
study the behavior of a term-function in each of the four regions of the domain:
Rl = [O, 1]%/[\/7 R2 = [07 1]MV X H7 R3 =H x [0, I]Mv, and R4 = H2.

Ry | Ry

Ry Rs

To succeed, we need to understand properly the division into regions: on one
hand it is clear that &2 = U?Zl R;. But from the definition of ordinal sum, since
[0, I]aav NH = {1}, these regions are not mutually disjoint. Indeed, if we define

the relative border of the region R; as the set
90, 1)34v = {(21,22) € [0, 134y : ; = 1 for some 1 < i < 2},

then for any i = 2, 3,4 we have
RiNR; CO[0, 134y

More precisely,
RiNRs = [0, 1]MV X {1}, RiNRs= {1} X [0, 1]

and
R20R4={1}XH, R3QR4=HX{1} and R1HR4:RQQR3:{(1,1)}.

These non-empty intersections will play a crucial role in the description of the
functions. We will also need the following definition.



Definition 3.4. Given an interval I C [0, 1]mv x {1} the cylindrification T
of I in Ry will be the set

I={(x,y) €Ry:2z€IandycH}.

Analogously one can define the cylindrification of I C {1} x [0, 1]pmv in Rs. In
case I is just a point, i.e., I = r we write T for the cylindrification of z. This
means that if £ = (x,1) then & = {(z,y) : y € H}.

3.2.1. From term-functions to quadruples

Let’s fix a BL-term « with two variables. If we denote by ag2 the two-
variables term-function in F'reepas(2) associated with «, our goal is to describe
a2 as a quadruple of functions ag2 = (f1, f2, f3, f1), each of them corresponding
to the term function apr, = f;. Since « is a two-variables BL-term, it is also a
term in the language of MV-algebras. From Theorem 2.3, there is a McNaughton
function f € Freeay(2) such that

R, = Xo1)2,, = I (5)

The description of the term-functions in the other regions strongly depends
on f. To prove this, we need some technical lemmas, whose proofs can be
obtained by induction on the complexity of the formula « and the definition of
the operations in the ordinal sum.

Lemma 3.5. The following hold:
o If ag2(1,1) =1 then there is a function g € Freey(2) such that ag, = g.
o Ifas2(1,1) =0 then ar, =0, i.e., ag:2 takes the value 0 all over Ry.

As an example of the previous Lemma, one can consider the two-variable
BL-term
a=(—z—=x)A (Y —y).

Observe that if (z,y) € H?, from equation (1) we have that -—z — =z = z
and ==y — y = y. Then agz(1,1) = 1 and then the function g € Freey(2),
given by g(x,y) = min{z,y} is such that ag, = g. If § = -« then we have that
Be2(1,1) =0 and Sg2 takes the value 0 all over Ry.




Since there is a symmetry between R and R3, to see what happens in these
two remaining parts of the domain, we simply study ap,. As usual, the notation
[0, 1)mv indicates the semiopen interval [0, 1]apv \ {1}

Lemma 3.6. Let x,z € [0,1)py. Then we have:
o If agz(x,1) = 2 then agz2(x,y) = z, for every y € H.

o Ifagz(x,1) = 1 then there is a function g € Freey (1) such that agz2(z,y) =
g(y), for every y € H.

Lemma 3.6 asserts that if « € [0,1)pv is such that ag2(z,1) =1 then ag,
coincides with a function g € Freey (1) in the cylindrification of (z,1) in R,
that is, for all the points of the form (x,y) € Ry with y € H. It also asserts that
if x,z € [0,1)mv and asz2(z,1) = z, then ap,(r,y) = z in the cylindrification
of (x,1) in Rs. Using this information, in what follows we show that we can
partition the intersection R; N Re = [0, 1]prv X {1} into a finite number of pieces
to completely describe the behavior of g, in the cylindrifications of the different
parts.

First we see that it can be the case that ag2 coincides with a function
g € Freey (1) in the cylindrification of an interval of the form I x {1} for
I C [0,1), i.e., it coincides with g in I x H C Ry. To do so, we will write
as2(I,1) =1 whenever agz(x,1) =1 for every = € I.
Lemma 3.7. Let I C [0,1) be an interval and assume that ag2(1,1) = 1. If for
every subterm B of a we have that either Bs2(1,1) € [0, 1)my or Be2(1,1) =1,
then there is a function g € Freey (1) such that ag2(1,y) = g(y), for every
y € H.

Proof. By Lemma 3.6, it is enough to prove that if « is such that ag:2(7,1) =1
and for every subterm [ of a we have that either Sg2(I,1) € [0,1)pmv or
Be2(I,1) =1, then for every pair x1,z9 € T with 21 #

a2 (.2?1, y) = Qg2 (l‘g, y) (6)

for each y € H. We will show this by induction in the complexity of the term a.
If a is a term of complexity 0 such that ag2(I,1) = 1 then we have two
possibilites:

1. o=y, then ag2(x1,y) =y = ag2(x2,y), for every 1,29 € I,y € H.
2. a =1, then asz(z1,y) = 1 = agz(x2,y), for every z1,22 € I,y € H.

Suppose that the statement holds for terms of complexity less than k& and let
a be a term of complexity k. Then we have two cases to consider:

1. a = ¢ -1, with ¢ and 1 subterms of a of complexity less than k. Since
ag2(I,1) = 1 then necessarily ¢g2(I,1) = 1 and ¢s2(I,1) = 1. By
inductive hypothesis, for every x1, x5 € I such that x; # xa,

aGZ(I17y) = ¢62($17y)'¢62(x179) = ¢62(x27y)'¢62(z2ay) = QGQ(x27y)a
for every y € H, so the statement holds.

10
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(0.1

2. a = ¢ — 1, with ¢ and ¢ terms of complexity less than k. By hypothesis we
know that for every subterm /3 of o we have that either Sg2(1,1) € [0, 1)mv
or Bsz2(I,1) =1, then we have only three cases to consider for ¢ and 1):

(a) If pg2(I,1) = 1 and 9e2(I,1) = 1: by inductive hypothesis we have
that for x1,xo € I such that z; # o,

ae2(21,Y) = de2(21,Y) = Ye2(21,Y)
= ¢62 ($27y) - 11[}62 (I27 y) = a2 (IQay)'

(b) If ¢ps2(I,1) C [0,1)mv and ¢e2(I,1) C [0,1)py: by Lemma 3.6
we have ¢g2(21,y) = de2(x1, 1) for every y € H, and g2 (x1,y) =
a2 (x1, 1) for every y € H. Analogously, ¢g2(x2,y) = de2(x2,1) for
every y € H, and ¢a2(22,y) = ¥a2(22,1) for every y € H. Since

0&62(]}1, 1) = 0462(1‘2, 1) = 1 then we have ¢62(JZ‘1, 1) S wGQ (.2?1, 1)
and ¢g2(x2,1) < hgz(x2,1), and therefore

as2(T1,y) = da2(21,y) = Va2 (21,Y) = dpe2(v1,1) = Ye2(r1,1) =1
and
OL62(I2,y) = ¢62(x27y) - ¢62(I2;y) - ¢62(x27 1) — q/)62(':627 1) = 17

so the statement holds for this case.

(¢) If ¢pg2(1,1) C [0,1)mv and te2(1,1) = 1 we can prove the result
using similar ideas to the ones used in the previous case.

O

Given a rational polyhedron P in [0, 1)pmv X {1} and a unimodular triangula-
tion A of P, let S be a simplex in A. We denote by S° the relative interior of S
when the dimension of S is one and S° = S if the dimension of S is zero. Then

11



S° is either a rational point or S° = I x {1} for some open rational interval
I C[0,1)pmv. We shall work with the cylindrification of S in R, that is

5° ={(z,y) € Ry : (x,1) € S°}.

Lemma 3.8. Let P be a rational polyhedron on [0, 1)mv x {1}. If ag2(P) =1,
then there is a unimodular triangulation A of P and a family of functions
{9s}tsea such that gs € Freey (1) and

ag2(z,y) = gs(y)
for every (z,y) € 5°.

Proof. For each subterm /3 of a the term function Sp is the restriction to P of a
McNaughton function. Let A be a unimodular triangulation of P that respects
every function p for each subterm (5 of «, i.e., for each 8 subterm of « the
function Bp is linear over each simplex S of A. If S is a rational point, from
Lemma 3.6 there is gg € Freey (1) such that

as2(7,y) = gs(y)

for every (x,y) € S°. If S is one dimensional, Lemma 3.7 provides gg € Freey/(1)

ae2(2,y) = 9s(y)
for every (x,y) € S° and we are done. O

We are now able to characterize the function apr,, whose domain is Ry =
[0,1]mv x H. According to Lemma 3.6 the behavior of the function agr, = f
on the relative border Ry N Ry C 0[0, 1]34y, will determinate the value of the
function in the rest of the domain. Let

1f,:c N {(xv]-) € Rl mRZ : f(.’E,l) = 1}
The complement of 1, relative to the relative border is the set
Oz =(RiNR)\ 15 ={(z,1) e RiNRy: fz,1) < 1}.

If 1 t,> denotes the cylindrification of 17, in Ry and 0 ¢,z the cylindrification of
O in Ry we observe that
Ry = 1f,:c U Ofyr.

With this notation define:

Definition 3.9. Given a function f € Freexy(2) we say that g : Ry — & is
an f-y-H-McNaughton function if the following conditions hold:

1. For each (z,y) € 0f4, g(z,y) = f(x,1).

2. There is a unimodular triangulation A of 17, which determines simplexes
S1, ..., Sy and m functions in Freey (1), g1, ..., gm, such that g(z,y) =
gi(y), for every x in S7.
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Theorem 3.10. Considering that ar, = f for the McNaughton function f,
there is an f-y-H-McNaughton function h, such that

R, = hy

Proof. If (z,y) € 07, then f(z,1) € [0,1)mv, and from Lemma 3.6 we get
ag,(z,y) = f(x,1). Otherwise, (z,y) € 17,. But 17, is the support of rational
polyehdra thus from Lemma 3.8 there are a unimodular triangulation A of 15,
and a family {gs}sea of functions in Freey (1) such that ag, (z,y) = gs(y), for
every z in S°. Then ag, is an f-y-H-McNaughton function. O

In a symmetric way we can define a f-z-H-McNaughton function and prove
that:

Theorem 3.11. Considering that ar, = f for the McNaughton function f,
there is an f-x-H-McNaughton function h, such that

R, = hx

Definition 3.12. Given four functions f € Freex(2), g € Freey(2) U {0}
and hy, hy f-z-H-McNaughton and f-y-H-McNaughton functions respectively,
we say that a function F : &% — & is given by a MS-quadruple (f, hy, hy, g) if it
satisfies:

f(x,y) if (xvy) € [07 1]%/IV

he(z,y) if (z,y) €[0,1]mv x H

Flz,y) = (7)
hy(LE, y) if (I7y) € H x [07 1]MV

g(z,y) if  (z,y) eHxH

whenever F(1,1) =1,
or

ha:(xay) if ({L‘7y) € [07 1]MV x H

hy(z,y) if (z,y) € Hx[0,1]mv

0 if (r,y) e HxH
whenever F(1,1) = 0.
We conclude:

Theorem 3.13. Given a two-variable BL-term «, the function agz = F is given
by the MS-quadruple
F = (ar,, OR,, ARy, OR,)-

13



8.2.2. From quadruples to term-functions

We will now prove that for every function F given by an MS-quadruple there
is a two-variables BL-term whose evaluation on &? coincides with F. Then we
can conclude that the functions of Freeas(2) are all given by quadruples. To
that aim we fix an MS-quadruple

F = (f1, f2, f3, fa)-

f2(93,y) f4($,y)

fi(z,y) | fs(x,y)

To build the corresponding term we proceed as follows: we will find four
two-variables BL-terms o', o2, o, and o*, which are related to the four regions

of the domain R, Ro, R3 and R4 and we will show that the BL-term

a:/\ai (9)

satisfies ag2 = F.

Before reaching our main result we need to prove the existence of some
auxiliary two-variables terms.

Lemma 3.14. Given g € Freey(l) and a rational point To = (x9,1) €
[0, 1)pv x {1}, there is a term uz, in two variables whose evaluation on &2
satisfies:
9(y) if (2,y) € o
Hz&2 (:Evy) = (10)
1 otherwise.

Proof. Since xg € [0,1)pv is a rational number, there is a McNaughton function
f € Freeapmy(2) such that 7o = f~1({1}). Let ¢ be a two-variables BL-term
such that ¢z = [, ie, d(xo) = 1 and for every & # Ty we have that
¢(z) € [0,1)pv. From Lemma 3.6 we know that ¢g2(x,y) € [0,1)pmv for any
(r,y) € &%\ {Zp}. The same Lemma implies that ¢2(7,y) € H for each
(z,9) € . Let 7 = ==¢. Then from equation 2, if (z,y) € &2\ {Zg} we get
that 7g2(z,y) = ¢e2(x,y) and from equation 1 we have that 7gz2(z,y) = 1 for
each (z,y) € Zo. Summing up

1 if (ZC,y) € 9’5‘0

TG’Z(‘ray) - (11)
o(x,y) otherwise.

14



Now we consider a one-variable hoop term v such that ¢y = g and the
two-variables BL-term

ez, y) = 7(z,y) N (y)-
Since 7e2(z,y) € [0, 1)nmy for each (x,y) ¢ Ty then pg2(x,y) = g(y) if x = 29
and y € H and ¢g2(x,y) € [0, 1)mv otherwise. Another application of equations
1 and 2 guarantee that the term

Hao (m,y) = jj<10(‘T7y) - (p(!&y)

satisfies
g(y) if (z,y) € Zo

1 otherwise.

Symmetrically we can prove the following result:

Lemma 3.15. Given g € Freey(1) and a rational point yo = (1,y0) € {1} x
[0, 1)mv, there is a term vy, in two variables whose interpretation on G2 satisfies:

g(z) if (z,9) € %o
V’QUGQ(xﬂy) = (]‘3)
1 otherwise.

Lemma 3.16. Given g € Freey(1) and I a rational open interval contained in
[0, 1]z, there is a two-variable BL-term ~y; that satisfies

gy) if (my) el
7]62($7y) = (14)
1 otherwise.

Proof. Let I be an open interval contained in [0, 1] with rational extrema. We
know that the complement I¢ of I in [0, 1] is a rational polyhedra. From Theorem
2.6, I¢ = h=1({1}) for some function h € Freepy(1). Let ¢ be a one-variable
BL-term such that ¢g 1., = h, that is, for each x € [0, 1]mv

hz) e [0,1)mv if xzel
D10, 1]y (T) =
1 if zel®
Consider the term p(z) = ¢(——zx) and its corresponding term-function on
the algebra &. From equation 2, for € [0, 1]mv we have p(2) = ¢s () and

from equation 1 for x € H we have that pe(z) = ¢s(1) = 1. Thus for each
x € G we have:

15



h(z) € [0,1]lmv ifzel
pe(z) =
1 otherwise.
On the other hand, since g € Freey (1), let 6 be a one-variable hoop-term
such that g = g. Recalling equation 1, we can consider == — §, that satisfies
for each y € &

gly) if  yeH
(70 = d)s(y) =
Thus the BL-term 77 (z,y) = [(=—0 — 0)(y)) V ¢(z)] has as interpretation
on G2 the function:

gly) if(z,y) el
VI&2 ($7 y) =
1 otherwise.

O

Recall the given quadruple F = (fy, fa, f3, f1)- Since fo is an f;-y-H-McNaughton
function, then there is a unimodular triangulation A of 1¢ , which deter-

mines simplexes S1, ..., Sy, and m functions in F'reey (1), g1, ..., gm, such that
fa(z,y) = gi(y), for every (x,y) € S?. From the previous result we can consider
the terms vs,,7s,, - - -»7s,.- Then a? = A", s, coincides with the function fo

not in all Ry but in 1y , the cylindrification of 1y, .. That is, it satisfies that

falz,y) if (z,y) €10

aZo(r,y) =
1 otherwise.
graphically:
1] fo 11 1
1 1

In a symmetrical way one can obtain a two-variable term o such that

5 f3(‘ray) if ('ray) € 1f1,y
Ag2 (J?, y) =
1 otherwise.

graphically:
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Lemma 3.17. Given a function g € Freey (2) there is a two-variables BL-term
n such that
g9(z,y) if (x,y) € Ry
N&2 (.’E, y) =
1 otherwise.

Proof. Graphically, we need to find a BL-term 7 with two variables whose
interpretation on &2 is:

1 g(x,y)

Consider equations 1 and 2. Then g, = ((-—z — ) V (-—y)) = (-2 — )
has as corresponding term-function on &2

and the term g, = ((——y — y) V (-—x)) = (——y — y) has as interpretation on
62
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Let 77 be a term such that ng = g, i.e., such that g(z,y) = Nyz(z,y), for
every (z,y) € H?. Since 7j(1,1) = 1, then we take n(z,y) = 7(8s, 8,) and we
conclude the proof. O

As a consequence we obtain that if f; in the quadruple F is in Freey(2)
then there is a two-variables BL-term 7 such that neg2 satisfies

1 Ja

So we define
4 if f4 € Freey(2) ;

_ n
@ _{ T otherwise. (15)

To complete the proof, let & be a two-variables BL-term such that agz2 = f1.
Then consider
al = —-a. (16)

If f1(1,1) = 1, by Lemmas 3.5 and 3.6 we have

filz,y) it (z,y) € Ry

1 if  (z,y) € Ry

1 if (z,y) € ifl,ac
gz (,y) = .

1 it (z,y) €1y,

fl(x’l) if (Z‘,y)@()fl,x

fl(]-ay) if (x,y) G()flyy

If f1(1,1) = 0, the same Lemmas 3.5 and 3.6 imply

18



Journal Pre-proof

( fl(x7y) if ('T7y) € Rl

0 it (z,y) € Ry

1 if (ZE,Z/) € ifl,z
a162(xay) = B

1 if (177?/) € 1f1:y

fl(xa 1) if (.'17, y) € 6f1,a:

[ fi(Ly) if (z,y) €0y

Now let

We have that ag2 = F.
Example 3.18. For the MS-quadruple F = (f1, fo, f3, fa) given by:

(1 if  x<3
filz,y) =< 2—2x if %<x§%

—142x if %<x§1

(y if  x<i

. 1

1 if rT=3
f2(x7y):

2-2z if i<a<3

—1+2z if 3<ax<1

f3(xay):1

f4(xay) = mm{az,y}
we can define the terms:
e oy =—(z-2)V(r-x)
o ay = (—z)- (-x) V(7Y = y)
o az =T
o @y = ((ow > 2) V (5p)) = (= ) A (g = ) V (-a) -
(==Y = ).
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If a = /\;l:1 o' then we have that ag: = .

Graphically,

Theorem 3.19. F € Freepys(2) if and only if F is given by a MS-quadruple
(f17f25f37f4)'

We can conclude with:

Corollary 3.20. The algebra Freeas(2) is the algebra whose elements are
functions given by MS-quadruples and the operations - and — are defined point-
wise.

Remark 3.21. Observe that it can happen that different quadruples determine
the same function. That can happen when two functions h, 1 and hy o (or hy 1,
hy.2) are given by different triangulations, but coincide on every point. Therefore
the correspondence between MS-quadruples and functions in Freexs(2) is not
bijective.

4. Characterization of free algebras: the general case

The aim of this section is to obtain a characterization of functions in
Freeas(n). Following the ideas in the case of two generators, we will describe
each term-function as 2”-tuples of functions in Freeay(n) and in Freey(m),
m < n.

As we did in the case of two generators, we will separate the domain &" of
the functions in Freeas(n) into regions. For each subset A = {j1,...,jm} C
{1,...,n}, we define the corresponding region

where F; = H for each i € A and E; = [0, 1]pmv for each i ¢ A. We denote by
‘R the set of regions, whose cardinality is 2". For example, A = () corresponds
to MV™ = [0, 1]}v- The nonempty intersections of the regions in R with the
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main region MV™ are going to be crucial in the characterization of the functions.
Indeed, if we define the relative border of the region MV™ as the set

0[0, llyy = {7 € [0, 1]ppv : 2 = 1 for some 1 <i < n},
we can see that for each A # (), the intersection Ry N MV™ is included in
0[0, 1]}y

Next we present the notation that we will use to achieve our aim. If z =
(21,...,2pn) is a point in a region Ry with A = {ji,...,jm} with an abuse of
notation, we define

WH(E) = (Zjl, ey ij) cH™.

Definition 4.1. If £ = (z1,...,2,) € MV™ we define:
o 1;={ie{l,...,n}:a; =1} (one set of a point x)
e ||Z|]| = |1z] (cardinality of the one set of Z)
o T ={2€ 8"z =uj, forevery j ¢ 1z, and z; € H, for every i € 15}
(cylindrification of the point )

For a fixed z = (x1,...,2,) € [0,1)%v, if A =1z then & C R4. Moreover,
for every nonempty set A C {1,...,n} and each point § € R4 there is a unique
T € RANMV™ such that y € &, i.e., y is in the cylindrification z.

We generalize the previous notation for arbitrary sets in the relative border.

Definition 4.2. If ' C 9[0, 1]}y is a simplex, we define:
e lp={ie{l,....,n}:z;=1for all z € T} (one set of T')
e |[T']| = |1p| (cardinal of the one set of T')
e T ={i:& €T} (cylindrification of the set T')
o Fr ={F CTnNo0,1}p: Y%,y € F,1; =15} (faces of the simplex T').
For a fixed T C 8[0, 1]¥y, let A =17 = {j1,...,5m}. Then T C Ry4.

4.1. From term-functions to 2" -tuples
Let’s consider an n-variable BL-term

a=ca(ry,...,T,)

and let agn be the corresponding term-function. This function will be described
in terms of a 2"-tuple of functions {ar}rer. As a first step, if we consider the
region MV™ in R, since « is a term in the language of MV-algebras as well, we
denote by

apmvn = f
the McNaughton function from [0, 1]§y, into [0, 1]amy corresponding to a.

For every other region Ry =[], E;, with A # (), the value of the term
function ar, will depend on the value of f in the intersection R4 N MV™. We
now state the analogous of Lemmas 3.5 and 3.6, that can be proved by induction
on the complexity of a.
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Lemma 4.3. Let H" be the region of &" given by H" = [[;_, H. The following
hold:

o Ifagn(1) =1 then there is a function g € Freey(n) such that agn = g.
o Ifagn(1) =0 then agn =0, i.e., agn takes the value 0 all over H™.

As an example of the previous Lemma, we can consider the term

n
o= /\(ﬂ—'aji — ;).
i=1
We get agn (1) = 1 and from equation 1 for each T € H" we have that agn(Z) =
min{x1,...,x,}. Thus the function g € Freey(n), given by ¢g(z) = A, x; is
such that ag~ = g. -
If 8 = -« then we have that Sgn (1) = 0 and Sgn takes the value 0 all over
H"™.
The following result is analogous to Lemma 67 in [4].
Lemma 4.4. Let T € [0, 1|}y be a point such that 1z # 0. The following hold:
o Ifagn(Z) =c € [0,1)mv then asn(Z) = c for every z € Z,

o Ifagn(Z) =1 then there is g € Freey(m), m = ||Z| such that agn(Z) =
g(mg(2)) for every z € T.

We analyze now the behavior of agr in the cylindrification of the relative
interior of a simplex of dimension greater than 0. We recall that if a simplex
T C [0,1)™ x {1}™ ™, the relative interior of T is denoted by 7° and the
cylindrification of 7° in [0,1)™ x H" ™™ is denoted by T°

Lemma 4.5. Let m <n and let T € [0,1)™ x {1}, be a rational simplex of

dimension greater or equal to 1. Assume that agn(T) = 1. If for every subterm
B of a we have that either Ben(T°) € [0,1)mv or Ben(T°) =1, then there is a
function g € Freey(n —m) such that

as(2) = g(mu (7)),
for every & € T°.

Proof. Using Lemma 4.4, for each © € T with ag»(z) = 1 we denote by g,
the function in Freey(n — m) that such that agn(y) = g-(7m(y)) for all gy
in the cylindrification Z of z. To prove our result, it is enough to see that if
agn (T) = 1 and for every subterm S of & we have that either Sgn (T°) € [0, 1)mv
or Ben(T°) =1, then for every &y, zs € T° with Z1 # T we have that g,, and
gz, coincide, which with an abuse of notation can be written as

aen (F1) = asn (T2). (17)

Following the ideas in the proof of Lemma 3.7, we proceed by induction in the
complexity of the term a.

If o is a term of complexity 0 such that agn(T) = 1 then we have two
possibilities:
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1. a=xj, with j € 1 then agn(Z1) = 7, = asn(Z2), for every zy,72 € T°.
2. a=1, then agn (1) =1 = agn(Z2), for every 1,25 € T°.

Suppose that the statement holds for terms of complexity less than k and let
a be a term of complexity k. Then we have two cases to consider:

1. @ = ¢ -1, with ¢ and 1 subterms of a of complexity less than k. Since
agn(T) = 1 then necessarily ¢ (T) = 1 and g~ (T) = 1. By inductive
hypothesis, for every z1,Zo € T° such that ¥ # ¥s,

agn (T1) = den (T1) - Yen(T1) = ¢pen (T2) - Yen (T2) = asn(T2),
so the statement holds.

2. a = ¢ — 1, with ¢ and ¢ terms of complexity less than k. By hypothesis we
know that for every subterm (3 of « we have that either Sg» (T°) € [0, 1)nmv
or Ben(T°) =1, then we have only three cases to consider for ¢ and :

(a) If ¢pen (T°) = 1 and ¥en (T°) = 1: by inductive hypothesis we have
that for z1,zo € T° such that x, # o,

agn (1) = den (T1) = Yen(T1) = ¢pen (T2) — VYen (T2) = asn(T2).
(b) If pen (T°) C [0,
have ¢gn (T 1 =
pen (T2) = dpen (¥
Since agn (xl) =

den (T2) < hen(Z

1)nmv and en (T°) C [0, 1)py: by Lemma 4.4 we
¢pen(T1), and Yen(F1) = Pen(Z1). Analogously,
) and 1/)Cn(1’2) 7/’6"(£2)-

an (T2) = 1 then we have ¢gn(%1) < ¥en(21) and
2), and therefore

asn(Z1) = pen (T1) — Yen(T1) = ¢en (T1) = Yen(Z1) =1

and

asn(T2) = pen (T2) = Yen (T2) = den (T2) = Yen(T2) =1,

so the statement holds for this case.

(c) If ¢an(T°) C [0,1)pv and e (T°) = 1 we can prove the result
using similar ideas of the previous cases.

O

Any rational polyhedra in [0,1)}y, can be triangulated in finitely many
rational simplices 51, ..., Sk which verify the conditions of Lemma 4.5, so the
previous result can be extended to cylindrifications of any polyhedra. We
recall that if a simplex S is zero dimensional, then S° = S, that is S° is the
cylindrification of a point.
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Lemma 4.6. Let P C [0,1)™ x {1}~ ™ be a rational polyhedral set. Assume
that agn (P) = 1. Then there is a unimodular triangulation A of P such that
for every S € A, there is a function gs € Freey(n —m) that satisfies

aen(y) = gs(mu(y))
for every y € S°.

Proof. By Lemma 4.4, we know that for each point z € P, since ||Z|| = n — m,
there is a function g, € Freey(n —m) such that

agn(y) = 9o (T ()

for each y € 7.

For each subterm 3 of a let fz be the McNaugthon function in Freepy(n)
such that Oen(Z) = f3(x) for each T € [0, 1]} Let Ag be a unimodular
triangulation of P C 0[0, 1]3v, that respects fg (see Theorem 2.7), that is, for
each S € Ag, f3 is linear over Ag.

Following Theorem 2.7, let A be a unimodular triangulation of P which is a
refinement of all Ag, for g subterm of a. This means that for each S subterm
of o, fg is linear over each S € A. Therefore, for every subterm 5 of a and
each S € A either Sgn(Z) € [0,1)mv for every T € S° or Sgn(Z) = 1. For each
S € Alet gs € Freey(n —m) be such that gs = g, for some z € S°. Lemma
4.5 guarantees that

aen(Y) = 9s(mu(y))
for every 3 € S°.
O

Analogous results can be obtained for every rational polyhedral closed set
P included in the intersection Ry N M V™ for any region Ry € R with A C
{1,...,n} and A # (). This leads to the following definition.

Definition 4.7. Let f € Freepmy(n), A = {j1,.-..dm} € {1,...,n} and
U=RanN f~1({1}). We say that a function

g:RA%G

is an f-A-H-McNaughton function if there is a unimodular triangulation A of
U and a family {gs}sea of functions in Freey (m) such that for each z € V' it
holds that:

o If f(z) =1 (ie,, z € U) and € S° then g(y) = gs(mu(y)) for every
ye i

o If f(Z) =c < 1, then g(y) = c for every y € Z.
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Remark 4.8. Note that the function g in the previous definition is well defined,
since for every point y € R4 there is a unique £ € R4 N 9[0, 1]} such that
y € &, i.e., y is in the cylindrification Z. Moreover, for each z such that f(z) =1
there is exactly one S € A such that z € S°.

Remark 4.9. Consider n = 2 and A = {2}, that is R4 = [0,1]mv x H.
The definition of f-A-H-McNaughton function coincides with that of f-y-H
McNaughton function, so the developments for the general case are really a
generalization of the two-variable case.

From Lemma 4.5 and Lemma 4.6, we can deduce that if A C {1,...,n} and
A # (), then the term function ag, is a f-A-H-McNaughton function. As a
generalization of MS-quadruple we define:

Definition 4.10. A 2"-tuple (f,{ha: A C{1,...,n}, A # 0}, g) is said to be
a M S, -tuple if:

1. f € Freepmy(n),
2. for each A C {1,...,n}, A# 0, ha is a f-A-H-McNaughton,

3. g: H" — & is the zero function if f(1) = 0 or g € Freey(n) otherwise.

A function F: 6™ — & is said to be given by the M S, -tuple (f,{ha : 0 #
AC{1,...,n}}, g) if for each & € &™ it satisfies:

f(@) if zel0,1}v
F(x) =1 ha(z) if T€RA (18)
g(z) if zeH"™
We write F = (f,{ha: 0 #AC {1,...,n}},9).
As a consequence of the results of this section, we have the following theorem:

Theorem 4.11. Given an n-variable BL-term « there is a M S, -tuple

F=(f{ha:AC{l,...,n},A#£0},g)

such that the term function agn coincides with F.

4.2. From 2"-tuples to term-functions

For a function F : 6™ — & given by an MS,-tuple we aim to find an
n-variable BL-term « such that the term function ag» coincides with JF.

To achieve our aim, as we did in the two-generator case, we build some terms
that will help us to build any other.
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Lemma 4.12. Let g € Freey(n). Then there is a BL-term v9 such that

g(z) ifzeH"
V6 (T) = (19)
1 otherwise.

Proof. From Theorem 2.6, there is a McNaughton function f € Freeaqy(n) such
that f only takes the value 1 on the point 1 € [0, 1]}y, in symbols f~1({1}) = 1.
Let a be an n-variable BL-term such that f = ay;y» and g = ——a. Therefore
Ben(Z) =1 for each & € H™ and acoording to Lemma 4.4, Sg~(Z) € [0,1)Mmv for
any other z € G&™. Let ¢ be an n-variables hoop term such that ¢g» = g. Then
= ¢ A B is such that Ygn () = g(Z) for each z € H" and ¢gn (Z) € [0, 1)mv
otherwise. Our desired term is then

V= =y
O

Lemma 4.13. Let n,m € N be such that m < n and T C [0,1)fy x {1}
a rational simplex. Then there is a BL-term ol such that &, (z) = 1 for each
z €T and 0. (z) € [0,1)mv otherwise.

Proof. Since T is a rational simplex from Theorem 2.6, there is a McNaughton
function h € Freepqy(n) such that T = h=1({1}). Let ¢ be a BL-term such
that ¢aryn = h and let 07 = ——¢. From Lemma 4.4 we get that 0%, (z) = 1 for
each 7 € T and 0%, (%) € [0,1)mv otherwise.

O

Lemma 4.14. Let n,m € N be such that m <n and T C [0,1){y X {1}""™ a
rational simplex. For each g € Freey(n —m) there exists an n-variable BL-term
uT such that ~
g(ru(z)) ifreTe
W5 (7) = (20)
1 otherwise.

Proof. 1t’s worth to recall that if T is zero dimensional, then T° = T. Otherwise,
if the dimension of T" is greater than 0, then 7° is the relative interior of T, so it
isin [0, 1)y x {1}

Let ¢ be an n — m variable hoop term such that ¢gn-m = g. From Lemma
4.13 consider the term o7 and let

Y=0" Ad(rp).

Then e (Z) = g(7u(Z)) is T € T and hen (Z) € [0, 1)pyv otherwise. Hence the
BL-term 7 = == — 1) satisfies

g(ru(z)) fzeT
ren () = (21)
1 otherwise.
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Let Fr be the set of proper faces of T' and consider for each F' € Fr the term
o of Lemma 4.13. Then

is such that
1 (&) = (22)
1 otherwise.

O

Lemma 4.15. Let f € Freepp(n), m < n and A = {m+1,m+ 2,...n}.
Consider U = Ra N f~*({1}). For any unimodular triangulation A of U and
any family {gs}sea of functions in Freey(n —m) there is a BL-term p® that
satisfies: 4
gs(mu(z)) ifrese
43 (7) = (23)
1 otherwise.

Proof. The result is immediate from Lemma 4.14 by considering for each S € A
the term p° and then taking

pt =\ n’.
SeA

O

We chose the notation p® for the BL-term in the previous lemma to make
it simpler, but the reader should observe that the definition of y® depends not
only on the triangulation A but also on the corresponding family of functions
{gs}sea. There will be no problems due to the ommision of {gs}sca in the
notation in the following proofs.

Theorem 4.16. Let F: &" — & be a function given by the 2" -tuple

(fidha:0#£AC{x,...;2n}}9),

where f € Freeapmy(n), ha is a function f-A-H-McNaughton and g € Freey(n)U
{0}, i.e., for every & € &™ the function is given by:

@) if 2 e, Uy,
F(x) =1 ha(x) if x€Ra, (24)
g(z) if xTeH™
Then F € Freepms(n).

Proof. We will build a BL-term ~ such that yg» = F. Consider a BL-term g
such that Sprv» = f. We define:
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e YMV" — ——3. From equation 2, for each z € &" if 8(Z) € [0,1)mv, then
YUV () = Ben () and if B(z) € H then v¥V" (z) = 1. From Lemma 4.4

we get
f(@) i z € [0,1]{av
AUV (z) = f(z) if Z ¢ [0,1)}y and B(Z) € [0, 1)mv, (25)
1 in any other case.
o YH" =49 as given in Lemma 4.12 if f(1) =1 and M =1ifg=0.

o 74 = 24, where A, is the unimodular triangulation of R4 N f~({1})

corresponding to the f-A-H McNaughton function hu, and 4 is the
term given in Lemma 4.15 corresponding to A4 and the family {gs}sea ,
of the function h 4.

We define the BL-term v in n variables by

AN

RER

Then we have that ygn (Z) = F(z), for every T € &™. O

Corollary 4.17. The algebra Freeaps(n) is the algebra whose elements are
functions given by MS-2"-tuples and the operations - and — are defined pointwise,
as it was in the case of two generators.

As in the case with two variables, it can happen that two different 2"-tuples
F1 = (f1, h_l,gl) and Fy = (fa, h_2,gg) determine the same function (where we
have f1, fo € Freeamy(n), g1, 92 € Freey(n) and hy, hy are fi- A-H-McNaughton
functions for every subset A of {z1, ..., z,} different from the total set of variables
and the empty set. That happens in the case in which f; = f> and there are two
different unimodular triangulations Ay and Ay of 90, 1]34y N 14, such that for
every & € 0[0, 1|3 N1y,, h1,(Z) = ho, (%) for every h;, an f;-A-H-McNaughton
function with A a nonempty set properly contained in {z1,...,2,}.

5. Filters in MS-algebras

Using the characterization of the functions in Freexqs(n), in this section we
study maximal and prime filters of this algebra. We will strongly use the fact
that every prime filter is contained in a unique maximal filter.

An implicative filter (simply filter from now on) in a BL-algebra (or basic
hoop) A is a subset F' C A satisfying that 1 € F and if x € Fand x -y € F
then y € F. Filters can also be characterized as nonempty subsets of A upwards
closed and closed under product.
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A filter F is proper if F' # A, prime if given two elements a,b € A, if
aVbe F then a € F or b € F and maximal if it is proper and none proper
filter of A contains F'.

To study filters we fix some notation. Given a point z = (x1,...,x,) € G"
let £ € G™ be given by:

x; if x; € [O, 1}MV
The element # is in [0, 1)}y and Z is in the cylindrification of Z.

Lemma 5.1. Given a function f € Freepapy(n), the function f* given by
f@) if  yelo1yy

f@) if ye&™\ 0,1y,

) =

is in Freeps(n). Moreover, f¥ is the greatest element in Freeas(n) such that
its restriction to [0, 1|}y coincides with f.

Proof. From the characterization of functions of F'rees(n) given in the previous
section, it is easy to see that f% € Freeas(n) corresponds to the 2"-tuple

(fv{hA:Q)#A,C«- {1'17"'73371}}79)7

given as follows:

e for each () # A C {z1,...,z,}, there is a unimodular triangulation A of
U= RanN f~1({1}) and for each € R4 the function h4 is given by
- If f(#) =1 (ie., 2 € U) and & € S° then ha(z) = 1.
— If f(2) = c <1, then ha(z) = f(2).

o if f(1) =1 we take g(Z) = 1 for each z € H". Otherwise g is identically 0
on H™.

Observe that for each point of the cylindrification of 90, 1]3~, N f~1(1) the
function f* takes the value 1, and from Lemma 4.4 the rest of the values are
totally determined by f. This makes f¥ the greatest element in Frees(n) such
that its restriction to [0, 1]}y coincides with f. O

5.1. Relation with filters of Freeay(n)

Given a function f € Freeps(n) and a subset S C &™ we let f[g be the
restriction of f to S. For each F' C Freeps(n) we define

Fyuv ={flpuy,, : f€F}

and also we define the subset GY! C Frees(n) given by:
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f € G if and only if f F[OJH\L/IV eqG.
With this notation we have:

Lemma 5.2. If F C Freeys(n) is a filter then Fay is a filter in Freeany(n).
Moreover, if F' is mazimal (prime), then Fyrv is mazimal (prime).

Proof. Clearly, the function which is identically 1 over [0, 1]}y is in Fasy (it is
the restriction of the one which takes the value 1 over &™, which is in F' because
it is a filter).

Suppose that g € Fyyy and f € Freepy(n) are such that f > ¢g and let’s
see that f € Fyyy. Since g € Fyyy, we know that there is a function § € F' such
that glpo,1p,, = 9. We also have that g" and f* € Freeas(n) and from their
definition we have:

1. f* Moz, =1

2. 7 N0y = 910, 1]mwn = 9-
3. >3 >34

Then f* € F and f*[1n = f € Fuv.

Finally let us see that sy is closed under product. Consider f,g € Fiv,
this means that there are functions f,§ € F such that f [[0,1]&\] = f and
g [[0,1]&\/ = g. Since F is closed under product, f - g € F, and we also have
f-g [[071]1»3” =f-g,80 f-g€ Fyy. Therefore Fyy is a filter of Freepay(n).

Assume now that F' is maximal. Suppose that there is a filter G C Freepaqy(n)
such that F]\/[V g G.

From the definition it is easy to see that GV is a filter and that F C G,
But G # Freeps(n), because the function which is identically 0 is not in
G and that contradicts the hypothesis that F' is a maximal filter.

Finally, assume that F is prime. Let f,g be in Freeay(n) and fVg € Fyy.
Then, there is h € F' such that hlj 1y = fVg. Besides It g% € Freeps(n)
are such that f4 F[Oal]iﬁv =f, g f[OJ]K/N = g and from the definition f*V g¥ > h.
Since F' is a prime filter, f# VV ¢ € F and then f* € F or ¢* € F, which implies
thathFMv OI‘gEFMv. O

5.2. Maximal filters

To characterize maximal filters in Freeas(n) we recall a definition from the
proof of Lemma 5.2. Given a filter G C Freepqy(n), we recall that GY! is the
subset of Freeas(n) given by:

f € GV if amd only if o 1y, € G-

The reader can easily check that G is a filter of Freeps(n) and that (G =
G.
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Remark 5.3. From Lemma 5.2, if F' is maximal in Freepys(n), then Fyy is
also maximal in Freey(n). But (Fary )Y is a proper filter of Frees(n) such
that F C (Fay ). Therefore if F' is maximal, (Farv)Y! coincides with F, i.e,
F = (Fyy)®.

Theorem 5.4. The correspondence
F— Fyy

is a bijection between the set of maximal filters of Freeyms(n) and the set of
mazximal filters of Freeany(n).

Proof. From Lemma 5.2, if F' is maximal in Freeas(n), then Fyry is maximal
in Freepy(n).

To see that the map is onto, consider G maximal on Freepqy(n), thus
(G prv = G. We will prove that GY! is maximal in Frees(n) and that will
imply the surjectivity of the application.

Assume that there is F' a filter in Freeys(n) such that GY* C F. Then
from the definition of GY!, we have G = (G )y € Farv. Since G is maximal,
Fuyv = Freepy(n), then the function identically 0 on [0, 1]Rsy is in Fasy . But,
by Lemma 4.4, the only function f € Freeams(n) such that f[p s 0 in
every point is the function identically 0 on &™. Thus the zero function is in F'
and we have F' = Freeps(n).

Finally let us check that the application is injective. Assume F, G maximal
filters in Freeays(n) such that Fpry # Gary. Recall from Remark 5.3 that
F = (FMv)Cyl and G = (GMv)Cyl. Consider f € Fuy \ Grv. Then fﬁ S
(Farv)V' = F. Clearly f* ¢ (Garv)®Y! and therefore, f* € F'\ G. O

Maximal filters of free finitely generated MV-algebras were studied in [13].

Theorem 5.5. ([13, Proposition 3.4.7]) There is a bijection between points of
[0, 1)}y and mazimal filters of Freexy(n), that is given by

T = MVz={f¢€ Freemy(n): f(z)=1}.

For each z € [0, 1]}y we define the set
Mz ={f € Freepms(n) : f(z) =1}.

It is easy to check that M; is a filter in Freeaps(n) and that (Mz)yv = MVz.
This fact together with the results of Theorems 5.4 and 5.5 yield:

Theorem 5.6. The correspondence
T — My

is a bijection between the points of [0,1]" and the maximal filters of Freepaps(n).
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5.83. Prime filters

To study prime filters in our variety Freexs(n), we will first recall some
results about prime filters in Freeaqy(n). A complete description about these
filters can be found in [11], adapting the results of ideals given there.

Definition 5.7. Let n € N and ¢ be such that 0 <t <n. We call index to the

(t + 1)-tuple of vectors u = (ug,...,u;) in R™ such that uy, ..., u; are linearly
independent and for some values €1, ..., > 0 the convex hull
T = COTLU{’(_IJ(),’L_LO + ey, ..., ug +eur + ...+ Gt’l_tt}

is a simplex contained in [0, 1]™. Any such T is called an u-simplex. We also
define the set F, C Freeapy(n) as:

f € Fy if and only if the set f~'({1}) contains some u-simplex.

Theorem 5.8. F), is a prime filter of Freexyy(n).
Moreover, the converse also holds:

Theorem 5.9. Fvery prime filter F in Freepay(n) has the form F = F,, for
some indez u.

If P C Freeps(n) is a prime filter, we know that there is a unique maximal
filter Mz such that P C Mz. We refer to this fact by saying that the prime
filter P is localized at . We will now analyze separately what happens when
a prime filter P is localized at a point z in the interior of the n-cube, i.e,
z € [0, 1)%rv \ 9]0, 1]}sv and what happens when Z is in the relative border, that
is, z € 0[0, 1]} v

Definition 5.10. For a given index u, a unimodular triangulation 7 is called
a u-triangulation if it contains a u-simplex S,. Given a u-triangulation 7, we
define ostar(u) as the interior of the set {T' € 7: T'N Sy, # 0}.

Theorem 5.11. Let = € [0,1]}, \ 0[0, 1]%;, and P C Mgz be a prime filter in
Freeps(n). Then there is a prime filter G C Freepay(n) such that

P=G% = {f € Freeps(n) : floar, € G}

Proof. By Lemma 5.2, we know that Py is a prime filter in Freepay(n).
Clearly, for every function f € Py, f(Z) = 1 because P C Mz. Then Pyy is
a prime filter in Freepqy(n) contained in MVz. We call G = Pyy and will see
that P = G, The inclusion P C G follows from definition. The proof of the
inclusion G C P is our task.

By Theorem 5.9 there is an index u such that for every function f € Pyv,
f(S) =1, for some u-simplex S.

Claim: For every u-simplex Sy, contained in [0, 1]}y \ 0[0, 1]}y and every
u-unimodular triangulation 7 such that Sy is in 7 and ostar(Su) C [0, 1]}y \
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0[0, 1]{1v there is a function hg, € P such that

0 if g is such that some coordinate y; € H
hs, (Q) = 1 ify € Sy

0 ity ¢ ostar(Sy).

Proof of Claim: Let 7 be a unimodular u-triangulation such that Sy is in
7 and ostar(Su) C [0, 1]}y \ [0, 1]3sv- The function tg, defined in the vertices

of T as:
1 if yis a vertex of Sy

ts.(y) =
0 otherwise,

and linearly extended to [0, 1]}y is a function in Freepay(n). Also, tg, (Su) =1
so clearly we have that tg, € G. Then there is a function hg, € Freeps(n)
such that hsu F[O,l]}f,[v = tSu-

Since ostar(Su) C [0, 13y \ 00, 1)}y for every € 9[0, 1]}, we have
that tg,(Z) = 0. By Lemma 4.4, the function hg, € Freeams(n) such that
hs, r[o’l]hv = tg, is then unique, since it must be 0 in every & ¢ [0,1)3v-
Hence, we proved the Claim.

Let f be a function in G%!. Since f € G, f F[O’l]?/[v € G = Pyy. Then
there is a u-simplex Sy such that f r[o,l];;[v takes the value 1 over Sy. Let 7 be
a u-unimodular triangulation such that f is linear in every simplex of 7 and the
u-simplex Ty, of T satisfies that Ty, € Sy, N[0, 1)mv. Then f > kg, and from the

claim we get f € P as desired. 0

Hence if P is a prime filter in Freeps(n) localized at z with z € [0, 1)}y,
then P is the cylindrification of a prime filter G € Freey(n) which is localized
at MVz. From Theorem 5.9 we can conclude:

Theorem 5.12. Let & € [0,1)}y and let P be a prime filter in Freems(n)
localized at ©. Then there is an index u such that

P ={f € Freeps(n): f1({1}) contains some u-simplex in [0, 1)pv }.

Finally we will characterize prime filters in Freeaps(n) localized at the
relative border 9[0, 1]3;y,. To achieve that we will first recall some notation from
Section 4 and introduce new one.

Remember that if £ = (21,...,2,) is a point in a region R4 with A =
{j1,.--yJm} we write

WH(.i) = (Ijl,. .. ,lL’jm) cH™.

We also recall that for each & € 9[0, 1]}y then 1z = {i € {1,...,n} : 2; = 1}
and the cylindrification of the point is the set

z={2€@":z; =uj, for every j ¢ 15, and 2, € H, for every i € 15}.
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With this in mind, for each point z € 9[0, 1]} and each prime filter P €
Freeps(n) localized at & we define the set Py z as

Puz={f1z : feP}

From Lemma 4.4 the set Py z is contained in Freey(m) with m = ||Z|| and it is
easy to verify that it is a filter. Similar to our previous notation, we can also
define the set (Pg.z)%Y! C Freeams(n) as

f € (Paz)® ifand only if flz € Pas.
Thus (P,z)%" is a filter in Freeas(n) such that P C (Pgz)Y".

Theorem 5.13. Let z € (0, 1]}, and P C Mz be a prime filter in Freeps(n).
Then at least one of the following properties hold:

o Py ; = Freey(m) with m = ||Z||
o Pyyv =MVz

Proof. Suppose, on the contrary, that Pz C Freey(m) and Pyy is a proper
filter in M V3.

Clearly, we have that P C (Py)Y" and P C (PH@,)Cyl. We will show that
(Parv) € (Prz)t and (Paz) € (P4), and that will contradict the fact
that P is prime, since the set of filters that contain a prime filter in a BL-algebra
is totally ordered.

Since P,z C Freey(m) there is a function h € Freey(m) such that h ¢

=

Pr z. Let bt € Freeps(n) be the function given by:

. h(ra(y)) ifyed
hi(y) = (26)
1 otherwise.

Consider f = h*lgqyn ~in Freepy(n). Clearly f(y) = 1 for each y €
[0, 1anrv then we have ht € (Pyy)Yt. But ht ¢ (Pgz)Y!, because ht |z = h ¢
PH@. Hence, (PHj)Cyl ¢_ (PMv)Cyl.

Let f € Freeapy(n) be a function such that f € MV; \ Pyy. Then we can
define the function f* € Freeps(n) as we did in the beggining of this section.
By construction, f* ¢ (Pyry)'. We also have that f#]; = f#(z) = 1,50 f# |z €
Py ;. Hence, f* € (Paz)® and we can conclude that (Pyv)Y € (Pa.z)Y,
which completes the proof. O

We conclude the characterization of prime filters with the following two
theorems:

Theorem 5.14. Let z € 9[0,1]},y, P € Mz be a prime filter in Frees(n)
such that Pyyy = MVz. Then Py is a prime filter in Freey(m) with m = || Z||
and

P = {f S FT@@MS(TL) : f rf € PH@}.
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Proof. To prove that Py ; is a prime filter in Freey (m) we can use an argument
analogous to the one in the proof of Lemma 5.2 using the function h* instead
of hf. Let F' denote the set F' = {f € Freepms(n) : f |z € Puz}. The inclusion
P C F is straightforward from the definitions. To see the opposite inclusion,
consider f € F. Then f [ is in Py z, thus there is h € P such that h|z = f|z.

On the other hand, by Remark 2.8 there is a triangulation Ay of [0, 1]y
such that f is linear over each simplex of A. Since that triangulation is a
simplicial complex, we can consider that complex and the point z and apply
Remark 2.10 to obtain a unimodular triangulation A of [0, 1]{;y,. We define a
function ¢ in the vertices of A as:

1 ifg=z
9(y) =
0 otherwise,

and linearly extend it to [0, 1]};y. Then g is a function in Freeqy(n), and
Pyy = MV, g € P and satisfies

e g(z) =1,

* g(y) <1for each y € [0,1]3zy \ {7},

* 9(y) < f(y) for each y € [0, 1]y -

Therefore f > h A g and since h A g € P we get f € P as desired. O

Theorem 5.15. Let z € 9[0,1]},y, P € Mz be a prime filter in Freeps(n)
such that Ppz = Freey(m) with m = ||Z||. Then there is an index u such that

P C{f € Freeps(n): f1({1}) contains some u-simplex in [0, 1]nrv }-

The proof of this theorem is immediate, since, unlike the result in Theorem
5.12, Theorem 5.15 only states that P is included in the cylindrification of a
prime filter in Freeaqy(n). We present an example to show that the inclusion
may be proper.

Example 5.16. Let H be the three-elements Godel chain, H = {a < b < 1}.
The set of elements of H that are greater than a form a proper prime filter of
H. Consider n = 2 and the index u = (zZ,v) where z = (1,1) and v = (1,0).
Then an element g € Freexy(2) is in Fy if and only if there is 6 > 0 such that
[7,Z + 0v) C g~ ({1}). Consider the set

P={f¢€Freepms(2):f [[071}Mv2 € Fy and there is

€ >0 such that Vy € (Z,z + ev) and ¥z € §, f(Z) > a}.

Then P is a prime filter in Freepms(2) that satisfies Puz = Freey(l) and
Pyy = Fu © Mz. However, P is properly included in the cylindrification of
PMV.
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