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Abstract

We present a greedy version of an existing metaheuristic al-
gorithm for a special version of the Cutting Stock Problem
(CSP). For this version, it is only possible to have indirect
control over the patterns via a vector of continuous values
which we refer to as a weights vector. Our algorithm itera-
tively generates new weights vectors by making local changes
over the best weights vector computed so far. This allows us
to achieve better solutions much faster than is possible with
the original metaheuristic.

Introduction
In this paper, we deal with a variant of the Cutting Stock
Problem CSP that arises in the forestry industry; this prob-
lem is a type of population harvesting, such as harvesting of
plants or lumber. Viewed from an optimization perspective,
forest harvesting is a bilevel optimization problem. The first
lower level is the individual tree stem which must be cut,
or “‘bucked” using forestry terminology, to optimize the to-
tal value of the log products produced; this is referred to as
“bucking-to-value”. The second level is the stand or forest,
which we consider as a unit. The objective is to minimize the
difference between the global products pattern, i.e. the total
amounts of products cut from the stand or forest, and the
original customer demand; this is referred to as “bucking-
to-demand”.

Bucking-to-value is a recursive problem, i.e. maximize
value by cutting the first product and then maximize the
value of the remainder. Therefore it can be solved by dy-
namic programming (DP) (Pnevmaticos and Mann 1972).
The best current approach for the bucking-to-demand is to
simulate the cutting of a sample of tree stems, starting with
the original price (or weight) vector and adjusting it to better
meet overall customer demand. After carrying out a simula-
tion the chosen weights vector is used by harvesting ma-
chines to cut the real raw material elements, i.e. the full pop-
ulation of tree stems. In this paper we extend a well-known
adaptive control heuristic (Murphy, Marshall, and Bolding
2004) by incorporating new greedy features.
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Population Harvesting CSP
In this problem we have a fixed number r = 1 . . . |R| of
raw material pieces each with its own dimensions σr ∈ S
(e.g. tree stems of specific dimensions). Due to the differ-
ent dimensions of the raw material pieces, the patterns differ
for each piece. During search the metaheuristic produces a
global pattern p = 〈a1, . . . , a|M|〉, where aj ∈ [0, 1] rep-
resents the percentage of units of product mj ∈ M cut
from the set of raw material pieces R. The weight vector is
v ∈ R+

|M|, where each vj represents the value associated
with the product mj ∈ M. The A algorithm, usually im-
plemented as a DP procedure, simulates the cutting of each
raw material piece so as to maximize its total value based on
the values of the products (v). The mix of products that we
obtain represents a global product pattern. A can be repre-
sented by the following mapping function:

A(M, < σ1, . . . , σ|R| >, v) → p. (1)

The demands for products d ∈ [0, 1]|M| is a vector where
dj represents the percentage of units of product mj ∈ M
that are demanded. To measure the similarity of demanded
and obtained amounts we use the Apportionment Degree
(AD) (Kivinen, Uusitalo, and Nummi 2005). The AD func-
tion maps the difference between the global products pattern
p and the demand d to [0, 100], where 100 means a perfect
match. However, typically there is waste from the cutting
process, therefore the optimal pattern cannot reach the AD
of 100. The AD is defined as follows:

AD(p, d) = 100(1−

|M|∑

j=1

|aj − dj |

2
). (2)

An Improved Adaptive Control Heuristic
In this paper we present enhancements to a well-known
simulated annealing-like algorithm (SALA) from the liter-
ature (Murphy, Marshall, and Bolding 2004). SALA algo-
rithms are characterized by an accept-worse-solutions crite-
rion that allows a wider search in the solution space. Figure
1 is a step-by-step illustration of such a metaheuristic.

The new greedy features are related to the shaded modules
of the diagram. The first shaded module is where a subset of
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Figure 1: Metaheuristic for the Population Harvesting CSP.

variables y is selected for changing the current weight vec-
tor v′. In the original metaheuristic the selection is done ran-
domly. Instead, we include a greedy feature that computes
specific probabilities of selection for each variable, depend-
ing on the difference between the percentages of product ob-
tained (aj) and product demanded (dj):

p(vj) =
|aj − dj |∑|M|
i=1 |ai − di|

. (3)

In the second shaded module, for each variable in y an
expansion factor is selected randomly within the interval
(0, E(mj)]. In the original metaheuristic the same maxi-
mum expansion factor (E(mj)) is used for all the product
types. In contrast, we calculate a specific maximum expan-
sion factor for each selected product based on its demand
matching (magnified/reduced by k ∈ R+):

E(mj) = k|aj − dj |. (4)

Evaluation and Conclusions
In this section we compare the original metaheuristic with
our extension using real forestry data from an industry part-
ner. In Figure 2 we analyze a very high demand for the
second cheapest product (85%) and equally low demand of
each of the other three products (5% each). We used the
same settings for the two metaheuristics: threshold steps
in {0.050, 0.020, 0.010, 0.005, 0.001}, number of iterations
for each threshold step in {5, 5, 5, 5,∞}, and time-outs of
{50, 100, 150, 200} seconds. In addition, the initial vector of
values v is the same for both techniques and only one type
of product is selected as a subset y in each iteration. Specif-
ically, for the original metaheuristic E(mi) = 2, ∀i ∈ M,
and for the greedy metaheuristic k = 5 in Equation 4.
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Figure 2: AD and benefit (e) for several times-outs.

Figure 2 shows the quality of the best global product
patterns obtained. The improvement in performance of our
greedy features is especially noticeable when the available
computation time is limited, as in the case in many real-life
on-line applications. In some cases the improvements led to
benefits in the thousands of euros for the real-life forestry
harvesting instance analyzed.

Future work will focus on applying this approach to other
types of real-life CSPs.
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