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Abstract
Chronic kidney disease (CKD) represents a growing public health problem associated with loss of kidney function and cardio-
vascular disease (CVD), the main leading cause of morbidity and mortality in CKD. It is well established that CKD is associated
with gut dysbiosis. Over the past few years, there has been a growing interest in studying the composition of the gut microbiota in
patients with CKD as well as the mechanisms by which gut dysbiosis contributes to CKD progression, in order to identify
possible therapeutic targets to improve the morbidity and survival in CKD. The purpose of this review is to explore the clinical
evidence and the mechanisms involved in the gut-kidney crosstalk as well as the possible interventions to restore a normal
balance of the gut microbiota in CKD. It is well known that the influence of the gut microbiota on the gut–kidney axis acts in a
reciprocal way: on the one hand, CKD significantly modifies the composition and functions of the gut microbiota. On the other
hand, gut microbiota is able to manipulate the processes leading to CKD onset and progression through inflammatory, endocrine,
and neurologic pathways. Understanding the complex interaction between these two organs (gut microbiota and kidney) may
provide novel nephroprotective interventions to prevent the progression of CKD by targeting the gut microbiota. The review is
divided into three main sections: evidences from clinical studies about the existence of a gut microbiota dysbiosis in CKD; the
complexmechanisms that explain the bidirectional relationship between CKD and gut dysbiosis; and reports regarding the effects
of prebiotic, probiotic, and synbiotic supplementation to restore gut microbiota balance in CKD.
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Abbreviation
Ach Acetylcholine
AhR Aryl hydrocarbon receptor
ANG II Angiotensin II
BUN Blood urea nitrogen
CFU Colony-forming unit

CKD Chronic kidney disease
CRP C-reactive protein
CVD Cardiovascular disease
eGFR Estimated glomerular filtration rate
ESRD End-stage renal disease
GABA γ-aminobutyric acid
GI Gastrointestinal
GLP-1 Glucagon-like peptide 1
GLP-2 Glucagon-like peptide 2
GFOB Glutamine, dietary fiber, oligosaccharide

and Bifidobacterium longum strain
GFR Glomerular filtration rate
HAM-RS2 High amylose maize resistant starch
HD Hemodialysis
HPA Hypothalamic–pituitary–adrenal
IPA Indolepropionic acid
IS Indoxyl sulfate
IL-6 Interleukin-6
IL-10 Interleukin-10
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IAA Indole-3-acetic acid
LPS Lipopolysaccharide
NF-κB Nuclear factor-κB
OTUs Operational taxonomic units
p-CS p-cresyl sulfate
PD Peritoneal dialysis
PUFAs Poly-unsaturated fatty acids
PYY Peptide YY
ROS Reactive oxygen species
SCFAs Short-chain fatty acids
TMAO Trimethylamine n-oxidase
TNF-α Tumor necrosis factor α

Introduction

Chronic kidney disease (CKD) affects between 8 and 16% of
the total population and represents a growing public health
problem, since patients with not adequately controlled CKD
progress to end-stage renal disease (ESRD) and often develop
cardiovascular disease (CVD), the main leading cause of mor-
bidity and mortality in CKD [13, 118]. A number of well-
known risk factors have been described to promote cardiovas-
cular complications in patients with CKD such as hyperten-
sion, dyslipidemia, obesity, and diabetes; however, in the last
two decades, other novel risk factors have also been identified,
such as chronic systemic inflammation and gut microbiota,
which have risen as key factors in the pathogenesis and pro-
gression of CVD in CKD [69, 89]. The relationship between
renal disease and the gut microbiota is recognized as an
emerging spotlight of research. Gastrointestinal (GI) microbi-
ota is composed by approximately 1 trillion of microorganism
with thousands of species encoding more than 3 million of
genes (150-fold more than human genome) [74]. The gut mi-
crobiota is mainly represented by 5 phyla: Firmicutes,
Bacteriodetes, Actinobacteria, Verrucomicrobia, and
Proteobacteria [86]. As an essential part of human health, a
healthy gut microbiota provides beneficial effects to the host
by regulating physiologic homeostasis including the immune
system [46]. The concept of dysbiosis implies an imbalance in
gut microbiota composition and its metabolic capacity that
could promote chronic diseases including kidney disease. In
this context, pathogenic bacteria predominate and synthetize
different harmful substances and toxins causing chronic im-
mune activation [62]. The kidney–gut crosstalk refers to the
association between CDK, the GI environment, and changes
in the gut epithelial barrier permeability [47]. Particularly, the
influence of the gut microbiota on the gut–kidney crosstalk
plays a fundamental role in CKD, acting in a reciprocal way:
on the one hand, CKD significantly modifies the composition
and functions of the gut microbiota and contributes to
dysbiosis in humans [50, 111]. On the other hand, gut micro-
biota is able to manipulate the processes leading to CKD onset

and progression through inflammatory, endocrine, and neuro-
logic pathways [81]. The purpose of this review is to explore
the clinical evidence and the mechanisms involved in the re-
lationship between gut dysbiosis and CKD as well as the strat-
egies to restore a normal balance in gut microbiota in CKD.
Understanding the complex interaction between these two or-
gans (gut microbiota and kidney) may provide novel
nephroprotective interventions to prevent the progression of
CKD by targeting the gut microbiota.

Gut microbiota dysbiosis in CKD: looking
for clues and evidences

It is well established that CKD is associated with gut
dysbiosis. In this way, there has been a growing interest in
studying the composition and richness of the gut microbiota
in patients with CKD as well as the mechanisms by which gut
dysbiosis contributes to the progression of CKD, in order to
identify possible therapeutic targets to improve the morbidity
and survival of patients with CKD.

The existence of intestinal microbiota alterations such as
decrease of microbial richness, diversity, and uniformity has
been related to CKD [81]. Patients with CDK show a lower
colonization of Bifidobacteriaceae families, mainly
Bifidobacterium, Lactobacillaceae, Bacteroidaceae, and
Prevotellaceae genera and higher intestinal levels of
Enterobacteriaceae, particularly Enterobacter, Klebsiella,
and Escherichia, and also increased levels of Enterococci
and Clostridium perfringes [47, 100]. By using multiple inde-
pendent datasets, Wilkins et al. determined the type of
dysbiosis for a cluster of chronic diseases including kidney
disease. The authors demonstrated that antibiotic-driven loss
of gut microbiota diversity may increase the risk for kidney
disease as well as other chronic conditions like CVD, obesity,
and diabetes. In this study, the most frequent dysbiotic genera
pattern associated with kidney disease were Bacteroides,
Corynebacterium, Anaerococcus, Prevotella, Rothia,
Sutterella, Eubacterium, Fusobacterium, Leptotrichia,
Parabacteroides, Peptoniphilus, Porphyromonas, and
Veillonella. According to this study, the dysbiosis associated
with kidney disease is more likely due to a loss of diverse
genera more than a gain of microbial genera [120]. Another
study compared the fecal samples from patients with CKD
and healthy control subjects and demonstrated that patients
with CKD exhibited a significant reduction in gut microbiota
richness and composition, with reduced abundance of
Actinobacteria phylum and Akkermansia genera but increased
abundance of Verrucomicrobia phylum and enrichment of the
genera Lactobacillus, Clostridium IV, Paraprevotella,
Clostridium sensustricto, Desulfovibrio, and Alloprevotella.
Conversely, healthy control subjects exhibited higher abun-
dance of Akkermansia and Parasutterella genera. The
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decrease in the abundance of Akkermansia, an important pro-
biotic, in patients with CKD negatively correlatedwith plasma
interleukin-10 (IL-10) levels, suggesting that an altered micro-
biota in CKD may promote chronic systemic inflammation
[62]. Additionally, a systematic review carried out by Chung
et al. included 11 clinical studies in order to characterize GI
microbiota in patients with CKD. The authors reported that
one-third of the patients with CKD exhibited enrichment of
pathogen bacteria Escherichia coli and Enterobacter with re-
duced amounts of butyrate-producing bacteria Roseburia spp.
In those patients with mild CKD, a relationship between early
stages of impaired renal function and rising numbers of ure-
mic toxin-producing bacteria was found [15]. In the subgroup
of CKD patients with ESRD, Vaziri et al. found changes in
190 bacterial operational taxonomic units (OTUs) compared
to heal thy subjects , wi th specia l overgrowth of
Actinobacteria, Proteobacteria, and Firmicutes (mainly
Clostridia) [111]. Biruete et al. found in patients on hemodi-
alysis (HD) that Firmicutes/Bacteroidetes ratio positively cor-
related with traditional cardiovascular risk factors like aortic
and b raqu i a l sy s to l i c p r e s su r e [6 ] . Moreove r,
Faecalibacterium spp. was positively associated with carbo-
hydrate intake and inversely associated with carotid-femoral
pulse wave velocity, a surrogate marker of arterial stiffness.
They also found that lipopolysaccharide (LPS) serum levels
were inversely associated with butyrate-producing bacteria
such as Ruminococcus and Oscillospira spp. These results
open up the question whether targeting the gut microbiota
could result in a lower burden for CVD in HD patients [6].
Considering the evidence to date, dysbiosis of the gut micro-
biota in patients with CKD is characterized by a decrease of
bacterial species with saccharolytic fermentation activity such
as Lactobacillus and Prevotella and an enrichment of bacterial
species with proteolytic fermentation activity, Bacteroides and
Clostridium among them, with increased levels of circulating
uremic toxins from fermentation of nitrogen-containing com-
pounds that result in a chronic inflammatory state in this group
of patients [11].

Changes in gut microbiota in patients with CKD are not
only limited to stool samples. Gut dysbiosis in CKD leads to
high intestinal permeability which allows intestinal bacteria
and their products to translocate into the host blood circula-
tion. It has been reported that even healthy human donors
carry on a circulating microbiome in blood [82]. A pilot study
demonstrated that patients with CKD exhibit a different blood
microbiome profile compared to healthy control patients with
more variability in bacterial 16S rDNA quantity and a de-
crease in α diversity (bacterial taxa richness). At taxonomic
level, it has been detected a total of 22 OTUs significantly
different between both groups, with a high proportion of
Proteobacteria at phylum level, Gammaproteobacteria at
class level, and Enterobacteriaceae and Pseudomonadaceae
at family level in the CKD group. Additional data point out

that the proportion of Proteobacteria inversely correlates with
glomerular filtration rate (GFR) [99]. Gut dysbiosis in a con-
text of CKD can also lead to a poor clinical outcome due to its
impact on cognitive function [56]. It has been proposed a
possible link between gut microbiota, inflammatory cyto-
kines, and neuronal network connectivity. Wang et al. demon-
strated that ESRD patients exhibit gut dysbiosis, increased
systemic inflammation, and disrupted topological organiza-
tion with impaired network connectivity in brain and worse
cognitive performance compared to control group [117]. This
finding highlights the important role of establishing a normal
balance in gut microbiota to keep a healthy gut-cerebral axis
that favorably impacts on cognitive behavior.

Increasing evidence from recent years indicates that gut
dysbiosis has a critical role in the pathogenesis of chronic
systemic inflammation. In a context of gut dysbiosis, patho-
gen bacteria overwhelm beneficial bacteria and release large
amounts of immunogen substances including LPS and pepti-
doglycans, which activate the intestinal mucosa immune sys-
tem and disrupt intestinal permeability, with translocation of
bacterial products into the host circulatory system, thereby
favoring the production of inflammatory mediators like IL-6,
interferon γ (IFN-γ), and tumor necrosis factor α (TNF-α)
[36, 95, 96]. Supporting this fact, patients with type 2 diabetes
and CKD (stages 4 and 5 without dialysis) present a signifi-
cant increase in gram-negat ive bacter ia such as
Proteobacteria, Verrucomicrobia, and Fusobacteria in fecal
microbiota samples. Gram-negative bacteria exhibit in the
outer membrane a potent endotoxin, LPS, recognized by cell
surface receptor of immune cells like Toll-like receptor 4
(TLR4) which induces the production of pro-inflammatory
cytokines via nuclear factor-κB (NF-κB) [10, 57]. Serum
levels of LPS in this group of patients are significantly elevat-
ed when compared with healthy subjects and correlate with
increased levels of inflammatory biomarkers such as TNFα,
IL-6, and C-reactive protein (CRP) [97]. This chronic system-
ic inflammation state represents a major risk factor for CKD
progression and cardiovascular complications [19].

Given the large number of species (around 35.000) com-
posing our intestinal microbiota, the limited capacity of the
studies to determine the prevalence of only some groups of
microorganisms, and the lack of knowledge regarding the real
contribution of each microorganism in the pathophysiology of
CKD, it is clear that more clinical evidence will be needed to
propose the use of gut microbiota as a new biomarker of
prognosis for kidney disease.

Mechanisms of CKD-induced dysbiosis

CKD is associated with diet restrictions, slow colonic transit,
changes in the biochemical environment of the GI tract, and
the use of certain medications such as antibiotics, phosphate
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binders, and iron-containing compounds [72]. All these fac-
tors contribute to the development of gut dysbiosis in CKD
patients [2, 47] (Fig. 1).

Diet restrictions

CDK patients are characterized by decreased consumption of
dietary fibers. Indigestible carbohydrates are essential nutri-
ents for the gut saccharolytic microbiota, and the reduction of
these substrates results in decreased production of short-chain
fatty acids (SCFAs) by this group of bacteria. Lack of dietary
fibers leads to increased amino nitrogen, which can be trans-
formed into uremic toxins by the gut microbiota [111].
Patients with CDK are characterized by an imbalance between
saccharolytic (fermentative) and proteolytic (putrefactive) mi-
crobiota in favor of the latter. The imbalance in favor of pro-
teolytic species is related to detrimental effects and has also a
fundamental role in the progression of CKD [123].

Slow colonic transit

A prolonged colonic transit reduces the availability of carbo-
hydrates in the colon, facilitating increased protein fermenta-
tion by proteolytic bacteria. A slowing down in colonic transit
time induces an upstream expansion in the number of proteo-
lytic species, contributing to the imbalance between
saccharolytic and proteolytic microbiota in patients with

CKD [123]. This results in an increased production and uptake
of end-products of bacterial protein fermentation [29].

Changes in the GI tract biochemical environment

Urea is the most abundant waste product retained in CKD
patients [47]. It has been proved that the increased influx of
urea into the GI lumen favors the overgrowth of bacteria ex-
pressing urease. This was confirmed by clinical studies, as
patients with ESRD showed dominance of bacterial families
possessing urease compared to healthy controls [59]. The hy-
drolysis of urea by gut microbes results in the formation of
large quantities of ammonia. Ammonia raises luminal pH and
alters the composition of the microbiota, leading to microbial
dysbiosis [47].

Medications

CKD patients are commonly exposed to antibiotics to treat
vascular accesses and other infections [111]. The use of anti-
biotics impacts the gut microbiota by loss of critical taxa nec-
essary to maintain homeostasis, loss of biodiversity, changes
in metabolic capacity, and expansion of pathogens [110]. On
the other hand, long-term consumption of phosphate binders
and iron-containing compounds can cause alterations in the
luminal environment of the GI tract and affect the resident
microbial flora, leading to dysbiosis [2, 47, 111].

Fig. 1 Mechanisms involved in the relationship between gut dysbiosis and CKD
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Influence of microbial dysbiosis in CKD onset
and progression

Microbial dysbiosis of the gut microbiota is characterized by a
set of features associated to accumulation of microbiota-
derived metabolites, neuroendocrine deregulation, chronic in-
flammation, and interruption of intestinal barrier function, all
of which play a critical role in the pathogenesis of CKD and
CKD-associated complications [49, 83] (Fig. 2).

Microbiota-derived metabolites

Uremic toxins

There are numerous evidences indicating that altered gut
microbiota in CDK could contribute to the increased pro-
duction of gut-derived uremic toxins [3, 113]. The origin
of uremic toxins in CKD is multiple [61]. These toxic
metabolites can be classified according to their origin in
(1) uremic toxins derived from endogenous metabolism,

(2) uremic toxins derived from microbial metabolism, or
(3) uremic toxins derived from exogenous intake [54].
These products are normally eliminated by feces, although
a part can be absorbed and eliminated by the kidneys, so
they accumulate in CKD [16].

Patients with CKD usually present a gut microbiota imbal-
ance that favors the growth of pathological bacteria with pro-
teolytic activity, leading to the generation of uremic toxins like
indoxyl sulfate (IS), p-cresyl sulfate (p-CS), indole-3-acetic
acid (IAA), and trimethylamine n-oxidase (TMAO) [25, 72].
All these toxins often accumulate at the early stages of CKD
and stimulate inflammation and oxidative stress, thereby con-
tributing to the progression of kidney damage and increasing
the cardiovascular risk in CKD patients [4, 21, 22, 26, 34]. IS
is synthetized from dietary tryptophanmetabolismwhile p-CS
derives from phenylalanine and tyrosine catabolism by anaer-
obic gut bacteria. Both IS and p-CS are capable of inducing
tubulointerstitial fibrosis and glomerular sclerosis, impaired
renal function, and disease progression. IS also plays a key
role in endothelial dysfunction by inducing pro-inflammatory

Fig. 2 Pathogenesis of gut dysbiosis in CKD and its impact on health
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cytokines and free radical production, inhibiting endothelium
repair, and promoting proliferation of vascular smooth muscle
cells [77, 79, 102].

In patients with CKD, there is an increase of bacterial spe-
cies producing uremic toxins, such as Enterobacteriaceae,
Clostridiaceae, Pseudomonadaceae, and Bacteroidiaceae,
whereas beneficial species, such as Lactobacillaceae,
Bifidobacteriaceae, and Prevotellaceae, are decreased [81].
Recently, Joossens et al. conducted a clinical study in patients
with ESRD to determine the role of gut microbiota in the
generation of precursors of specific uremic toxins associated
with negative outcomes in those patients. The authors identi-
fied six taxa (Enteroccocus, Akkermancia, Dialester,
Rominicoccus, Bacteroides, and Blautia) that correlated with
increased levels of uremic toxins and would need further ex-
ploration as microbial targets to lower uremic toxin concen-
trations to improve outcomes in patients with CDK [49]. It has
been proposed that the influx of uremic toxins and urea into
the GI lumen applies a selective pressure that favors the over-
growth of bacteria that produce urease, uricase, indole, and p-
cresol forming enzymes, generating a vicious circle of inflam-
mation and oxidative stress at renal level [111].

The aryl hydrocarbon receptor (AhR), a transcriptional fac-
tor, has been postulated as the mediator in the renal inflamma-
tory and oxidative effects of the uremic toxins in CKD patients.
A cross-sectional study in patient with CKD showed that AhR
protein expression positively correlated with IAA plasma levels
andNF-κB protein expression in peripheral bloodmononuclear
cells, suggesting a possible role of AhR activation in the pro-
gression of renal inflammation induced by uremic toxins in
CKD patients [8]. Except for TMAO, uremic toxins tightly
bound to serum albumin, making them difficult to remove by
HD [21]. The binding site on serum albumin (site II) by uremic
toxins is shared with other ligands like fatty acids [22, 121].
Taking this fact into consideration, Kemp et al. demonstrated a
negative correlation between p-CS plasma levels and specific
polyunsaturated fatty acids (PUFAs) like docosahexaenoic acid
(DHA), eicosapentaenoic acid (EPA), and gamma-linolenic
(GLA) in patients with CKD on HD. This result suggests that
PUFAs could contribute to reduce uremic toxin plasma levels in
patients with CKD undergoing HD [51].

TMAO is produced by bacterial metabolism of quaternary
amines including betaine, l-carnitine, or phosphatidylcholine
that releases trimethylamine [14]. TMAO is linked to renal
function and is associated with the progression of CKD and
with an increased risk of CVD, the leading cause of morbi-
mortality in patients with CKD [98, 103]. TMAO is completely
excreted by glomerular filtration without contribution of tubular
secretion or tubular reabsorption at all stages of CKD. Pelletier
et al. demonstrated that serum TMAO concentration negatively
correlates with estimated glomerular filtration rate (eGFR),
confirming high levels of serum TMAO in patient with CKD
[85]. Several studies have demonstrated a proatherogenic role

by TMAO as well as a kidney tubulointerstitial fibrosis promot-
ing effect [53, 106, 107]. Therefore, subclinical detection of
CVD, especially at the early stages of CKD, has a crucial rele-
vance for the prognosis of CKD. In this way, TMAOmetabolite
has been proposed as a potential surrogate marker to detect
early cardiovascular risk in patient with CKD [41]. Hsu et al.
showed that urinary TMAO levels positively correlated with
the abundance of the beneficial probiotic bacterial strains
Bifidobacterium and Lactobacillus genera in gut microbiota
of children with early-stage CKD (G1-G3). Moreover, a lower
TMAO urinary level is associated with elevated pulse wave
velocity (PWV) and abnormalities in the ambulatory blood
pressure monitoring (ABPM) [41].

Another uremic derivate metabolite is indolepropionic acid
(IPA), an aromatic amino acid synthetized by deamination by
the microbiota. Recent evidence indicates that IPA exhibits
beneficial effects since high serum levels of this product were
associated with lower risk for develop type 2 diabetes and
might serve as inhibitor of beta-amyloid fibril generation [5,
109]. Patients with elevated serum levels of IPA are more
protected from a rapid renal function decline with lower risk
in developing CKD [105]. A possible mechanism of its ben-
eficial effects might be due to its anti-oxidative stress proper-
ties capable of suppressing renal inflammation and fibrosis
triggered by uremic toxins [125].

Then, it is clear that the progression of symptoms and clin-
ical complications in CKD is caused by accumulation of ure-
mic toxins, especially in ESRD where HD or peritoneal dial-
ysis can only partially remove them [86]. Therefore, attempts
to reduce their production or accumulation by favoring their
elimination from the human body throughmanipulation of gut
microbiota seem to be a reasonable and novel therapeutic
strategy to improve the survival of these patients.

Short-chain fatty acids

Short-chain fatty acids (SCFAs) are aliphatic carboxylic acids of
low carbon number (C2–6) produced by bacterial fermentation
of dietary fiber or via protein catabolism, being acetate (C2),
propionate (C3), and butyrate (C4) the main contributors to total
SCFA content [37, 66]. In kidneys, SCFAs regulate immune
response, decrease inflammation, and exert anti-oxidant and
anti-fibrotic actions. SCFAs also regulate blood pressure levels
and metabolism by the activation of G protein-coupled receptors
and the inhibition of histone acetylation [42, 63].

It has been proved that abundance of SCFAs-producing
bacteria (Lactobacillaceae and Prevotellaceae) is reduced in
patients with ESRD [37]. Roseburia intestinalis ,
Faecalibacterium prausnitzii, and some species of
Clostridium and Eubacterium represent the main anaerobic
bacteria in synthetize butyrate through saccharolytic fermen-
tation activity from non-digestible carbohydrates [88]. Jiang
et al. demonstrated a significant reduction in the abundance of
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t he bu ty ra t e -p roduc ing spec ie s Rosebur ia and
Faecalibacterium in patients with CKD in comparison to
healthy controls [48]. Another recent study found that use of
anaerobic antibiotics in patients with kidney transplant is as-
sociated with less gut abundance of butyrate-producing bac-
teria and thereby with higher risk for developing respiratory
viral infections. Conversely, patients with higher butyrate-
producing bacteria in gut microbiota were associated with
lesser incidence of respiratory viral infections at post trans-
plantation [60]. This finding supports the anti-inflammatory
properties of butyrate beyond the improvement of intestinal
barrier function and mucosal immunity.

Clinical studies investigating the potential of circulating
SCFAmeasurements to serve as biomarkers in diagnosis, prog-
nosis, and therapeutic monitoring of renal patients are still
scarce. Recently, Wang et al. showed that the main SCFAs
(acetate, propionate, and butyrate) and especially butyrate were
reduced in the feces and serum of patients during CKD devel-
opment [116]. In this study, most markers of renal function
(cystatin C, creatinine rate, blood urea nitrogen [BUN], GFR
and uric acid) showed a negative correlation with the concen-
tration of butyrate [116]. Further research is needed to deter-
mine whether increasing levels of circulating SCFAs would
provide any direct clinical benefit in patients with CDK.

Endocrine regulation

The gut microbiota acts like an endocrine organ by producing
several hormones and neurotransmitters that affect intestinal
endocrine activity and have the potential to regulate kidney
function [81].

It has been proved that alterations in the gut microbiota
can lead to the hypothalamic–pituitary–adrenal (HPA) axis
activation and to increased secretion of serotonin and other
neurotransmitters and neuroactive compounds [47]. The
HPA axis can be stimulated either directly or via the acti-
vation of the immune system elicited by toxic substances
produced by altered gut microbiota such as endotoxin and
peptidoglycan [47]. Additionally, Lactobacillaceae,
Prevotellaceae, and Bifidobacteriaceae species are able
to synthesize neurotransmitters such as γ-aminobutyric ac-
id (GABA) and acetylcholine (Ach) and to promote pro-
duction of the intestinal incretins glucagon-like peptide 1
and 2 (GLP-1, GLP-2) and the gut hormone peptide YY
(PYY) [81]. Propionate, a SCFA synthesized by gut micro-
biota, also stimulates the release of GLP-1 and PYY [123].
Recently, Cheema and Pluznick identified 12 metabolites
in plasma and another 96 in feces that were significantly
altered with angiotensin II (ANG II) infusion in conven-
tional mice, but not in germ-free mice, suggesting that they
are dependent on the gut microbiota and can be regulated
by ANG II [12].

All these neurotransmitters and hormones are able to mod-
ulate the renal function [81]. It has been proved that GABA can
stimulate natriuresis and suppress renal sympathetic nerve ac-
tivity, Ach can increase the GFR by promoting renal vasodila-
tation, and GLP-1 can increase the GFR, diuresis, and natriure-
sis and reduce ANG II levels [30][48, 101, 119]. In CKD pa-
tients, there is a clear reduction of bacteria species that can exert
renoprotective actions through reducing renin–angiotensin–al-
dosterone and renal sympathetic systems activity while increas-
ing GFR, diuresis, and natriuresis. Ultimately, endocrine alter-
ations in sodium and blood pressure hemostasis can contribute
to CKD onset and progression [47]. In this way, gut dysbiosis
can be considered a key feature for CKD progression via alter-
ation of endocrine gut–kidney interactions [81].

Chronic inflammation

Altered gut microbiota is associated to the development of
systemic inflammation [81, 83]. This association has been
proved in patients with ESRD, who are characterized by in-
creased levels of systemic inflammation markers such as CRP,
pro-inflammatory cytokines, and activated complement [83].
The development of systemic inflammation in patients with
CKD could be explained by the effects of uremic toxins pro-
duced by the gut microbiota, LPS-induced monocyte/
macrophage activation, oxidative stress, and increased cyto-
kine secretion.

Gut microbiota dysbiosis can stimulate the accumulation of
uremic toxins, which, in turn, can increase the production of
pro-inflammatory cytokines [39]. LPS, a product originated
from the cell wall component of Gram negative bacteria,
elicits a pro-inflammatory and oxidative stress response by
activation of endothelial cells and monocytes/macrophages
[83]. This generates a ring reaction in which inflammation is
associated to a redox imbalance with increased reactive oxy-
gen species (ROS). Increase in ROS in turn potentiates the
pro-inflammatory response, generating a vicious circle of in-
flammation and oxidative stress at renal level. In the kidneys,
inflammatory cytokines, pro-fibrotic factors, and ROS are
able to induce inflammation, nephrotoxicity, cell injury, and
impairment of renal function [100].

Gut barrier disruption

Urea toxicity, gut wall edema, inflammation, and oxidative
stress are major mechanisms that drive the disintegration of
the intestinal barrier [47, 124]. Elevated urea levels as a con-
sequence of the expansion of bacteria with urease activity
leads to increasing ammonium production in the gut lumen.
This causes alterations in gut pH, mucosal irritation, and gut
wall structural damage, contributing to increased intestinal
permeability by the alteration of the tight enterocyte junctions
[83, 90]. Increased permeability of the intestinal barrier in
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patients with CKD favors the translocation of bacterial prod-
ucts of intestinal origin, such as LPS, uremic toxins, and cy-
tokines into the systemic circulation. The translocation of en-
dotoxin and bacterial fragments leads to local inflammation
via the activation of immune cells such as macrophages and T
cells, the release of pro-inflammatory cytokines and
chemokines, and the infiltration of circulating inflammatory
cells [47].

Finally, the increase in circulating bacterial products of
intestinal origin favors the development of an inflammatory
chronic state associated with CKD. The immune response
explains the systemic inflammation that contributes to the de-
terioration of kidney disease and increases the incidence of
CVD and mortality in patients with CKD [16].

Beneficial effect of prebiotic, probiotic,
and symbiotic therapies on chronic kidney
disease

Patients with CKD usually have certain conditions that influ-
ence the composition and richness of gut microbial flora: they
are recommended to follow a strict diet with limited ingestion
of protein, fat, fiber, and food with high content of potassium
and oxalate; they often require antibiotics to prevent infec-
tions; and also require phosphate-binding agents [62, 64, 94,
120]. Nutrient ingestion has a direct effect in regulating the
composition and richness of gut microbial flora, for example
non-digestible complex carbohydrates promote the over-
growth of saccharolytic fermentative bacteria and when this
substrate is reduced, proteolytic bacteria growth is favored
with increase production of toxic metabolites like ammonia,
phenols, and indoles [62]. Since CKD is associated with an
imbalance of gut microbiota, restoring gut microbiota by in-
creasing the total dietary intake, especially with diets rich in
fiber in order to alter the carbohydrate/protein ratio, may shift
the gut microbiota to a fermentation profile that favors the
production of SCFAs [36]. Therefore, prebiotic, probiotic,
and synbiotic supplementations have emerged as a potential
therapeutic intervention.

The concept of prebiotics implies those nutrients selectively
used by gut microbiota with beneficial effect to the host [17].
Examples of prebiotics are complex carbohydrates, oligosac-
charides, fructans, galactans, starch, and polyphenols [17, 33].
The term probiotics involves live microorganisms that confer a
health benefit on the host when they are administered in ade-
quate concentration through different mechanisms: catabolism
of waste molecules, production of bacteriocins that suppress
pathogen bacteria growth, immunomodulation, and anti-
inflammatory effects [86]. Examples of probiotics are mainly
bacterial strains, mostly Lactobacillus or Bifidobacterium.
Finally, synbiotic term is defined as the combination of prebi-
otic plus probiotic in order to enhance the benefits of each one

as food-based strategy [18]. Several experimental and clinical
studies have showed the beneficial effects of prebiotic, probiot-
ic, and synbiotic supplementation on gut microbiota-renal axis
[73].

Table 1 shows the main findings of different clinical trials
and studies in animal models regarding the use of probiotic,
prebiotics, and synbiotics in CKD.

Prebiotic supplementation as intervention
to attenuate gut dysbiosis in CKD

Prebiotics stimulate the growth of beneficial bacteria species
in the gut such as Bifidobacteria and Lactobacilli at the cost of
other strains of bacteria, such as Bacteroides species,
Clostridia species, and enterobacteria [70, 83].

Supplementation with prebiotics exerts beneficial effects in
animal models of CKD [114]. In this sense, the group of Vaziri
et al. studied the effects of supplementation with high resistant
starch on CKD progression inmale Sprague–Dawley rats with
CKD induced by a diet containing 0.7% adenine for 2 weeks.
Rats were then fed diets supplementedwith amylopectin (low-
fiber control) or high fermentable fiber (amylose maize
resistant starch, HAM-RS2) for 3 weeks. CKD rats with low
fiber diet presented reduced creatinine clearance, interstitial
fibrosis, inflammation, tubular damage, activation of NF-kB,
upregulation of pro-inflammatory, pro-oxidant, and pro-
fibrotic molecules, downregulation of antioxidant enzymes,
and disruption of colonic epithelial tight junction. The high
resistant starch diet significantly prevented all these abnormal-
ities, retarding the progression of CKD [112]. In another study
by Kieffer et al., male Sprague–Dawley rats with adenine-
induced CKD consumed a semipurified low-fiber diet or a
high-fiber diet [59% (wt/wt) HAMRS2] for 3 weeks (n = 9
rats/group). HAMRS2-fed rats showed an increased
Bacteroidetes-to-Firmicutes ratio, associated with a healthy
gut microbial community. Serum and urine IS levels were
reduced by 36% and 66%, respectively, in HAMRS2-fed rats
and urine PCS was reduced by 47% in HAMRS2-fed rats.
Overall, dietary resistant starch had a protective effect on kid-
ney function in CKD rats that takes place together with chang-
es in gut microbe ecology and shifts in specific groups of gut
bacteria [52]. The prebiotic lactulose is also able to modify gut
microbiota and improve renal function by inhibiting the pro-
duction of uremic toxins, in adenine-induced CKDWistar/ST
male rats of 10 weeks old. In doses of 3.0% and 7.5%,
lactulose decreased serum creatinine and BUN levels and
prevented CKD progression by suppressing tubulointerstitial
fibrosis. Lactulose reduced species of gut microbiota which
produced IS and therefore; this toxin levels in serum [104]. In
a study by Hung et al., guar gum increased the Lactobacillus
counts in adenine-induced CKD mice. In another study,
xylooligosaccharide reduced the levels of six out of the nine
CKD-associated bacterial genera in CKD mice. The authors
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Table 1 Effects of different type of prebiotic, probiotic, and symbiotic in CKD

Evidences from experimental models of CKD

CKD model Diet Main findings Reference

Male Sprague–Dawley rats with
adenine-induced CKD (9 rats per group,
total of 18)

Prebiotic: high-amylose maize-resistant
starch type 2 (HAMRS2), 59% by weight
of the diet, for 3 weeks

Increase in:
- Bacteroidetes-to-Firmicutes ratio
Reduction of:
- cecal pH
- microbial diversity
- serum and urine indoxyl sulfate
- nitrogen load on kidneys
- renal inflammatory response
Improvement in renal function

Kieffer DA et al.
Am J Physiol
Renal Physiol
(2016) [52]

Male Sprague–Dawley rats with chronic in-
terstitial nephropathy induced by 0.7%
adenine for 2 weeks (6, 9 and 9 rats in
three groups, total of 24 rats)

Prebiotic: Resistant Starch Diet (TD.130688)
contained Hi-Maize 260 resistant starch
(590 g/kg) for 3 weeks

Reduction of:
- p-cresyl levels
- indoxyl sulfates levels
- inflammatory mediators

Vaziri ND et al.
PLoS ONE
(2014) [112]

Male Wistar rats fed with high-fat diet for
12 weeks (six rats per group, total of 24
rats)

Prebiotic: XOS, xylooligosaccharide, daily
dose: 1000 mg for 12 weeks

Improvement of:
- podocyte injury
- increased microalbuminuria
- decreased creatinine clearance
- impaired Oat3 function
- decrease in renal MDA level and

the expression of AT1R, NOX4,
p67phox, 4-HNE, phosphorylated
PKCα and ERK1/2

- reduction of Nrf2-Keap1 pathway,
SOD2 and GCLC expression and
renal apoptosis

Wanchai K et al. J
Endocrinol.
(2018) [115]

Male Sprague–Dawley rats with 5/6 ne-
phrectomy CKD (7 and 13 rats in two
groups, total of 20 rats)

Prebiotics: galacto-oligosaccharides (GOS):
5,00% by weight of the diet, for 2 weeks

- Reduction of indoxyl sulfate levels
by modifying the microbiota
profile

-Attenuation of CKD progression by
reducing tubular damage caused
by ER stress

Furuse SU et al.
Physiol Rep.
(2014) [31]

Male Wistar rats (six rats per group, total of
12 rats)

Prebiotic: Oligofructose (OFS)-enriched
standard diet (10%) for 35 days

Protection against high-fat diet ef-
fects:

- energy intake
- body weight gain
- fat mass development
- serum triglyceride accumulation

induced by a high-fat diet.
Increase in:
- proglucagon mRNA in the cecum

and the colon
- GLP-1 and GLP-2 contents in the

proximal colon
- portal concentration of GLP-1
Decrease in:
- ghrelin levels

Cani PD et al.
Obes Res.
(2005) [9]

Albino mice with oxidative stress (OS) in-
duced by D-Gal (150 g/kg BW)-(10 mice
per group, total of 60 rats)

Probiotic: strain from a collection of lactic
acid bacteria (LAB) L. brevisMG000874.
Dose: 0,2 ml of 1010 CFU/mL/animal/day
for 8 weeks

Improvement in kidney levels of:
- superoxide dismutase
- catalase
- glutathione-S-transferase

Noureen S et al. J
Appl
Microbiol.
(2019) [80]

Male Wistar rats with ischemia-reperfusion
injury (six rats per group, total of 36 rats)

Probiotic: VSL#3, dose: 0.6 g/kg/day for
2 weeks before ischemia-reperfusion

Reduction of:
- blood urea nitrogen
- serum creatinine
- Cystatin C
- proteins and neutrophil

gelatinase-associated lipocalin
levels

Increase in:
- creatinine clearance
- expression of ZO-1, Occludin, and

Claudin-1

Ding C et al.
Pflugers Arch.
(2019) [25]
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Table 1 (continued)

Prevention of the decrease in the
levels of catalase, glutathione
peroxidase, H2O2, and total SOD

Male Wistar rats with obesity and
insulin-resistance induced by a High Fat
diet of 12 weeks (six rats per group, total
of 24 rats)

Probiotic: Lactobacillus paracasei HII01,
dose: 1 × 108 CFU/mL, daily oral gavage
for 12 weeks

Improvement of alterations in obese
rats:

- reduction of serum
lipopolysaccharide (LPS), plasma
lipid profiles, and insulin
resistance

- increase in renal Oat 3 function and
protects kidney in HF-fed rats

- reduction in inflammation, ER
stress, apoptosis, and
gluconeogenesis in the kidneys

Wanchai K et al.
Clin Sci
(Lond). (2018)
[115]

Male C57BL/6 mice with 5/6 nephrectomy
(six mice per group, total of 24 rats)

Probiotic:
Lactobacillus rhamnosus R0011 and

Lactobacillus acidophilus R0052 mixture.
Dose: 1011/kg/day, by oral gavage for
8 weeks

Partial mitigation of the
CKD-induced “leaky gut”

- Restorement of colon epithelial
HSP70, claudin-1 and claudin-2
expression

- Reduction in apoptosis
- Restorement of the

CX3CR1intermediate:CX3CR1
high macrophage ratio

- Increase in circular dichroism
(CD)103 + CD11c + regulatory
dendritic cells in the colon

- Suppression of systemic
inflammation and kidney fibrosis

Yang J et al.
Nephrol Dial
Transplant.
(2019) [122]

Male Wistar rats intoxicated with chromium
(VI) (12 rats per group, total of 96 rats)

Association of probiotic bacteria
(Lactobacillus acidophilus, Enterococcus
faecium, Bifidobacterium thermophilum
and Bifidobacterium longum). (2–5
109 CFU each)

Dose: 20 g/kg, for 90 days.

Improvement of nutritional,
physiological and biochemical
parameters

Younan S et al. J
Sci Food
Agric. (2019)
[126]

Pregnant SD rats (3 rats per group, total of 12
rats)

Male SD offspring born to fructose-fed
mothers (7–8 rats per group, total of 28–32
rats)

Prebiotic: long chain inulin, 5% w/w
Probiotic: Lactobacillus casei

(2 × 108 CFU/day, via oral gavage)
Experimental period: 6 weeks (gestation and

lactation periods)

Prebiotic:
- increase in plasma propionate level
- restorement of HF-induced reduc-

tion of Frar2 expression
Probiotic:
- protection against hypertension
- reduction of plasma acetate level
- decrease in renal mRNA expression

of Olfr78.

Hsu CN et al.
Nutrients.
(2018)[40]

Male Sprague–Dawley rats with hyperten-
sion induced by L-NAME (9 rats per
group, total of 54 rats)

A combination of
pre-microorganism-fermented blueberries
with probiotic Lactobacillus plantarum
DSM 15313, dose: 109 CFU/day for
4 weeks

- Reduction of systolic and diastolic
blood pressure

- Increase in certain phenolic acids
- Change in the caecal microbiota

(decreased abundance of
Lachnospiraceae and Clostridium
leptum)

Ahrén IL et al.
Clin. Nutr.
(2015) [1]

Male Sprague–Dawley rats with 5/6 ne-
phrectomy (10 and 20 rats in two groups,
total of 30 rats)

Diet based on AIN-93G (Oriental Yeast Co.,
Tokyo, Japan) containing prebiotics:
Glutamine, dietary Fiber and
Oligosaccharide

Probiotics: 1% Bifidobacterium longum
strain.

GFOB diet for 8 weeks.

- Reduction of serum creatinine and
blood urea nitrogen

- Improvement of the gut
environment

- Amelioration of kidney function

Iwashita Y et al.
Am J Nephrol.
(2018) [45]

Male Wistar rats with
hyperuricemia induced by
oxonic acid (6 rats per group, total of 30)

Synbiotic:
Formula 1:
L acidophilus KB27 (5.0 B CFU/day), L

rhamnosus KB79(5.0 B CFU/day),
Xylooligosaccharide-50.0 mgs per day.
Experimental period: 5 weeks

Formula 2:

Prevention of oxonic acid effects,
such as:

- increment of uric acid urinary
excretion

- increment of intrarenal Uric Acid
accumulation

- renal changes and

García-Arroyo FE
et al. PLoS
One. (2018)
[32]
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Table 1 (continued)

L acidophilus KB27 (5.0 B CFU/day), L
rhamnosus KB79(5.0 B CFU/day),
Xylooligosaccharide-50.0 mgs per day,
curcumin-25.0 mgs/day. Experimental
period: 5 weeks

- hypertension caused by
hyperuricemia

Evidences from clinical trials on CKD

Trial Diet Main outcomes Reference

Randomized, double-blind,
placebo-controlled in CKD patients un-
dergoing hemodialysis (n = 31)

Prebiotic supplementation:
26 g of Hi-Maize® 260 powder (which

contains 16 g of resistant starch) per day,
for 4 weeks

Reduction of:
- IL-6 plasma levels
- TBARS plasma levels
- indoxyl sulfates plasma levels

Esgalhado M
et al. Food
Funct. (2018)
[28]

Randomized, placebo-controlled,
double-blind, cross-over study in CKD
patients not yet on dialysis (n = 40)

Prebiotic:
Arabinoxylan oligosaccharides (AXOS)

(10 g twice daily) for 4 weeks

Reduction of:
- serum levels of TMAO (including

trimethylamine N-oxide), a
microbiota derived uremic
retention solute

Poesen R et al.
PLoS One.
2016 [87]

Double-blind, placebo-controlled,
randomized trial in non-dialysis-dependent
CKD patients (n = 50)

Prebiotic:
Fructooligosaccharide (FOS) 12 g/day for

3 months

Reduction of:
- serum total and free p-cresyl sulfate,

independent of eGFR

Ramos CI et al.,
Nephrol Dial
Transplant.
(2019) [91]

Double-blind, parallel, randomized,
placebo-controlled trial in ESRD patients
undergoing hemodialysis (n = 20)

Prebiotic:
20 g/day of high-amylose maize resistant

starch type 2 (HAM-RS2), during the first
month and 25 g/day during the second
month

Reduction of rerum concentrations
of:

- BUN
- IL-6
- TNFα
Decrease in inflammation
Elevation in Faecalibacterium

Laffin MR et al.,
Hemodialysis
International.
(2019) [58]

Triple -blind randomized placebo-controlled
trial in patients undergoing hemodialysis
CKD (n = 42)

Probiotic: Lactobacillus Rhamnosus, daily
capsule of 1.6*107 CFU, for 4 weeks

Reduction of uremic toxins (p-cresol
and phenol) values

Eidi F et al. Clin
Nutr ESPEN.
(2018) [27]

Randomized, placebo-controlled clinical trial
in patients with diabetic nephropathy CKD
(n = 60)

Probiotics supplements:
containing Lactobacillus acidophilus strain

ZT-L1, Bifidobacterium bifidum strain
ZT-B1, Lactobacillus reuteri strain
ZT-Lre, and Lactobacillus fermentum
strain ZT-L3 (each 2 × 109). Total dose:
8 × 109 CFU/day, for 12 weeks.

Reduction of:
- fasting plasma glucose
- serum insulin
- HOMA-IR
- triglycerides
- total-/HDL-cholesterol ratio
- high-sensitivity C-reactive protein
- malondialdehyde
- advanced glycation end products
Increase in:
- the quantitative insulin sensitivity

check index
- HDL-cholesterol levels
- plasma total glutathione

Mafi A et al. Food
Funct. 2018
[71]

Double-blind, randomized,
placebo-controlled trial in CKD patients
on hemodialysis (n = 46)

Probiotics
Three capsules, totaling 9 × 1013 UFC/day of

Streptococcus thermophilus (KB19),
Lactobacillus acidophilus (KB27) and
Bifidobacteria longum (KB31) for
3 months

- Increase in betaine plasma levels. Borges NA et al.,
Probiotics
Antimicrob
Proteins.
(2019) [7]

Randomized, double–blind,
placebo–controlled, crossover trial in
CKD patients (moderate to severe)
(n = 31)

Synbiotic:
Prebiotic: a combination of high–molecular

weight inulin, fructo-oligosaccharides, and
galacto-oligosaccharides (GOSs)

Probiotic: nine different strains across the
Lactobacillus, Bifidobacteria, and
Streptococcus genera

Experimental period: 6 weeks with a dose
escalation. First three weeks: prebiotic,
7.5 g, and probiotic 45 billion CFU.
Second three weeks: twice the dose

- Reduction in serum p-cresyl sulfate
- Shift in the stool microbiome

Rossi M et al.
Clin J Am Soc
Nephrol.
(2016) [95]

Single-center, parallel-group,
double-blinded, randomized (2:1 synbiotic

Synbiotics (Probinul Neutro, CadiGroup,
Rome, Italy). Dose: 5 g powder packets

Reduction of plasma p-Cresol by: Guida B et al. J
Am Coll Nutr.
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concluded that prebiotic supplementation might be effective
for the prevention or management of CKD by restoring colon-
ic barrier integrity and microflora composition [43, 122].

Regarding the use of prebiotics in patients with CKD, a
randomized placebo-controlled trial evaluated the effects of
lactulose syrup as prebiotic on 32 patients (16 with CKD
stages 3 or 4) for 8 weeks. The prebiotic significantly in-
creased the number of Bifidobacteria and Lactobacilli in stool
samples and significantly decreased creatinine plasma levels
in patients with CKD [108]. Esgalhado et al. evaluated the
effects of another prebiotic, resistant starch, on inflammatory
and oxidative stress biomarkers in HD patients. They conduct-
ed a pilot randomized controlled trial on 31 HD patients for
4 weeks. The prebiotic supplementation was able to reduce
IL-6, thiobarbituric acid reactive substances (TBARS), and IS
plasma levels compared to placebo group, suggesting the use
of prebiotic-resistant starch as a promising nutritional strategy
to reduce inflammation, oxidative stress, and uremic toxins
levels in CKD patients on HD [28]. The Medika Study was
a prospective crossover-controlled trial that enrolled 60 pa-
tients with CKD (grades 3B-4) in order to evaluate the effects
of two types of dietary regimens (very low protein and
Mediterranean diet) on gut microbiota composition and ure-
mic toxins production. The authors demonstrated that a very
low protein diet increased Actinobacteria and reduced

inflammatory Proteobacteria phyla; meanwhile, both
Mediterranean and very low protein diets were able to de-
crease pathogen Enterobacteriaceae and increase butyrate-
producer species like Lachnospiraceae, Ruminococcaceae,
Prevotellaceae, and Bifidobacteriaceae. The very low protein
diet also favored the growth of anti-inflammatory Blautia
and Faecalibacterium, and butyrate-producer species
Coprococcus and Roseburia, which correlated negatively
with IS and PCS plasma levels [24]. These results con-
firm the role of very low protein diet to induce a sig-
nificant reduction of urea and uremic milieu through
modulation of gut microbiota in CKD patients [23].
Conversely, Poesen et al. performed a randomized, pla-
cebo-controlled, double-blind, cross-over study in 39 pa-
tients with CKD not yet on dialysis (eGFR between 15
and 45 ml/min/1.73 m2) to evaluate the influence of
prebiotic arabinoxylan oligosaccharides and maltodextrin
for 4 weeks on microbiota derived uremic toxins plasma
and urinary levels. Although a limitation of the study
was the lack of fecal samples to study the microbial
composition, the authors could not demonstrate any ef-
fect of prebiotic arabinoxylan oligosaccharides on serum
and 24 h urinary levels of p-CS, IS, p-cresyl glucuro-
nide, and phenylacetylglutamine [87].

Table 1 (continued)

to placebo) study in kidney transplant
patients (n = 36)

dissolved in water thrice a day, for 15 or
30 days

- reducing its production by gut
microbiome

- enhancing renal elimination

2017 [35]

Clinical, randomized, simple blind study in
CKD patients on hemodialysis (n = 58)

Extruded sorghum breakfast cereal combined
with unfermented probiotic milk, with
probiotic Bifidobacterium longum
BL-G301, dose: 2.5 × 108 to
1.5 × 109 CFU/100 mL, for 7 weeks

Reduction of:
- C-reactive protein
- malondialdehyde serum levels
Increase in:
- the total antioxidant capacity
- superoxide dismutase

Lopes RCSO
et al. Food Res
Int. (2018) [67]

Controlled, randomized, simple blind study
in CKD patients on hemodialysis (n = 58)

BR 305 sorghum, hybrid with brown
pericarp with tannins, sampled in plastic
packaging: 40 g, combined with
pasteurized milk with addition of the
probiotic Bifidobacterium longum
BL-G301, dose: 2.5 × 108 to
1.5 × 109 CFU/100 mL, for 7 weeks

Reduction of:
- serum p-CS and IS
- urea concentration
Positive correlation between serum

p-CS and fecal pH to urea con-
centration

Lopes RCSO
et al. Food Res
Int. (2018) [68]

Randomized, placebo-controlled trial in
CKD patients stages 3 and 4 (n = 66)

Synbiotic supplement, 1000 mg/day for
6 weeks

Reduction of blood urea nitrogen Dehghani Het al.,
Iran J Kidney
Dis. (2016)
[20]

4-HNE 4-hydroxynonenal, AT1R angiotensin II type 1 receptor, BUN blood urea nitrogen,CATcatalase,CFU colony-forming unit,CKD chronic kidney
disease, CX3CR1 CX3C chemokine receptor 1, Cys-C Cystatin C, D-Gal D-galactose, eGFR estimated glomerular filtration rate, ER endoplasmic
reticulum, ERK1/2 extracellular signal-regulated protein kinases 1 and 2,Ffar2 free fatty acid receptor 2, FOS fructooligosaccharide,GCLC glutamate—
cysteine ligase catalytic subunit, GLP-1 glucagon-like peptide-1, GLP-2 glucagon-like peptide-2, GOS galacto-oligosaccharides, GPx glutathione
peroxidase, H2O2 hydrogen peroxide, HAMRS2 high-amylose maize-resistant starch type 2, HF high fat, HSP70 heat shock protein 70, IL-6 interleu-
kin-6, IR insulin resistance, Keap1 Kelch-like ECH-associated protein 1, L-NAME N(ω)-nitro-L-arginine methyl ester, LAB lactic acid bacteria, LPS
lipopolysaccharide, MDA malondialdehyde, NGAL neutrophil gelatinase-associated lipocalin, NOX4 NADPH oxidase 4, Nrf2 factor NF-E2-related
factor 2, Oat3 organic anion transporter 3, OFS cligofructose, Olfr78 olfactory receptor 78, p67phox NADPH oxidase component p67, PKCα protein
kinase C alpha, sCr serum creatinine, SOD2 superoxide dismutase 2 (mithocondrial), t-SOD total superoxide dismutase, TBARS thiobarbituric acid
reactive substances, TMAO trimethylamine N-oxide, TNFα tumor necrosis factor alpha, XOS xylooligosaccharide, ZO-1 zonula occludens-1
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Probiotic supplementation as intervention
to attenuate gut dysbiosis in CKD

Several experimental and clinical studies have evaluated the
effects of different interventions based on probiotics to modify
the gut microbiota composition and their bioproducts in CKD.

The group of Lippi I et al. has demonstrated that probiotic
VSL#3 reduced the deterioration of GFR along time during a
2-month period in dogs with CKD, compared to a control
group consisting of CKD dogs with prescribed diet and stan-
dard therapy. VSL#3 is a multi-strain probiotic containing
viable lyophilized bacteria. It contains four strains of
Lactobacillus (L. casei, L. plantarum, L. acidophilus, and L.
delbruecki i subsp. bulgaricus ) , three s t ra ins of
Bifidobacterium (B. longum, B. breve, and B. infantis), and
one strain of Streptococcus salivarius subsp. Thermophiles.
A total of 60 dogs were used and the dose of probiotic was
12 to 225 × 109 lyophilized bacteria per 10 kg body weight
[65]. In another study, Ranganathan et al. proved that probi-
otic supplementation with Bacillus pasteurii and
Lactobacillus sporogenes reduced CKD progression and con-
tributed to longer life in Sprague–Dawley rats undergoing
nephrectomy [92]. Treatment with Sprosarcina pasteurii also
improved renal function and was associated to longer life span
in uremic rats, neutralizing the uremic toxin IS and reducing
the progression of CKD [93].

On the other hand, metabolic syndrome is a highly prevalent
entity worldwide, associated with low-grade systemic inflam-
mation and insulin resistance, factors that may damage the kid-
ney, leading to CDK. Related to this, the administration of the
probiotic shubat in different doses [(6.97 × 106 lactic acid bac-
teria + 2.20 × 104 yeasts) colony forming unit (CFU)/mL,
(6.97 × 107 lactic acid bacteria + 2.20 × 105 yeasts) CFU/mL,
and (6.97 × 108 lactic acid bacteria + 2.20 × 106 yeasts) CFU/
mL] was nephroprotective and improved carbohydrate and lip-
id metabolism in a rat model of type 2 diabetes induced by a
high intake of glucose and fat for six weeks and a low dose of
streptozotocin (30 mg/kg) [75]. Additionally, probiotic supple-
mentation with Lactobacillus paracasei HII01 in a concentra-
tion of 1 × 108 CFU/ml given by oral gavage for 12 weeks to
obese high fat rats alleviated kidney inflammation, endoplasmic
reticule (ER) stress, and apoptosis, leading to improved kidney
function. These benefits involve the attenuation of hyperlipid-
emia, systemic inflammation, and insulin resistance [115].
Moreover, fructose overload in the diet is a well-known model
of metabolic syndrome associated to kidney dysfunction. The
administration of Lactobacillus plantarum to male Wistar rats
with metabolic syndrome by fructose overload in a concentra-
tion of 1 × 109 CFU per 100 g of body weight during 5 weeks,
resulted in a reversion of the suppression of insulin signaling
pathway, augmentation of inflammatory markers, and upregu-
lation of sodium/glucose cotransporter 2 (SGLT2) induced by
fructose overload [55].

Regarding the clinical use of probiotics, controversial re-
sults arise from different studies, some of them showing sig-
nificant benefits in patients with kidney disease. In this way,
the study conducted by Hida et al. demonstrated an increased
number of anaerobic Clostridia perfringens with significantly
decreased number of Bifidobacteria and high plasma levels of
phenol, p-cresol, and indicant in 20 patients on HD compared
to control (n = 12) before probiotic treatment. After 2 weeks of
therapy with probiotic containing lactic acid bacteria
Lactobacillus acidophilus, Bifidobacteria infantis, and
Enterococcus faecalis, patients on HD showed a significant
reduction of aerobic Enterobacteria, Klebsiella, and
Clostridia perfringens, accompanied with a significant de-
crease in fecal p-cresol and indole as well as indicant in plas-
ma [38]. On the other hand, a randomized, placebo-controlled
study enrolled 22 patients with ESRD on HD treated with
probiotic containing Streptococcus terhmophiles KB19,
Lactobacillus acidophilus KB27, and Bifidobacterium
longum KB31, did not observed significant variation either
on inflammation or oxidative stress markers nor uremic toxins
(IS and PCS) [78]. Additionally, Hyun et al. evaluated the
effects of probiotics in pediatric patients with ESRD on peri-
toneal dialysis (PD) (n = 16) and HD (n = 20). The probiotic
was administered for 12 weeks (dosage by age and weight)
and contained a mix of Lactobacillus casei, L. plantarum, L.
acidophilus, Streptococcus salivarius subsp. thermophiles,
and L. delbrueckii subsp. Bulgaricus; Bifidobacterium
longum, B. breve, and B. infantis. Results from this study
demonstrated no significant differences in serum concentra-
tions of PCS and IS after probiotic treatment in any cohort
group [44].

Synbiotic supplementation as intervention
to attenuate gut dysbiosis in CKD

Regarding synbiotic therapy in CKD, the group of Iwashita
et al. carried out a study to investigate whether synbiotics
modulate the gut microbiota and ameliorate kidney function
using a rat model of CKD. Five out of six nephrectomy (Nx)
rats were fed with glutamine, dietary fiber, oligosaccharide,
and Bifidobacterium longum strain (GFOB) diet. GFOB diet
decreased serum creatinine and blood urea nitrogen levels,
compared to control rats, as well as the uremic toxin IS, con-
sequently improving renal function. The authors concluded
that restoring the gut microbiota using synbiotics improved
kidney function and might be a pharmacological treatment
for CKD-related mineral and bone disorder without any seri-
ous adverse events [45].

The SYNERGY (SYNbiotics Easing Renal failure by im-
proving Gut microbiologY) was a randomized, double-blind,
placebo-controlled study with crossover design, in which 31
predialysis adult patients with CKD stage 4 or 5 were under a
synbiotic therapy for 6 weeks. The synbiotic therapy consisted
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in a mix of prebiotic components (fructo-oligosaccharides,
high-molecular weight inulin, and galacto-oligosaccharides)
and probiotic components (nine different strains of
Lactobacillus, Streptococcus, and Bifidobacteria genera).
The symbiotic therapy was able to reduce both nephrovascular
uremic toxin, serum IS, and p-CS, in those patients who did
not take antibiotics along the study. This effect was associated
wi th changes in feca l microbio ta cons is ten t of
Bifidobacterium spp. and Lachnospiraceae enrichment with
Ruminococcaceae depletion [95]. Another randomized
placebo-controlled study evaluated the effects of synbiotic
therapy (inulin plus Lactobacillus acidophilus and
Bifidobacterium bifidum with omega 3 fatty acids and vita-
mins B, C, and E) for 2 months in 18 patients on HD. The
symbiotic group (n = 10) showed a significant increase in
Bifidobacterium species with less GI symptoms scores com-
pared to placebo group (n = 8) [18]. Furthermore, Pavan dem-
onstrated the beneficial effects of probiotics, accompanied by
prebiotics and a low protein intake, in CKD patients (stage 3
to 5). In spite of the fact that eGFR had been reduced during
the 12-month period of treatment, pro/prebiotics prevented
that reduction compared to control patients which only re-
ceived the low protein diet [84].

Considering the variability in the design of the studies re-
garding the length of the study, doses of prebiotics/probiotics/
synbiotics used, type of experimental animal models, exclu-
sion and inclusion criteria for patients and taxonomic phylum,
genus and species studied, additional studies are needed in
order to support a solid conclusion about the benefits of these
“biotics” as interventional therapy in CKD. Finally, it is worth
to mention an elegant systematic review and meta-analysis
carried out by McFarlane et al., in which the authors conclud-
ed the limited evidence to date to support the use of prebiotics,
probiotics, and synbiotics in patients with CKD [76].

Conclusions

The gut microbiota-CKD crosstalk is a mutual relationship in
which the own condition of CKD predisposes to loss of resi-
dent microbial flora on one side and the gut dysbiosis influ-
ences the progression of CKD on the other side. The setting of
this crosstalk involves an imbalance between saccharolytic
(fermentative) and proteolytic (putrefactive) microbiota in fa-
vor of the latter, with increased levels of circulating uremic
toxin compounds and reduced levels of nephroprotective me-
tabolites like butyrate, that result in a chronic inflammatory
state that favors the progression of CKD and its complications.
Attempts to reduce the production or accumulation of
nephrotoxins and/or to stimulate the production of
nephroprotective metabolites through manipulation of gut mi-
crobiota seem to be a reasonable and novel therapeutic strat-
egy to improve the survival of these patients. The use of

prebiotic, probiotic, and synbiotic supplementations have
emerged as a potential therapeutic intervention to restore the
imbalance of the gut microbiota. To date, the experimental
evidences are promising, but we still need more support from
clinical studies to confirm the efficacy and safety of the use of
these “biotics” as a therapeutic tool for CKD.
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