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Abstract

The alignment of word embedding spaces in

different languages into a common crosslin-

gual space has recently been in vogue. Strate-

gies that do so compute pairwise alignments

and then map multiple languages to a single

pivot language (most often English). These

strategies, however, are biased towards the

choice of the pivot language, given that

language proximity and the linguistic char-

acteristics of the target language can strongly

impact the resultant crosslingual space in detri-

ment of topologically distant languages. We

present a strategy that eliminates the need

for a pivot language by learning the mappings

across languages in a hierarchical way. Experi-

ments demonstrate that our strategy signifi-

cantly improves vocabulary induction scores

in all existing benchmarks, as well as in a new

non-English–centered benchmark we built,

which we make publicly available.

1 Introduction

Word embeddings have changed how we build text

processing applications, given their capabilities

for representing the meaning of words (Mikolov

et al., 2013a; Pennington et al., 2014; Bojanowski

et al., 2017). Traditional embedding-generation

strategies create different embeddings for the same

word depending on the language. Even if the

embeddings themselves are different across lan-

guages, their distributions tend to be consistent—

the relative distances across word embeddings

are preserved regardless of the language (Mikolov

et al., 2013b). This behavior has been exploited

for crosslingual embedding generation by aligning

any two monolingual embeddings spaces into one

(Dinu et al., 2014; Xing et al., 2015; Artetxe et al.,

2016).

Alignment techniques have been successful in

generating bilingual embedding spaces that can

later be merged into a crosslingual space using

a pivoting language, English being the most

common choice. Unfortunately, mapping one

language into another suffers from a neutrality

problem, as the resultant bilingual space is

impacted by language-specific phenomena and

corpus-specific biases of the target language

(Doval et al., 2018). To address this issue,

Doval et al. (2018) propose mapping any two

languages into a different middle space. This

mapping, however, precludes the use of a pivot

language for merging multiple bilingual spaces

into a crosslingual one, limiting the solution to a

bilingual scenario. Additionally, the pivoting

strategy suffers from a generalized bias problem,

as languages that are the most similar to the

pivot obtain a better alignment and are therefore

better represented in the crosslingual space. This is

because language proximity is a key factor when

learning alignments. This is evidenced by the

results in Artetxe et al. (2017), which indicate

that when using English (Indo-European) as a

pivot, the vocabulary induction results for Finnish

(Uralic) are about 10 points below the rest of the

Indo-European languages under study.

If we want to incorporate all languages into

the same crosslingual space regardless of their

characteristics, we need to go beyond the train-

bilingual/merge-by-pivoting (TB/MP) model,

and instead seek solutions that can directly

generate crosslingual spaces without requiring

a bilingual step. This motivates the design of

HCEG (Hierarchical Crosslingual Embedding

Generation), the hierarchical pivotless approach

for generating crosslingual embedding spaces

that we present in this paper. HCEG addresses

both the language proximity and target-space bias

problems by learning a compositional mapping

across multiple languages in a hierarchical fash-

ion. This is accomplished by taking advantage of

a language family tree for aggregating multiple

languages into a single crosslingual space. What

distinguishes HCEG from TB/MP strategies is

that it does not need to include the pivot language
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in all mapping functions. This enables the option

to learn mappings between typologically similar

languages, known to yield better quality mappings

(Artetxe et al., 2017).

The main contributions of our work include:

• A strategy1 that leverages a language family

tree for learning mapping matrices that are

composed hierarchically to yield crosslingual

embedding spaces for language families.

• An analysis of the benefits of hierarchically

generating mappings across multiple lan-

guages compared to traditional unsupervised

and supervised TB/MP alignment strategies.

2 Related Work

Recent interest in crosslingual word embedding

generation has led to manifold strategies that

can be classified into four groups (Ruder et al.,

2017): (1) Mapping techniques that rely on a

bilingual lexicon for mapping an already trained

monolingual space into another (Mikolov et al.,

2013b; Artetxe et al., 2017; Doval et al., 2018);

(2) Pseudo-crosslingual techniques that generate

synthetic crosslingual corpora that are then used

in a traditional monolingual strategy, by randomly

replacing words of a text with their translations

(Gouws and Søgaard, 2015; Duong et al., 2016)

or by combining texts in various languages into

one (Vulić and Moens, 2016); (3) Approaches

that only optimize for a crosslingual objective

function, which require parallel corpora in the

form of aligned sentences (Hermann and Blunsom,

2013; Lauly et al., 2014) or texts (Søgaard et al.,

2015); and (4) Approaches using a joint objective

function that optimizes both mono- and cross-

lingual loss, that rely on a parallel corpora aligned

at the word (Zou et al., 2013; Luong et al., 2015)

or sentence level (Gouws et al., 2015; Coulmance

et al., 2015).

A key factor for crosslingual embedding

generation techniques is the amount of supervised

signal needed. Parallel corpora are a scarce

resource—even nonexistent for some isolated

or low-resource languages. Thus, we focus on

mapping-based strategies that can go from

requiring just a bilingual lexicon (Mikolov et al.,

2013b) to absolutely no supervised signal (Artetxe

1Resources can be found at https://github.com/

ionmadrazo/HCEG.

et al., 2018). This aligns with one of the premises

for our research to enable the generation of a

single crosslingual embedding space for as many

languages as possible.

Mikolov et al. (2013b) first introduced a

mapping strategy for aligning two monolingual

spaces that learns a linear transformation from

source to target space using stochastic gradient

descent. This approach was later enhanced with

the use of least squares for finding the optimal

solution, L2-normalizing the word embedding, or

constraining the mapping matrix to be orthogonal

(Dinu et al., 2014; Shigeto et al., 2015; Xing

et al., 2015; Artetxe et al., 2016; Smith et al.,

2017); enhancements that soon became standard

in the area. These models, however, are affected

by hubness, where some words tend to be in the

neighborhood of an exceptionally large number

of other words, causing problems when using

nearest-neighbor as the retrieval algorithm, and

neutrality, where the resultant crosslingual space

is highly conditioned by the characteristics of the

language used as target. Hubness was addressed by

a correction applied to nearest-neighbor retrieval

whether using a inverted softmax (Smith et al.,

2017) or a cross-domain similarity local scaling

(Conneau et al., 2017) later incorporated as

part of the training loss (Joulin et al., 2018).

Neutrality was noticed by Doval et al. (2018), for

which they proposed using two independent linear

transformations so that the resulting crosslingual

space is in a middle point between the two

languages rather than just on the target language,

and therefore not biased towards either language.
Other important trends in the area concentrate

on (i) the search of unsupervised techniques

for learning mapping functions (Conneau et al.,

2017; Artetxe et al., 2018) and their versatility

in dealing with low-resource languages (Vulić

et al., 2019); (ii) the long-tail problem, where

most existing crosslingual embedding generation

strategies tend to under-perform (Braune et al.,

2018; Czarnowska et al., 2019); and (iii) the

formulation of more robust evaluation procedures

oriented to determining the quality of generated

crosslingual spaces (Glavas et al., 2019; Litschko

et al., 2019).

Most existing works focus on a bilingual

scenario. Yet, there is an increase on the interest

for designing strategies that directly consider more

than two languages at training time, thus creating

fully multilingual spaces that do not depend on the
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TB/MP model (Kementchedjhieva et al., 2018)

for multilingual inference. Attempts to do so

include the efforts by Søgaard et al. (2015), who

leverage an inverted index based on the Wikipedia

multilingual links to generate multilingual word

representations. Wada et al. (2019) instead use a

sentence-level neural language model for directly

learning multilingual word embeddings and as a

result bypassing the need for mapping functions.

In the paradigm of aligning pre-trained word

embeddings where we focus, Heyman et al.

(2019) propose a technique that iteratively builds

a multilingual space starting from a monolingual

space and incrementally incorporating languages

to it. Even if this strategy deviates from the tradi-

tional TB/MP model, it still preserves the idea of

having a pivot language. Chen and Cardie (2018)

separate the mapping functions into encoders and

decoders, which are not language-pair dependent,

unlike those in the TB/MP model. This removes

the need for a pivot language, given that the

multilingual space is now latent among all encoder

and decoders and not centered in a specific

language. The same pivot-removal effect is

achieved by the strategy introduced in Jawanpuria

et al. (2019), which generalizes a bilingual word

embedding strategy into a multilingual counterpart

by inducing a Mahalanobis similarity metric in the

common space. These two strategies, however,

still consider all languages equidistant to each

other, ignoring the similarities and differences

that lay among them.

Our work is inspired by Doval et al. (2018)

and Chen and Cardie (2018), in the sense that

it focuses on obtaining a non-biased or neutral

crosslingual space that does not need to be cen-

tered in English (or any other pivot language)

as the primary source. This neutrality is obtained

by a compositional mapping strategy that hierar-

chically combines mapping functions in order to

generate a single, non-language-centered crosslin-

gual space, enabling a better mapping for

languages that are distant or non-typologically

related to English.

3 Proposed Strategy

A language family tree is a natural categorization

of languages that has historically been used by

linguistics as a reference that encodes similarities

and differences across languages (Comrie, 1989).

For example, based on the relative distances

among languages in the tree illustrated in Figure 1,

we infer that both Spanish and Portuguese are

relatively similar to each other, given that they are

part of the same Italic family. At the same time,

both languages are farther apart from English than

each other, and are radically different with respect

to Finnish.
A language family tree offers a natural

organization that can be exploited when building

crosslingual spaces that integrate typologically

diverse languages. We leverage this structure

in HCEG, in order to generate a hierarchically

compositional crosslingual word embedding

space. Unlike traditional TB/MP strategies that

generate a single crosslingual space, the result

of HCEG is a set of transformation matrices

that can be used to hierarchically compose the

space required in each use-case. This maximizes

the typological intra-similarity among languages

used for generating the embedding space, while

minimizing the differences across languages

that can hinder the quality of the crosslingual

embedding space. Thus, if an external application

only considers languages that are Germanic, then

it can just use the Germanic crosslingual space

generated by HCEG, whereas if it needs languages

beyond Germanic it can utilize a higher level

family, such as the Indo-European. This cannot

be done with the traditional TB/MP model. In this

case, if an application is, for example, using only

Uralic languages, then it would be forced to use an

English-centered crosslingual space; this would

in a decrease in the quality of the crosslingual

space used because of the potential bad quality

of mappings between typologically different

languages, such as Uralic and Indo-European

languages (Artetxe et al., 2017).

3.1 Definitions

Let L = {l1, . . . , l|L|} be a set of languages

considered, F = {f1, . . . , f|F |} a set of language

families, and S = L ∪ F = {s1, . . . , s|F |+|L|} a

set of possible language spaces. Let Xl ∈ R
Vl×d

be the set of word embeddings in language l,

where Vl is the vocabulary of l and d is the number

of dimensions of each embedding. Consider T as

a language family tree (exemplified in Figure 1).

The nodes in T represent language spaces in

S, while each edge represents a transformation

between the two nodes attached to it—that is,

Wsa←−sb ∈ R
d×d refers to the transformation from
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Figure 1: Sample language tree representation simplified for illustration purposes (Lewis and Gary,

2015).

space sb to space sa. For notation ease, we refer

to W
sa

∗
←−sb

as the transformation that results from

aggregating all transformations in the path from

sb to sa, using the dot product:

W
sa

∗
←−sb

= Wsa←−st1
Wst1←−st2

Wst2←−sb (1)

where the path from sa to sb is sa, st1 , st2 , sb; st1
and st2 are intermediate spaces between sa and sb.

Finally, P is a set of bilingual lexicons, where

Pl1,l2 ∈ {0, 1}
Vl1
×Vl2 is a bilingual lexicon with

word pairs in languages l1 and l2. Pl1,l2(i, j) = 1
if the ith word of Vl1 and the jth word of Vl2 are

aligned, Pl1,l2(i, j) = 0 otherwise.

Example. Consider the set of embeddings for

English Xen, the transformation that converts

embeddings in the English space to the

Germanic language family space W
sge

∗
←−sen

,

and the English embeddings transformed to the

Germanic space W
sge

∗
←−sen

Xen. HCEG makes

it so that W
sge

∗
←−sen

Xen and W
sge

∗
←−sde

Xde (the

transformed embeddings of English and German)

are in the same Germanic embedding space,

while W
sin

∗
←−sen

Xen and W
sin

∗
←−ses

Xes (the

transformed embeddings of English and Spanish)

are in the same Indo-European embedding space.

In the rest of this section we describe HCEG

in detail. Values given to each hyperparameter

mentioned in this section are defined in

Section 4.4.

3.2 Embedding Normalization

When dealing with embeddings generated from

different sources and languages, it is important

to normalize them. For doing so, HCEG follows

a normalization sequence shown to be beneficial

(Artetxe et al., 2018), which consists of length

normalization, mean centering, and a second

length normalization. The last length normaliza-

tion allows computing cosine similarity between

embeddings in a more efficient manner, simpli-

fying the computation of cosine similarity to a

dot product given that the embeddings are of

unit-length.

3.3 Word Pairs

In order to generate a crosslingual embedding

space, HCEG requires a set P of aligned words

across different languages. When using HCEG in

a supervised way, P can be any existing resource

consisting of bilingual lexicons, such as the ones

described in Section 4.1. However, best advantage

of the proposed strategy is taken when using

unsupervised lexicon induction techniques, as

they enable generating input lexicons for any pair

of languages needed. Unlike TB/MP strategies

that can only take advantage of signal that involves

the pivot language, HCEG can use signal across

all combinations of languages. For example, a

TB/MP model where English is the pivot can

only use lexicons composed of English words.

Instead, HCEG can exploit bilingual lexicons from

other languages, such as Spanish-Portuguese or

Spanish-Dutch, that if using the language tree in

Figure 1 would reinforce the training ofWsit←−ses ,

Wsit←−spt and Wsit←−ses , Wsin←−sit , Wsin←−sge ,

Wsge←−sdu , respectively.

When using HCEG in unsupervised mode, P

needs to be automatically inferred. Yet, computing

eachPl1,l2 ∈ P given two monolingual embedding

matricesXl1 andXl2 is not a trivial task, asXl1 and
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Figure 2: Distributions of word rankings across languages. The coordinates of each dot (representing

a word pair) are determined by the position in the frequency ranking the word pair in each of the

languages. Numbers are written in thousands. Scores computed using FastText embedding rankings

(Grave et al., 2018) and MUSE crosslingual pairs (Conneau et al., 2017). Pearson’s correlation (ρ)

computed using the full set of word pairs, figures generated using a random sample of 500 word pairs

for illustration purposes.

Xl2 are not aligned in vocabulary or dimension

axes. Artetxe et al. (2018) leverage the fact that

the relative distances among words are maintained

across languages (Mikolov et al., 2013b), and thus

propose using a language-agnostic representation

Ml for generating an initial alignment Pl1,l2 :

Ml = sorted(XlX
⊤
l ) (2)

where given that Xl is length normalized, and

XlX
⊤
l computes a matrix of dimensions Vl × Vl

containing in each row the cosine similarities of

the corresponding word embedding with respect

to all other word embeddings. The values in each

row are then sorted to generate a distribution

representation of each word that in a ideal case

where the isometry assumption holds perfectly

would be language agnostic. Using the embedding

representations Ml1 and Ml2 , Pl1,l2 can be

computed by assigning each word its most similar

representation as its pair, that is, Pl1,l2(i, j) = 1 if:

j = arg max
1≤j≤Vl

Ml1(i, ∗)Ml2(j, ∗)
⊤ (3)

where Ml1(i, ∗) is the ith row of Ml1 and Ml2(j, ∗)
is the jth row of Ml2 .

The results in Artetxe et al. (2018) indicate

that this assumption is strong enough to generate

an initial alignment across languages. However,

as we demonstrate in Section 3.3, the quality

of this type of initial alignment is dependent on

the languages used, making this initialization not

applicable for languages that are typologically too

distant from each other—a statement also echoed

by Artetxe et al. (2018) and Søgaard et al. (2018).

To ensure a more robust initialization, we

enhance the strategy presented in Artetxe et al.

(2018) by introducing a new signal based on the

frequency of use of words. Lin et al. (2012) found

that the top-2 most frequent words tend to be

consistent across different languages. Motivated

by this result, we measure to what extent the

frequency rankings of words correlates across

languages. As shown in Figure 2, the word-

frequency rankings are strongly correlated across

languages, meaning that popular words tend to

be popular regardless of the language. We exploit

this behavior in order to reduce the search space

of Equation (3) as follows:

j = arg max
j−t≤j≤j+t

Ml1(i, ∗)Ml2(j, ∗)
⊤ (4)

where t is a value used to determine the search

window. Note that we assume the embeddings in

any matrix Xl are sorted in ascending order of

frequency, namely, the embedding in the first row

represents the most frequent word of language l.

Apart from improving the overall quality of the

inferred lexicons (see Section 5.1), incorporating

a frequency ranking based search as part of the

initialization reduces the computation time needed

as the search space is considerably reduced.

3.4 Objective Function

Unlike traditional objective functions that opti-

mize a transformation matrix for two languages

at a time, the goal of HCEG is to simultaneously

optimize the set of all transformation matrices W

such that the loss function L is minimized:

argmin
W
L (5)
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L is a linear combination of three different losses:

L = β1 ×Lalign + β2 × Lorth + β3 × Lreg (6)

whereLalign,Lorth,Lreg, represent the alignment,

orthogonality, and regularization losses, and β1,

β2, β3 are their weights.

Lalign gauges the extent to which training word

pairs align. This is done by computing the sum of

the cosine similarity among all word pairs in P :

Lalign = −
∑

Pl1,l2
∈P

Pl1,l2(Ws ̂l1,l2

∗
←−sl1

Xl1 ·

W
s ̂l1,l2

∗
←−sl2

Xl2)
(7)

where s
l̂1,l2

refers to the space in the lowest

common parent node for sl1 and sl2 in T (e.g.,

sês,en = sin in Figure 1). We found that using

s
l̂1,l2

instead of the space in the root node of T

improves the overall performance of HCEG, apart

from reducing the time taken for training (see

Section 5.3).

Several researchers have found it beneficial to

enforce orthogonality in the transformation matri-

ces W (Xing et al., 2015; Artetxe et al., 2016;

Smith et al., 2017). This constraint ensures that the

original quality of the embeddings is not degraded

when transforming them to a crosslingual space.

For this reason, we incorporate an orthogonality

constraint Lorth into our loss function in

Equation 8, with I being the identity matrix.

Lorth =
∑

Ws1←−s2
∈W

‖I −Ws1←−s2W
⊤
s1←−s2

‖ (8)

We also find it beneficial to include a regulariza-

tion term in L:

Lreg =
∑

Ws1←−s2
∈W

‖Ws1←−s2‖2 (9)

3.5 Learning the Parameters

HCEG utilizes stochastic gradient descent for

tuning the parameters in W with respect to the

training word pairs in P . In each iteration, L
is computed and backtracked in order to tune

each transformation matrix in W such that L
is minimized. Batching is used to reduce the

computational load in each iteration. A batch of

word pairs P̂ is sampled from P by randomly

selecting αlpairs language pairs as well as αwpairs

word pairs in each P̂l1,l2 ∈ P̂—for example, a

batch might consist of 10 P̂l1,l2 matrices each

containing 500 aligned words.

Iterations are grouped into epochs of αiter

iterations at the end of which L is computed

for the whole P . We take a conservative approach

as convergence criterion. If no improvement is

found in L in the last αconv epochs, the training

loop stops.

We achieve best convergence time initializing

each Ws1←−s2 ∈ W to be orthogonal. We tried

several methods for orthogonal initialization, such

as simply initializing to the identity matrix.

However, we obtained most consistent results

using the random semi-orthogonal initialization

introduced by Saxe et al. (2013).

3.6 Iterative Refinement

As shown by Artetxe et al. (2017), the initial

lexicon P is iteratively improved by using the

generated crosslingual space for inferring a new

lexicon P ′ at the end of each learning phase

described in Section 3.5. More specifically, when

computing each P ′l1,l2 ∈ P ′, P ′l1,l2(i, j) is 1 (0

otherwise) if

j = argmax
j

W
s ̂l1,l2

∗
←−sl1

Xl1(i, ∗)·

(W
s ̂l1,l2

∗
←−sl2

Xl2(j, ∗))
⊤

(10)

Potentially, any new bilingual lexicon P ′l1,l2 can

be inferred and included in P ′ at the end of each

learning phase. However, as the cardinality of L

grows, this process can take a prohibitive amount

of time given combinatorial explosion. Therefore,

in practice, we only infer P ′l1,l2 following a

criterion intended to maximize lexicon quality.

P ′l1,l2 is inferred for languages l1 and l2 only if l1
and l2 are siblings in T (they share the same parent

node) or l1 and l2 are the best representatives of

their corresponding family. A language is deemed

the best representative of its family if it is the

most frequently-spoken2 language in its subtree.

For example, in Figure 1, Spanish is the best

representative for the Italic family, but not for

Indo-European, for which English is used.

The set criterion not only reduces the amount

of time required to infer P ′ but also improves

overall HCEG performance. This is due to a better

utilization of the hierarchical characteristics of

our crosslingual space, only inferring bilingual

lexicons from typologically related languages or

2Based on numbers reported by Lewis and Gary (2015).
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their best representatives in terms of resource

quality.

3.7 Retrieval Criterion

As discussed in Section 2, one of the issues effect-

ing nearest-neighbor retrieval is hubness (Dinu

et al., 2014), where certain words are in the

surrounding of an abnormally large number of

other words, causing the nearest-neighbor algo-

rithm to incorrectly prioritize hub words. To

address this issue, we use Cross-domain Similarity

Local Scaling (CSLS) (Conneau et al., 2017)

as the retrieval algorithm during both training

and prediction time. CSLS is a rectification for

nearest-neighbor retrieval that avoids hubness by

counterbalancing the cosine similarity between

two embeddings by a factor consisting of the

average similarity of each embeddings with its

k closest neighbors. Following the criteria in

Conneau et al. (2017), we set the number of

neighbours used by CSLS to k = 10.

4 Evaluation Framework

We describe below the evaluation set up used for

conducting the experiments presented in Section 5.

4.1 Word Pair Datasets

Dinu-Artetxe. The Dinu-Artetxe dataset, pre-

sented by Dinu et al. (2014) and enhanced by

Artetxe et al. (2016), is the one of the first

benchmarks for evaluating crosslingual embed-

dings. It is composed of English-centered bilingual

lexicons for Italian, Spanish, German, and Finnish.

MUSE. The MUSE dataset (Conneau et al.,

2017) contains bilingual lexicons for all combi-

nations of German, English, Spanish, French,

Italian, and Portuguese. In addition, it includes

word pairs for 44 languages with respect to

English.

Panlex. Dinu-Artetxe and MUSE are both

English-centered datasets, given that most (if not

all) of their word pairs have English as their

source or target language. This makes the datasets

suboptimal for our purpose of generating and

evaluating a non-language centered crosslingual

space. For this reason, we generated a dataset

using Panlex (Kamholz et al., 2014), a panlingual

lexical database. This dataset (made public in

our repository) includes bilingual lexicons for all

combinations of 157 languages for which FastText

is available, totalling 24,492 bilingual lexicons.

Each of the lexicons was generated by randomly

sampling 5k words from the top-200k words in

the embedding set for the source language, and

translating them to the target language using the

Panlex database. We find it important to highlight

that this dataset contains considerably more noise

than other datasets given that Panlex is generated

in an automatic way and is not as finely curated

by humans as previous datasets. We still find

comparisons using this dataset fair, given that its

noisy nature should affect all strategies equally.

4.2 Language Selection and Family Tree

As previously stated, we aim to generate a single

crosslingual space for as many languages as

possible. We started with the 157 languages for

which FastText embeddings are available (Grave

et al., 2018). We then removed languages that did

not meet both of the following criteria: (1) there

must exist a bilingual lexicon with at least 500

word pairs for the language in any of the datasets

described in Section 4.1, and (2) the embedding

set provided by FastText must contain at least 20k

words. The first criterion is a minimal condition

for evaluation, while the second one is necessary

for the unsupervised initialization strategy. The

criteria are met by 107 languages, which are the

ones used in our experiments. Their corresponding

ISO-639 codes can be seen later in Table 5. We

use the language family tree defined by Lewis and

Gary (2015).

4.3 Framework

For experimental purposes, each dataset described

in Section 4.1 is split into training and testing

sets. We use the original train-test splits for Dinu-

Artetxe and MUSE. For Panlex, we generate a split

randomly sampling word pairs—keeping 80% for

the training and the remaining 20% for testing.

For development and parameter tuning purposes,

we use a disjoint set of word pairs specifically

created for this purpose based on the Panlex

lexical database. This development set contains 10

different languages with varied popularity. None

of the word pairs present in this development set

are part of either the train or test sets.

4.4 Hyperparameters

The following hyperparameters were manually

tuned using the development set described in

Section 4.3: β1 = 0.98, β2 = 0.01, β3 = 0.01,
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Figure 3: Number of correct word pairs inferred using the unsupervised initialization technique presented

by Artetxe et al. (2018) and the Frequency based technique described in Section 3.3.

t = 1000, αlpairs = 128, αwpairs = 2048,

αiter = 5000, αconv = 25.

5 Evaluation

We discuss below the results of the study

conducted over 107 languages to assess HCEG.

5.1 Unsupervised Initialization

We first evaluate the performance of the

unsupervised initialization strategy described in

Section 3.3, and compare it with the state-of-the-

art strategy proposed by Artetxe et al. (2018).

In this case, we run both initialization strategies

using the top-20k FastText embeddings (Grave

et al., 2018) for all pairwise combinations of

the 107 languages we study. For each language

pair, we measure how many of the inferred word

pairs are present in the corresponding lexicons

in the MUSE and Panlex datasets. For MUSE,

our proposed initialization strategy (Frequency

based) obtains an average of 48.09 correct pairs, an

improvement with respect to the 29.62 obtained by

the strategy proposed by Artetxe et al. (2018). For

Panlex, the respective average correct pair counts

are 1.05 and 0.55. Both differences are statistically

significant (p < 0.01) using a paired t-test. The

noticeable difference across datasets is due to how

the sampling was done for generating the datasets:

MUSE contains a considerably higher number of

frequent words in comparison to Panlex, making

the latter a relatively harder dataset for vocabulary

induction. In Figure 3 we illustrate the results of

each strategy grouped by language-pair similarity.

This similarity is based on the number of common

parents the two languages share. For example, in

Figure 1, Spanish has a similarity of 3, 2, and

1 with Portuguese, English, and Finnish, respec-

tively. As we see in Figure 3, similarity is a

factor that strongly determines the quality of

the alignment generated by the unsupervised

initialization. Even if this phenomenon affects

both analyzed strategies, our proposed frequency-

based initialization strategy consistently obtains a

few more correct word pairs for the least similar

language pairs, which, as we show in Table 4,

are key for generating a correct mapping for those

languages.

5.2 State-of-the-Art Comparison

In order to contextualize the performance of

HCEG with respect to the state-of-the-art (listed in

Tables 1 and 2), we measure the word translation

prediction capabilities of each of the strategies. We

do so using Precision@1 for bilingual lexicon

induction as a means to quantify vocabulary

induction performance. Scores reported hereafter

are average Precision@1 in percentage form, for

each of the words in the testing set.

When applicable, we report results for both the

supervised (HCEG-S) and unsupervised (HCEG-

U) versions of HCEG. In the supervised mode,

we train one single model per dataset using all

the training word pairs available. We then use

this model for computing all pairwise scores. In

the unsupervised mode, unless explicitly stated

otherwise, we train a single model regardless of the

dataset used for testing purposes. This means that,

in some cases, the unsupervised mode leverages

monolingual data beyond the languages used for

testing, as it uses all 107 language embeddings. We

found it unfair to train a supervised model using

368



Method en-it en-de en-fi en-es

S
u

p
er

v
is

ed

Mikolov (2013b) 34.93* 35.00* 25.91* 27.73*

Faruqui (2014) 38.40* 37.13* 27.60* 26.80*

Shigeto (2015) 41.53* 43.07* 31.04* 33.73*

Dinu (2014) 37.7 38.93* 29.14* 30.40*

Lazaridou (2015) 40.2 - - -

Xing (2015) 36.87* 41.27* 28.23* 31.20*

Zhang (2016) 36.73* 40.80* 28.16* 31.07*

Artetxe (2016) 39.27 41.87* 30.62* 31.40*

Artetxe (2017) 39.67 40.87 28.72 -

Smith (2017) 43.1 43.33* 29.42* 35.13*

Artetxe (2018a) 45.27 44.13 32.94 36.60

Jouling (2018) 45.5 - - -

Jawanpuria (2019) mul 48.7 49.1 36.0 36.0

Jawanpuria (2019) 48.3 49.3 36.1 39.3

S
em

i. Artetxe (2017) 25 37.27 39.60 28.16 -

Smith (2017) cog 39.9 - - -

Artetxe (2017) num 39.40 40.27 26.47 -

U
n

su
p

er
v

is
ed

Zhang (2017), λ = 1 0.00* 0.00* 0.00* 0.00*

Zhang (2017) λ = 10 0.00* 0.00* 0.01* 0.01*

Conneau (2017) code 45.15* 46.83* 0.38* 35.38*

Conneau (2017) paper 45.1 0.01* 0.01* 35.44*

Artetxe (2018) 48.13 48.19 32.63 37.33

HCEG-U 49.02 48.18 34.82 42.15

Table 1: Results using the Dinu-Artetxe dataset. Scores

marked with (*) were reported by Artetxe et al. (2018); the

remaining ones were reported in the corresponding original

papers.

the Dinu-Artetxe dataset given that it only contains

four bilingual lexicons, not enough for training our

tree structure. Thus, only unsupervised results are

shown for that dataset.

As shown in Table 1, the unsupervised version

of HCEG achieves, in most cases, the best

performance among all unsupervised strategies,

even improving over state-of-the-art supervised

models in some cases. The improvement is

most noticeable for Italian and Spanish, where

HCEG-U obtains an improvement of 1 and 3

points, respectively. A similar behavior can be

seen in Table 2, where we describe the results

on the MUSE dataset. Spanish, along with

Catalan, Italian, and Portuguese, obtains a sub-

stantially larger improvement compared with

other languages. We attribute this to the fact that

Spanish is the second most resourceful language

in terms of corpora after English. This makes the

quality of Spanish word embeddings comparably

better than other languages, which as a result

improves the mapping quality of typologically

related languages, such as Portuguese, Italian, or

Catalan.

To further contextualize the performance of

HCEG-U, in terms of its capability for generating

crosslingual embeddings in an unsupervised

fashion, we conducted further experiments. In

Table 3, we summarize the results obtained from

comparing HCEG-U with other unsupervised

strategies focused on learning crosslingual word

embeddings. In our comparisons we include (i)

a direct bilingual learning baseline that simply

learns a bilingual mapping using two monolingual

word embeddings (Conneau et al., 2017), (ii) a

pivot-based strategy that can leverage a third lan-

guage for learning a crosslingual space (Conneau

et al., 2017), and (iii) a fully multilingual,

pivotless strategy that aggregates languages into

a joint space in an iterative manner (Chen and
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Conneau Joulin Artetxe
HCEG-S HCEG-U− HCEG-U

(2017) (2018) (2018)

bg 57.5 63.9 65.8 64.1 64.0 67.5

ca 70.9 73.8 76.3 73.1 74.2 77.7

cs 64.5 68.2 70.2 68.2 65.9 71.7

da 67.4 71.1 70.3 68.8 71.9 72.7

de 72.7 76.9 79.1 75.8 75.2 79.0

el 58.5 62.7 67.8 65.3 66.4 68.5

es 83.5 86.4 88.6 86.8 86.4 90.4

et 45.7 49.5 55.8 53.5 53.4 57.3

fi 59.5 65.8 68.1 65.2 65.4 68.3

fr 82.4 84.7 87.6 85.4 85.7 88.3

he 54.1 57.8 61.1 59.5 61.4 63.0

hr 52.2 55.6 57.6 54.8 54.1 58.2

hu 64.9 69.3 69.6 66.8 64.5 70.1

id 67.9 69.7 75.5 73.2 73.5 75.6

it 77.9 81.5 83.3 81.3 79.7 85.6

mk 54.6 59.9 63.5 62.3 62.5 64.9

nl 75.3 79.7 79.9 79.4 79.7 81.9

no 67.4 71.2 69.9 69.5 69.3 71.9

pl 66.9 70.5 72.0 70.7 70.5 72.8

pt 80.3 82.9 85.5 83.8 83.2 87.8

ro 68.1 74.0 75.4 72.8 71.7 76.0

ru 63.7 67.1 69.5 68.1 69.1 69.8

sk 55.3 59.0 62.0 59.6 56.7 62.4

sl 50.4 54.2 60.1 57.7 59.7 61.1

sv 60.0 63.7 66.2 65.0 64.8 68.0

tr 59.2 61.9 68.7 66.3 66.6 70.0

uk 49.3 51.5 56.4 53.8 55.7 56.4

vi 55.8 55.8 3.9 55.5 55.6 58.3

Avg. 63.8 67.4 68.2 68.1 68.1 71.2

Table 2: Results on the MUSE dataset. Scores from Artetxe et al.

(2018) were obtained using the scripts shared by the authors. All the

other scores were reported in Joulin et al. (2018). HCEG-U− only

considers the 29 languages in the experiment for training.

Cardie, 2018). From the reported results, we see

that HCEG-U− outperforms all other considered

strategies for 24 out of 30 language pairs. Highest

improvements are found for languages of the Italic

family (Spanish, Portuguese, Italian, and French).

We observe that HCEG-U− under-performed

when the corresponding experiment involved the

German language as source or target. We attribute

this behavior to the fact that the Italic family

is predominant in the languages explored in this

experiment.

In order to perform a fair comparison with

respect to the work proposed by Chen and Cardie

(2018), we limited the monolingual data that

HCEG-U− used to the six languages considered

in this experiment (results that are reported in

Table 3). However, in order to show the full poten-

tial of HCEG-U, we also include results achieved

when using 107 languages (column HCEG-U). As

seen in Tables 2 and 3, the differences between

HCEG-U− and HCEG-U are considerable, mani-

festing the capabilities of the proposed model to

take advantage of monolingual data in multiple

languages at the same time.

The importance of explicitly considering

topological connections among languages to
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Method Type en-de en-fr en-es en-it en-pt de-fr de-es de-it de-pt fr-es fr-it fr-pt es-it es-pt it-pt

Conneau (2017) Direct 74.0 82.3 81.7 77.0 80.7 73.0 65.7 66.5 58.5 83.1 83.0 77.9 83.3 87.3 80.5

Conneau (2017) Pivot 74.0 82.3 81.7 77.0 80.7 71.9 66.1 68.0 57.4 81.1 79.7 74.7 81.9 85.0 78.9

Chen (2018) Multi 74.8 82.4 82.5 78.8 81.5 76.7 69.6 72.0 63.2 83.9 83.5 79.3 84.5 87.8 82.3

HCEG-U− Multi 74.5 82.8 82.7 79.5 81.7 73.5 68.0 72.2 63.3 84.4 83.9 79.8 86.0 88.9 83.6

HCEG-U Multi 79.4 88.4 89.8 85.4 88.1 77.4 72.3 76.5 66.7 89.1 86.1 84.8 89.4 89.7 86.3

Method Type de-en fr-en es-en it-en pt-en fr-de es-de it-de pt-de es-fr it-fr pt-fr it-es pt-es pt-it

Conneau (2017) Direct 72.2 82.1 83.3 77.7 80.1 69.7 68.8 62.5 60.5 86 87.6 83.9 87.7 92.1 80.6

Conneau (2017) Pivot 72.2 82.1 83.3 77.7 80.1 68.1 67.9 66.1 63.1 84.7 86.5 82.6 85.8 91.3 79.2

Chen (2018) Multi 72.9 81.8 83.7 77.4 79.9 71.2 69.0 69.5 65.7 86.9 88.1 86.3 88.2 92.7 82.6

HCEG-U− Multi 72.4 82.6 84.1 77.8 80.3 71.2 67.8 69.6 65.6 87.5 88.8 87.0 89.5 94.0 83.9

HCEG-U Multi 78.6 88.2 91.0 85.8 87.5 75.4 71.2 73.9 68.6 90.6 91.0 90.2 91.4 94.3 87.1

Table 3: Comparison of unsupervised crosslingual embedding learning strategies under different

merging scenarios in the MUSE dataset. Direct indicates a traditional bilingual scenario where a

mapping from source to target is learned. Pivot uses an auxiliary pivot language (English) for merging

multiple languages into the same space. Multi merges all languages into the same space without using

a pivot. All scores except HCEG-U were originally reported by Chen and Cardie (2018). HCEG-U−

only considers the six languages in the experiment for training. Note that HCEG-U is excluded when

highlighting the best model (bold), given that it uses monolingual data beyond what other models do.

enhance mappings become more evident when

analyzing the data in Table 5. Here we include

the pairing that yielded the best and worst

mapping for each language, as well as the position

of English in the quality ranking. English and

Spanish have a strong quality mapping with

respect to each other, Spanish being the language

with which English obtains the best mapping and

English is the second-best mapped language for

Spanish. Additionally, Spanish is the language

with which Italian, Portuguese, and Catalan obtain

the best mapping quality. On the other side of the

spectrum, the worst mappings are dominated by

two languages, Georgian and Vietnamese, with

40 languages having these two language as worst;

this is followed by Maltese, Albanian, and Finnish,

with 8 occurrences each. This is not unexpected,

as these languages are relatively isolated in the

language family tree, and also have a low number

of speakers. We also see that English is usually

on the top side of the ranking for most languages.

For languages that are completely isolated, such

as Basque and Yoruba, English tends to be their

best mapped language. From this we surmise that

when typological relations are lacking, the quality

of the embedding space is the only aspect the

mapping strategy can rely on.

Given space constraints, we cannot show

the vocabulary induction scores for the 24,492

language pairs in the Panlex dataset. Instead,

we group the results using two variables: the

sum of number of speakers for each of the two

languages, and the minimum similarity (as defined

in Section 5.1) for each language with respect to

English. We rely on these variables for grouping

purposes as they align with two of our objectives

for designing HCEG: (1) remove the bias towards

the pivot language (English), and (2) improve the

performance of low-resource languages by taking

advantage of typologically similar languages.

Figure 4 captures the improvement (2.7 on

average) of HCEG-U over the strategy introduced

in Artetxe et al. (2018) (the best-performing

benchmark), grouped by the aforementioned

variables. We excluded Hindi and Chinese from

the figure, as they made any pattern hard to

observe given their high number of speakers.

The sum of number of speakers axis was also

logarithmically scaled to facilitate visualization.

The figure captures an evident trend in the simi-

larity axis. The lower the similarity of the lan-

guage with respect to English, the higher the

improvement achieved by HCEG-U. This can

be attributed to the manner in which TB/MP

models generated the space using English as

primary resource, hindering the potential quality

of languages that are distant from it. Additionally,

we see a less-prominent but existing trend in
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Figure 4: Improvement over the strategy proposed

by Artetxe et al. (2018) in Panlex, in terms

of language similarity and number of speakers.

Darker denotes larger improvement.

the speaker sum axis. Despite some exceptions,

HCEG-U obtains higher differences with respect

to Artetxe et al. (2018) the less spoken a language

is. A behavior that is similar in essence to a Pareto

front can also be depicted from the figure. Even

if both variables contribute to the difference in

improvement of HCEG-U, one variable needs to

compensate for the other in order to maximize

accuracy. In other words, the improvement is

higher the fewer speakers the language pair has

or the more distant the two languages are from

English, but when both variables go to the extreme,

the improvement decreases. The aforementioned

trends serve as evidence that the hierarchical

structure is indeed important when building a

crosslingual space that considers typologically

diverse languages, validating our premises for

designing HCEG.

5.3 Ablation Study

In order to assess the validity of each functionality

included as part of HCEG, we conducted an

ablation study. We summarize the results of this

study in Table 4, where the symbol¬ indicates that

the subsequent feature is ablated in the model. For

example, ¬Hierarchy indicates that the Hierarchy

structure is removed, replacing it by a structure

where each language needs just one transformation

matrix to reach the World languages space.

Description Dinu-ArtetxeMUSEPanlex

S
u

p
er

v
is

ed

¬Hierarchy - 66.7 32.0

¬Orthogonal Init. - 67.8 36.5

¬Iterative Refinement - 65.4 35.1

All vs All Inference - 66.3 36.6

World langs. as root - 67.5 35.7

HCEG-S - 68.1 37.3

U
n

su
p

er
v

is
ed

¬Hierarchy 40.2 67.9 28.1

¬Orthogonal Init. 43.2 71.0 34.7

¬Iterative Refinement 0.09 0.08 0.02

All vs All Inference 39.3 69.4 34.6

World langs. as root 42.8 70.2 33.8

¬Freq. based Init. 41.2 68.0 31.1

HCEG-U 43.5 71.2 35.8

Table 4: Ablation study.

As indicated by the ablation results, the

hierarchical structure is indeed a key part of

HCEG, considerably reducing its performance

when removed, and having its strongest effect in

the dataset with the highest number of languages

(i.e., Panlex). The importance of the Iterative

Refinement strategy is also noticeable, making

the unsupervised version of HCEG useless when

removed. The Frequency-based initialization is

also a characteristic that considerably improves

the results of HCEG-U. Looking deeper into

the data, we found 2,198 language pairs (about

9% of all pairs) that obtained a vocabulary

induction accuracy close to 0 (<0.05) without

using this initialization, but were able to produce

enough signal to yield more substantial accuracy

values (>10.0) when using the Frequency-based

initialization. Finally, the design decisions that we

initially took for reducing training time—(i) the

orthogonal initialization, (ii) the heuristic based

inference, and (iii) using the lowest common

root for computing the loss function—also have a

positive effect on the performance of the HCEG.

5.4 Influence of Pivot Choice

One of the premises for building HCEG was to

design a strategy that would not require pivots

for achieving a single space with multiple word

embeddings, given that a pivot induces a bias

into the final space that can hinder the quality

of the mapping for languages that are too distant

to it. In this section we describe the results of

experiments conducted for measuring the effect

pivot selection can have on the performance

of the mapping. For doing so, we measure the
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L B,W,E L B,W,E L B,W,E L B,W,E L B,W,E L B,W,E L B,W,E

af nl,fi,4 ceb tl,li,22 ga gd,tt,12 jv id,scn,34 my zh,mk,19 sco en,mt,1 tr tk,ka,13

als en,vi,1 ckb tg,tr,19 gd ga,vi,2 ka en,bs,1 nds nl,vi,3 sd bn,tl,5 tt ba,sa,9

am arz,de,80 cs sk,vi,12 gl pt,ka,16 kk ky,vi,51 nl af,ka,4 si dv,ka,5 ug tr,vls,4

an es,ka,17 cv tr,sq,2 gom mr,fi,10 km vi,nl,4 no sv,vi,3 sk cs,vi,5 uk ru,fi,19

arz mt,ja,3 cy br,fi,2 gu pa,ka,3 kn ta,lt,55 oc es,my,3 sl sr,vi,6 ur hi,eo,10

as bn,vi,4 da sv,fi,4 he arz,mk,10 ko en,af,1 pa gu,vi,6 so arz,sq,73 vec pms,tr,2

ast es,ja,20 de lb,mt,5 hi ur,ka,5 ky kk,af,17 pam id,sr,18 sq en,tt,1 vi km,vls,3

ba tt,sq,34 dv si,ka,3 hr sr,tt,5 la es,mt,3 pl cs,vi,4 sr hr,vi,4 vls nl,eo,8

bar de,fi,6 el en,eo,1 hsb pl,am,3 lb de,ka,2 pms vec,sah,7 su id,mk,37 wa fr,fi,7

be ru,vi,4 en es,gv,- hu fi,ckb,9 li nl,ka,7 pt es,mt,5 sv da,vi,5 yo en,lt,1

bg mk,ka,9 eo en,sq,1 hy en,fi,1 lt ru,mt,5 qu en,bn,1 ta ml,mt,3 zh my,de,10

bn as,vi,6 es pt,vi,2 id jv,vi,3 mg id,sq,44 ro es,vi,6 te ta,mk,15

br cy,ka,18 eu en,lt,1 ilo id,sq,6 mk bg,vi,4 ru uk,su,20 tg ckb,ka,13

bs sr,ka,2 fi hu,als,24 is sv,ka,3 ml ta,sq,29 sa hi,ka,2 th en,vls,1

ca es,mt,5 fr it,vi,5 it es,mt,5 mr si,ka,21 sah tr,ka,2 tk tr,lt,7

ce en,sq,1 fy en,eo,1 ja en,vi,1 mt arz,tt,70 scn it,ka,21 tl ceb,ru,47

Table 5: Best (B), worst (W), and English mapping ranking (E) for each language (L).

Pivot Language Family A
fr

o
-A

si
at

ic

A
u

st
ro

n
es

ia
n

In
d

o
-E

u
ro

p
ea

n
/B

al
to

-S
la

v
ic

In
d

o
-E

u
ro

p
ea

n
/G

er
m

an
ic

In
d

o
-E

u
ro

p
ea

n
/I

n
d

o
-I

ra
n

ia
n

In
d

o
-E

u
ro

p
ea

n
/I

ta
li

c

S
in

o
-t

ib
et

an

T
u

rk
ic

U
ra

li
c

Avg.

en Indo-European/Germanic 27.3 28.7 32.1 39.8 31.4 40.4 27.3 26.9 28.3 31.4

arz Afro-Asiatic 30.2 27.1 28.1 32.1 28.3 33.4 25.1 23.4 27.1 28.3

id Austronesian 27.1 30.3 27.7 31.1 28.3 32.5 25.8 24.6 27.6 28.3

ru Indo-European/Balto-Slavic 26.3 26.3 34.2 38.2 28.5 37.3 24.6 22.5 26.8 29.4

de Indo-European/Germanic 25.1 26.9 25.1 37.6 27.3 37.2 24.7 23.7 25.6 28.1

hi Indo-European/Indo-Iranian 26.3 27.1 26.1 33.7 32.3 34.2 23.4 25.6 26.4 28.3

es Indo-European/Italic 26.9 26.7 30.6 38.5 31.0 41.5 26.8 26.7 28.4 30.8

pt Indo-European/Italic 26.0 26.6 30.4 37.9 27.7 41.3 25.9 26.4 26.5 29.9

zh Sino-Tibetan 25.1 27.3 25.3 23.4 26.1 24.8 29.3 25.7 27.6 26.1

tr Turkic 24.9 25.3 25.5 28.2 27.8 28.6 25.3 28.7 27.3 26.8

hu Uralic 25.4 25.8 25.8 31.8 26.4 32.8 25.5 21.9 30.1 27.3

Table 6: Results obtained by existing bilingual mapping strategies using different pivots on the

Panlex dataset. Values in each cell indicate the average performance obtained for each of the pairwise

combinations of languages under the family noted in the corresponding column title. For example, the

first cell indicates the average score obtained for all possible combinations of afro-asiatic languages

using English as a pivot. Results are averaged across the strategy presented in Conneau et al. (2017)

and Artetxe et al. (2018) in order to avoid system-specific biases.

performance of state-of-the-art bilingual mapping

strategies in a pivot-based inference scenario. We

use 11 different pivots and average the results of

two different strategies—(Conneau et al., 2017)

and (Artetxe et al., 2018)—grouped by several

language families. As depicted by the results

presented in Table 6, selecting a pivot that

belongs to the family of the languages being
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tested is always the best choice. In cases where we

considered multiple pivots of the same family, the

most resource-rich language resulted in the best

option, namely, Spanish in the case of the Italic

family and English for the Germanic family. On

average, English is the best choice of pivot if all

language families need to be considered, followed

by Spanish and Portuguese. This validates two

of the design decisions for HCEG, that is, the

need to avoid selecting a pivot and the importance

of using the languages with largest speaker-base

when performing language transfer.

6 Conclusion and Future Work

We have introduced HCEG, a crosslingual

space learning strategy that does not depend on

a pivot language, as instead, it takes advantage of

the natural hierarchy existing among languages.

Results from extensive studies on 107 languages

demonstrate that the proposed strategy out-

performs existing crosslingual space generation

techniques, in terms of vocabulary induction,

for both popular and not so popular languages.

HCEG improves the mapping quality of many

low-resource languages. We noticed that this

improvement mostly happens when a language

has more typologically related counterparts, how-

ever. Therefore, as future work, we intend to

investigate other techniques that can help improve

the quality of mapping for typologically isolated

low-resource languages. Additionally, it is impor-

tant to note that the time complexity required by

the proposed algorithm isN(N−1), with N being

the number of languages considered. For the tra-

ditional TB/MP strategy, complexity is limited to

learning from N language pairs. Therefore, we

plan on exploring strategies to reduce the num-

ber of language pairs that need to be learned

for creating the crosslingual space. Finally, we

will explore different data-driven strategies for

building the tree structure, such as geographical

proximity or lexical overlap, which could lead to

better optimized arrangements of the crosslingual

space.
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Anna Korhonen. 2019. Do we really need

fully unsupervised cross-lingual embeddings?

In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language

Processing and the 9th International Joint

Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 4398–4409.
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