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Abstract 

(Sb0.70Te0.30)100-xSnx alloys (with x = 0, 2.5, 5.0 and 7.5 molar %) have been synthesized 

and characterized in order to determine the crystalline structure and properties of 

materials obtained upon solidification and to extract information about the location of 

the Sn atom in the Sb-Te matrix. Powder X-ray diffraction (XRD) has been used to 

determine the crystalline structure, whereas Mössbauer spectroscopy has been utilized 

to determine the localization and the local structure of the Sn atom in the Sb-Te matrix 

through the hyperfine interactions of the 119Sn probe with its environment. We found 

that Sb70Te30 crystallizes in a trigonal structure belonging to P-3m1 space group, while 

the doping with Sn leads to structural distortions of the unit cell that can be described, 

for all the Sn concentrations, with the C2/m space group. The hyperfine parameters 

indicate that tin behaves as Sn(II) and has a slightly distorted environment. Finally, in 

order to extract all the information that the experimental results contain and to determine 

the preferential site occupied by the Sn impurities in the Sb-Te matrix, we have 

performed ab-initio calculations within the framework of the Density Functional 
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Theory. The theoretical results enable us to determine the structural and electronic 

ground state of (Sb0.70Te0.30)100-xSnx compounds and to confirm that Sn atoms substitute 

Sb atoms in the Sb-Te host. 

Keywords: Chalcogenide alloys, Crystalline structure, 119Sn Mössbauer spectroscopy, 

DFT 

1. Introduction  

Chalcogenide glasses are amorphous solids that have chalcogen atoms (S, Se, or Te) 

among their components. They are excellent candidates to be used as sensitive material 

in phase change memories (PCM). New suitable materials for PCM have been identified 

in the past years [1-6], being Ge-Sb-Te the most studied system where the Ge2Sb2Te5 

alloy stands out. PCM alloys obtained as thin films exhibit fast and reversible phase 

transformations (switching) between crystalline and amorphous states with very distinct 

optical and electric properties [7,8]. The amorphous phase is characterized by a high 

electrical resistivity and the crystalline phase by a much lower resistivity.  

The introduction of metallic impurity atoms such as aluminum, cooper, silver or tin in 

the chalcogenide glasses can improve the performance of the PCM memories. For 

example, the addition of tin into Ge2Sb2Te5 increases the speed of phase transformation, 

that is, the change of the electrical conductivity, by influencing the switching voltages 

[9]. A necessary step to design materials with better properties for their applications is to 

study and know the structure of different alloys of these systems and determine the role 

played by the impurities on the properties of these alloys [10,11].  

On the other hand, the search for new compositions, with improved properties, respect 

to those currently existing, is still under continuous development. Some of the most 

outstanding systems for PCM are (Sb2Te3)m(Sb2)n structures consisting of Sb2- and 

Sb2Te3-type slabs stacked along [001] direction. Depending on the total number of slabs 

(and relative to each other), structures with P-3m (Sb2Te, SbTe) or R-3m (Sb2Te3, 

Sb8Te3, Sb4Te3) space group are usually formed [12,13]. 

One of the challenges for structural characterization of such materials is the 

neighborhood of Sn, Sb and Te in the periodic table of the elements, implying similar 

electron affinity counts. That is a problem for conventional x-ray diffraction (XRD). For 

instance, in order to resolve the site occupations in a single-crystal SnSb2Te4, Oeckler et 

al.[14] appealed to a resonant x-ray diffraction using synchrotron radiation. In our case, 
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Sn Mössbauer spectroscopy and ab-initio calculations in the framework of the Density 

Functional Theory were appealed to understand the experimental results. 

In this work, alloys of eutectic Sb70Te30 composition, doped with Sn up to a 7.5 molar % 

are analyzed. Our goal is to characterize the structure of the un-doped and doped 

samples, with emphasis on the Sn location using XRD, Mössbauer spectroscopy and ab 

initio calculations. That should help us to understand later the role of tin in the 

mechanisms of the electrical conduction behavior in the thin films grown using these 

materials.  

2. Methodology 

2.1 Experimental 

Samples with compositions (Sb0.70Te0.30)100-xSnx (with x = 0.0, 2.5, 5.0 and 7.5 molar %) 

were synthesized from liquid mixtures of elemental Sb, Te and Sn (99.99% purity). 

Stoichiometric proportions of the reactants were loaded into 10 mm diameter quartz 

tubes. The loaded tubes were evacuated to 3·10−5 mbar and sealed. The batches were 

heated in a furnace at 800 °C for 8 h. Melts were slowly cooled down to room 

temperature inside the ampoules. Bulk samples, stable in air and with a greyish and 

shiny appearance, were obtained.  Their compositions were confirmed by Energy 

Dispersive X-Ray Analysis. 

Powdered bulk samples were obtained and analyzed by conventional X-ray diffraction 

in Bragg-Brentano geometry in order to refine the atomic structure by Rietveld method. 

A SmartLab Rigaku Θ–Θ diffractometer with monochromatized Cu-Kα radiation was 

used measuring at every 0.05º step and sweeping with a 0.16º per minute velocity. 

Rietveld refinements were carried out with Powdercell and FullProf programs.  

The ternary samples were analyzed by Mössbauer spectroscopy, at room temperature, 

using the 23.875 keV γ-radiation from a Ca119mSnO3 source with transmission geometry. 

In all the samples, the isomer shift is reported relative to CaSnO3 at 300 K. The 

calibration was carried out employing the 57Fe 14.4 keV γ-radiation from a 57Co(Rh) 

source with sodium nitroprusside as absorber.   

2.2 Computational Details 

In order to study the structural and electronic ground state of (Sb0.70Te0.30)100-xSnx 

compounds and the preferential site occupied by of the Sn impurity atoms, we have 
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performed ab-initio calculations within the framework of the Density Functional Theory 

(DFT) [15], where the exchange-correlation part was described using the Perderw-

Burke-Ernzerhof (PBE) parametrization of the Generalized Gradient Approximation 

(GGA) [16]. Self-consistent Kohn-Sham equations have been solved using two different 

methods: i) Pseudopotentials and plane wave method (PP-PW), implemented in the 

Quantum Espresso code [17], for the optimization of the lattice parameters and atomic 

positions using variable-cell relax calculations, with the convergence criteria that the 

force over each ion was below 0.025 eV/Å. We have used Projected Augmented Wave 

(PAW) pseudopotentials from the Standard Solid State Pseudopotentials (SSSP) library 

[18] to describe the ionic cores, where the kinetic energy cutoff for the wave function 

and charge density were 80Ry and 800Ry, respectively. ii) Full Potential Linearized 

Augmented Plane-Wave method (FP-LAPW), implemented in the Wien2k code [19], 

has been used to determinate the hyperfine parameters, such as the isomer shift (IS), 

electric field gradient (EFG) and quadrupole splitting (QS) [20], for the Sn atoms at the 

structural equilibrium predicted by PP-PW. The muffin-tin radii for the Te, Sn and Sb 

were 1.05, 0.95 and 0.95 Å, respectively. The convergence parameter RMT.Kmax was set 

to 8.0, where RMT is the smallest muffin-tin and Kmax is related with the plane wave cut-

off. 

Based upon experiments, we described the crystal structure of Sb70Te30. With the aim of 

studying a possible structural phase transition induced by Sn-doping, we have 

considered two different crystal structures to describe the compound. One structure can 

be described by space group P-3m1 and the other one with space group C2/m (a 

subgroup of P-3m1). Both structures are shown in Figure 1. In both cases, there are 

three different crystallographic sites for Sb atoms (Sb1, Sb2 and Sb3) and two 

crystallographic sites for Te atoms (Te1 and Te2). We have analyzed the preferential 

substitutional site of the Sn atom by using different size supercells for each crystal 

structure.  
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Figure 1: Crystalline structure of Sb70Te30 with space group P-3m1(left) and C2/m (right) 

 

3. Results and discussion  
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3.1 X-ray results and the Rietveld refinement 
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Figure 2: XRD patterns of a) all the samples (Sb0.70Te0.30)100-xSnx (with x = 0.0, 2.5, 5.0 
and 7.5 molar %) b), (110) Bragg peak of Sb70Te30 which splits into (020) and (310) of 
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the monoclinic phase of doped samples. Notice that the peak does not only broaden 
because of the splitting but also shifts towards lower angles as described in the text. 

Figure 2a shows XRD patterns of the different (Sb0.70Te0.30)100-xSnx (with x = 0, 2.5, 5.0 

and 7. 5 molar %) samples. The gradual doping of the Sb70Te30 alloy with Sn causes a 

shift of the positions of some peaks. The (00l)-type peaks shift towards higher angles. 

For instance, the (004) peak, located nearly at 20º in Sb70Te30, is shifted progressively to 

higher angles with increasing Sn content (Figure 2a). In contrast, (hk0)-type peaks shift 

progressively to lower angles with increasing Sn content, the (110) Bragg peak of 

Sb70Te30, positioned close to 42º, is not only shifted to lower angles (Figure 2b) but it 

also broadens because of splitting into the (020) and (310) peaks of the monoclinic 

phase of the doped samples. These are evidences of the structural distortions introduced 

in the unit cell. Moreover, since the shifts are more pronounced when Sn concentration 

becomes higher, we can infer that the distortion becomes larger with the increase of x. 

Figure 3 shows the XRD experimental pattern of Sb70Te30 powders and its Rietveld 

refinement. Two important results can be mentioned here. On one hand, the 

stoichiometry is close to Sb2Te, which was described with P-3m1 spacial group [21], 

but on the other hand, the stoichiometry of our system is also close to Sb72Te28 whose 

structure was successfully fitted to R-3m space group by Kifune et al. [12]. We used 

these two structures as model for attempting to describe the crystal structure of our 

system. We found that the Rietveld refinement gives the lowest R-values and residuals 

for the trigonal structure described by space group P-3m1. The refinement shown in 

Figure 3 was carried out using this structure. There are two unfitted small peaks 

(marked with asterisk), probably due to the presence of spurious phases or impurity. For 

the Rietveld refinement, the background was fitted with a Chebyshev polynomial 

function of first kind with eight coefficients, the peak profiles were modelled with a 

pseudo-Voigt function, and the occupancy was constrained to 1 [22]. Finally, the atomic 

positions, atomic displacement factors and unit-cell parameters were refined starting 

from the values reported in ref. [21]. Notice that only four atomic coordinates are not 

fixed by symmetry, which facilitates their refinement. The refinements of unit-cell 

parameters are shown in Table I together with the R-values. In Table II we give the 

complete structural information. Notice that the obtained occupation for the two 

possible positions of Te is 0.857. This partial occupation is consistent with the 
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stoichiometry of our sample in which only 30% of the atoms are Te and it is not 33.33% 

as in Sb2Te. 

 

 

 

Figure 3: XRD experimental pattern and its corresponding Rietveld refinement for 
Sb70Te30   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

  
 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

  
 

 

Figure 4: XRD experimental patterns with the corresponding Rietveld refinements of 
Sb70Te30 doped with 2.5 a), 5.0 b) and 7.5 c) molar % of Sn. 
 

Figure 4 shows XRD experimental patterns of all the doped samples with the 

corresponding Rietveld refinements performed using monoclinic C2/m space group. We 

decided to use this space group after finding that the XRD patterns cannot be properly 

indexed using the trigonal space group of Sb70Te30. Based upon the changes induced by 

Sn doping in the XRD patterns in comparison with the XRD pattern of Sb70Te30 we have 

considered that the crystal structure of the doped samples could be a distortion of the 

structure of Sb70Te30 which could be obtained by group-subgroup relations [23]. 

Following this strategy, we found that a monoclinic crystal structure described by space 

group C2/m, which is a distortion of the trigonal P-3m1 structure, can index all the 

observed Bragg peaks. Notice that in this structure not only the symmetry is reduced but 

also the unit-cell is doubled. In this case, for the refinements, we followed the same 

procedure as for Sb70Te30 but building the initial model using the group-subgroup 

transformation tool of PowderCell. Regarding the Sn atoms, we assumed that Sn 

substitutes Sb as indicated (see onwards) by our DFT calculations. In particular, it was 

found that Sn substitutes Sb1 atoms only. In the refinements for the doped samples, the 

atomic positions have not been refined, being fixed to those obtained from the group-
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subgroup transformation. They are given in Table III. On the other hand, background 

and peak profiles were treated in the same way than in the un-doped sample. The results 

of the refinements of the unit-cell parameters are shown in Table I. The results of the 

refinements are shown in Table III. The low R-values and the quality of the fits shown 

in Figure 4 (plus, as we will see, the agreement with DFT calculations) indicates that the 

proposed crystal structure is a plausible model for Sn-doped Sb70Te30. In Table I one can 

see that the obtained results are consistent with the model proposed. When Sn 

concentration is increasing, the angle ß is also increasing   and, in consequence, the 

degree of the cell distortion is enhanced. This could be an indication of the 

incorporation of Sn into the unit cell.   Besides that, we noticed a gradual decrease of 

the unit-cell volume with the incorporation of Sn: from 279.9 Å3 in Sb70Te30 to 279.7 Å3 

in the sample with x =  2.5, to 279.3 Å3 in the sample with x = 5.0, and to 278.3 6 Å3 in 

the sample with x = 7.5 (For comparison the volume of the monoclinic structure is 

normalized dividing by 2). This can be related to the increase of the tilting of the 

polyhedral units in the monoclinic structure, which can help to reduce the empty space 

and consequently the unit-cell volume. 

 

 
Table I. Results of Rietveld refinements and R-values for samples with different Sn 
concentration (x in molar %). Lattice parameters are given in Å and angles in degrees. 

x Space Group  
Space Group 

Number 
a b c α β γ RP RWP 

0.0 P-3m1 164 4.2832(5) 4.2832(5) 17.618(2) 90 90 120 2.71% 3.17% 

2.5 C2/m 12 7.4201(8) 4.2881(5) 17.581(2) 90 90.08 (1) 90 2.87% 3.27% 

5.0 C2/m 12 7.4234(8) 4.2974(5) 17.509(2) 90 90.11(1) 90 2.75% 3.23% 

7.5 C2/m 12 7.4276(8) 4.3076(5) 17.414(2) 90 90.14(1) 90 2.91% 3.35% 

 

Table II. Atomic positions and their occupation in the un-doped sample. 

            
 Site x y z Occ. 

Te1 1a 0.0000 0.0000 0.0000 0.857(3) 
Te2 2d 0.3333 0.6666 0.2097(5) 0.857(3) 
Sb1 2d 0.3333 0.6666 0.8865(5) 1.000(3) 
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Sb2 2d 0.3333 0.6666 0.5663(5) 1.000(3) 
Sb3 2c 0.0000 0.0000 0.3469(5) 1.000(3) 

 
Table III. Atomic positions used for all the doped samples. They have been obtained 
using group-subgroup relationships from those of the un-doped sample. Their 
occupations are also reported. 

 Site x y z Occ. 

Te1 2a 0.0000 0.0000 0.0000 0.857 

Te2 4i 0.6667 0.0000 0.7903 0.857 

Sb1 4i 0.6667 0.0000 0.1135 0.925 

Sn1 4i 0.6667 0.0000 0.1135 0.075 

Sb2 4i 0.6667 0.0000 0.4337 1 

Sb3 4i 1.0000 0.0000 0.3469 1 

 

3.2 Mössbauer results 

In order to better understand the position of Sn atom in the structure of Sb70Te30, we 

appealed to 119Sn Mössbauer spectroscopy technique.  This technique is adequate for the 

study of the local environment of Sn atom in Sn-solid sample compounds because one 

of the Sn isotopes, 119Sn, is one of the best-suited probes for Mössbauer experiments.  

The local environment of tin is usually expressed by means of the hyperfine interactions 

that the atom probe reveals in a solid matrix. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

  
 

0.98

0.99

1.00

0.98

0.99

1.00

-2 0 2 4 6 8
0.990

0.995

1.000

x = 7.5
R

el
at

iv
e 

T
ra

ns
m

is
si

on

x = 5.0

V (mm/s)

x = 2.5

 

Figure 5: 119Sn Mössbauer spectra of samples (Sb0.70Te0.30)100-xSnx. Void circles are the 
experimental data, red line is the fitting curve. Blue dashed line aims to guide the eye. 

 

Figure 5 presents the Mössbauer spectra of all the doped samples that apparently consist 

of a single peak or, alternatively, a non-resolved doublet. As it can be seen, the spectra 

are qualitatively very similar meaning that the main contribution to all of them may be 

the same no matter the Sn concentration is. We evaluated different models in order to fit 

the experimental data: i) assuming a single Sn environment with high symmetry; ii) 

assuming a single Sn environment that, due to a lack of symmetry, presents an electric 

field gradient (EFG) at the Sn nuclear site. 

In the first case a single peak is proposed that corresponds to the resonant absorption of 

the γ-ray, emitted by the Ca119mSnO3 source, by 119Sn nucleus located in identical high 

symmetry environments in the samples. The position of this peak is generally shifted 

from the zero point of the velocity axis and this shift is known as isomer shift (δ) 

relative to the source. The isomer shift can be expressed [24, 20] as 

� = ����(0) − ��(0)�																																																																																																															(1) 
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where ��	(0) and ��(0) are the electron charge density at the nuclear position in two 

different compounds, the former corresponds to the absorber material and the latter to 

the source. 

In the second model, a doublet is proposed that corresponds to the resonant absorption 

of the γ-ray emitted by the source to excite the 119Sn nucleus from its ground state (I = 

1/2), where I is its nuclear spin, to any of both excited states (I = 3/2 with Iz = ±3/
2, ±1/2). Two absorption peaks are expected for this model which separation is known 

as quadrupole splitting (∆) and can be expressed [24,20] as 

∆= ���	���2 	�1 + ℎ2
3 �

�  ! 																																																																																																								(2) 

where, e is the electron charge, QN =12.8±0.7 barn is the quadrupole moment of the 24 

keV-excited nuclear state, Vzz is the major component of the diagonalized EFG tensor 

related with the EFG tensor, and ℎ = "#$$%#&&#'' 	" is the asymmetry parameter. Vxx, Vyy 

are the other two diagonal component of the EFG tensor with the convention |Vzz| ≥ 

|Vyy| ≥ |Vxx|. 

 The EFG is related to the asymmetry of the charge density in the sub-nanoscopic 

vicinity of the 119Sn probe. The presence of EFG at the probe site is reflected by a 

doublet centered in the isomer shift corresponding to this interaction. The hyperfine 

parameters obtained from these fitting models are the isomer shift (δ) that is 

proportional to ρa (0), that gives information of  the oxidation state of Sn in the sample, 

and the quadrupole splitting (∆), that is proportional to the EFG at Sn nucleus. 

Models i) and ii) describe essentially well the experimental data. The isomer shift, δ, 

extracted from these models, close to 3.4 mm/s relative to the source, is independent of 

the tin concentration (within the experimental error), unambiguously indicating that tin 

atom in all the samples under study is Sn(II) [25]. It is interesting to note that Sn(II) in 

SnTe phase has an isomer shift about 3.5 mm/s, whereas in SnSb2Te4, has a δ = 

3.37mm/s [26,27] both of them very close to the value of δ measured in our samples. 

Meanwhile Sn(0) in SnSb has a δ = 2.65 mm/s [27,28]. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

  
 

The quadrupole splitting extracted from the fittings with model ii) is relatively low, just 

2/5 of the Sn natural linewidth (Γ = 0.626 mm/s), that is ∆ = 0.2-0.3 mm/s. Moreover, 

the reliability parameters obtained for both fitting methods are in the range 0.94-1.02. 

Consequently, Sn atom should be situated in a site whose local environment can be 

thought as one with relatively low degree of distortion. Accordingly, we choose to 

present, in Figure 5, fittings with a single peak. The fitting parameters are reported in 

Table IV. 

Table IV. The results of Mössbauer fittings: isomer shift (δ), linewidth (Γ) and 
reliability parameter (R). 

 

Sn concentration 

molar % 

 δ (mm/s) 

±0.005 

Γ(mm/s) 

±0.01 

R 

x= 2.5 3.406 0.93 0.94 

x= 5.0 3.430 1.03 1.00 

x= 7.5 3.429 1.02 0.96 

 

Since δ values depend on bonding lengths (that depends, in its turn, on electron density 

ρv(0) at the nucleus of tin), and result nearly constant, it could be interpreted that Sn-to-

nearest neighbor bond lengths do not depend on the Sn concentration. It is interesting to 

note that either in SnTe or in SnSb2Te4, Sn is octahedrally coordinated by 6 Te atoms 

being the bonding distances 3.16 Å and 3.09 Å respectively. Comparing the value of δ 

in our system with the ones mentioned for SnTe and SnSb2Te4 species, we suggest that 

Sn atom substitutes for Sb in antimony telluride, more specifically, in Sb-Te layer, that 

is occupying the site of Sb1 atom (see figure 1).  

Taking into account that with the simplest model (singlet) the spectra are fitted 

satisfactorily and that either in SnTe or in SnSb2Te4 Sn-Te bonds mainly have equal 

lengths contrary to Sb-Te bonds, we assume that this may be the case for our samples. 

That is, doping Sb70Te30 with Sn, the environment of Sb1 changes to the extent that it is 

replaced by Sn. This model, besides that, resulted to be highly compatible with the 

results provided by ab-initio calculations.  

.  
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3.3 Ab-initio calculations results 

In order to find the preferential substitutional site of the Sn atom in the Sb6Te3 

compound with P-3m1 crystal structure, we have replaced either a Sb (Sb1, Sb2 or Sb3) 

or Te (Te1 or Te2) atom by a Sn one and calculated the substitutional energy (Φ) by: 

Ф = E(X- Sb70Te30) – E(Sb70Te30) – E(Sn) + E(X)                             (3) 

Here E(X-Sb70Te30) is the total energy when Sn replaces a X=Sb or Te atom, 

E(Sb70Te30) is the total energy of bulk Sb70Te30; E(Sn) and E(X) are the total energy per 

atom of the metallic Sn and X, respectively.  From table V it can be concluded that Sn 

atom prefers to replace Sb1 atom, while the other cases are unfavorable energetically.   

 

Table V. Substitutional energy when Sn replaces a Sb atom (Sn → Sb) or Te one (Sn→ 
Te) 

Sn → Sb: Φ (meV) Sn → Te: Φ (meV) 

Sb1 -133.32 Te1 925.19 

Sb2 413.78 Te2 645.46 

Sb3 400.15   

 

In order to perform studies as a function of the Sn concentration (x) in the Sb70Te30 

compound, we have used different supercell sizes, such as 4a×3b×1c, 3a×2b×1c and 

2a×2b×1c, for the case of the P-3m1 crystal structure. For these supercells we obtained 

2.78, 5.56 and 8.33 molar % Sn concentrations. For the case of the crystal structure 

C2/m, we have used supercell of 2a×1b×3c, 1a×1b×3c, and 1a×1b×2c to get the same 

values of x, respectively. Based on the results of the Table V, only the case of Sn atom 

replacing for Sb1 has been considered.  

We have performed variable-cell relax calculations, where the lattice parameters, angles 

and atomic positions were optimized simultaneously until that interatomic forces and 

internal pressure were less than 0.025 eV/Å and 0.1 kbar, respectively. In this scheme, 

we have started from the hexagonal crystal structure P-3m1 and after the variable-cell 

calculation, this converted to monoclinic crystal structure C2/m, labeled as P-3m1 → 
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C2/m. In Table VI, we report the lattice parameters of our simulation models of Sb70Te30 

doped with different concentrations of Sn (x), for the cases P-3m1 → C2/m. 

Table VI. The lattice parameters of the simulation for the cases P-3m1 → C2/m. For the 
case x=0, the P-3m1 is represented with C2/m space-group. 

 

Sn molar % a (Å) b (Å) c (Å) α (⁰) β (⁰) γ (⁰) 

x = 0 7.6188 4.3987  17.4711 90.00 90.00 90.00 

 

x = 2.78 7.7020 4.3847 17.3470 90.00 90.166 90.00 

x = 5.56 7.5754 4.3705 17.8493 90.00 90.179 90.00 

x = 8.33 7.5670 4.3688 17.8534 90.00 90.181 90.00 

 

As it can be concluded from the comparison of the experimental and theoretical 

structural results (see Table I and Table VI), we have a reasonable qualitative agreement. 

The differences in the unit-cell parameter are approximately 1% and about 4 % in the 

unit-cell volume. This is typical of DFT calculations [29,30].  

Based on the FP-LAPW method, we have calculated the hyperfine parameters, such as, 

the isomer shift (δ) and the quadrupole splitting (∆) of the Sn atoms at the predicted 

equilibrium structures for the different values of x. The value of δ was determined by 

the theoretical expression (1), whereas the value of ∆ was calculated from the 

expression (2). In table VII, we report both IS and QS values of the Sn probe for the 

different concentrations. 

Table VII . Hyperfine parameters from ab-initio calculations.  

Molar % δ (mm/s) Δ (mm/s) 

 x = 2.78 3.26 0.12 

x = 5.6 3.30 0.03 

x = 8.3 3.30 0.01 

 

 

The δ values for all structures are in a good agreement with the experimental data with 

an averaged value of 3.30 mm/s, showing the same tendency with the addition of tin. 
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The extremely low QS values are in line with the experimental model chosen (singlet) 

predicting an absent of QS for a Sn substituting for Sb1 atom. 

 

4. Conclusions 

The Rietveld refinements of the experimental XRD patterns show that the addition of 

Sn to Sb70Te30 structure slightly distorts its crystal lattice leading to the change of the 

symmetry from P-3m1 to C2/m space-group, in a good agreement with ab initio 

calculations. The increase of tin content in the host matrix leads to a higher degree of 

the distortion of the lattice. On the other hand, the experimental Mössbauer results 

reveal Sn(II) in the Sb70Te30 structure for all the concentration range explored and an 

environment of a high symmetry around the atom probe.  These Mössbauer results agree 

with previous works for the Sn-Te bond in SnTe and SnSb2Te4 alloys. Ab initio 

calculations predict that Sn replaces a Sb1 atom, 6-fold coordinated at nearly equal bond 

lengths that those of Sb70Te30. These simulations agree with structural results obtained 

by Rietveld showing a greater degree of distortion (angle β) when Sn content increases. 

The calculated hyperfine parameters of Sn in Sb70Te30 at the site of Sb1 are in a very 

good accordance with the parameters extracted from the experimental data giving 

additional support to our conclusions.  
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Sn atoms in Sn–doped Sb70Te30 structure replace one of Sb sites 

That leads to distortion of the crystal lattice resulting in a change of space group  

From P-3m1 for un-doped to C2/m for Sn-doped samples 

For higher Sn concentration, higher is the degree of the lattice distortion 

 


