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Highlight  

This review describes the impact of nitric oxide over plant mineral nutrition focusing on 

nitrogen, phosphate, potassium and iron homeostasis. The mechanisms involved in nitric 

oxide action are also discussed. 
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Abstract 

Plants under essential mineral deficiencies trigger signaling mechanisms involving 

common components. Among them, nitric oxide (NO) has been pointed out as a key 

participant in responses to changes in nutrient availability. 

Usually, nutrient imbalances affect NO levels in specific plant tissues, caused by 

modifications in its synthesis or degradation rates. Changes in NO level affect plant 

morphology and/or trigger responses associated to nutrient homeostasis, mediated by its 

interaction with reactive oxygen species (ROS), phytohormones and through post-

translational modifications to proteins. NO-related events constitute an exciting field of 

research to understand how plants adapt and respond to conditions of nutrient shortage. 

This review summarizes the current knowledge describing NO as a component of the 

multiple processes related to plant performance under conditions of deficiency in mineral 

nutrients focusing on macronutrients such as nitrogen, phosphate, potassium and 

magnesium, as well as micronutrients like iron and zinc. 
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MNIC, mononitrosyl-iron complexes; NO, nitric oxide; NR, nitrate reductase; NOS, nitric 

oxide synthase; nsHbs, non-symbiotic haemoglobins; PLP, pyridoxal 5′-phosphate; PTM, 

post-translational modifications; ROS, reactive oxygen species; SNO, S-nitrosothiols; SNP, 

sodium nitroprusside. 
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Introduction 

Plants are sessile organisms being exposed to continuing changes in environmental 

conditions. To survive, they have developed highly flexible and finely balanced 

mechanisms that allow them to sense and acclimate to multiple biotic and abiotic stress 

situations, such as variable soil nutrient concentrations. Deficiencies in essential mineral 

nutrients (macro- and micronutrients) lead to plant disorders related to the specific function 

of each nutrient in plant life, and trigger signaling mechanisms sharing pathways involving 

common components. Among them, nitric oxide (NO) has been involved in abiotic stress 

acclimation responses, such as the low nutrient supply (Meng et al., 2012).  

To act as a signal molecule, NO has to be synthesized in a specific tissue under 

certain conditions, to react with specific targets and eventually the signaling cascade will be 

turned off. NO is endogenously produced in plants, in different cellular and subcellular 

compartments, under physiological and stress conditions (Astier et al., 2018). Although 

much progress has been made related to the knowledge of possible sources of NO in plants, 

the complete scenery is still elusive (Jeandroz et al., 2016; Chamizo-Ampudia et al., 2017; 

Corpas and Barroso, 2017).  

Endogenously synthesized or exogenously applied NO, exerts its biological 

function, at least in part, due to protein modifications through i) reaction with tyrosine 

residues leading to tyrosine nitration, ii) binding to the thiol group of cysteinyl residues in a 

reaction so-called S-nitrosation (also termed as S-nitrosylation), or iii) interacting with 

metalloproteins, leading to conformational changes (reviewed in Astier and Lindermayr, 

2012; Jain and Bhatla, 2018; Kolbert et al., 2017). In addition, NO is involved in a broad 

spectrum of biochemical events through the interaction with hormones, reactive oxygen 

species (ROS), and calcium (Garcia-Mata et al., 2003; Freschi, 2013; Domingos et al., 

2015).  

Not only proteins but also low molecular weight thiols can undergo S-nitrosation. 

The most abundant low molecular weight nitrosothiol is S-nitrosoglutathione (GSNO) 

which, in turn, is considered to be a form of storage and long distance transport of NO 

(Begara-Morales et al., 2018). The enzyme GSNO reductase (GSNOR) mediates GSNO 

turnover, giving ammonium and glutathione disulphide as products. The activity and the 

physiological role of GSNOR in plant metabolism have been recently reviewed 
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(Lindermayr, 2018). NO is also scavenged by non-symbiotic haemoglobins (nsHbs) 

through a NAD(P)H dependent mechanism (Perazzolli et al., 2004). The expression of 

nsHbs in higher plants is increased under stress conditions (reviewed in Perazzolli et al., 

2006). Interestingly, nsHbs are also able to react with S-nitrosothiols (SNO) leading to 

denitrosation (Perazzolli et al., 2004).  

To our knowledge, the first report suggesting a role for NO in plant mineral nutrition 

came from the response to exogenous NO supply in maize plants suffering from iron (Fe) 

deficiency (Graziano et al., 2002). Since then, extensive evidence supporting its 

participation in plant mineral nutrition disorders has been accumulated and reported for 

other essentials elements: nitrogen (N), phosphate (P), potassium (K), zinc (Zn), and 

magnesium (Mg), among others. 

NO levels have been reported as increased in different plant tissues following 

alterations in nutrient supply due to modifications in its synthesis or degradation rates. The 

NO-related events that follow the NO increase constitute an exciting field of research to 

understand how plants may adapt to environmental conditions of nutrient shortage. This 

review will focus on NO as a key component of the multiple processes related to plant 

performance under several mineral nutrient deficiency conditions. 

 

Nitric oxide affects nitrogen uptake and homeostasis  

Nitrogen (N) is an essential macronutrient, a building block of biological molecules 

such as nucleotides, amino acids, and proteins, which is critical for plant growth and 

development, and as a consequence for crop yield (Wang et al., 2012; O’Brien et al., 2016). 

Nitrate (NO3
-
) and ammonium (NH4

+
) are preferred N forms taken up by land plants; 

however they can be found in a short supply in most ecosystems as well as in agricultural 

lands (O’Brien et al., 2016). In agricultural systems, crop production relies on the 

application of nitrogenous fertilizers, but a large fraction of the N is not absorbed by plants, 

being lost into the environment causing several environmental and pollution problems 

(O’Brien et al., 2016; Kant, 2018). 

Nitrogen supply in soil can fluctuate, and the root is the site where nutrient 

perception and acquisition occurs through efficient sensing systems (Alvarez et al., 2012). 

Local signaling pathways involve sensors, signal transduction pathway components, and 
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effectors such as transcription factors that trigger N responses. Less is known about the 

systemic N signaling pathways in plants. It requires root-shoot-root communication, and in 

addition to NO3
-
, other N-metabolites may function as systemic signals. Additional 

systemic signals include phytohormones like cytokinins and auxins (Alvarez et al., 2012). 

Local and systemic regulatory pathways participate in the modulation of root architecture 

by NO3
-
, where locally concentrated NO3

-
 promotes lateral root elongation, and on the 

contrary high NO3
-
 applied to the whole root has an inhibitory effect on lateral root 

development (Zhang et al., 1999, Alvarez et al., 2012). Regarding the effect of NO3
-
 supply 

on primary root growth, there have been observed some contradictory reports showing 

inhibition, stimulation or no effect whatsoever (reviewed by Trevisan et al., 2014). As NO 

has been involved in root growth modulation (Correa-Aragunde et al., 2004; 2006), and 

NO3
-
 and NO are metabolically connected, the possibility that NO may participate in NO3

-
-

mediated root growth has been explored (Trevisan et al., 2014). A role for NO production 

in root response to NO3
-
 was postulated due to the observation of a coordinate spatio-

temporal expression of nitrate reductase (NR) and nsHbs, involved in NO synthesis and 

scavenging, respectively. These findings suggested that they could play an important role 

during the early perception and signaling of NO3
-
 in the rhizosphere (Trevisan et al., 2011). 

The involvement of NR and NO in root response to NO3
-
 or NO3

-
/ NH4

+
 (partial nitrate 

nutrition) has been confirmed with the use of chemical detection of NO in situ, and 

interfering with its synthesis (tungstate) or scavenging (2-(4-carboxyphenyl)-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide, cPTIO) in maize and rice (Manoli et al., 2014; Sun 

et al., 2015). An increase in the NO content in the lateral root region and the root tip of a 

high-nitrate-response rice cultivar (Nanguang) growing under partial NO3
-
 nutrition 

conditions (14 d) as compared to NH4
+
 treatment was observed, as well as an improved N 

acquisition capacity through the modulation of lateral root initiation and the N uptake rate. 

NO accumulation resulted mainly from an NIA2-dependent NR source (Sun et al., 2015). 

In maize plants, an early response was observed when seedlings grown for 24 h without 

NO3
-
 were re-supplied with NO3

-
. The NO3

-
 supply caused an increase in DAF- FM DA (4-

amino-5-methylamino-2′,7′-difluorofluorescein diacetate) fluorescence (corresponding to 

NO detection) in the first minutes after treatment that was mainly localized immediately 

above the meristematic apex, in the transition zone. NO was produced by NR as an early 
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response to NO3
-
 supply and the coordinated induction of nsHbs could finely regulate 

steady state NO level. This mechanism may be implicated in the modulation of the root 

elongation in response to NO3
-
 perception (Manoli et al., 2014). The preferential 

localization and the strong transcriptional responsiveness of both NR and nsHbs in the 

transition zone of the apex strengthened the hypothesis of a role for this root portion in 

translating the environmental stimuli in developmental response (Trevisan et al., 2014). 

Trevisan and co-workers (2015) employing transcriptome and proteome studies confirmed 

that the transition zone was critical in sensing NO3
-
, and the contribution of NO to the NO3

-

-induced transcriptional response. However other NO3
-
-derived signals also seem to 

contribute to this pathway. In addition, phytohormones, as auxin, seem to belong to the 

network of events involved in the adaptation to NO3
-
 fluctuations. Therefore, it would seem 

possible to influence the pattern of root growth as well as the uptake capacity under specific 

conditions of N supply by manipulating elements involved in NO signaling (Simontacchi et 

al., 2015). 

Despite the differences between species and treatments, NO seems to be implicated 

in NO3
-
 modulation of root system architecture in a series of events that imply local and 

systemic responses and a tight regulation of NO levels through its synthesis and scavenging 

or consumption. Future research in other higher plants will add information about the 

complex regulation mechanisms involved in N perception and uptake under fluctuating 

situations.  

 N assimilation and NO generation are closely connected. It has been described that 

not only the amount of N (Caro and Puntarulo, 1998; Jin et al., 2009) but also the form of 

N supply (NO3
-
 or/and NH4

+
) (Sun et al., 2015; Zhu CQ et al., 2016) impact on NO levels. 

In fact, nitrite (NO2
-
) and arginine, both derived from N assimilation and metabolism are 

the main substrates for NO synthesis. However, plants may have optimized the use of NO2
-
 

as a main source for NO (Jeandroz et al., 2016; Santolini et al., 2017). NR is a key enzyme 

in the N metabolism and a source of NO (Chamizo-Ampudia et al., 2017), and in turn its 

activity may be affected by NO levels (Table 1). Regarding the possible mechanisms 

implicated in the modulation of NR activity, the absence of changes in the protein content 

and the conduction of in vitro experiments employing enzyme extracts lead to the idea of 

that the regulatory effect of NO on NR activity occurs at post-translational level (Jin et al., 
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2009; Du et al., 2008; Rosales et al., 2011). In addition, in tomato roots the positive effect 

of NO on NR activity obtained in roots fed under low nitrate was reversed after the removal 

of NO, whereas the inhibition of NR from roots fed under high nitrate was irreversible (Jin 

et al., 2009). Thus different mechanism could be operative under different situations 

depending on N supply that will require further investigation. However, nitrotyrosines were 

not detected in purified NR from wheat leaves, either from controls or NO-treated samples 

(Rosales et al., 2011). A recent analysis indicates the possible sites of S-nitrosation in the 

protein (Fu et al., 2018), showing that NR from different plant species can undergo this 

post-translational modification (PTM) in the presence of NO donors. The presence of NO 

could alter NR functionality and, as a consequence, N assimilation (Jin et al., 2009; Rosales 

et al., 2011). Recently Balotf et al. (2018) studied the expression and activity of some 

enzymes from N assimilation pathways in two Australian wheat cultivars, cv. Spitfire (high 

nitrogen use efficiency, NUE) and cv. Westonia (normal NUE), under different 

combinations and levels of nitrogen sources, and the NO donor SNP (sodium 

nitroprusside). SNP treatment affected the activity (Table 1) and the expression of NR, and 

other enzymes of nitrogen assimilation pathway, showing that NO may have an important 

role in transcriptional and post-transcriptional regulation of N assimilation pathway 

enzymes. The dependence of the effect on N concentrations may be a strategy of the plants 

to increase NUE, as inducible effects on assimilation enzymes were observed mainly at low 

N concentrations (Balotf et al., 2018). Thus, different NO donors, such as SNP, GSNO, and 

diethylamine NONOate (DEA/NONOate), and the NO scavenger cPTIO were utilized to 

study the effects of NO supply on the NR activity in different species, tissues, and under 

different experimental conditions as N sources and supply. As it is summarized in Table 1, 

NO affects NR activity in a way that depends on the N source and level (as NO3
-
 

concentration in the growth medium), the level of NO (or GSNO) reached inside the cell, as 

well as the duration of treatment, tissues and the species and genotypes, which may lead to 

different responses. In Chlamydomonas reinhardtii (Sanz-Luque et al., 2013), unlike other 

systems (Du et al., 2008; Jin et al., 2009), NO did not inhibit NR activity in extracts, but it 

did so in living cells, indicating that a cellular component or cell structure is necessary for 

NO inhibition of NR activity (Sanz-Luque et al., 2013). An unquestionable role for NO in 

modulating NR activity may be proposed and it should ultimately affect N metabolism, as 
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NR is believed to be the rate-limiting step in NO3
-
 assimilation pathway in plants. To add 

more complexity to this scenario, known mammalian nitric oxide synthase (NOS) 

inhibitors and polyamine treatments have modified NR activity (Rosales et al., 2011; 

2012), indicating that NO from other sources, not directly related with NO3
-
 assimilation, 

can also modulate NR activity. Additionally, in nox1 mutants, which display increased NO 

synthesis, a NR-independent NO overproduction decreased NO3
-
 content in part by 

suppressing its transport, suggesting that a NR-independent NO production may contribute 

to NO3
-
 homeostasis (Frungillo et al., 2014).   

Furthermore, NO seems to modulate N uptake systems. Sanz-Luque and co-workers 

(2013) described for the algae (Chlamydomonas reinhardtii) the fast and reversible 

inhibition of high-affinity NH4
+
 transporter (HAAT) and high-affinity NO3

-
 and NO2

-
 

transporter (HAN/NiT) by NO, suggesting a post-translational regulation. It was also 

demonstrated that NO and SNO can modulate N assimilation by inhibiting differently NO3
-
 

uptake and reduction (Frungillo et al., 2014). Elevated NO and SNO levels induced a 

switch from high- to low-affinity NO3
-
 transport. It has been proposed that GSNO inhibits 

NO3
-
 uptake and reduction and NO inhibits GSNOR1, by S-nitrosation, preventing GSNO 

degradation. Inhibition of GSNOR1 may be necessary to amplify SNO signals as GSNO 

prolongs NO half-life through the formation of a more stable pool of NO, which can also 

regulate NO3
-
 assimilation and finely tune N homeostasis (Frungillo et al., 2014).  

Overall, the reactions and molecules involved in N assimilation and metabolism, as 

well as in the NO generation, in addition to their multiple interactions, feedback 

connections, and the specific variations in particular organisms propose a complex scenario 

(Fig. 1). Future research in this field especially with crop cultures will contribute to 

understand the role of this signaling molecule in N nutrition, including the possibility of 

improving N availability under scarcity by modulating endogenous NO levels.  

 

Nitric oxide participates in acclimation to phosphorus restriction 

Phosphorus (P) is a major essential nutrient. It acts as a structural component of 

nucleic acids and membranes, and it is also a key component of signal transduction and 

energy metabolism (Plaxton and Tran, 2011). Low P availability in soils imposes an 

important worldwide crop yield limitation, thus phosphoric rock-derived fertilizers are 
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extensively used to cope with P scarcity in agricultural systems, making P a key hit in food 

safety and ambient sustainability (Beardsley, 2011). The chemical form suitable for plant 

root uptake (H2PO4
-
) is frequently found at low concentration in soil solution, below 10 µM 

(Shen et al., 2011), while the major P stock correspond to chemical forms that are 

unavailable for plants (precipitated, adsorbed to soil particles and organic P) (Holford, 

1997; Raghothama 1999; Vance et al., 2003).  

Plants are able to sense low P availability in soil and activate a complex signaling 

network to trigger several morphological and physiological responses, including the 

improvement of mutualistic relationships, in order to cope with P scarcity (Chiou and Lin, 

2011; López-Arredondo et al., 2014; Zhang et al., 2014). Plants respond to P starvation in a 

variety of ways that include the release of P from vacuole; changes in membrane 

composition, replacing phospholipids with galactolipids and sulpholipids (Lambers et al., 

2012); and the redistribution of P to the young actively growing tissues (Baker et al., 2015). 

At root level, the exudation of protons, organic anions and acid phosphatases increases P 

availability in the soil solution (Gaume et al., 2001; Brinch-Pedersen et al., 2002; Shen et 

al., 2006). Remodelling the root system and increasing P-transport activity improve both 

soil exploration and P uptake by plants (Raghothama and Karthikeyan, 2005; Lambers et 

al., 2006; 2011; Baker et al., 2015).  

NO participation in modulation of several plant P starvation responses has been 

recently reported for different plant species, affecting both physiological processes and 

morphological traits (Wang et al., 2010; Zhu et al., 2017) (Fig. 2). In white lupin (Lupinus 

albus), Wang and co-workers (2010) described physiological changes associated to citrate 

exudation by roots, and morphological changes related to cluster root generation, both 

caused by P starvation and modulated by NO. In maize (Zea mays), employing the NO 

donor, GSNO, we found that in P-starved plants, NO increases the acid phosphatase 

activity in root tissues, the uptake of P from nutrient solution, and the decrease of pH in the 

external medium (Ramos-Artuso et al., 2018). In rice (Oryza sativa), changes in the 

internal P reutilization from cell walls under P starvation, has been described as a NO 

mediated process (Zhu CQ et al., 2016), in which NO acts upstream of ethylene (Zhu et al., 

2017).  
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Under P starvation it was found an increase in root sensitivity to auxin, which may 

affect root system architecture (López-Bucio et al., 2002; Nacry et al., 2005; Bouain et al., 

2016). It was also postulated that P starvation results in increases or decreases in auxin 

accumulation at different parts of the root system (Nacry et al., 2005; Sánchez-Calderón et 

al., 2005). H
+
-ATPase activity increases under P deficiency (Shen et al., 2006), which leads 

to a higher P uptake capacity via an anion/H
+
 co-transport process (Ullrich-Eberius et al., 

1984) lowering the rhizosphere pH. Auxins seems to have a role in the increase of H
+
-

ATPase activity (Frías et al., 1996), then it is possible to speculate an interaction between 

NO and auxins in the modulation of H
+
-ATPase activity, since NO levels rise under P 

starvation in root tissues (Wang et al., 2010). According to this hypothesis, the addition of 

exogenous NO to Phragmites communis calluses produced a great increase in the activity 

and the expression of plasma membrane H
+
-ATPase (Zhao et al., 2004). However, it is 

worth to mention that there is a lack of experimental evidence for the interplay among NO-

auxin in plants suffering from P deficiency.  

The impact of P restriction on root architecture varies among plant species. In the 

case of Arabidopsis, a clear effect is the restriction of primary root growth (Sánchez-

Calderón et al., 2005; Niu et al., 2013). One possible explanation for root length restrain is 

the antagonistic effect of NO with giberellins (GA) action. DELLA proteins act as 

inhibitors of plant growth, and the GA/GA receptor (GID1)/DELLA interaction stimulates 

its degradation through the proteasome, preventing DELLA-mediated growth inhibition 

(Harberd et al., 2009), and thus promoting growth. Experimental support for the cross-talk 

NO-DELLAs came from the work performed by Lozano-Juste and León (2011) in plant 

responses to light, where exogenous NO increased the levels of DELLA proteins. It has 

been observed that DELLAs exert a restriction on primary root growth (Jiang et al., 2007) 

and that NO exerts a similar effect (Fernández-Marcos et al., 2011) in a DELLAs partially 

dependent mode (Fernández-Marcos et al., 2012). In Arabidopsis, a complete frame for the 

convergence of P supply, NO and GA in the inhibition of primary root growth was reported 

(Wu et al., 2014), demonstrating that the inhibitory effect of NO and low P on primary root 

growth depends on the DELLA pathway. 

Soybean leaves exposed to short-term P-restriction exhibited increased NO levels 

(Ramos-Artuso et al., 2019). Some hypothesis may be proposed regarding the source of 
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NO involved under low P availability: i) an increase of NR activity through 

dephosphorylation (Lillo et al., 2004) that could lead to a higher NO generation (Chamizo-

Ampudia et al., 2017; Ramos-Artuso et al., 2019), ii) an enhanced activity of xanthine 

oxido-reductase (XOR) (Wang et al., 2010), and/or iii) a higher content of the substrates 

arginine and nitrate (Rabe and Lovatt, 1986). The importance of the NR pathway for NO 

production under P restricted conditions has been demonstrated (Royo et al., 2015). NO 

levels increased substantially in Arabidopsis wild type (WT) roots exposed to P restriction, 

but decreased in the roots of the nia mutant. Also, nia mutants were more sensitive to P 

deprivation than the WT plants indicating a role for NO in the adaptation to low P. In 

addition, P restriction has profound effects on mitochondrial electron flow increasing the 

pathway involving alternative oxidase (AOX) in a mechanism mediated by NO (Royo et 

al., 2015).  

Taken into account the effects exerted by NO on internal P reutilization, the release 

organic acids, acid phosphatases activity, P-uptake capacity, and the acidification of the 

growing medium, together with those affecting root architecture, it can be concluded that 

several acclimation mechanisms involved in P-acquisition under low P are positively 

influenced by NO, suggesting a critical role of this molecule during the acclimation to P-

deficiency. Further research is needed to reveal the precise NO signalling mechanisms 

being involved in P deficiency response in different plant species.  

 

Nitric oxide affects potassium homeostasis in plants  

Potassium (K
+
), a major nutrient, is accumulated up to 10% of the dry mass, being 

the major inorganic cation in plant cells. Inside the cells, K
+
 cooperates in the formation of 

membrane potential and maintenance of cytosolic pH homeostasis. It interacts with charges 

of nucleic acids and proteins, and also acts as a cofactor activating specific enzymes 

(Maathuis, 2009; Dreyer and Uozomi, 2011). Maintaining K
+
 homeostasis enables plants to 

operate metabolic pathways, but also contributes to set the osmotic potential and thus the 

turgor required for structure, plant growth and movements including stomatal aperture. 

Recent evidence suggests that cytosolic K
+
 homeostasis is important as a signal in growth 

and development under stress conditions, mainly in redirecting energy from metabolic 

reactions to defense responses (Shabala, 2017). In the soil solution, K
+
 concentration may 
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vary within a wide range which is usually about 2–4 orders of magnitude lower than the 

concentration within the plant. At sub-millimolar concentrations, K
+
 is typically taken up 

from the solution bathing the roots through the activity of specific Shaker like potassium 

channels and by K
+
-starvation induced KT-HAK-KUP transporters, AKT1 and AtHAK5 

respectively; but other entities could also contribute to this transport process. The 

subsequent movement of K
+
 within the cells and among plant organs involves several 

additional transporters (Véry et al., 2014; Santa-María et al., 2018).  

There are many ways in which K
+
 nutrition could be affected by the presence of 

NO, one of them is through the general effect of NO on root architecture, in addition to an 

specific effect over K
+
 transport (Fig. 3). An important relationship between K

+
 and NO 

came also from a particular cellular type, the stomata. Furthermore in the complex 

interaction between NO and K
+
, some phytohormones are likely to play a key role. 

Arabidopsis plants exposed to K
+
 restriction reduced total root length and increased 

the density of second order lateral roots with no alteration in the root:shoot ratio (Gruber et 

al., 2013), while the root:shoot ratio increased in two wheat cultivars upon long term K
+
 

restriction (Moriconi et al., 2012). In tobacco plants, a low K
+
-susceptible cultivar 

significantly decreased total root length, root volume and the number of first order lateral 

roots when exposed to K
+
 restriction, whereas root morphology was not affected in a 

tolerant one (Song et al., 2018). For the susceptible cultivar current evidence suggests that 

NO plays an important role in modulating the growth of first-order lateral roots. 

Interestingly, roots of this cultivar exhibited increased levels of NO after K
+
-restriction. 

Consistently, the addition of two NO donors (SNP and DEA/NONOate) acts in the same 

way inhibiting first order lateral roots. According to that, the addition of cPTIO, L-NAME 

(Nω-nitro-L-arginine methyl ester) or tungstate resulted in an increase of the first-order 

roots length (Song et al., 2018). Besides, indirect effects of NO on root elongation 

associated to defective K
+
-nutrition are likely to occur as observed in plants lacking AKT1 

activity (akt1) for which root length proved to be hypersensitive to the NO donor SNP (Xia 

et al., 2014). 

As K
+
 plays major roles in plant function, the K

+
 transport capacity is, not 

surprisingly, subjected to multiple regulations (Amtmann and Blatt, 2009; Santa-María et 

al., 2018). Xia and co-workers (2014), in the search of a connection between the changes in 
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K
+
 content and the altered levels of NO during salt stress, found that NO lowers K

+
 channel 

AKT1 activity in Xenopus oocytes and protoplasts under conditions of adequate K
+
 supply. 

As above mentioned, the AKT1 channel likely contributes to a major route for K
+
 

absorption in Arabidopsis in most environments (Véry et al., 2014). The mechanism 

proposed by which NO exerts its negative effect on AKT1 does not involve a direct action 

of NO on the channel. Instead high NO levels increase the content of pyridoxal 5′-

phosphate (PLP), an active form of vitamin B6, which in turn inhibits the activity of AKT1 

(Xia et al., 2014). Therefore NO mediates K
+
 homeostasis by the negative regulation of K

+
 

uptake via AKT1. It remains unknown whether or not a similar negative effect involves the 

other major player in K
+
 uptake from diluted K

+
 solutions, AtHAK5. It is interesting to note 

that recent work with the nia1nia2 mutant, defective in NR activity, unveiled that leaf K
+
 

content was impaired in those plants (Chen et al., 2016). While this result indirectly 

suggests that NO would be involved in the control of long-distance transport of K
+
, it could 

be also interpreted in terms of the reciprocal interaction between K
+
 and N nutrition. 

Another NO-mediated alteration in K
+
 homeostasis resulted from the work with 

Arabidopsis roots treated with excess iron (Fe) (Zhang et al., 2018). In the root tips, the 

levels of NO increased as a consequence of exposure to toxic Fe concentrations (Arnaud et 

al., 2006), leading to growth arrest, which in part is related to NO-induced alteration in K
+
 

homeostasis. In the search for the fluxes determining imbalanced K
+
 homeostasis, the 

authors found a net loss of K
+
 from apical root zones. K

+
 efflux from roots is thought to be 

mediated by K
+
-selective channels, nonselective cation channels and annexins (reviewed in 

Demidchik et al., 2014). The observation that Fe-induced K
+
 efflux currents are diminished 

by the presence of Gd
3+

, suggests that non-selective cation channels could be involved in 

the process studied. The addition of the NO donor SNP stimulates K
+
 efflux, while that of 

the NO scavenger cPTIO reduces it, thus indicating that those currents are related with NO 

signaling. Furthermore, the authors obtained evidence that addition of PLP contributes to 

K
+
 efflux. In the mechanism proposed by Zhang and coworkers (2018), NO-induces K

+
 

loss by nonselective cation channels (NSCCs), via regulation of the levels of PLP, thus 

establishing a parallelism with the findings above mentioned for AKT1 regulation (Xia et 

al., 2014). The significant loss of K
+
 induced by exposure to high Fe levels, could likely 

exert its detrimental effect on root elongation either by reducing cell turgor thus limiting 
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cell expansion, by affecting metabolic processes or by eliciting a cell death process as 

found under stress conditions (Demidchik et al., 2010).  

It is known that NO enhances plant tolerance to drought by affecting stomatal 

closure evoked by abscisic acid (ABA) (Garcia-Mata and Lamattina, 2003). In Vicia faba 

guard cells, NO promotes intracellular Ca
2+

 release and thus regulates Ca
2+

-sensitive K
+
 

inward channels at the plasma membrane (Garcia-Mata et al., 2003). Later, a direct effect 

was proposed for NO locking down the outward-rectifying K
+
 channels mediated by S-

nitrosation of cysteinyl residues in the ion channel protein (Sokolovski and Blatt, 2004). 

Rise in NO levels following ABA perception by guard cells is proposed to rely on the 

activity of NR, as it was previously suggested (Scuffi et al., 2014) and confirmed by the use 

of nia1nia2 Arabidopsis mutant, lacking the two genes coding for NR (Chen et al., 2016). 

The double mutant showed reduced NO synthesis and lower leaf K
+
 content, and stomata 

exhibited ABA insensitivity; however, they responded to exogenous NO addition. 

Alteration in K
+
 homeostasis in plants with reduced NR activity correlates with a reduction 

in KAT2, AKT2 and KC1 transcripts, coding for channels involved in K
+
 transport, as well 

as GORK transcripts coding for an outward rectifier K
+
-channel involved in K

+
 efflux, and 

increases in the accumulation of transcripts coding for the inward rectifier K
+
 channels 

KAT1 and AKT1. According to the model offered by the authors, in Arabidopsis guard 

cells, ABA-induced stomatal closure involves NO derived from NR activity, which 

contributes to inhibit inward currents mediated by the KAT1 and AKT1 K
+
 channels 

through a Ca
2+

-dependent mechanism (Chen et al., 2016).  

Overall, the available evidence suggests a major role for NO in modulating K
+
 

accumulation in plants as well as the movements at cellular level (Fig. 3), which may be 

particularly relevant when plants face stress conditions. 

 

Nitric oxide is a central player in iron homeostasis in plants 

Iron (Fe) is an essential micronutrient for plants. Given its redox properties, Fe acts 

as an important cofactor in enzymes and component in proteins. Fe containing proteins take 

part in the electron transfer chain of mitochondrion and chloroplasts and in the chlorophyll 

biosynthetic pathway; evidencing its importance for plant physiology. Despite being one of 

the most abundant elements on Earth’s crust, plants are frequently exposed to Fe deficiency 
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Due to its low bioavailability as a result of the poor solubility of Fe in the soil solution, (Ma 

and Ling, 2009). Fe deficiency causes symptoms in plants that severely affect growth and 

development. On the other hand, Fe overload and the presence of high Fe levels in tissues 

can lead to oxidative stress and damage owing to the generation of ROS through Fenton’s 

reaction (Halliwell and Gutteridge, 1999). This situation is more likely to occur under 

waterlogging conditions (Nikolic and Pavlovic, 2018). 

The mechanisms developed for higher plants to acquire Fe from soils could be 

classified into two strategies. Non-graminaceous plants have evolved Strategy I which 

consists in the induction of the activity of an H
+
-ATPase pump associated to the plasma 

membrane that acidifies the rhizosphere, a ferric reductase oxidase (FRO) that localizes at 

the plasma membrane and catalyzes the reduction of Fe
3+

 to Fe
2+

, and a Fe
2+

-transporter, 

so-called iron regulated transporter (IRT) (Kobayashi and Nishizawa, 2012). The 

expression of these genes is regulated by a FER/FER-like transcription factor (Lucena et 

al., 2006). Meanwhile graminaceous plants have adopted Strategy II which is based on the 

release of phytosiderophores to the rhizosphere to chelate Fe
3+

 and the activity of 

transporters that take Fe
3+

-phytosiderophore complexes into the root symplast, called 

yellow stripe (YS) and yellow stripe-like (YSL) (Kobayashi and Nishizawa, 2012). In some 

plant species, these two strategies coexist, such as the case of rice (Ishimaru et al., 2006). 

NO is involved in the regulation of both Fe-uptake strategies. 

It has been evidenced that in tomato and Arabidopsis, Fe deficiency causes an 

increase in NO levels evaluated by the employment of DAF-FM DA . Endogenous NO, and 

also exogenous NO (released by GSNO), reverts chlorosis (Graziano et al., 2002), 

positively modulates the expression of FIT (FER-like Iron-deficiency-induced transcription 

factor, in Arabidopsis) or FER (in tomato), and consequently, FRO and IRT (Graziano and 

Lamattina, 2007; Chen et al., 2010). In tomato, NR dependent pathway is likely involved in 

NO synthesis, given that plants under Fe-restriction treated with tungstate (a known NR 

inhibitor) have not shown NO accumulation and nia mutants (which display a 20% of NR 

activity present in WT plants) have a weaker induction of Strategy I gene expression 

(Graziano and Lamattina, 2007). Meanwhile, it has been proposed that in Arabidopsis, NO 

generated under Fe deficiency comes mainly from both NR and arginine-dependent 

synthesis (Chen et al., 2010). In addition, assays with cPTIO, an NO scavenger, confirmed 
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that NO induces the expression of FER and favours its stability by inhibiting its 

proteasomal degradation (Meiser et al., 2011).  

The effect of NO on FER/FIT accumulation is paralleled by auxins and ethylene. 

The interplay between NO and auxins has been addressed early whereas ethylene has 

recently emerged as a new player in conjunction with NO in plant mineral nutrition (García 

et al., 2011). Chen and co-workers (2010) have proven that Fe deficiency triggers auxins 

accumulation that leads to a NO burst and the subsequent induction of FIT in Arabidopsis, 

while other works describe the involvement of ethylene in this response (Lucena et al., 

2006; García et al., 2010). It has been evidenced by the assays performed in Arabidopsis 

and cucumber plants, using an ethylene precursor (1-aminocyclopropane-1-carboxylic 

acid), an inhibitor (silver thiosulphate), and an NO donor (GSNO) and scavenger (cPTIO), 

that Fe deficiency provokes NO accumulation that induces ethylene synthesis that, in turn, 

enhances NO levels (García et al., 2011). Thus ethylene would be the responsible for FIT 

induction. Taken these data together, we can speculate a model of low Fe responses (Fig. 4) 

in which low Fe levels may induce the increase in auxins that result in NO accumulation 

and the subsequent ethylene raise leads to FIT regulated Strategy I gene expression. 

However, it is worth mentioning that ethylene and NO are also able to modulate auxins 

activity (Stepanova et al., 2007; Terrile et al., 2012). It would be interesting to study this 

proposed model in the light of the availability of Arabidopsis mutants for auxins, ethylene 

and NO.  

Research focused on NO role in Fe acquisition by graminaceous plants is less 

abundant than that focusing on plants using Strategy I. Increased NO levels were found in 

rice roots in response to Fe-deficiency, assessed by DAF-FM DA fluorescence (Sun et al., 

2017; Zhu et al., 2018). Interestingly, Fe-deficient plants showed increased NR expression 

and activity, supporting a role in NO biosynthesis in this condition (Sun et al., 2017). 

Recently, it has been reported that rice plants grown under Fe-deficient supply in the 

presence of NH4
+
 showed enhanced NO levels and have higher expression levels of the Fe 

transporters OsIRT1 (corresponding to Strategy I) and OsYSL15 (corresponding to 

Strategy II) than plants grown under Fe-deficient supply but in the presence of NO3
-
, 

suggesting that an oxidative NO synthesis pathway could be also operative (Zhu et al., 

2018). The induced expression of the Fe transporters could be related to the differential NO 
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accumulation suggesting a role for NO in Fe-deficiency responses in graminaceous plants, 

although, more studies are required to confirm this hypothesis. It has also been established 

that changes in root architecture in response to Fe deficiency are mediated by NO and 

auxins. NO acts downstream of auxins, similarly to that observed in Strategy I plants (Sun 

et al., 2017).   

Several studies have highlighted the importance of shoot-root communication for 

inducing Fe-deficiency responses (Durrett et al., 2007; García et al., 2013; Chen et al., 

2018). García and colleagues (2013) revealed that foliar Fe fertilization blocks Fe-

deficiency responses related to Fe-acquisition in different plant species and these results 

were confirmed in mutants expressing constitutively Fe-acquisition genes. One relevant 

transporter involved in Fe loading into the phloem is Oligopeptide Transporter 3 (OPT3) 

that is able to transport Fe, likely in a chelated form. The exact nature of the signal 

molecule implicated in this regulation has not been described yet but, recently, it has been 

reported that this signal requires functional expression of OPT3 for repression of ethylene 

synthesis and GSNOR activity in Arabidopsis roots (García et al., 2018). It is hypothesized 

that under Fe-deficient conditions, this signal is not sent from shoots to roots, inducing 

ethylene synthesis and GSNOR activity in roots, suggesting that low GSNO levels are 

required for ethylene and NO accumulation, leading to Fe deficiency responses. In this 

regard, it is relevant to note that GSNO levels in cells regulate the extent of S-nitrosation 

(Begara-Morales et al., 2018). Even though García and co-workers (2018) did not 

determine NO and auxin levels, it could be suggested, considering all data, that at sufficient 

Fe supply, this iron signal could be repressing auxins in the proposed model. 

As mentioned above, roots of Arabidopsis plants grown under Fe deficient 

conditions showed a low content of GSNO (Shanmugam et al., 2015; García et al. 2018). 

However, it is worth to mention that it has been evidenced an increase of glutathione (GSH) 

levels in these conditions (Shanmugam et al., 2015; García et al. 2018), and this increase 

could be required to trigger NO accumulation, as illustrated by the absence of DAF-FM 

fluorescence accumulation when plants were incubated with an inhibitor of GSH synthesis 

(buthionine sulfoximine) (Shanmugam et al., 2015). This piece of evidence adds more 

complexity to Strategy I response regulation and it would be interesting to thoroughly study 
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GSH and NO interaction taking into account the Strategy I regulation by the 

phytohormones auxins and ethylene. 

Moreover, NO also plays an important role in internal Fe homeostasis under Fe-

sufficient and deficient supply. NO improves the internal availability of Fe (Graziano et al., 

2002; Jasid et al., 2008; Simontacchi et al., 2012). This characteristic relies, at least in part, 

on the ability to form nitrosyl-Fe complexes. These complexes consist of one or two 

molecules of NO attached to low molecular weight thiol ligand and coordinated with an 

atom of Fe, resulting in mononitrosyl- or dinitrosyl Fe complexes (MNIC and DNIC, 

respectively), that contribute to the labile iron pool, the fraction readily bioavailable of total 

Fe (Simontacchi et al., 2012). Through the formation of this kind of complexes, Fe is kept 

in a redox safety and available form for plant metabolism (Jasid et al., 2008; Simontacchi et 

al., 2012). 

On the other hand, NO has been described to mediate the accumulation of ferritin in 

response to Fe (Murgia et al., 2002) by triggering ubiquitinilation of ferritin repressor 

(Arnaud et al., 2006). Ferritins are ubiquitous proteins that storage Fe in a safely form, 

preventing Fenton reactions (Galatro and Puntarulo, 2007). More recently, it has been 

reported that NO leads to increased ferritin expression during senescence in Lotus 

japonicus nodules (Chungopast et al., 2017). Another protein relevant regarding Fe 

homeostasis is frataxin. This mitochondrial protein is involved in the assembly of Fe-S 

clusters. Arabidopsis frataxin knock-down plants displayed high Fe levels in mitochondria 

and plastids in roots, leading to oxidative damage (Busi et al., 2006). These plants showed 

increased NO that ameliorates oxidative stress either by inducing ferritin expression or by a 

direct antioxidant function (Martin et al., 2009). It would be interesting to explore the 

contribution of MNIC and DNIC formation to avoid high free Fe levels in these mutants.   

Regarding the improvement of Fe availability, it could be pointed out a role for NO 

in Fe utilization efficiency. Reports evidencing a modulation of Fe remobilization by NO 

have been recently published. Putrescine induced NO accumulation in Arabidopsis triggers 

changes in cell-wall composition leading to Fe release from cell-walls and increasing Fe 

available levels (Zhu XF et al., 2016). Zhu and colleagues (2018) reached to the same 

conclusion in rice plants grown under Fe deficient supply but in the presence of NH4
+
.  
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It would be interesting for future research to deepen on the knowledge about NO 

regulation of Fe acquisition in Strategy II plants, and to investigate the role of NO in the 

modulation of the mechanisms implicated in Fe use efficiency for improve crops growth 

under Fe deficient conditions.   

 

NO and other mineral nutrients homeostasis 

 There are fewer studies regarding the interaction between NO and other mineral 

nutrient deficiencies like magnesium (Mg) and zinc (Zn). Here we summarized some of the 

current information regarding NO role under some responses to these mineral disorders. 

 In Arabidopsis plants exposed to Mg deficiency, root hair development is promoted, 

and using mutants with altered levels of NO and ethylene, the participation of both species 

was recently analyzed (Liu et al., 2017). Upon Mg deficiency, a burst of NO was observed, 

as well as an increase in ethylene production. Elongation and development of root hairs in 

plants exposed to Mg deficiency was impaired in the mutants nia1,2 and noa1 (with lower 

NO levels) and ein2‐5 and ein3‐1 (ethylene‐insensitive) (Liu et al., 2017). These findings 

were also confirmed by the use of a pharmacological approach, where the application of 

SNP to Mg sufficient wild type plants increased the length and density of root hairs, while 

the opposite effect was observed after the application of NO scavenger c-PTIO under Mg 

deficiency. In addition, the NOS inhibitor L-NAME and the NR inhibitor tungstate 

inhibited root hair development in Mg- deficient plants.  

Plants can be exposed to excess or deficiency of Zn, and as a micronutrient both 

conditions affect plant growth and development. Most of the reports involving NO and Zn 

interaction described increases in NO levels in response to high Zn (Xu et al., 2010; Duan 

et al., 2015; Feigl et al., 2016). However, there is a lack of knowledge about NO 

participation in plants exposed to Zn deficiency. It has been reported that the addition of a 

NO-donor (GSNO) during recovery experiments after Zn-deprivation lead to a reduced net 

Zn uptake from a 2 M Zn solution in wheat plants, suggesting that NO has the capacity to 

down-modulate the accumulation of Zn under conditions of adequate/high Zinc supply thus 

helping plants to prevent the rise of Zn within tissues (Buet et al., 2014). However, further 

studies are needed to disclose the specific effect of NO over Zn transport processes and on 

the transporters underlying them. 
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Mechanisms of NO participation in plant mineral nutrition  

It is evident from several reports that the increase in NO levels is a common event 

when plants are exposed to suboptimal amount of different elements, thus it could be 

considered as a general response to mineral imbalances (Fig. 5) (Wang et al., 2010; Buet 

and Simontacchi, 2015; Sun et al., 2015; Liu et al., 2017). NO may be produced in higher 

plants from a variety of enzymatic and non-enzymatic sources, that have been extensively 

reviewed (Moreau et al., 2010; Fröhlich and Durner, 2011; Gupta et al., 2011; Mur et al., 

2013; Astier et al., 2018) and may contribute to increase NO under mineral deficiencies.  

NO has a general effect in the regulation of root system architecture. It is known 

that plants facing mineral deficiencies adapt their root morphology, physiology and 

metabolism in order to explore the soil, modify the physical-chemistry properties of the 

rhizosphere and enhance nutrient uptake. Even though modifications in root system due to 

mineral scarcity largely depend on the nutrient availability and vary among plant species or 

cultivars (Kellermeier et al., 2013), NO can be considered a common component of some 

observed responses. NO also participates in the formation of root hair upon mineral nutrient 

restriction (Lombardo et al., 2006), enhancing nutrient acquisition by the increase in the 

surface area of roots. 

A positive correlation seems to be operative between NO and ethylene, where NO 

stimulates ethylene synthesis and vice versa (Wang et al., 2009; García et al., 2011; Zhu et 

al., 2017). Both NO and ethylene enhance auxin levels in roots exposed to Mg deficiency, 

likely affecting its transport (Liu et al., 2018). In turn, elevated auxin levels exert a positive 

feedback loop, being necessary for the increased NO and ethylene levels in Mg-deficient 

plants (Liu et al., 2018). It has also been shown the existence of a close interrelationship 

between DELLAs, a key effector in gibberellin signaling, and NO signaling in plant 

responses to P-deprivation (Wu et al., 2014). These findings pointed out the relevance of 

the complex interaction in which NO may influence phytohormone biosynthesis, 

catabolism, conjugation, transport, perception or transduction (Freschi, 2013).   
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PTM of proteins impact plant performance under physiological and stress 

conditions (Domingos et al., 2015; Simontacchi et al., 2015; Begara-Morales et al., 2018). 

NO can react with superoxide anion to give peroxynitrite (ONOO
-
), a highly reactive 

oxidant capable of adding a nitro group to the aromatic ring of tyrosine residues present in 

proteins. It is worth mentioning that despite being a result from a non-enzymatic reaction, 

nitrated proteins are present in low quantities under physiological conditions, representing 

only 1-2% of the total tyrosine pool (Radi 2004; Chaki et al., 2009; Lozano-Juste et al., 

2011; Kolbert et al., 2017) and tend to increase under stress conditions (David et al., 2015; 

Feigl et al., 2016). In soybean leaves, chloroplast proteins seem to be a target of this PTM, 

in coincidence with a proposed site for NO generation (Galatro et al., 2013, Ramos-Artuso 

et al., 2019). In Brassica qualitative differences in protein nitration patterns were observed 

between plant species with differences in plant performance under Zn toxicity conditions 

(Feigl et al., 2016). However, under short term P-deprivation in soybean leaves, although 

NO levels were increased, tyrosine nitration was not drastically affected (Ramos-Artuso et 

al., 2019). 

S-nitrosation is another PTM by which NO modulates protein activity through the 

attachment of a nitrosyl group to cysteinyl residues (Astier et al., 2011). S-nitrosation has 

emerged as a signal for plant growth and development processes and it has also been 

described that the level of S-nitrosation in proteins changes in response to abiotic stress 

(Yun et al., 2011; Ortega-Galisteo et al., 2012; Terrile et al., 2012; Albertos et al., 2015). 

The pattern of proteins showing this PTM was affected in mitochondria from plants 

exposed to NaCl (Camejo et al., 2013). Biological functions of NO in plants are partially 

mediated by S-nitrosation of transcription factors, and it was recently described that other 

important step in transcriptional control, the chromatin state, is also affected by NO 

(Mengel et al., 2017). The findings suggest that plant histone deacetylases might be targets 

of S-nitrosation or S-glutathionylation (incorporation of a glutathione molecule to a 

cysteinyl residue) resulting in the hyperacetylation of specific genes. This mechanism 

might operate facilitating the stress-induced transcription of genes. It has also been reported 

the modulation of a group of WRKY transcription factors, involved in abiotic stress 

tolerance, by NO (Imran et al., 2018). Most of the NO-responsive WRKY transcription 
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factors have a cysteine or a tyrosine residue near to the WRKY domain, suggesting a 

mechanism of regulation by S-nitrosation or tyrosine nitration.  

These common mechanisms help to explain the broad spectrum of NO actions that 

are put into play when plants are exposed to nutrient imbalances (Fig. 5), ranging from 

PTM in proteins, enzymes, transporters and transcription factors that contribute to perform 

some physiological responses, through the interaction with phytohormone action allowing 

to face with nutritional stress situations. 

 

Concluding remarks 

 In light of the evidence regarding the role of NO in plant mineral nutrition presented 

here, it should be highlighted its involvement in some responses to low nutrient supply, 

including macro and micronutrients. In most of these responses, a strong interaction with 

hormones (mainly auxins and ethylene) has been evidenced. Also, changes associated with 

root morphology or to the expression of specific proteins involved in nutrient homeostasis 

(such as transport proteins involved in uptake and translocation), and redox control (such as 

antioxidants and proteins as ferritin involved in safe Fe storage) has been described. Some 

interactions may be mediated by NO PTM of regulatory and targets proteins and also by the 

promotion of gene expression. It would be interesting to deepen the studies that link 

proteomic changes with organelle specific ionome in plants under specific mineral nutrient 

imbalances.  

 The increase in NO levels triggered by the deficiency of a particular nutrient, also 

involves the regulation of the homeostasis of other nutrients as evidenced by the work of 

Meng and collaborators (2012). This evidence adds a greater complexity to the study of the 

responses modulated by NO under mineral nutrition, implying a regulatory network of 

plant ionome. The regulation of plant ionome by NO constitutes a field of study that 

remains largely unexplored and the advances in this area of research could lead to an 

integral knowledge about the regulation of plant mineral nutrition. In addition, there is a 

lack of knowledge, likely to due technical hitches, regarding NO signaling in local and 

systemic responses to microelement deficiencies.  

 From the studies performed employing NO donors, a caution note should be added 

regarding the use of SNP as the only NO donor in a high number of works analyzed. This 
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widely used NO donor is a metal-NO complex that contains Fe and may release cyanide 

during the exposition. So assays employing other NO donors or scavengers are needed to 

strongly sustain the relationship between NO and the reported responses. 

 Different mechanisms could be involved in NO generation due to changes in 

mineral nutrition, where NR seems to have a critical role. The specific level of NO required 

to exert a particular function may be finely tuned by the molecules involved in its synthesis, 

consumption, or stabilization (such as endogenous GSNO and nitrosyl iron compounds) 

that would finally modulate (or trigger) the observed response. In this context, the potential 

use of NO donors (Marvasi 2017), as well as the possibility to elicit endogenous levels by 

modulating the sources and mechanisms involved in its generation/consumption, opens a 

great field of research in the search for a sustainable agriculture. 
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Table 1. Modulation of  NR activity by NO level under different nitrogen
 
supply 

Species Source of nitrogen  NO donor (or mutant) Time  Tissues NR activity References 

Chinese 

cabbage pakchoi 

(Brassica 

chinensis L.) 

1 mM KNO3 and 

0.25 mM (NH4)2SO4 

Up to 100 μM of SNP 

and DEA/NONOate (in 

the  nutrient solution) 

3 h Roots  205% at 40 µM SNP 

 282% at 80 µM 
DEA/NONOate 

Du et al., 2008 

Tomato 

(Solanum 

lycocarpum) 

0.250 mM (NH4)2SO4 

and two different 

levels of NO3
-: 0.5 

mM (low NO3
- 

supply) and 5 mM 

(high NO3
- supply) 

SNP and 

DEA/NONOate, up to 

10 μM (in the nutrient 

solution) 

3 h Roots  at low NO3
- supply up to 

2 μM SNP and 10 μM 

DEA/NONOate 

 at high NO3
- supply up 

to 10 μM of both NO 

donors 

Jin et al., 2009 

Wheat (Triticum 

aestivum L.) 

Plants grown in 

Hoagland solution 
(5mM KNO3 and 

1mM  NH4NO3) 

Up to 500 µM SNP or 

GSNO 
(in distilled water) 

Leaf segments in flasks 

with the NO donors 

under continuous light 

3 or 

21 h  

Leaf 

segments  
 

45% and 90% on 
average, at all incubation 

times with 10 and 500 µM 
SNP respectively 

 18% with 10 or 100 µM 
GSNO, and 26% with 500 

µM for 3h 

27% after 21 h with 500 
µM GSNO  

Rosales et al., 

2011 

Wheat (Triticum 

aestivum,   

cvs Spitfire and 

Westonia 1 

 

Nutrient solution 

similar to Hoagland 

and irrigated with N-

free nutrient solution 

for one week 

Up to 100 μM of SNP 

under different low 

(4mM) or high (40 

mM) N supply  as: 

KNO3, NH4Cl or 

NH4NO3  

3 

days 

 

Leaf tissues  Under low NO3
− or NH4

+ 
in both cultivars, and in 

low NH4NO3 in  Spitfire 

cultivar  

 Under high NO3
−,  but  

in high NH4NO3 in Spitfire 

cultivar 

Balotf  et al., 

2018 

Chlamydomona

s reinhardtii 

Cells grown in 8 mM 

amonium medium 

and then induced in 4 

mM NO3
- medium 

for 3h 

20 μM 

DEA/NONOate, or 50 

and 100 μM GSNO 

(continuous ligth) 

Up to 

60 

min  

 

Cells   60% after 10 and 20 min 
with DEA-NONOate and 

 about 60% after 
40 min with GSNO 

Sanz-Luque et 

al., 2013 

Macroalga 

Gracilaria 

chilensis 

Seawater enriched 

with 100 % von 

Stosch medium (0.5 

mM NaNO3) 

1 mM SNP   2 h Unbranched 

tips (2 cm) 
99.98 %  Chow et al., 

2013 

Arabidopsis 

thaliana 

Modified Murashige–

Skoog nutrient 

solution  

Nitrate (about 39,3 

mM) composed of 

half KNO3 and half 
NH4NO3  

Columbia-0 WT and 

the mutants gsnor1 and 

nox12 

- Leaf extracts 

 
 in gsnor1 mutant  
 

nox1 mutant did not 

exhibit altered NR activity  

Frungillo et 

al., 2014 

1 Spitfire (high nitrogen use efficiency, NUE) and Westonia (normal NUE) 
2nox1 plants overproduce free NO (30-40 % more SNO than WT under basal conditions), and gsnor1 plants accumulate 

high levels of GSNO. 

DEA/NONOate, diethylamine NONOate; SNP, sodium nitroprusside; GSNO, S-nitrosoglutathion
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Figure legends 

 

Fig. 1. NO mediated responses affecting nitrogen uptake and assimilation.  

Changes in nitrogen supply may enhance NR activity (or expression) leading to NO 

accumulation that triggers root growth and the modulation of NH4
+
 and NO3

- 
transporters. 

However, other sources of NO generation may enhance NO levels. NO may control its 

bioavailability through the modulation of NR activity, and S-nitrosoglutathione (GSNO) 

levels due to GSNO reductase 1 (GSNOR1) inhibition and GSNO synthesis. Non-

symbiotic haemoglobins (nsHb) may also regulate NO steady state. 1- Sun et al., 2015; 2- 

Manoli et al., 2014; 3- See data in Table 1; 4- Frungillo et al., 2014; 5- Perazzolli et al., 

2004; 6- Sanz-Luque et al., 2013; 7- Lindermayr et al., 2018. Arrows show induction and 

blocked lines show inhibition.  

 

Fig. 2. Low P-induced responses in plants mediated by NO and its interaction with 

hormones. 

Low P in soils induces NO synthesis in plants (for details see the text). NO accumulation 

was related to enhanced acid phosphatase (AP) release and P-uptake in roots, increased 

organic acid (OA) exudation and H
+
 release to the rhizosphere. NO interaction with 

hormones participates in root morphological changes. NO acts upstream of ethylene leading 

to cell wall composition changes and enhanced P remobilization and translocation to shoots 

through increased P transporter expression. Ethylene is also involved in the modulation of 

AP activity, P-uptake and OA exudation in response to low P levels. Low P and NO elicit 

auxin accumulation that was also associated with H
+
 release. NO also inducts alternative 

oxidase (AOX) activity that allows metabolic flexibility. 1- Wang et al., 2010; 2- Zhu CQ 

et al., 2016; 3- Zhu et al., 2017; 4- Ramos-Artuso et al., 2018; 5- Zandonadi et al., 2010; 6- 

Shen et al., 2006; 7- Correa-Aragunde et al., 2015; 8- Royo et al., 2015; 9- Roldan et al., 

2013; 10- Li et al., 2011. Arrows show induction and blocked lines inhibition.  

 

Fig. 3. Low K
+
 induced responses in plants mediated by NO. 

It was reported that in tobacco plants susceptible to K
+ 

restriction, NO increased in roots 

under K
+
-starvation, leading to root morphological changes. In plants exposed to excess Fe, 

NO induce K
+
 loss via nonselective cation channels (NSCCs). NO also mediates K

+
 

homeostasis by the negative regulation of K
+
 uptake and inactivates the K

+
 inward 

rectifying channel (IK, in). Outward rectifying channel (IK, out) is inhibited through S-

nitrosation. In guard cells, the production of NO is required for ABA-induced stomatal 

closure. In addition, there is an attenuating effect of NO breaking the ABA stimulus by the 

inhibition and degradation of the ABA receptor through the nitration of Tyr residues. 1- 

Song et al., 2018; 2- Xia et al., 2014; 3- Garcia-Mata and Lamattina, 2003; 4- Garcia-Mata 

et al., 2003; 5- Zhang et al., 2018; 6- Laxalt et al., 2016; 7- Chen et al., 2016; 8- Sokolovski 

and Blatt, 2004. Arrows show induction and blocked lines inhibition. 
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Fig. 4. Low Fe-induced responses mediated by NO and proposed model for low Fe-

induced responses in strategy I plants mediated by NO-phytohormone interaction. 

Panel A. Low Fe in soil promotes NO synthesis through NR and Arg-dependent via. NO 

accumulation elicits Fe-acquisition responses. Strategy I consists in FRO and IRT 

expression and H
+
 release to rhizosphere through H

+
-ATPase pump expression. An 

unknown signal from Fe-sufficient shoots is sent to roots and inhibits Strategy I responses, 

this signal is absent in low Fe conditions. It was also reported that NO triggers the 

expression of YSL-like Fe-transporter in rice, a plant that employs Strategy II. Panel B. In 

shoots, low Fe impairs chlorophyll synthesis leading to leaf chlorosis which is reverted by 

NO, possibly through the formation of mononitrosyl- (MNIC) and dinitrosyl-Fe complexes 

(DNIC) which contribute to labile iron pool (LIP). More studies are required to confirm this 

hypothesis. Panel C. Proposed model for NO-phytohormone interaction in low Fe-induced 

responses in Strategy I plants. Low Fe promotes auxins increase that acts upstream to NO. 

Auxins are modulated through NO and NO-triggered ethylene accumulation. In turn, 

ethylene elicits FER/FIT transcription factor which, in turn, elicits Strategy I Fe-acquisition 

responses. Ethylene is also able to induct NO accumulation. NO interaction with auxins 

participates in root morphological changes and Fe-acquisition induction. 1- Graziano and 

Lamattina, 2007; 2- Chen et al., 2010; 3- Jin et al., 2011; 4- García et al., 2018; 5- Sun et 

al., 2017; 6- Zhu et al., 2018; 7- Simontacchi et al., 2012; 8- García et al., 2011; 9- Terrile 

et al., 2012; 10- Stepanova et al., 2007; 11- García et al., 2010. Arrows show induction and 

blocked lines inhibition, dotted line stands for proposed mechanisms.   

 

Fig. 5. Common mechanisms involving NO participation under micro and 

macronutrient scarcity. Low nutrient availability promotes NO accumulation. NO leads to 

plant acclimation to nutrient scarcity through PTM to proteins. For some elements, it was 

reported that NO leads to auxins and ethylene accumulation that elicits nutrient acquisition 

and reutilization responses. Ethylene and auxins are also able to induct NO accumulation. 

NO interaction with auxins and ethylene participates in root morphological changes and 

nutrient acquisition induction. Arrows show induction and blocked lines inhibition.   
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