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Abstract. We give sufficient conditions for the existence of weak solutions to quasilinear elliptic Dirichlet problem driven by
the A-Laplace operator in a bounded domain �. The techniques, based on a variant of the symmetric mountain pass theorem,
exploit variational methods. We also provide information about the asymptotic behavior of the solutions as a suitable parameter
goes to 0+. In this case, we point out the existence of a blow-up phenomenon. The analysis developed in this paper extends and
complements various qualitative and asymptotic properties for some cases described by homogeneous differential operators.
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1. Introduction

Let � ⊂ R
N be a bounded domain with a smooth boundary ∂�. In this paper, we study the following

quasilinear elliptic Dirichlet problem

−div
(
a
(|∇u|)∇u

) = f (z, u) in �, u = 0 on ∂�. (1)

This problem is driven by a differential operator a(t)t ∈ C(R), the so-called A-Laplace operator.
We ask about the existence of the solutions in L∞(�). To this goal the reaction f (z, t) ∈ C(� × R)

obeys assumption (f1). On the other hand, we impose that a : [0, +∞) → [0, +∞) satisfy suitable
hypotheses to include relevant classes of functions. Motivations arise from the literature review as fol-
lows. We recall the nice work of Cencelj–Rădulescu–Repovš [5] on double phase problems in variable
exponent Lebesgue–Sobolev spaces, where the authors point out as the study of nonlinear problems is
strongly related to the description of significant phenomena in applied sciences (see also Papageorgiou–
Rădulescu–Repovš [12,13,15], and the book of Breit [4, Chapter 2]). For anisotropic double-phase prob-
lems we refer to Bahrouni–Rădulescu–Repovš [3], Ragusa–Tachikawa [18], and Zhang–Rădulescu [23].

Here, we mention that existence and multiplicity results for quasilinear elliptic problems were es-
tablished by Tan–Fang [20], in the Orlicz–Sobolev spaces. Papageorgiou–Vetro [16] proved multiplic-
ity results in variable exponent Lebesgue–Sobolev spaces, Vetro [21] studied semilinear Robin prob-
lems of Laplace operator using Lyapunov–Schmidt reduction method, and Vetro [22] considered mixed
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Dirichlet–Neumann problems with the (p, q)-Laplace operator. Also, the existence of multiple posi-
tive solutions for quasilinear elliptic problems with nonhomogeneous principal part a was established
by Fukagai–Narukawa [8] in the Orlicz–Sobolev spaces. Very recently, Alves–De Holanda–Santos [2]
proved the existence of positive weak solutions for a semipositone problem driven by a A-Laplace oper-
ator, with subcritical growth of the reaction.

We recall that the Orlicz spaces are a genuine extension of Lp spaces (1 � p < +∞), whenever
a N -function (that is, a convex, even function A : R → [0, +∞) satisfying A(t) = 0 if and only if
t = 0, limt→0

A(t)

t
= 0, and limt→+∞ A(t)

t
= +∞) replaces the function t → |t |p in the definition of

the Lp space. Under suitable conditions, Orlicz–Sobolev spaces (extension of the W 1,p spaces) are an
interesting source of solutions of constrained optimization problems for the energy functional related to
(1). Indeed, as stated in Fukagay–Ito–Narukawa [7] the usual Sobolev space is not useful to deal with
general forms of the operator a in (1). For example let a(t)t ∈ C(R) be a function whose primitive is the
function A(t) = [1 + t2]η − 1 with η ∈ R \ {1}, which means nonlinear elasticity in a physical setting
if η > 1/2. We know that A(t) acts as 2ηt2 as t goes to zero, and acts as t2η as t goes to ±∞. Thus,
the Eulero energy functional associated to problem (1) (namely (6) of Proposition 1 below) cannot be
well-defined in both the Sobolev spaces W

1,2
0 (�) and W

1,2η

0 (�) (since no one of these spaces includes
the other). This fact motivates the use of the Orlicz–Sobolev space defined in Section 2 to deal with
problem (1) (see again [7]).

In this paper we establish some existence results using variational tools together with growth condi-
tions on the reaction. In details the paper is organized as follows. In Section 2 we collect the basic facts
on the working spaces and N -functions. In Section 3, by using the Palais–Smale condition and a moun-
tain pass theorem for the energy functional associated to problem (1), we establish the existence of at
least one nontrivial weak solution of (1) in C

1,α
0 (�) for some α ∈ (0, 1). The working conditions on the

reaction f concern its behavior near zero and at infinity, plus some technical hypotheses. In Section 4,
introducing a parameter in the reaction, we prove two results concerning the asymptotic behavior of
the solutions as the parameter goes to zero. For closely related results work, we refer to Papageorgiou–
Vetro–Vetro [17]. Some of the abstract methods used in this paper can be found in the recent monograph
Papageorgiou–Rădulescu–Repovš [14].

2. Mathematical background

We introduce the function space framework for problem (1). So, we recall some facts on Orlicz and
Orlicz–Sobolev spaces (see also Adams–Fournier [1] and Rao–Ren [19]).

For a N -function A : R → [0, +∞), we have the representation

A(t) =
∫ |t |

0
ζ(ξ) dξ, t ∈ R, (2)

with ζ : [0, +∞) → [0, +∞) being a right derivative of A. Also, it is non-decreasing and right contin-
uous such that

ζ(ξ) > 0 for all ξ > 0, lim
ξ→+∞ ζ(ξ) = +∞, ζ(0) = 0.
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Of course, whenever ζ meets the above conditions, then A, given by (2), is a N -function. For our
further use, we put ζ(ξ) = a(ξ)ξ for all ξ ∈ [0, +∞) so that (2) reduces to

A(t) =
∫ |t |

0
a(ξ)ξ dξ, t ∈ R. (3)

The hypotheses on a : [0, +∞) → [0, +∞) are as follows:

(a1) a ∈ C1(0, +∞), a(t) > 0, (a(t)t)′ > 0 for any t > 0;
(a2) there exist q, p ∈ (1, N), with q � p < q∗, such that q � A′(t)t

A(t)
� p for any t > 0, where A is

defined by (3) and q∗ = Nq/(N − q);
(a3) there exist a0, a1 > 0 such that a0 � A′′(t)t

A′(t) � a1 for any t > 0.

The real function a(t) = qctq−1 + pCtp−1 for all t ∈ [0, +∞), with q < p and c, C � 0 where
c + C > 0, satisfies the above hypotheses.

We mention that (a1) and (a2) imply that A in (3) is a N -function which satisfies the inequality

A(2t) � kA(t), for all t > 0, some k > 0 (say �2-condition).

Now, A admits a conjugate Ã given as

Ã(t) = sup
{
τ t − A(τ) : τ � 0

}
.

Remark 1. Hypothesis (a1) implies that A(s)

s
is increasing for s > 0 and so

Ã

(
A(s)

s

)
� A(s)

s
s = A(s) for s > 0.

A finite-valued N -function 
 is said to increase essentially more slowly than another N -function A

near infinity if

lim
t→+∞


(λt)

A(t)
= 0 for every λ ∈ R with λ > 0.

The Orlicz space LA(�), associated with a N -function A satisfying the �2-condition, is the Banach
function space of those measurable functions u : � → R such that the Luxemburg norm

‖u‖A = inf

{
λ > 0 :

∫
�

A

( |u|
λ

)
dz � 1

}

is finite. We note that LA(�) = Lp(�) if A(t) = |t |p for some p ∈ [1, +∞), and LA(�) = L∞(�) if
A(t) = 0 for t ∈ [0, 1] and A(t) = +∞ for t > 1. Later on, we denote with ‖ · ‖p the norm in Lp(�).

The �2-condition leads us to say that the dual space LA(�)∗ is identified with LÃ(�).
We also recall the Hölder type inequality∫

�

|uv| dz � 2‖u‖A‖v‖Ã for all u ∈ LA(�), all v ∈ LÃ(�).
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Let V 1,A(�) be the Sobolev type space

V 1,A(�) = {
u : u is weakly differentiable on � and |∇u| ∈ LA(�)

}
.

We consider the Orlicz–Sobolev space W 1,A(�) defined by

W 1,A(�) = V 1,A(�) ∩ LA(�),

equipped with the norm ‖u‖1,A = ‖|∇u|‖A + ‖u‖A.
As usual, W

1,A
0 (�) stands for the closure in W 1,A(�) of the set of smooth compactly supported func-

tions on �. Hypothesis (a2) implies that Ã satisfies the �2-condition. So, LA(�), W 1,A(�) and W
1,A
0 (�)

are separable and reflexive Banach spaces and the functional

I (u) =
∫

�

A
(|∇u|) dz for all u ∈ W

1,A
0 (�)

is Fréchet differentiable. Hypotheses (a1)–(a3) ensure the validity of some elementary inequalities listed
in the following lemmas (see [7,8]).

Lemma 1. If (a1), (a2) hold, then whenever m1(t) = min{tq, tp} and m2(t) = max{tq, tp}, t > 0, we
have:

(i) m1(k)A(t) � A(kt) � m2(k)A(t) for all k, t � 0;
(ii) m1(‖u‖A) �

∫
�

A(|u|) dz � m2(‖u‖A) for all u ∈ LA(�).

Lemma 2. If (a1)–(a3) hold, one can find k0 > 0 satisfying

(
a
(|w|)w − a

(|v|)v)
(w − v) � k0

A(|w − v|)(q+1)/q

(A(|w|) + A(|v|))1/q

for all v,w ∈ R
N with w �= 0.

Now, the Poincaré inequality for A can be stated as follows (see the details in Gossez [9], Lemma 2):
There exists � > 0 such that∫

�

A
(|u|) dz � �

∫
�

A
(|∇u|) dz for all u ∈ W

1,A
0 (�). (4)

We will use ‖ · ‖ = ‖|∇u|‖A as the norm of W
1,A
0 (�) (recall that this norm is equivalent to ‖u‖1,A).

By A∗ we mean the Sobolev’s conjugate N -function of A given as

A−1
∗ (t) =

∫ t

0

A−1(s)

s(N+1)/N
ds for t > 0.

Hypotheses (a1) and (a2) imply that A∗ and Ã∗ are N -functions satisfying the �2-condition (see [7],
Lemma 2.7). Note that

q∗ � A′∗(t)t
A∗(t)

� p∗ for all t > 0.
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We recall that Donaldson–Trudinger [6] showed that there exists a constant SN > 0 such that

‖u‖A∗ � SN‖u‖ for all u ∈ W
1,A
0 (�),

which means that the embedding W
1,A
0 (�) ↪→ LA∗(�) is continuous. If � is a bounded domain and B

is a N -function satisfying

lim sup
t→+∞

B(t)

A∗(t)
= 0, (5)

then W
1,A
0 (�) ↪→ LB(�) is a compact embedding. In particular, W

1,A
0 (�) ↪→ LA(�) is compact too.

Remark 2. We note that Lemma 1(ii) implies:

(j)
∫
�

A(|u|) dz < +∞ for all u ∈ LA(�);
(jj) a sequence {un}n�1 ⊂ LA(�) converges to some u ∈ LA(�) if and only if

lim
n→+∞

∫
�

A
(|un − u|) dz = 0;

(jjj) a sequence {un}n�1 ⊂ LA(�) is bounded in LA(�) if and only if

{∫
�

A
(|un|

)
dz

}
n�1

is bounded.

Moreover, we point out that A increases essentially more slowly than A∗ near infinity. In fact, for
t � 1 we have

0 � A(λt)

A∗(t)
� A(λ)tp

A∗(1)tq
∗ → 0 as t → +∞, since p < q∗.

The next lemma states a convergence result in a Orlicz–Sobolev space.

Lemma 3. Let � ⊂ R
N be a smooth bounded domain, and suppose that (a1)–(a2) hold true. If u ∈

W
1,A
0 (�) and {un}n�1 is such that un

w−→ u in W
1,A
0 (�) and

lim
n→+∞

∫
�

a
(|∇un|

)∇un(∇un − ∇u) dz = 0,

then un converges to u in W
1,A
0 (�).

Proof. Firstly, we note that un
w−→ u in W

1,A
0 (�) yields

lim
n→+∞

∫
�

a
(|∇u|)∇u∇(un − u) dz = 0.
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So, we get

lim
n→+∞

∫
�

(
a
(|∇un|

)∇un − a
(|∇u|)∇u

)
(∇un − ∇u) dz = 0.

Since the sequence {un}n�1 is bounded, the Hölder inequality and Lemma 2 lead to

∫
�

A
(|∇un − ∇u|) dz

�
(∫

�

A(|∇un − ∇u|)(q+1)/q

(A(|∇un|) + A(|∇u|))1/q
dz

)q/(q+1)(∫
�

(
A

(|∇un|
) + A

(|∇u|)) dz

)1/(q+1)

� M

(
1

k0

∫
�

(
a
(|∇un|

)∇un − a
(|∇u|)∇u

)
(∇un − ∇u) dz

)q/(q+1)

for some M > 0

→ 0 as n → +∞.

So, by Remark 2(jj), we conclude that un → u in W
1,A
0 (�), as n → +∞. �

3. One nontrivial weak solution

We recall that u ∈ W
1,A
0 (�) is a weak solution of (1) whenever

∫
�

a
(|∇u|)∇u∇v dz =

∫
�

f (z, u)v dz for any v ∈ W
1,A
0 (�).

For the sake of clarity, we recall the Palais–Smale condition too.

Definition 1. Let W
1,A
0 (�)∗ be the topological dual of W

1,A
0 (�). Then, I : W

1,A
0 (�) → R satisfies the

Palais–Smale condition if any sequence {un}n�1 such that

(i) {I (un)}n�1 is bounded;
(ii) limn→+∞ ‖I ′(un)‖W

1,A
0 (�)∗ = 0,

has a convergent subsequence.

A sequence {un}n�1 satisfying Definition 1(i)–(ii), is called a Palais–Smale sequence for the functional
I . Here, we use the following inequality:

lim sup
|t |→+∞

(
sup
z∈�

βF(z, t) − tf (z, t)

A(|t |)
)

<
β − p

�
, (f0)

for some β > p where � is as in (4) and F(z, t) = ∫ t

0 f (z, ξ)dξ .
Now, we consider the following condition (see assumption (f∗) of [20]):
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(f1) f (z, 0) = 0 for all z ∈ � and there are a N -function B such that B ′ : R → R is an odd
increasing homeomorphism, and constants α0, α1 � 0 with |f (z, t)| � α0 +α1B

′(|t |) for all z ∈ �,
t ∈ R, and

lim
t→+∞

B(t)

A∗(t)
= 0,

and

p < b− := inf
t>0

tB ′(t)
B(t)

� sup
t>0

tB ′(t)
B(t)

:= b+ < q∗.

We establish the following result.

Proposition 1. If (f0), (f1) hold, then the functional I : W
1,A
0 (�) → R defined by

I (u) =
∫

�

A
(|∇u|) dz −

∫
�

F(z, u) dz for all u ∈ W
1,A
0 (�) (6)

satisfies the Palais–Smale condition.

Proof. Using (f0), we choose ρ ∈ (0,
β−p

�
) such that

ρ > lim sup
|t |→+∞

(
sup
z∈�

βF(z, t) − tf (z, t)

A(|t |)
)

.

Then, we can find t∗ > 0 such that

βF(z, t) − tf (z, t) � ρA
(|t |) for all |t | � t∗, z ∈ �.

So, there exists δ > 0 satisfying

βF(z, t) − tf (z, t) � ρA
(|t |) + δ for all t ∈ R, z ∈ �. (7)

Let {un}n�1 be a Palais–Smale sequence in W
1,A
0 (�) for the functional I . Set εn := ‖I ′(un)‖. Since

{I (un)}n�1 is bounded, (6) and

〈
I ′(un), v

〉 =
∫

�

a
(|∇un|

)∇un∇v dz −
∫

�

f (z, un)v dz for all un, v ∈ W
1,A
0 (�), n ∈ N,

imply that we can find a constant L satisfying

L + εn‖un‖ = L + εn

∥∥|∇un|
∥∥

A

� βI (un) − 〈
I ′(un), un

〉
= β

∫
�

A
(|∇un|

)
dz − β

∫
�

F(z, un) dz −
∫

�

a
(|∇un|

)|∇un|2 dz +
∫

�

f (z, un)un dz
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� (β − p)

∫
�

A
(|∇un|

)
dz −

∫
�

[
βF(z, un) − f (z, un)un

]
dz

(
by (a2)

)
� (β − p)

∫
�

A
(|∇un|

)
dz − ρ

∫
�

A
(|un|

)
dz − δ|�| (

by (7)
)

� (β − p)

∫
�

A
(|∇un|

)
dz − ρ�

∫
�

A
(|∇un|

)
dz − δ|�| (

by (4)
)

� (β − p − ρ�)

∫
�

A
(|∇un|

)
dz − δ|�|

� (β − p − ρ�)m1
(‖|∇un|‖A

) − δ|�|
� (β − p − ρ�)

∥∥|∇un|
∥∥q

A
− δ|�| (by Lemma 1, if ‖|∇un|‖A � 1),

where |�| is the Lebesgue measure of �. If the sequence {‖un‖}n�1 is not bounded, from

L + εn‖un‖ = L + εn

∥∥|∇un|
∥∥

A
� (α − p − ρ�)

∥∥|∇un|
∥∥q

A
− δ|�|

for infinite values of n large enough,

we obtain a contradiction (recall that ‖un‖ = ‖|∇un|‖A). So, the sequence {un}n�1 is bounded in
W

1,A
0 (�). Consequently, {un}n�1 admits a subsequence (namely {un}n�1 too) such that

un
w−→ u in W

1,A
0 (�) and un → u in LB(�)

(
recall (5), since B(t)/A∗(t) → 0 as t → +∞)

.

We note that the condition (f1) ensures:

• f (·, un(·)) ∈ LB̃(�) for all n ∈ N, where B̃ is the conjugate of B;
• {f (·, un(·))}n�1 is bounded in LB̃(�).

Using Hölder inequality, we infer that

lim
n→+∞

∫
�

∣∣f (z, un)
∣∣|un − u| dz = 0.

From∫
�

a
(|∇un|

)∇un∇(un − u) dz = 〈
I ′(un), un − u

〉 + ∫
�

f (z, un)(un − u) dz,

we get

lim
n→+∞

∫
�

a
(|∇un|

)∇un∇(un − u) dz = 0

and by Lemma 3, we conclude that un → u in W
1,A
0 (�) as n → +∞. �

Remark 3. Note that the condition (f0) is motivated by Assumption 2.1(iv) of [10]. Also, (f0) is weaker
than the Ambrosetti–Rabinowitz condition (see Remark 2.3 of [10]).
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In the sequel we will use the following conditions:

(f2) there exist ε ∈ (0, �−1) and δε > 0 such that F(z, t) � εA(|t |) for a.a. z ∈ �, all |t | � δε;
(f3) lim|t |→+∞ F(z,t)

|t |p = +∞ uniformly for a.a. z ∈ �;

(f +
3 ) limt→+∞ F(z,t)

tp
= +∞ uniformly for a.a. z ∈ �;

(f −
3 ) limt→−∞ F(z,t)

|t |p = +∞ uniformly for a.a. z ∈ �.

We establish our next result in the form of a lemma.

Lemma 4. If (f1), (f2) hold and f satisfies also (f +
3 ) or (f −

3 ), then

(i) there exist ρ > 0 and σ > 0 such that I (u) � σ for each u ∈ W
1,A
0 (�) with ‖u‖ = ρ;

(ii) there exists v ∈ W
1,A
0 (�) such that 0 > I (v) and ρ < ‖v‖.

Proof. (i). Since W
1,A
0 (�) ↪→ LB(�) continuously, there is a constant CB > 0 satisfying

‖u‖B � CB‖u‖ for all u ∈ W
1,A
0 (�). (8)

Using (f1) and (f2), we can find a constant Cε > 0 satisfying

F(z, t) � εA
(|t |) + CεB

(|t |) for a.a. z ∈ �, all t ∈ R. (9)

If u ∈ W
1,A
0 (�) is such that max{‖u‖, CB‖u‖} < 1, by (8) and (9) we have

I (u) =
∫

�

A
(|∇u|) dz −

∫
�

F(z, u) dz

�
∫

�

A
(|∇u|) dz − ε

∫
�

A
(|u|) dz − Cε

∫
�

B
(|u|) dz

� (1 − ε�)

∫
�

A
(|∇u|) dz − Cε‖u‖b−

B

(
see (4) and Lemma 1(ii)

)
� (1 − ε�)m1

(‖|∇u|‖A

) − CεC
b−
B ‖u‖b−

= (1 − ε�)‖u‖p − CεC
b−
B ‖u‖b−

= [
(1 − ε�) − CεC

b−
B ‖u‖b−−p

]‖u‖p.

Choosing 0 < ρ < min{1, C−1
B } with

ϑ = (1 − ε�) − CεC
b−
B ρb−−p > 0,

then we have I (u) � ϑρp = σ > 0 for all u ∈ W
1,A
0 (�) such that ‖u‖ = ρ.

(ii). Assume that f satisfies (f +
3 ). By (f1) and (f +

3 ), for all L > 0 we can find a constant CL > 0
satisfying

F(z, t) � Ltp − CL for a.a. z ∈ �, all t > 0. (10)
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Set w ∈ W
1,A
0 (�) with w(z) > 0 for all z ∈ �. From (10), for all t > 1 we have

I (tw) =
∫

�

A
(|∇tw|) dz −

∫
�

F(z, tw) dz

� tp
∫

�

A
(|∇w|) dz − Ltp‖w‖p

p + CL|�|

= tp
[∫

�

A
(|∇w|) dz − L‖w‖p

p

]
+ CL|�|.

Choosing L > 0 with

∫
�

A
(|∇w|) dz − L‖w‖p

p < 0,

then I (tw) → −∞ as t → +∞. Consequently there is v = t0w ∈ W
1,A
0 (�) with 0 > I (v) and

ρ < ‖v‖.
The same conclusion holds if we assume that f satisfies (f −

3 ). �

For reader convenience, we recall the following version of Mountain Pass Theorem (see Theorem 5.40
of [11]).

Theorem 1. If I ∈ C1(W
1,A
0 (�)) satisfies the (Cc)-condition, there exist u0, u1 ∈ W

1,A
0 (�) and ρ > 0

such that

‖u0 − u1‖ > ρ, max
{
I (u0), I (u1)

}
< inf

{
I (u) : ‖u − u0‖ = ρ

} = mρ, and

c = inf
γ∈�

max
0�t�1

I
(
γ (t)

)
with � = {

γ ∈ C
([0, 1], W 1,A

0 (�)
) : γ (0) = u0, γ (1) = u1

}
,

then c � mρ and c is a critical value of I (that is, there exists û ∈ W
1,A
0 (�) such that I ′(̂u) = 0 and

I (̂u) = c).

Remark 4. We recall that I ∈ C1(W
1,A
0 (�)) satisfies the (Cc)-condition, if every sequence {un}n�1 ⊂

W
1,A
0 (�) such that I (un) → c ∈ R and (1 + ‖un‖A)I ′(un) → 0 in W

1,A
0 (�)∗ as n → +∞, admits

a convergent subsequence. Note that if I satisfies the Palais–Smale condition then it satisfies the (Cc)-
condition.

By Proposition 1, Lemma 4 and Remark 4, the functional I defined in (6) satisfies the assumptions of
Theorem 1. So, it admits a critical value c � mρ > 0.

Resuming we establish the existence of one nontrivial weak solution of (1) in the following result. By
Corollary 3.1 of [20] this solution is in C

1,α
0 (�) for some α ∈ (0, 1).

Theorem 2. If (f0)–(f2), (f +
3 ) (or (f −

3 )) hold, then problem (1) admits at least one nontrivial weak
solution û ∈ C

1,α
0 (�) for some α ∈ (0, 1).
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4. The parametric case: Existence and blow-up of solutions

In this section, we study the following parametric version of problem (1):

−div
(
a
(|∇u|)∇u

) = λf (z, u) in �, u = 0 on ∂�, (11)

where λ > 0. In particular, we are interested in the existence of high energy solutions, that is, solutions
with higher and higher energies as the positive parameter becomes smaller and smaller.

As a consequence of Theorem 2 we deduce the following existence result.

Theorem 3. If (f0)–(f2), (f +
3 ) (or (f −

3 )) hold, then problem (11) admits for all λ ∈ (0, 1] at least one
nontrivial weak solution ûλ ∈ C

1,α
0 (�), for some α ∈ (0, 1).

Now, we show that for small values of the parameter λ > 0 problem (1) has a solution uλ ∈ W
1,A
0 (�)

such that limλ→0+ ‖uλ‖ = +∞.

Lemma 5. If (f1) holds, then there exist positive constants mλ and ρλ such that limλ→0+ mλ = +∞ and
Iλ(u) � mλ > 0 for all u ∈ W

1,A
0 (�) such that ‖u‖ = ρλ.

Proof. Let u ∈ W
1,A
0 (�) with ‖u‖ > 1. From (f1), we deduce that there is C > 0 with∣∣F(z, t)

∣∣ � C
(
1 + B

(|t |)), (12)

for all (x, t) ∈ � × R, p < b− � b+ < q∗. Consequently, we have

Iλ(u) =
∫

�

A
(|∇u|) dz − λ

∫
�

F(z, u) dz

�
∫

�

A
(|∇u|) dz − λC

∫
�

B
(|u|) dz − λC|�|

� m1
(‖|∇u|‖) − λCm2

(‖u‖B

) − λC|�| (
see Lemma 1(ii)

)
� ‖u‖q − λCm2

(
CB‖u‖) − λC|�|

� ‖u‖q − λC max
{
Cb+

B , Cb−
B

}‖u‖b+ − λC|�|.

Let ρλ = λ−σ with 0 < σ < 1
b+−q

, so that ρλ > 1 for λ > 0 small enough. Putting ‖u‖ = ρλ = λ−σ

in the above inequality, we get

Iλ(u) � λ−σq − C max
{
Cb+

B , Cb−
B

}
λ1−σb+ − λC|�|.

Now, set mλ = λ−σq − C max{Cb+
B , Cb−

B }λ1−σb+ − λC|�|. As 0 < σ < 1
b+−q

, then we can find λ0

small enough such that mλ > 0 for all 0 < λ < λ0 and mλ → +∞ as λ → 0+. �

Theorem 4. If (f0), (f1), (f3) hold, then there exists λ0 ∈ (0, 1] such that, for all 0 < λ < λ0, Problem
(11) has at least one weak solution uλ ∈ W

1,A
0 (�) and ‖uλ‖ → +∞ as λ → 0+.
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Proof. By Proposition 1, the functional Iλ satisfies the (Cc)-condition for all λ ∈ (0, 1]. Thanks to
Proposition 1, Lemma 5 and Lemma 4(ii) all the hypotheses of the mountain pass theorem are satisfied
and so, there exists a nontrivial critical point uλ for Iλ such that

Iλ(uλ) = cλ � mλ.

On the other hand, from (12), we have

Iλ(uλ) �
∫

�

A
(|∇uλ|

)
dz + λ

∫
�

∣∣F(z, uλ)
∣∣ dz

� m2
(‖∇uλ‖A

) + λCm2
(‖uλ‖B

) + λC|�|.

Taking the limit as λ → 0+ in the previous inequality, and using Lemma 5 one has limλ→0+ ‖uλ‖ =
+∞. �

The new condition on the function f (z, t) in the reaction is the following:
(f4): There exists τ ∈ (1, p) and δ, ĉ such that

ĉ|t |τ � F(z, t) for a.a. z ∈ �, all |t | � δ.

Theorem 5. If hypotheses (f1), (f4) hold, then we can find λ̂ ∈ (0, 1) such that for all λ ∈ (0, λ̂)

problem (11) has a nontrivial solution ûλ ∈ W
1,A
0 (�) and ‖ûλ‖ → 0+ as λ → 0+.

Proof. We consider again the functional Iλ : W
1,A
0 (�) → R related to problem (11) and given as

Iλ(u) =
∫

�

A
(|∇u|) dz − λ

∫
�

F(z, u) dz for all u ∈ W
1,A
0 (�).

We know that there is Cτ > 0 such that ‖u‖τ � Cτ‖u‖. Hypotheses (f1), (f4) imply that

∣∣F(z, t)
∣∣ � C

[|t |τ + B
(|t |)] for a.a. z ∈ �, all t ∈ R, some C > 0. (13)

Let 0 < σ < 1
p

. Then for u ∈ W
1,A
0 (�) with ‖u‖ = λσ < 1, we have

Iλ(u) �
∫

�

A
(|∇u|) dz − λC‖u‖τ

τ − λC

∫
�

B
(|u|) dz (see (13))

� m1
(‖|∇u|‖) − λC‖u‖τ

τ − λCm2
(
CB‖u‖)

= ‖u‖p − λCCτ
τ ‖u‖τ − λC max

{
Cb+

B , Cb−
B

}‖u‖b−
.

As σp − 1 < 0, then one can find λ̂ > 0 such that for all λ ∈ (0, λ̂) we get

Iλ(u) > 0 for all u ∈ W
1,A
0 (�) with ‖u‖ = λσ . (14)



CORRECTED  P
ROOF

C. Vetro / Parametric and nonparametric A-Laplace problems 13

Let Bλ = {u ∈ W
1,A
0 (�) : ‖u‖ < λσ }. The reflexivity of W

1,A
0 (�) and the Eberlein–Smulian theorem

imply that Bλ is sequentially weakly compact. Now, Iλ is sequentially weakly lower semicontinuous
(note that W 1,A

0 (�)) ↪→ Lp(�) compactly). By the Weierstrass–Tonelli theorem, we have ûλ ∈ W
1,A
0 (�)

such that

Iλ(̂uλ) = min
[
Iλ(u) : u ∈ Bλ

]
. (15)

Let u ∈ C1
0(�) ⊂ W

1,A
0 (�) with u(z) > 0 for all z ∈ �. Then we can find t ∈ (0, 1) small such that

0 < tu(z) � δ for all z ∈ �, where δ > 0 is as postulated by hypothesis H2(ii). We have

Iλ(tu) �
∫

�

A
(
t |u|) dz − λC‖tu‖τ

τ

(
see hypothesis H2(ii)

)
� m2(t)

∫
�

A
(|u|) dz − λCtτ‖u‖τ

τ

= t τ
[
tp−τ

∫
�

A
(|u|) dz − λC‖u‖τ

τ

]
.

Since 1 < τ < p, choosing t ∈ (0, 1) even smaller if necessary, we have

Iλ(tu) < 0,

⇒ Iλ(̂uλ) < 0 = Iλ(0) (see (15)),

⇒ ûλ �= 0. (16)

Also from (14) and (16) it follows that

‖ûλ‖ < λσ . (17)

Therefore ûλ ∈ Bλ \ {0}. On account of (15) we have

ûλ ∈ KIλ
,

⇒ ûλ is a nontrivial solution of (11), λ ∈ (0, λ̂).

From (17) we see that ‖uλ̂‖ → 0+ as λ → 0+. �
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