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Abstract

Adversarial examples are inputs subtly perturbed to produce a wrong
prediction in machine learning models, while remaining perceptually similar
to the original input. To find adversarial examples, some attack strategies
rely on linear approximations of different properties of the models. This
opens a number of questions related to the accuracy of such approximations.
In this paper we focus on DeepFool, a state-of-the-art attack algorithm,
which is based on efficiently approximating the decision space of the target
classifier to find the minimal perturbation needed to fool the model. The
objective of this paper is to analyze the feasibility of finding inaccuracies
in the linear approximation of DeepFool, with the aim of studying whether
they can be used to increase the effectiveness of the attack. We introduce
two strategies to efficiently explore gaps in the approximation of the
decision boundaries, and evaluate our approach in a speech command
classification task.
Keywords: Adversarial examples, DeepFool, Robust machine learning.

1 Introduction
The intriguing vulnerability of Deep Neural Networks (DNNs) to imperceptibly
yet maliciously perturbed inputs, known in the literature as adversarial examples
[24], has raised concerns regarding the robustness of these models in adversarial
scenarios, and more particularly in security-critical applications.

While different hypotheses have been proposed in the literature to explain
why DNNs are vulnerable to such imperceptible perturbations, most of them
focus on the analysis of the decision spaces learnt by the classifiers [6, 10, 13,
19, 24, 26]. Furthermore, the underlying theoretical framework of different
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attack strategies relies directly on wisely exploiting different properties of such
decision spaces [14, 15, 16], which is the case of DeepFool [16], a state-of-the-art
algorithm based on linearly approximating the decision boundaries of the target
classifier to efficiently approximate minimal perturbations capable of inducing a
misclassification.

Even outside the particular field of adversarial machine learning, the study
of the decision boundaries of DNNs is currently a relevant yet understudied
research topic [9, 13, 30], and advances in this direction are necessary to better
understand the complex behaviour and decision making process in these models.

The objective of this paper is to study whether it is possible to exploit
the inaccuracies in the linear approximation assumed in DeepFool in order to
increase the effectiveness of the attack, while maintaining a minimal distortion.
For instance, one could increase the number of incorrect output classes that can
be produced in the model with a negligible overhead in the original algorithm,
or find shortcuts to closer decision boundaries that are missed by DeepFool,
reducing the amount of perturbation. From another point of view, the analysis
of such inaccuracies in the linear approximation could also reveal interesting
properties about the geometry of the decision space of the classifier, or provide
a useful framework to study the proximity between the classes, which is directly
related to the robustness of the classifiers to adversarial attacks.

For these purposes, in this paper we introduce two different methods for
extending the DeepFool algorithm to efficiently explore inaccuracies in its linear
approximation, and to study whether such inaccuracies can be exploited to
generate more effective perturbations. Our experiments reveal that, although
inaccuracies can be found in DeepFool, taking advantage of such inaccuracies
does not result in a significant improvement over the original algorithm.

2 Related Work
The intriguing phenomenon of the vulnerability of DNNs to imperceptible
adversarial perturbations was first reported by Szegedy et al. in [24]. Although
multiple attack approaches [1, 2, 3, 6, 11, 12, 14, 16, 17, 23], and defensive
strategies [5, 6, 7, 18, 21, 29] have been proposed for different tasks and domains,
the explanation of these vulnerabilities, the connection between different attack
strategies or the reason for common vulnerabilities on different models are still
open questions.

Regarding the theoretical justification of adversarial examples, different hy-
potheses have been put forward. In [24], adversarial examples are attributed to
the highly non-linearity nature of DNNs, causing dense low-probability “pockets”

in the input space of the model, composed of inputs that, with very low proba-
bility, could be found by randomly sampling in the vicinity of a clean sample.
Contrarily, in [6] it is stated that even linear models are also highly vulnerable to
adversarial examples for high dimensional problems. In [22, 25], the existence of
adversarial examples is studied under the manifold hypothesis: the data lies on
a low-dimensional manifold S embedded in a high-dimensional representation of
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the input space, and, due to the high dimensionality of the input data, samples
close to S can be found outside the decision boundary of the corresponding
class. In [8], however, a data-perspective explanation is provided, explaining
adversarial examples as non-robust features of the input data, instead of flaws
in the learnt representation of the DNNs.

In this work, we focus on the exploitability of the geometry of the decision
regions learnt by the DNNs as a basis for studying the adversarial examples
[14, 15, 16]. In [16], the DeepFool algorithm was introduced, a state-of-the-art
method for efficiently crafting adversarial examples, which is based on pushing
an input to its closest decision boundary, approximated in the vicinity of the
input according to an efficient linear approximation. A detailed explanation of
this attack algorithm can be found in Section 3. In [14], this method has been
extended in order to generate universal (input-agnostic) adversarial perturbations
for the image classification task. In fact, the approach proposed in [14] is based on
accumulating individual perturbations generated using the DeepFool algorithm.
This strategy has also been used in the audio domain [27].

The theoretical framework introduced in [14] to generate universal pertur-
bations is further developed in [15], where the authors study the relationship
between the robustness of the models to universal adversarial perturbations and
the geometry of their decision boundaries.

In this work, we intend to further exploit the decision boundaries of the
target classifier to achieve more effective perturbations. In particular, we extend
the DeepFool algorithm to expand its search space, and overcome the possible
limitations that the assumed simplification of the decision boundaries may
produce.

2.1 Technical Background
Let us consider a classification function f : X ! Y , being X ✓ Rd the d-
dimensional input space and Y a discrete output space of k classes, where
yi 2 {y1, . . . , yk} represents the i-th class. Let x 2 X be an input sample
correctly classified by f . The objective of an adversarial attack is to produce a
perturbed input x0 which, being highly similar to x, produces a misclassification
of f , that is, f(x) 6= f(x0). To ensure that x0 is as similar as possible to x,
in this work we require the adversarial example to satisfy '(x, x0)  ", where
' : Rd ⇥ Rd ! R represents a suitable distortion metric, typically an `p norm,
and " a maximum distortion threshold.

Depending on the malicious effect we want to produce on the classifier, we can
consider different types of adversarial attacks. Given a clean input x, a targeted

adversarial attack consists of perturbing x so that x0 is wrongly classified as one
particular target class yt 6= f(x). Contrarily, an untargeted adversarial attack
consists of generating an adversarial example x0 so that f(x0) 6= f(x), without
any additional regard for the output class. A more comprehensive overview of
the possible attack types can be found in [31].
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3 Attack Algorithm
As previously mentioned, in this paper we use different variants of DeepFool [16],
a state-of-the-art algorithm to generate adversarial attacks, initially introduced
for images. Thus, in this section we provide a more detailed overview of this
algorithm.

The objective of the attack is to find the minimal perturbation capable of
sending an input sample x outside its decision region, by pushing it to the closest
decision boundary. This can be seen as an optimization problem, in which we
aim to find

r⇤ = argmin
r

'(x, x+ r) s.t. f(x+ r) 6= f(x). (1)

However, for high-dimensional non-linear decision spaces, which is the general
case of DNNs, estimating the decision boundaries is a complex task, which makes
this optimization intractable in practice. Due to this limitation, the DeepFool
algorithm provides a strategy to approximate r⇤ by efficiently approximating
the decision region of the model. This strategy consists of iteratively pushing
an initial input x0, of class f(x0) = yc, towards a linear approximation of the
decision boundaries, based on the first-order derivatives in the vicinity of the
input sample. This transforms the decision region into a polyhedron:

eRi =
k\

j=1

{x : fj(xi)� fc(xi) +5fj(xi)
>x�5fc(xi)

>x  0}, (2)

where xi represents the input sample at step i and fj represents the output
of f corresponding to the class yj . Thus, the task of determining the minimal
distances to such boundaries is now tractable. Based on this approximation, the
closest decision boundary, which will correspond to a class yl, is determined as
follows:

l = argmin
j 6=c

|f 0
j |

||w0
j ||2

, (3)

where f 0
j = fj(xi)� fc(xi), and w0

j = 5fj(xi)�5fc(xi) represents the direction
of the perturbation. Finally, xi is pushed towards the selected decision boundary
according to the following rule:

ri  
|f 0

l |
||w0

l||22
w0

l (4)

xi+1  xi + ri. (5)

The algorithm stops when we finally produce a new incorrect class f(xi) 6= yc in
the target model.

As previously mentioned, we consider that the adversarial example should be
restricted by a maximum amount of distortion " in comparison to the original
input, according to a suitable distortion metric: '(x, x0)  ". Therefore, in
this paper we assume that, if at any step of DeepFool the amount of distortion
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exceeds ", then it is not possible to construct a valid adversarial example x0

which is able to fool the classifier.
Finally, even if we mainly focus on untargeted attacks in this work, note that

a targeted version of DeepFool can be obtained if the input is pushed towards
the direction of the boundary corresponding to the target class yt 6=f(x0) until
f(xi) = yt is satisfied. This can be easily achieved by removing the criterion
specified in equation (3), and using the following update rule:

ri  
|f 0

t |
||w0

t||22
w0

t (6)

xi+1  xi + ri. (7)

4 Exploiting Gaps in the Linear Approximation
of the Decision Boundaries

DeepFool relies on the assumption that we can accurately approximate the
boundaries of the decision region of the classifier in the proximity of a given
input using a linear approach. Based on this assumption, at each step, the
input is moved in a greedy way towards the (estimated) closest boundary, using
the perturbation ri (see equations (3) and (4)). However, there could exist
alternative perturbations that, with the same amount of distortion employed
by DeepFool, can reach a different decision region, or even reach it with less
distortion. Being able to find such shortcuts in an efficient way can increase the
effectiveness of the attack, or reduce the required amount of perturbation to fool
the model. Note that, if this is possible, it is because the linear approximation
of the decision regions is not sufficiently accurate, and, therefore, we refer to
them as gaps or holes in the algorithm. Based on this hypothesis, in this section
we propose two different strategies to explore, during the original attack process,
the existence of such gaps in the algorithm.

Let xi be the input sample at step i, assuming that f(xi) = f(x0) = yc.
Let cW = {ŵ1, . . . ŵc�1, ŵc+1 . . . , ŵk} be the set of normalized direction vectors
computed by DeepFool for each class (except yc), where:

ŵj =
w0

j

||w0
j ||2

. (8)

It is worth mentioning that, following the criterion described in equation (3),
the direction ŵl is the one that will be followed by DeepFool according to its
greedy criterion.

The first search strategy that we propose, named Gap Finder Local Search

(GFLS), consists of exploring all the possible directions in cW � {ŵl} at each
step, projected in the sphere of radius ||ri||2 and centered at the current point xi.
That is, we consider a gap if, with a perturbation amount of ||ri||2, we can change
the output of the model by pushing xi in any other direction ŵj 2 cW � {ŵl}:

9j 6= l : f (xi + ŵj · ||ri||2) 6= f(xi). (9)
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Figure 1: Illustration of the two search methodologies employed to find gaps:
Gap Finder Local Search (GFLS) and Gap Finder Global Search (GFGS).

In the second strategy, instead of taking the local neighborhood of xi as
reference, we will take as reference the initial point x0, and consider the accumu-
lated perturbation rtot = (xi � x0) + ri at the end of the step i. We will refer
to this second strategy as Gap Finder Global Search (GFGS). This criterion is
more suitable if we want to check alternative directions, while ensuring that
the total perturbation amount that those directions produce is the same as the
one produced by DeepFool. Thus, now the search space will be bounded to the
surface of the sphere of radius ||rtot||2 and centered at the starting point x0:

9j 6= l : f

 
x0 + rjtot ·

||rtot||2
||rjtot||2

!
6= f(xi) , rjtot = (xi � x0) +

|f 0
j |

||w0
j ||22

w0
j . (10)

An illustration of the two search strategies is provided in Figure 1.
Note that, in both cases, we assume that a gap is found if an alternative

perturbation (that is, different to the one proposed by DeepFool) is capable of
changing the output of the model, with no additional regard for the incorrect
class that is produced. Thus, the proposed methodologies are particularly well
suited for untargeted attacks, as in targeted attacks we focus on reaching a
particular output rather than producing any possible incorrect class.

5 Evaluating Gaps in the Linear Approximation
of the Decision Boundary

5.1 Case of Study
We will use the Speech Command Dataset [28], which consists of a set of 16-
bit WAV audio files of 30 different spoken commands. The dataset can be
downloaded from 1. The duration of all the files is the same in all the audio

1http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz
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clips, exactly 1 second. The sample-rate of the audio signals is 16kHz, so every
audio signal is composed of 16000 values.

As in previous publications [1, 28], we focused on the following set of classes
out of the 30 different classes in the original dataset: Yes, No, Up, Down, Left,

Right, On, Off, Stop, and Go. In addition to this set, we will consider two special
classes for a more realistic setup: Unknown and Silence. We used a Convolutional
Neural Network as the classifiation model, based on the architecture proposed
in [20], which is considered a benchmark in speech command classification
[1, 4, 28, 32].

To explore the existence of gaps, we selected a set of N = 500 files per
class from the training set, forming a total of 6000 inputs. For each audio, a
default untargeted DeepFool attack is executed, and at each step of the process
the two strategies proposed in Section 4 are applied to search for gaps in the
vicinity of the inputs. We launched the experiment for the following maximum
distortion thresholds, with which the `2 norm of the perturbations will be
bounded: " = {0.05, 0.1, 0.15}. Our implementation is available upon request.

5.2 Analysis of the Results
In this section we evaluate with which frequency gaps were found in the linear
approximation of the decision boundary employed by DeepFool, as described
in Section 4. We also analayze the gain in terms of effectiveness with respect
to the original algorithm, or the insights that the study of these gaps provide
regarding the structure of the decision space of the classifier.

First, we report the percentage of inputs for which, at any step of the
algorithm, the introduced search methods found a gap. Table 1 contains the
obtained percentages for different distortion thresholds. As can be seen, for the
majority of the classes, the GFLS approach was capable of finding a gap for
approximately 30% of the inputs samples. With the GFGS approach, however,
we only found gaps for less than 10% of the inputs for most of the classes. This
can reflect that the accumulated perturbation, after multiple steps, achieves a
much better approximation of the optimal perturbation r⇤ than the individual
perturbations applied at each step.

In spite of these positive results, if we analyze the iteration number in which
those gaps were found, it can be seen that a very high percentage of gaps was
found in the last iteration of the process, considering the last step the one in
which f(xi+1) 6= f(xi) = f(x0) is satisfied. This information is displayed in
Table 2. These percentages are particularly high for the GFLS approach, in
which more than approximately 80% of the gaps were found in the last step,
independently of the class. Although this is also true for some classes for the
GFGS method, the percentages are considerably lower for the rest, around 40%
in the lowest cases.

These results suggest, especially for the local strategy, that the gaps are mainly
found in the proximity of the decision boundary. Therefore, we can hypothesize
that, even through gaps, the input is being pushed towards the same decision
boundary that is reached using the default untargeted attack. This hypothesis
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Table 1: Percentage of inputs for which gaps were found in the linear approxi-
mation of the decision boundaries, during the attack process of DeepFool.

Class
GFLS

"
GFGS

"

0.05 0.10 0.15 0.05 0.10 0.15

Go 31.00 31.20 31.20 9.20 9.20 9.20
Stop 26.60 28.80 29.80 6.20 7.40 8.60
Off 30.80 31.40 31.40 21.40 22.00 22.20
On 31.80 32.00 32.00 7.40 7.80 7.80
Right 21.80 22.20 22.40 3.40 3.40 3.40
Left 27.60 28.60 28.80 5.60 6.00 6.40
Down 25.20 26.80 27.00 7.20 8.00 8.00
Up 29.80 30.40 30.60 7.00 7.40 7.40
No 27.20 27.60 27.60 6.40 6.60 6.80
Yes 26.80 28.00 28.40 11.60 12.60 14.20
Unknown 27.00 27.20 27.20 6.40 6.60 6.60
Silence 6.00 7.60 8.20 22.40 31.20 41.20

would also explain why the local search followed in GFLS achieved considerably
more gaps than GFGS, as in the close proximity of the decision boundary there
is a higher chance of surpassing the boundary by moving the sample to other
directions. To validate this hypothesis, we computed the percentage of gaps
that reach a different class than the default untargeted DeepFool algorithm.
According to the results, for both methods, only for a percentage below 1% of
the inputs is it possible to produce a wrong output class different to that which
is produced by the default attack.

All these results might also suggest that the linear approximation of the
decision boundaries employed by DeepFool is highly accurate in our case, and
as a consequence, that the generated perturbations are close to the optimal
ones. However, another explanation can be that, in the proximity of the natural
input samples, there is generally a decision boundary for one class much closer
than those corresponding to the rest of the classes. In fact, if we compute the
frequency with which each input is classified as another class after being fooled by
the original DeepFool algorithm, we can see that, for the majority of the classes,
there are always one or two classes with higher frequency. This information is
shown in Figure 2, for the case of " = 0.15, although the same pattern is given
for the other distortion thresholds tried.

To continue with the analysis, in order to assess the distortion gain that
the gaps suppose, if any, we also compared the distortion introduced by the
gaps with the one introduced by the untargeted attacks. The comparison is
made by considering those inputs for which a perturbation capable of fooling
the model was found with both attack types. If more than one possible gap was
found for one input, the one with the lowest perturbation has been considered.
The results are shown in Figure 3, for the different distortion thresholds.2 As
can be seen, the gain is negligible, showing again that the found gaps are not

2The outliers have been removed for the sake of visualization.
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Table 2: Percentage of gaps that were found in the last step of the process. We
consider the last step the one in which, when we apply the last perturbation
to the (still correctly classified) input, we reach a new decision region, that is,
when f(xi+1) 6= f(xi) = f(x0).

Class
GFLS

"
GFGS

"

0.05 0.10 0.15 0.05 0.10 0.15

Go 80.65 80.77 80.77 50.00 50.00 50.00
Stop 87.97 88.89 87.92 67.74 72.97 76.74
Off 83.77 84.08 84.08 65.14 65.18 65.49
On 86.16 86.25 86.25 62.16 64.10 64.10
Right 89.91 90.09 90.18 82.35 82.35 82.35
Left 78.99 79.72 79.17 39.29 40.00 43.75
Down 83.33 83.58 83.70 55.56 55.00 55.00
Up 87.92 87.50 87.58 74.29 75.68 75.68
No 80.88 81.16 81.16 42.42 41.18 42.86
Yes 91.11 90.78 90.91 65.52 61.90 63.89
Unknown 81.48 81.62 81.62 40.62 42.42 42.42
Silence 80.00 78.95 76.19 67.26 71.07 73.93

very different to the perturbation provided by DeepFool, which reinforces our
previous hypothesis.

Finally, we also tested the hypothesis that, through the gaps, it could be
possible to generate perturbations capable of fooling the model for those inputs
for which, through the original algorithm, it would not be possible to find such a
perturbation. However, according to the results obtained by the GFLS strategy,
in no case we were able to fool the model using only the perturbations generated
through gaps. For the GFGS strategy, the percentage of inputs for which this
happens is below 1%. Thus, for almost all the inputs for which gaps were found,
we could also find a perturbation capable of fooling the model using the default
algorithm.

Similarly, if we compare the results with the targeted version of DeepFool,
relying on gaps to find targeted attacks is much less effective than generating
them by moving the input directly towards the decision boundary of the target
class. Only in less than 1% of the cases were gaps capable of reaching a particular
class that could not be reached through the targeted attack, according to both
search strategies. Moreover, the difference in terms of distortion level is negligible
in this case also, as is shown in Figure 4.

6 Conclusion
In this paper, we have proposed two different strategies to search for inaccu-
racies in the linear approximation of the decision boundaries employed by the
DeepFool algorithm, a state-of-the-art adversarial attack, to assess whether
they can increase the effectiveness of the attack, as well as a framework to
study the properties of the decision spaces of machine learning classifiers. We
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Figure 2: Class changing frequencies caused by the default untargeted DeepFool
algorithm. Each row in the matrix represents the percentage of cases changed
from the corresponding ground-truth class to a different class.

Figure 3: Comparison of the `2 norm between the perturbations obtained using
gaps, vgap, and the perturbation obtained with the default untargeted attack,
vuntargeted.

Figure 4: Comparison of the `2 norm between the perturbations obtained using
gaps, vgap, and the perturbation obtained with the default targeted attack,
vtargeted.
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experimentally tested our approach for a Convolutional Neural Network in the
speech command classification task, an exemplary machine learning model in
the audio domain.

The results obtained revealed that, in approximately 30% of the inputs
evaluated, the approach introduced was capable of exploiting those inaccuracies
to find alternative directions in which the model can be fooled, with a negligible
overhead with respect to the original algorithm, although the gain in terms
of effectiveness was not significant enough to consider it an improvement. In
fact, we discovered that most of these gaps lead to perturbations highly similar
to those found by the default algorithm. We intend to improve the results by
extending the search strategies in future work.

As future research lines, we also believe that the comparison of the geometri-
cal properties of the decision boundaries of different machine learning models
can provide insightful contributions regarding their vulnerability to adversarial
attacks. For this reason, we intend to extend our methodology to evaluate a wider
range of decision models, including more complex structures, such as recurrent
neural networks, as well as to other tasks and domains, for instance, speech
transcription, computer vision tasks or natural language processing problems.
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