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Abstract 17 

Tuberculosis (TB) is a serious infectious disease that affects more than new 10 million patients 18 

each year. Many of these cases are resistant to first‐line drugs so second‐line ones, like 19 

fluoroquinolones, need to be incorporated into the therapeutic. Ofloxacin (OF) is a 20 

fluoroquinolone which demonstrates high antibiotic activity against the bacteria that causes TB 21 

(M. tuberculosis). In this work, ionic complexes, composed by hyaluronic acid (HA) and OF, with 22 

different neutralization degrees, were prepared and processed by spray drying (SD) to obtain 23 

powders for inhalatory administration. Combining a formulation with high neutralization degree, 24 

high SD atomization air flowrate and the use of a high-performance collection cyclone, very good 25 

process yields were obtained. Carrier-free formulations with a loading of 0.39-0.46 gOF/gpowder 26 

showed excellent emitted, fine particle, and respirable fractions for capsule loadings of 25 and 100 27 

mg. The ionic complexes demonstrated higher mucoadhesion than pure OF and HA. The best 28 

formulation did not affect CALU-3 cell viability up to a dose 6.5 times higher than the MIC90 29 

reported to treat multi-drug resistant TB.  30 

Keywords:  31 

Fluoroquinolones, hyaluronic acid, drug-excipient interaction, multi-drug resistant tuberculosis, 32 

inhalation, cell viability, mucoadhesive, spray drying 33 

  34 
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1. Introduction 35 

The inhalatory route is considered a promising non-invasive alternative for drug administration to 36 

treat systemic or pulmonary illnesses. For pulmonary diseases, this route delivers the drug directly 37 

to the action site minimizing the systemic distribution and side effects. Then, a high concentration 38 

of the active pharmaceutical ingredient and rapid onset can be achieved. Consequently, lower 39 

doses are often required. Inhalatory route has been used for obstructive illnesses, like chronic 40 

obstructive pulmonary diseases (COPD) and asthma, but is also relevant for treatment of 41 

infections, like tuberculosis (TB) and those associated with cystic fibrosis1,2,3,4. 42 

To treat respiratory infections, antibiotics are usually administered by the oral route. Orally 43 

administered drugs have problems reaching the lungs by systemic distribution. So the delivery of 44 

antimicrobials by the inhalatory route has been proposed3. However, the performance of inhaled 45 

aerosols depends on particle properties like size, morphology and density5. For this reason, a 46 

rational design of the inhalatory system is required for a successful pharmacotherapy.  47 

Treatments by pulmonary route could be also improved by, for example, increasing drug residence 48 

time in the lungs or modifying the active ingredient dissolution rate6. In this sense, by combining 49 

ionizable drugs with opposite charged polymers (polyelectrolytes) new chemical entities can be 50 

obtained with specific and differentiated properties respect to the precursor active ingredient7. 51 

Different antibiotics have been formulated by using this strategy to be administered by the 52 

inhalatory route. Among others, nanoaggregates of nanoparticles containing vancomycin were 53 

obtained by ionic interaction with polyacrylic acid where the polyelectrolyte stabilized the 54 

nanoaggregates avoiding agglomerations8. Cheow and Hadinoto9 and Kho and Hadinoto10 55 

produced systems composed by fluoroquinolones and dextran, where the polyelectrolyte allowed 56 

obtaining amorphous co-processed formulations. For TB treatment, Zahoor et al. produced 57 

nanoparticles by combining sodium alginate with rifampicin, isoniazid and pyrazinamide. The 58 

polyelectrolyte allowed prolonging the drug residence time and thus reducing the administration 59 

frequency11. Swai et al. produced systems combining poly-lactid-co-glycolic acid or 60 

chitosan/alginate with isoniazid12 and Manca et al. obtained microparticles of carrageenan and 61 

chitosan carrying rifampicin liposomes13. In both reports, the ionic interaction increased the drug 62 

residence time.  63 

As previously stated, some inhalatory formulations were developed for TB. It was estimated that 64 

just in 2015 there were 10 million new cases of tuberculosis all over the world, killing almost 2 65 

million persons. What is more, 5.5 % of the 2015 new cases were resistant to first‐line drugs 66 

(mainly rifampicin, isoniazid and pyrazinamide). When drug resistance is detected, second-line 67 

drugs are incorporated to the therapeutic and the treatment duration is increased14,15. 68 

Fluoroquinolones are considered to be an important pharmacological group for alternative TB 69 

treatments16. In this sense, ofloxacin (OF) possesses high antibiotic activity against M. tuberculosis, 70 

including those strains resistant to rifampicin.  71 

Then, new materials carrying OF would be of great interest for the pharmacotherapy of resistant 72 

TB. In this sense Park et al.3, produced chitosan crosslinked with glutaraldehyde microparticles 73 
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carrying OF by water-in-oil emulsification method. The aqueous phase was composed of ofloxacin, 74 

chitosan and acetic acid while the oil phase was prepared using dichloromethane, paraffin, 75 

surfactants and emulsifiers. The authors focused on the uptake of the microparticles by alveolar 76 

macrophages in rat alveolar macrophages cell line and demonstrated that microparticles were 77 

uptaken in a higher proportion than pure OF3. Hwang et al. developed microspheres containing OF 78 

and the sodium salt of hyaluronic acid (HANa) by spray drying an ethanolic solution containing 79 

these compounds17. They administered pure OF, spray-dried OF and spray-dried OF-HANa 80 

formulations to rats by oral, intratracheal and intravenous routes. For the intratracheal 81 

administration, the authors demonstrated that the OF lung concentration was higher and the OF 82 

plasmatic concentration was lower respect to the contents found for the oral and intravenous 83 

routes17. The OF lung/OF plasma concentrations ratio for the inhalatory administration of the OF-84 

HANa system was about two times higher than the ratio found when pure OF was intratracheally 85 

delivered. These authors also found that the OF-HANa microparticles, as reported for the OF-86 

chitosan formulation, were uptaken in a higher proportion than pure OF by alveolar macrophages. 87 

Park et al. and Hwang et al., evaluated the aerosolization properties of the OF-chitosan and OF-88 

HANa powders, respectively, in a twin-impinger when delivered from a dry powder inhaler (DPI) 89 

system. The fine particle fraction for sizes lower than 6.4 µm was 43 % and 45 % for OF-HANa and 90 

OF-chitosan systems, respectively3,17. 91 

The previously developed systems carrying OF exhibited attractive biopharmaceutical 92 

performance and in vivo macrophages uptake in lab animals3,17. However, both contributions used 93 

organic solvents for the OF dissolution previous to powder production. In this work, the 94 

development of a polyelectrolyte-drug ionic complex constituted by OF-hyaluronic acid (HA) is 95 

used as strategy to dissolve OF without using organic solvents, being in this sense an innovative 96 

way to produce OF microparticles for inhalatory administration. Then, the objective of this work is 97 

the production of OF-HA microparticles by a simple method with optimized aerosolization 98 

properties, as a carrier-free DPI. To this aim, a complete physicochemical characterization of the 99 

particulate systems was performed to establish relationships between process parameters and 100 

product quality. The OF-HA microparticles were obtained by processing aqueous solutions by 101 

spray drying and varying the feed formulation (i.e., OF/HA ratios) and operating conditions. The 102 

process performance (SD yield and air outlet temperature), product properties (OF loading, 103 

crystallinity, morphology and particle size), the OF-HA ionic interaction (assessed by Fourier 104 

transform infrared spectroscopy and powder X-ray diffraction), in vitro aerosolization performance 105 

(using a multistage cascade impactor), mucoadhesion and CALU-3 cell viability were evaluated to 106 

study the proposed formulations.  107 

2. Materials and methods 108 

 109 

2.1. Materials 110 

Sodium hyaluronan (NaHA, MW: 1655 kDa, proanalysis grade, Parafarm, Saporiti, Buenos Aires, 111 

Argentina), ofloxacin (pharmaceutical grade, Parafarm, Saporiti, Buenos Aires, Argentina), sulfonic 112 

acid resin Amberlite® IR 120 in hydrogen form (proanalysis grade, Sigma–Aldrich, Saint Louis, 113 
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United States), sodium hydroxide 0.01 M (proanalysis grade, Anedra, Argentina), hydrochloric acid 114 

10 M (proanalysis grade, Anedra, Buenos Aires, Argentina), potassium bromide (spectroscopic 115 

grade, Merck, Darmstadt, Germany), size 3 gelatine capsules (pharmaceutical grade, Parafarm, 116 

Saporiti, Buenos Aires, Argentina), lactose monohydrate (pharmaceutical grade, Parafarm, 117 

Saporiti, Buenos Aires, Argentina) with particle sizes between 70 and 140 mesh sieves (ASTM), 118 

glycerin (pharmaceutical grade, Anedra, Buenos Aires, Argentina), potassium phosphate 119 

monobasic (analytical grade, Anedra, Buenos Aires, Argentina), sodium hydroxide (analytical 120 

grade, Anedra, Buenos Aires, Argentina) and distilled water were used. 121 

For the assays in cell cultures, CALU-3 cells (ATCC® Cat# HTB55, bronchial human epithelial airway 122 

cells) were used. Dulbecco's Modified Eagle Medium (DMEM), fetal bovine serum (FBS), penicilin-123 

streptomycin, L-Glutamine, non-essential amino acids and trypsine were all from Life 124 

Technologies, GIBCO BRL, Rockville, USA. CellTiter 96® AQueous Non-Radioactive Cell Proliferation 125 

Assay was purchased from Promega, Madison, USA.  126 

 127 

2.2. Methods 128 

2.2.1.  Preparation of the HA solution 129 

To obtain the HA solution, a 0.5 % w/v aqueous solution of NaHA was prepared and passed 130 

through a glass column packed with sulfonic acid resin (previously activated with HCl ≈ 10 M). The 131 

HA solution was collected when the pH of the eluted was 3. 132 

2.2.2.  Determination of number of acid equivalents  133 

The number of acid equivalents in the HA solution was determined by potentiometric titration 134 

using NaOH (0.01 M). The evaluated solution had 2.11 x 10-3
 acid equivalents of HA per gram.  135 

2.2.3.  Preparation of solutions to be spray dried  136 

Table 1 shows the theoretical composition of solutions prepared to be spray dried. Two aliquots 137 

(200 mL each) of the HA solution (obtained as described in Section 2.2.1) were mixed with 138 

different amounts of the drug in order to neutralize about 75 and 100 % of the HA available acidic 139 

groups. For this, an appropriate mass of the drug, which represents the available acid groups to 140 

neutralize was weighted and incorporated under constant magnetic stirring. The theoretical total 141 

solid content in these solutions varied from 0.42 to 0.56 % (w/w). The samples were named 142 

according to their theoretical composition as (HA-OF)x, where the subscript x refers to the 143 

neutralization degree of HA acidic groups (i.e., x= 75 or 100). The pH of the resulted solutions was 144 

measured using a pH meter Orion 410A, Cole Parmer, Vermon Hills, United States.  145 

2.2.4.  Spray drying (SD) process 146 

The solutions, prepared as described in Section 2.2.3, were fed in a negative pressure laboratory 147 

scale SD equipment (Mini Spray Dryer B-290, BÜCHI, Flawil, Switzerland) with a two-fluid nozzle 148 

(cap-orifice diameter: 0.5 mm). Based on exploratory experiments, two sets of process parameters 149 
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were selected, which are summarized in Table 2. For comparison purposes, an aqueous solution of 150 

pure OF and pure HA were also atomized. The process yield (PY) was calculated as the ratio of the 151 

weight of product collected after the spray drying process respect to the initial total solid content. 152 

2.2.5.  Powder characterization 153 

• Drug loading: SD powders were dissolved in distilled water and ofloxacin concentration 154 

was determined by UV-spectrophotometry (T60, PG instruments, Lutterworth, UK) at 155 

289 nm. The results were reported as gram of drug per gram of powder.  156 

• Fourier Transformed Infrared Spectroscopy (FTIR). Samples (SD materials and raw OF) 157 

were studied in 1-1.5 % w/w potassium bromide (KBr) compacts using a FT-IR instrument 158 

(Nexus FT, Termonicolet, Maryland, United States). Before analysis, samples and KBr were 159 

dried at 105 °C.  160 

• Powder X-ray Diffraction (PXRD). An X-ray powder diffractometer (Philips PW 1710, Philips 161 

Industrial & Electro-acoustic Systems Division, Almelo, Netherlands) was used to assess 162 

the crystallinity of pure drug and SD powders. Sample diffractograms were obtained under 163 

previously reported conditions.18,19 164 

• Particle morphology. The morphological characteristics of the pure and co-processed 165 

materials were evaluated through Scanning Electron Microscopy (SEM) using an EVO 40-166 

XVP, LEO scanning electron microscope (Oberchoken, Germany).18,19  167 

• Particle size. Size distributions were measured by laser diffraction using the dry powder 168 

method (LA 950 V2, Horiba, Kyoto, Japan). The spray-dried powders were dispersed in 169 

lactose (with a known particle size distribution) in a proportion lactose:sample 4:1 to 170 

improve the sample flow from the feed hopper to the measuring cell. The volume average 171 

diameter of lactose differs substantially from the average size of the powder obtained by 172 

spray drying. As a consequence, bimodal distributions, with two modes perfectly 173 

distinguishable were obtained allowing an accurate granulometry measurement. Size is 174 

reported as mean volumetric diameter (D43) and distribution width is informed as span.
18  175 

• Drug distribution. The presence of drug in the microparticles was studied by fluorescence 176 

confocal microscopy (TCS SP2, LEICA, Wetzlar, Germany) for (HA-OF)75 sample. A small 177 

amount of material was placed in a capsule and excited with an argon laser at 488 nm. An 178 

immersion objective of 63 X was used. 179 

 180 

2.2.6. Aerodynamic characterization 181 

The in vitro aerosolization performance was studied on a Next Generation Impactor (NGI, Copley 182 

Scientific, Nottingham, UK20) equipped with an induction port (IP) and a pre-separator (PS), filled 183 

with 15 mL of water, as previously described21. Size 3 gelatin capsules were filled with 25±0.50 mg 184 

of SD products and the powder was dispersed using an RS01 high resistance inhaler (Plastiape, 185 

Milano, Italy) into the NGI. The air flowrate was fixed at 58.8 L/min in order to reach a pressure 186 

drop of 4 kPa as indicated by the USP22 and 4 L of air passed through the equipment. Drug content 187 

in each stage was assessed using a UV-spectrophotometer at 289 nm. 188 
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The Emitted Fraction (EF), Fine Particle Fraction (FPF), Respirable Fraction (RF), Mass Median 189 

Aerodynamic Diameter (MMAD) and Geometric Standard Deviation (GSD) were determined as 190 

follows23,24,25:  191 

• EF: represents the drug percentage of total drug loaded in the capsule that is effectively 192 

released from the capsule and the inhaler; 193 

• FPF: is the percentage of cumulative drug mass with aerodynamic diameters lower than a 194 

given size (the cumulative size distribution is built considering the drug mass collected in 195 

1st to 7th NGI stages and the multiple orifice collector (MOC)) relative to the total drug 196 

mass recovered from the mouth piece adaptor (MA), PS, IP, 1st to 7th NGI stages and MOC;  197 

• RF: accounts for the cumulative percentage of drug mass with aerodynamic diameters 198 

lower than a given size respects to the total drug mass recovered from the capsule, 199 

inhaler, MA, PS, IP, 1st to 7th NGI stages and MOC.  200 

• The MMAD was calculated from the drug mass cumulative distribution and is defined as 201 

the diameter at which 50 % of the drug is collected in larger particles and the remaining 202 

50 % is collected within smaller particles.  203 

• The GSD, that represents the spread of an aerodynamic particle size distribution, was 204 

calculated as (D84/D16)
1/2, where D84 and D16 represent the diameters at which 84 % and 205 

16 % of the drug mass recovered from the 1st to 7th NGI stages and MOC, respectively. 206 

With the aim to estimate the dose of the best HA-OF product required to treat the multi-drug 207 

resistant TB, the formulation was assayed at a higher capsule loading. For this, the size 3 gelatin 208 

capsule was filled with 100 mg of powder (without applying any force or compressing the 209 

powder) and the study was carried out under the same conditions than previously described. EF, 210 

FPFs, RFs, MMAD and GSD parameters were calculated. 211 

 212 

2.2.7. Cell culture and viability assay 213 

In order to preliminary assess the cytotoxic effect of the microparticles, CALU-3 cell line (derived 214 

from human bronchial submucosal glands) was used. CALU-3 cells were cultured in DMEM 215 

medium supplemented with 10% FBS, 100 U/mL penicillin, 100 μg/mL streptomycin, 2 mM L-216 

Glutamine and non-essential amino acids at 37 °C under 5 % CO2 in humidified incubator, as 217 

previously described26. 218 

For viability assays, CALU-3 cells were seeded in 96-well plates (80,000 cells/well in 100 μL 219 

complete DMEM medium) during 24 hours at 37 °C under 5 % CO2 in humidified incubator. 220 

(AH-OF)x stock solution (20 mM) was prepared in distilled water. Cells were incubated with serum-221 

free DMEM (considered controls) or with different concentrations of (AH-OF)100 to reach a final 222 

concentration of 0.015, 0.03, 0.06, 0.1, 0.3 and 0.6 mM of ofloxacin in serum-free DMEM during 223 

24 more hours. Cell viability was evaluated by using the CellTiter 96® AQueous Non-Radioactive 224 

Cell Proliferation Assay, according to manufacturer´s instructions. Briefly, after the 24 hours 225 

treatment, cells were washed with PBS (pH 7.4) and treated with staining solution containing the 226 
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MTS tetrazolium salt. MTS is reduced by mitochondrial oxidases into a formazan product that is 227 

soluble in tissue culture. This bioreduction is associated with metabolic activity. Absorbance was 228 

recorded at 490 nm using a microplate reader (Benchmark, Bio-Rad, Hercules, USA) and is directly 229 

proportional to the number of living cells27. Results are expressed in arbitrary units as % of the 230 

control condition. 231 

2.2.8. Mucoadhesion assay: Tensile Strength  232 

The mucoadhesion properties of the (AH-OF)x sample were studied using a TA Plus texture 233 

analyzer (Lloyd Instruments, Godalming, UK) equipped with a 5-kgf load cell. The technique was 234 

adapted from Gallo et al
6. Briefly, 0.1 mL of a mucin solution (3 % in PBS pH 7.4 kept at 37±0.5 °C) 235 

was placed over a filter paper (2 cm diameter). The filter paper was attached to a stationary 236 

surface and the mucin solution was allowed to stand for 15 minutes. A mobile metallic probe was 237 

placed above the stationary surface. A monolayer of microparticles carrying OF were attached to 238 

the mobile probe. The mobile probe was lowered, without applying any force, until it soaked in 239 

the mucin solution for 3 min. Finally, the probe was raised at withdrawal speed of 0.1 mm/s. The 240 

maximum detachment force (MDF) and the total work (TW) were measured using the computer 241 

software (Nexygen Plus). The reported results are expressed as the average of six measurements. 242 

 243 

2.2.9. Statistical analysis 244 

The significant differences between the mean volumetric diameter, aerodynamic behavior, cell 245 

viability and mucoadhesion test were determined by means of one-way ANOVA followed by least 246 

significant difference (LSD) test to compare means. Statistical significance was established through 247 

the p-value: values lower than 0.05 were considered statistically significant 248 

 249 

3. Results 250 

3.1. Spray drying: feed composition, feed properties and operating conditions  251 

HA is a natural polysaccharide with anionic groups in its structure (pKa 328, Figure 1.a). It has N-252 

acetyl d-glucosamine and β-glucuronic acid as repetitive units. Due to the non-immunogenicity 253 

and biocompatibility properties, it has been used for different pharmacological and clinical uses. 254 

HA has been proposed for the inhalatory route because increases the bioadhesivity of different 255 

therapeutic agents.29 It is approved in some European countries to reduce bronchial reactivity 256 

associated to allergens or pollutants inhalation or caused by physical effort. A combination of HA 257 

with hypertonic saline solution is also approved for reducing mucus viscosity in cystic fibrosis 258 

patients.30 Specifically for TB treatments by the inhalatory route, HA is biologically recognized by 259 

receptor CD44 in alveolar macrophages. That recognition improves internalization of anti-TB 260 

formulations containing both drugs and HA. Besides receptor-mediated phagocytosis, HA can 261 

polarize macrophages (leading to an inflammatory response and macrophages activation) and 262 
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then improve TB treatments31. In fact, HA has been employed to develop inhalatory delivery 263 

systems in order to modify dissolution rate and target macrophages for different drugs.31,32,33,34  264 

As with others anionic polyelectrolytes, HA acidic groups have the capability to interact with 265 

cationic compounds.18,35 OF is a zwitterionic fluoroquinolonic drug containing both anionic and 266 

cationic groups (pKas 5.9 and 8.336, Figure 1.b). This drug is slightly soluble in water37. The ionic 267 

interaction between HA and OF in an aqueous medium would lead to the formation of ionic pairs.  268 

All feed solutions prepared for being processes by SD did not evidence precipitation or phase 269 

separation, even when the (HA-OF)100 feed was formulated. For this solution, the OF concentration 270 

was around 0.0028 g/mL which is 7.7 % higher than the OF water solubility at 25 °C and pH=738. 271 

Considering that for a given temperature the OF water solubility is a strong function of the pH37, 272 

the absence of precipitation can be explained by two combined effects: the acidic resulting pH 273 

(around 5, see Table 1) and the improvement of the OF water compatibility due to the ionic 274 

interaction with hyaluronic acid39. In any case, the use of HA allowed obtaining aqueous solutions 275 

for spray drying without the need for organic solvents3,17. 276 

Table 1 shows the pH of different feed solutions. The HA pure solution showed the lowest pH 277 

value within the assayed solutions. As the neutralization of the free HA acidic groups of the 278 

polyelectrolyte was increased (from x=75 to x=100), the pH increased from 4 to around 5.  279 

The feed solutions were processed in a spray dryer using the process parameters detailed in Table 280 

2. The resulting SD outlet air temperature (Tout) and the process yield (PY) are shown in Table 3. 281 

When the set I of the operating conditions was used, the Tout was lower than 80 °C for all the 282 

formulations. This value is well below the degradation temperatures of OF and HA. In fact, OF 283 

thermal degradation starts over 250 °C40 while hyaluronic acid decomposition occurs above 284 

300 °C41. Considering this, thermal degradation during the spray-drying process is not expected. 285 

For set I, PYs of co-processed products were around 50 %, satisfactory level for a lab scale 286 

equipment42.  287 

The set II of process parameters increased the atomization air flowrate (aiming to reduce the 288 

particle size) respect to the value of set I, and replaced the standard cyclone by a high 289 

performance one (from BÜCHI) to improve the collection efficiency. According to Table 3 and for 290 

samples with a neutralization degree of 75 and 100 %, the PYs increased more than 35 % when 291 

process conditions changed from set I to set II. Simultaneously, the outlet temperature was 292 

reduced. So, set II improved the SD global performance for co-processed materials.  293 

3.2. Product characterization 294 

3.2.1. Microparticle composition. 295 

Table 1 also shows the composition of the co-processed powders. As it can be seen, the gOF/gpowder 296 

ratio of the products is in good agreement with the theoretical composition OF/(HA+OF). Since 297 

fluoroquinolones treatments require relative high doses, the high drug load (from 39 to 46 % of 298 

the product) in the microparticles is a valuable property of the formulated powders.  299 
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3.2.2. Fourier transformed Infrared spectroscopy 300 

The FT-IR spectra of the SD pure and co-processed materials were obtained and Table 4 shows the 301 

position of the characteristic peak wavelengths while in Figure 2 the FT-IR spectra can be seen. A 302 

broad band at around 1636 cm-1 corresponding to the carboxylic stretching was detected in the 303 

pure HA spectra. Other relevant bands for this compound were also found: one ascribed to the 304 

stretching of the amide I band (1650 cm-1) and the HC=C double bond stretching (1555 cm-1)43. The 305 

pure OF FT-IR spectra displayed the characteristic bands of ofloxacin: at 2784.17 cm-1 appeared 306 

the band ascribed to the stretching of the CH3-N and the band at 1408.5 cm-1 was associated to 307 

the in-plane deformation of the CH3-N group. Besides, a peak ascribed to the C=O stretching of the 308 

carboxylic acid at 1717.15 cm-1 and another peak associated to the C=O ring carbonyl at 309 

1621.2 cm-1 can also be observed44. 310 

The spectra of the co-processed products showed some changes respect to the pure materials 311 

spectra. The two bands ascribed to the OF stretching and in-plane deformation of the CH3-N group 312 

completely disappeared. Simultaneously, two new bands appeared as shoulders at around 313 

1600 cm−1 and 1400 cm−1. They were ascribed to the C=O asymmetric and symmetric stretching of 314 

the carboxylate groups of HA, respectively. These bands were associated to the HA ionization due 315 

to the ionic interaction between the OF amine group and the HA carboxylic group.  316 

3.2.3.  X-ray diffraction 317 

Aiming to assess crystalline variations associated to the spray drying process and the interaction 318 

between components, X-ray diffractograms of OF (as received from the supplier), spray-dried pure 319 

OF and HA and the co-processed products were recorded (Figure 3). According to Figure 3a, pure 320 

OF displayed a crystalline structure. The position and relative intensity of the reflections were in 321 

good agreement with the ones reported by Peng et al.45. As it can be seen in Figure 3a, processing 322 

OF by spray drying did not affect its crystalline structure as the reflections were placed in the same 323 

angular positions that the ones of the raw OF. On the other hand, the spray-dried hyaluronic acid 324 

presented an amorphous structure; the baseline is elevated while no peaks can be observed 325 

(Figure 3a). 326 

Figure 3b shows that the co-processed materials, independently of the neutralization degree and 327 

the combination of SD process parameters used, were amorphous. In fact, the reflections 328 

corresponding to OF completely disappeared and the baseline is elevated between 15 and 30°, 329 

indicating complete crystallinity loss. This phenomenon is an indirect evidence of the interaction 330 

between the drug and the polyelectrolyte46. The X-ray diffractions of the co-processed materials 331 

(set I) demonstrated to be amorphous over five years storage, being then this structure stable for 332 

longer periods than shelf-life. The long-term stability of the amorphous state was previously 333 

demonstrated for others drug-polyelectrolyte inhalatory systems19.    334 

 335 

3.2.4. Particle morphology, drug and size distribution 336 
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Figures 4 and 5 show SEM micrographs of the drug (as received from the supplier), spray-dried 337 

pure OF and HA and the co-processed products. The pure drug without processing exhibited 338 

smooth and regular shaped crystals (Figure 4a), in good agreement with the OF morphology 339 

described by Duan et al.47 and with the OF crystalline structure demonstrated by X-ray diffraction. 340 

When the drug was processed by spray drying, crystal aggregates were observed (Figure 4b). The 341 

morphology of SD HA processed is shown in Figure 4c and corresponds to buckling smooth 342 

particles, in good agreement with results reported for other SD anionic polyelectrolytes18,48. 343 

Regarding the co-processed microparticles, Figures 5a to 5d show smooth rounded particles, with 344 

one or more concavities. The morphology was similar to the one observed for the pure SD HA. The 345 

apparent crystals lack is supported by the amorphous state detected by X-ray diffraction. As it can 346 

be seen, neither the process parameters nor the neutralization degree affected microparticles 347 

morphology. 348 

Aiming to study if all microparticles obtained by spray drying present OF, Figure 6 shows the laser 349 

scanning confocal micrographs. The fluorescence of sample (HA-OF)100 Set I was very high, 350 

saturating the image, for this reason is not presented. HA has not fluorescent properties while OF 351 

possesses a natural fluorophore given by the 4-keto oxygen and the ionized 3-carboxylic acid 352 

group49. Transmission image (Figure 6a) represents the whole polymeric microparticles, while in 353 

the fluorescent image (Figure 6b) only the OF is shown. As can be seen, all the particles present 354 

fluorescence, indicating the presence of the drug in all co-processed powder.  355 

Table 5 shows the mean volumetric diameter (D43), evaluated by laser diffraction for co-processed 356 

particles. The particles obtained by using set I showed D43 values of 7.31 and 6.90 µm for samples 357 

with neutralizations degrees of 75 and 100 %, respectively. On the other hand, the particles 358 

obtained using the parameters of set II exhibited D43 values of 3.74 and 3.40 µm for (HA-OF)75 and 359 

(HA-OF)100 materials, respectively. Differences between samples with different neutralization 360 

degree obtained by using the same set of operating conditions were not statistically significant (p-361 

value > 0.05). However, the set conditions significantly affected D43 values; statistically significant 362 

differences were found for samples with the same neutralization degree but processed under 363 

different operating conditions (set I and II, p-value < 0.05). These results indicate that increasing 364 

the atomization air flowrate and using a high-performance cyclone (set II) allowed reducing the D43 365 

value, a desired characteristic for inhalatory products. Besides, all materials showed narrow 366 

distributions (i.e., span values lower than 250). 367 

3.3.1. Aerodynamic behavior 368 

The aerosolization properties for the powders (HA-OF)75 and (HA-OF)100 obtained using the process 369 

parameters of sets I and II (see Table 2) were evaluated in an NGI cascade impactor. Table 6 shows 370 

the following aerosolization parameters: EF, FPF for different particle sizes (3, 5 and 6.4 µm), RF 371 

for particle sizes lower than 3 and 5 µm, MMAD and GSD. To obtain these parameters, a capsule 372 

filling of 25 mg was used in order to compare the results here presented with the ones reported by 373 

Hwang et al
17., and Park et al.3 These authors used a capsule loading of 30 and 10 mg, respectively. 374 
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As can be seen, the aerosolization performance was not affected by the neutralization degree, no 375 

statistical differences were found for samples (HA-OF)75 and (HA-OF)100 (p-value > 0.05) for both 376 

set of conditions. However, statistically significant differences were found when the same sample 377 

was processed under the two different set of conditions (p-value < 0.05). Higher values of FPF and 378 

RF and lower MMADs were obtained for Set II. This can be related to the combination of a higher 379 

atomization air flow rate and a high-performance cyclone, combination that allows producing and 380 

collecting particles with smaller sizes. 381 

As can be seen in Table 6, EF was higher than 90 % in all cases, regardless the neutralization 382 

degree or the processing set of conditions. For the OF-chitosan formulation studied by Park et al.3, 383 

emitted fractions higher than 90 % and about 81 % with and without using lactose as a carrier 384 

were obtained. For the system OF-HA studied by Hwang et al.
17, an EF of 94 % was found when a 385 

ratio of OF-HA powder:lactose 1:24 was used. The values obtained in this work are very high, 386 

considering that samples were not mixtured with carrier particles, and comparable with the EFs 387 

reported by Hwang et al. and Park et al. for mixtures of the co-processed materials and lactose3,17.  388 

For previously described inhalatory systems carrying OF, FPF for particles smaller than 6.4 µm was 389 

obtained by using a twin-impinger impactor. Values reported were 45 % and 43 % for the 390 

OF-chitosan and OF-HANa systems, respectively. For the formulations obtained in this work using 391 

set I operating conditions, this FPF was similar to the reported by those authors. However, higher 392 

values (~ 65 %) than those previously reported were obtained when set II operating conditions 393 

were used. Besides, nowadays the USP recommends the use of multi-stage cascade impactors22 394 

that allows calculating FPFs for different particle sizes (and stablishing, to some extent, in vitro – in 395 

vivo correlations20,51). For example, for treating pulmonary illnesses, particles should possess 396 

aerodynamic diameters lower than 5 µm52. As it can be seen in Table 6, FPF < 5 µm is around 58 % 397 

and RF < 5 µm is about 54 %. This result indicates that more than the 50 % of the powder loaded in 398 

the capsule can reach the lungs even when no carrier is used. 399 

Table 6 also shows the RFs for particles with aerodynamic diameters lower than 3 µm. Although 400 

particles with aerodynamic diameters lower 3 µm are associated to systemic administration of 401 

drugs by the inhalatory tract, in this work RF<3µm is used as an indicator of the microparticles 402 

fraction that can anatomically reach alveolar macrophages because these cells are located within 403 

the alveolus53. This fraction was around 37 % for particles obtained using set II, i.e. about 37 % of 404 

the OF dose can reach the deep lung and thus the alveolar macrophages. This fraction was around 405 

2 times higher than the one obtained for set I samples. 406 

The MMAD was around 3.8 and 2.7 µm for particles obtained by using set I and II, respectively 407 

(Table 6). In all cases, the GSD value indicated that the aerodynamic particle size distributions 408 

were narrow (GSD value lower than 354).  409 

As can be seen, sample (HA-OF)100 (set II) was the best in vitro formulation because it presents 410 

smaller aerodynamic diameters and better aerosolization performance than set I; and carries 411 

higher OF amounts than the (HA-OF)75 formulation.  412 
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 413 

3.3.2. HA-OF dose preliminary estimation 414 

In this section, a dose to treat multi‐drug resistant‐TB was roughly estimated in order to test if 415 

(HA‐OF)100 (set II) powder could be administered in a conventional capsule‐based DPI. 416 

Quinsair™ maketed product delivers a 240 mg dose of nebulized levofloxacin and is approved for 417 

treating Pseudomonas aeruginosa infection in patients with cystic fibrosis. Reported MIC90 values 418 

for levofloxacin were 3255 and 6.2556 µg/mL against P. aeruginosa and M. tuberculosis, 419 

respectively. Regarding ofloxacin, 3217,55 µg/mL MIC90 value was found against P. aeruginosa and 420 

M. tuberculosis. As MIC90 values for treating P. aeruginosa infections are similar or higher than the 421 

ones needed for treating M. tuberculosis with ofloxacin and levofloxacin, it could be assumed that 422 

the Quinsair™ dose would be adequate to treat TB by the inhalatory administration.  423 

To calculate the dose for the co-processed materials, besides the analogy supposed in the previous 424 

paragraph, the following assumptions are considered: 425 

a) The levofloxacin solution (Quinsair™) for nebulization, that is administered by using a PARI 426 

e-flow rapid nebulizer, delivers a respirable delivered dose of 130 mg57.  427 

b) The presence of hyaluronic acid improves Ofloxacin microparticles pharmacodynamics and 428 

targeted indexes by a 50 %17.  429 

As Ofloxacin is the racemic mixture where only levofloxacin is the active ingredient, 260 mg of OF 430 

would be necessary to reach the same respirable dose delivered by Quinsair™. Considering that 431 

the presence of hyaluronic acid allows OF dose reduction by a half17, 130 mg of this drug would be 432 

required to be delivered.  433 

To administrate 130 mg of OF, 21 of a size 3 capsules filled with 25 mg of the formulation would 434 

be necessary, being this number unsuitable for therapy compliance. However, a size 3 capsule can 435 

be filled up to 100 mg of this co-processed material58. To evaluate the aerodynamic performance 436 

of the developed system from a highly loaded capsule, the inhalatory formulation was retested in 437 

the NGI equipment in the same conditions that the described in Section 2.2.6. Results are shown 438 

in Table 7. As can be seen, EF is almost 90 %. Although FPF and RF values decreased compared to 439 

the ones obtained when a 25 mg-loading capsule was used, results are still adequate for inhalatory 440 

administration of the formulation. In fact, most commercially available DPIs have a FPF for 441 

particles with aerodynamic diameters lower than 5 µm of 10-35 %25. The MMAD was lower than 3 442 

and the GSD value indicated that the aerodynamic particle size distribution was narrow54, as it was 443 

found in the assay with 25 mg of capsule loading. 444 

Considering a 100 mg capsule filling (which still presents good aerosolization properties) and a 445 

respirable fraction for particles with aerodynamic diameters lower than 5 µm of 42 % (Table 7), 7 446 

capsules would be enough to deliver 130 mg OF dose. Thus, the material has potentiality for the 447 

proposed application. In fact, there are commercial DPIs that require up to 10 capsules twice daily 448 

to deliver the dose.59 449 
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Finally, it should be taken into account that the new material reported in this work is in the early 450 

stages of development and further studies are needed to determine the required dose, the 451 

number of capsules and therapeutic scheme. 452 

3.4. Cell viability 453 

Employing the MTT colorimetric assay, the cytotoxic effect of the sample (HA-OF)100 (set II) on the 454 

CALU-3 cell line was evaluated. As can be seen in Figure 7, even at the highest concentration 455 

assayed, the cell viability differences between the control and the treatments were not statistically 456 

significant (p-value > 0.05).  457 

As mentioned in Section 3.3.2, the highest MIC90 dose for multi-drug resistant TB treatments 458 

reported is 32 µg/mL17. Considering 30 mL volume of pulmonary liquid available for drug 459 

dissolution2, 0.60 mM of ofloxacin (the highest concentration assayed in this work) is around 6.5 460 

times higher than the highest reported MIC90
17. Even though these results are auspicious, toxicity 461 

studies of high doses of ofloxacin and/or HA in the lung have not been addressed yet. Then, 462 

further studies are necessary to assess completely the safety of this new material. 463 

3.5. Mucoadhesion assay: Tensile Strength  464 

In order to increase the mucoadhesivity of formulations, hydrophilic polymers are usually 465 

incorporated. In general terms, these polymers possess good stickiness to mucosal membranes. 466 

There are several advantages of mucoadhesive like increasing dosage form residence time, 467 

reducing the frequency of the drug administration, improving drug targeting, among others29. 468 

Mucoadhesion is a phenomenon that has not been fully understood; several theories have been 469 

proposed but the process is probably the result of combined mechanisms. In this sense, 470 

Khutoryanskiy reports that mucoadhesion is a process with sequential steps: a) wetting and 471 

swelling, b) developing of physical bonds, c) interpenetrating and entangling, d) developing of 472 

chemical bonds29. 473 

Table 8 shows the maximum detachment force (MDF) and total work of adhesion (TWA) when OF, 474 

HA or the (HA-OF)100 (Set II) microparticles were attached to the mobile probe. The test was also 475 

carried out soaking the mobile probe without microparticles in the mucin solution. This can be 476 

considered as a control test in order to establish the minimum force required for the probe 477 

detachment. As expected, this assay showed the lowest MDF and TWA. As can be seen in Table 8, 478 

MDF and TWA values for pure OF and mucin were very close. Differences found between these 479 

two materials were not statistically different (p-value > 0.05), although they were higher for OF. 480 

On the other hand, the pure HA MDF and TWA values were higher and statistically significant 481 

compared to mucin and pure OF. What is more, the co-processed microparticles displayed the 482 

highest MDF and TWA values in the tensile test. Differences were statistically significant respect to 483 

the HA, OF and mucin (p-value < 0.05). This result suggests that the inclusion of the 484 

polyelectrolyte in the co‐processed material provides higher mucoadhesion to the respiratory 485 

mucosa compared to the free ofloxacin.
60

 Besides, the higher values for the (HA-OF)100 (Set II) 486 

compared to the pure HA could be related to the ionization of the carboxylic groups of HA. It has 487 
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been reported that carboxylic groups of anionic polymers form hydrogen-bonds with mucin, 488 

specifically with oligosaccharides. However, ionized anionic groups of polyelectrolytes repel mucin 489 

negatively charged surface and hydrogen bonds cannot be developed29. For co-processed 490 

materials, the neutralization of the HA anionic groups by OF would prevent repulsion allowing the 491 

formation of hydrogen bonds.   492 

According to the results of Li et al.
60

, higher mucoadhesiveness can be associated to longer lung 493 

residence time and lower systemic exposure. The mucoadhesive properties of the SD co-494 

processed product is particularly interesting in the pharmacotherapy with OF, as the residence 495 

time of the drug in the lung could be prolonged, decreasing the microparticle clearance61.  496 

4. Conclusions  497 

Based on the spray-drying technology, using a feed composed by an aqueous-based solution 498 

containing OF and HA (with high neutralization degrees), high atomization air flowrate and the use 499 

of a high-performance collection cyclone (set II), powders suitable for inhalatory administration 500 

were obtained with very good process yields.  501 

For formulations with neutralization degrees between 75-100 %, the powder OF loading was about 502 

50 % (w/w), being then the formulation appropriate to administrate high OF doses. The ionic 503 

interaction between OF and HA allowed stabilizing the amorphous nature of the co-processed 504 

products for over five years.  505 

The carrier-free formulation (HA-OF)100 set II showed excellent emitted, fine particle and respirable 506 

fractions. In fact, about the 50 % and 37 % of the OF loading in a 25 mg capsule would be able to 507 

reach the lungs (respirable fraction for aerodynamic particle size smaller than 5 µm) and the 508 

region where alveolar macrophages locate, respectively. The best formulation exhibited higher 509 

mucoadhesion than pure OF, property that can increase the drug residence time in the lungs. 510 

Comparing the amount of drug that would reach the lung with the required OF to treat TB, the 511 

estimated therapeutic dose could be provided by 7 capsules. Besides, the best formulation did not 512 

affect CALU-3 cell viability up to a dose 6.5 times higher than the MIC90 reported to treat multi-513 

drug resistant TB. Considering the auspicious in vitro results for the developed co-processed 514 

product, it is necessary to vigorous assess its stability, pharmacokinetics, and toxicity.  515 
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Table 1. Theoretical composition and experimental pH and composition of the feed solutions and 

powders 

Sample  Theoretical values Experimental values 

 HA  

(w/w) 

OF  

(w/w) 

Total 

solid 

content 

(% w/w) 

Relative 

composition 

(gOF/gpowder) 

pH Relative 

composition 

(set I) 

(gOF/gpowder) 

Relative 

composition 

(set II) 

(gOF/gpowder) 

(HA-OF)75 0.28 0.21 49 0.43 4.03 0.40±0.01 0.39±0.01 

(HA-OF)100 0.28 0.28   56 0.50 5.08 0.46±0.02 0.46±0.02 

  



Table 2. Process conditions for set I and II 

Process conditions Set  

 I II 

Air inlet temperature (co-

current) (°C) 

110 110 

Feed solution flowrate (mL/min) 3.5 3.5 

Atomization air flowrate (L/h) 400 742 

Drying air flowrate (m
3
/h) 35 35 

Cyclone Standard High-performance 

 

  



Table 3. Process yield (PY) and outlet air temperature (Tout) for different process parameters and 

formulations 

 Set I Set II 

Sample  PY (%) Tout (°C) PY (%) Tout (°C) 

(HA-OF)75 53 70 69 58 

(HA-OF)100 51 71 74 52 

 

  



Table 4. Assignments of the FT-IR bands of HA, OF and the co-processed products obtained by 

spray drying  

Compound 

 Set I Set II 

Band (cm
-1

) OF HA (HA-OF)75 (HA-OF)100 (HA-OF)75 (HA-OF)100 

ν COOH  1717.2 1636.2 1732.9 1729.5 1724.6 1727.6 

ν C=O ring 1622.3 - 1622.1 1622.2 1621.1 1621.4 

ν CH3-N  2784.2 - - -   

δ CH3-N  1408.5 - - -   

ν amide I band  - 1650.7 1657.0 1658.4 1658.3 1659.6 

ν HC=C  - 1555.5 1544.5 1540.2 1544.2 1544.2 

ν COO
- s

 asymmetric 
  - - 1608.8 1607.7 1607.6 1607.2 

ν COO
- s

 symmetric - - 1416.5 1417.3 1414.7 1415.6 
s: the bands were seen as shoulders 

ν: stretching band 

δ: deformation band 

  



Table 5. Mean volumetric diameters (D43) and particle size distribution span values, as measured 

using laser diffraction 

 

 Set I  Set II  

NGI parameter (HA-OF)75 (HA-OF)100 (HA-OF)75 (HA-OF)100 

D43 7.31±0.46 6.90±0.63 3.10±0.23 3.39±0.31 

Span 0.92±0.17 0.92±0.14 1.13±0.17 0.99±0.21 

 

  



Table 6. Aerosolization performance using 25 mg-capsule loading 

 Set I  Set II  

NGI parameter (HA-OF)75 (HA-OF)100 (HA-OF)75 (HA-OF)100 

EF (%) 94.84±0.87 90.82±2.76 93.65±1.40 92.35±2.30 

FPF < 6.4µm (%) 49.21±2.09 44.28±1.76 60.14±4.90 67.84±3.20 

FPF < 5µm (%) 29.12±1.10 32.68±1.43 56.82±4.27 57.90±0.33 

FPF < 3µm (%) 15.87±2.99 20.50±3.32 39.67±2.78 40.89±1.10 

RF < 5µm (%) 27.63±1.25 28.90±2.09 52.90±3.41 53.45±1.03 

RF < 3µm (%) 15.06±2.85 18.17±3.19 36.95±2.72 38.70±2.26 

MMAD (µm) 3.89±0.83 3.68±0.23 2.80±0.28 2.70±0.17 

GSD 2.14±0.50 1.96±0.17 1.86±0.09 2.29±0.04 

EF: Emitted Fraction; FPF: Fine Particle Fraction; RF: Respirable Fraction; MMAD: Mass Median Aerodynamic 

Diameter; GSD: Geometric Standard Deviation 



Table 7. Aerosolization performance for co-processed samples using 100 mg-capsule loading 

NGI parameter (HA-OF)100 Set II 

EF % 89.18±1.28 

FPF < 5µm (%) 48.82±2.06 

FPF < 3µm (%) 33.85±2.97 

RF < 5µm (%) 42.50±3.09 

RF < 3µm (%) 29.63±3.21 

MMAD (µm) 2.95±0.33 

GSD 2.15±0.44 

EF: Emitted Fraction; FPF: Fine Particle Fraction; RF: Respirable Fraction; MMAD: Mass Median Aerodynamic 

Diameter; GSD: Geometric Standard Deviation 

  



 

Table 8. Maximum detachment force (MDF) and total work of adhesion (TWA) in the tensile test 

for powders. 

 

Material MDF (N) TWA (J, x10-4) 

Mucin 0.51±0.04 6.25±1.49 

OF: Mucin 0.58±0.05 7.30±1.09 

HA: Mucin 0.97±0.12 11.16±1.79 

(HA-OF)100 (Set II): Mucin 1.36±0.08 17.91±2.80 

 
















