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Abstract
The combination of persistent homology and discrete Morse theory has proven very
effective in visualizing and analyzing big and heterogeneous data. Indeed, topology
provides computable and coarse summaries of data independently from specific coor-
dinate systems and does so robustly to noise. Moreover, the geometric content of a
discrete gradient vector field is very useful for visualization purposes. The specific
case of multivariate data still demands for further investigations, on the one hand,
for computational reasons, it is important to reduce the necessary amount of data to
be processed. On the other hand, for analysis reasons, the multivariate case requires
the detection and interpretation of the possible interdepedance among data compo-
nents. To this end, in this paper we introduce and study a notion of perfectness for
discrete gradient vector fields with respect to multi-parameter persistent homology,
called relative-perfectness. As a natural generalization of usual perfectness in Morse
theory for homology, relative-perfectness entails having the least number of critical
cells relevant for multi-parameter persistence. As a first contribution, we support our
definition of relative-perfectness by generalizing Morse inequalities to the filtration
structure where homology groups involved are relative with respect to subsequent
sublevel sets. In order to allow for an interpretation of critical cells in 2-parameter
persistence, our second contribution consists of two inequalities bounding Betti tables
of persistence modules from above and below, via the number of critical cells. Our
last result is the proof that existing algorithms based on local homotopy expansions
allow for efficient computability over simplicial complexes up to dimension 2.
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1 Introduction

In recent years, the impressive growth of data and their heterogeneity has increased
the demand for new ways of visualizing and analyzing data. To this purpose, many
techniques rooted in shape analysis have turned out to be successful, in particular those
based on topology Heine et al. (2016).

Topology-based techniques. Most of topology-based techniques find their theo-
retical roots in the interplay between homology and critical points of functions as
provided by Morse Theory Milnor (1963). Homology is an algebraic theory to detect
topological features of a domain such as connected components, loops, cavities and
higher-dimensional holes, each counted by its corresponding Betti number. Morse
Theory establishes a link between critical points and Betti numbers. In particular,
weak Morse inequalities state that the number of critical points of functions, called
Morse functions, bound from above the Betti numbers of the domain. In case of equal-
ity, theMorse function is called a perfect function as the critical points of such function
provide an optimal bound for the Betti numbers of that domain. Not all domains admit
a perfect function. Only in a few cases, such as for PL triangulated n-spheres Eells
and Kuiper (1962), the existence of a perfect function is guaranteed. This explains
why tighter properties or low dimensions are usually assumed on the domain in order
to ensure perfectness.

In the context of visual analytics and data analysis, the above mentioned interplay
has produced successful strategies. In the former case, Morse Theory is exploited
in topological consistent segmentation techniques of scalar field domains: the key
notion of a Morse complex associated to a discrete gradient vector field, where inte-
gral lines connect critical points, provides a simplified representations De Floriani
et al. (2015). In the latter case, the demand for meaningful concise representations of
heterogeneous data motivates Topological Data Analysis - TDA Carlsson (2009). In
the pipeline of TDA, one starts from a point cloud representing data with unknown
structure. Some combinatorial shape is associated to the point cloud, e.g., a simpli-
cial complex. Such simplicial complex is filtered by a nested sequence of complexes,
called a filtration, e.g., by taking sublevel sets with respect to some measurements on
data. Persistent homology Edelsbrunner and Harer (2010) gives a representation of
homological changes along the filtration. The signature thus obtained as data summary
is called a persistence diagram.

Interplay between persistent homology andMorse theory. In order to relate persis-
tent homology toMorse theory, it is usual to resort to the Forman’s discrete counterpart
to Morse theory Forman (1998). The crucial observation is that birth-death values in
a persistence diagram correspond to pairings of critical cells with respect to a discrete
gradient vector field which is somehow “consistent” with persistence in the sense
that persistent homology is preserved in the associated Morse complex. On the one
hand, this property is used as a data-driven way of removing noise, for instance in
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3D-scalar field visualization Fellegara et al. (2014) to remove low persistence criti-
cal pairs via cancellations Forman (1998). On the other hand, discrete Morse theory
provides a preprocessing tool to reduce the amount of data on which to compute per-
sistent homology by retaining the meaningful information in terms of critical cells
Mischaikow and Nanda (2013). In this sense, by considering only those critical cells
corresponding to births and deaths of persistence, one can consider the associated
Morse complex being optimal. For instance, the advantage of the algorithm in Robins
et al. (2011) over the one in King et al. (2005) is that it retrieves all and only the
critical cells that correspond to births and deaths in persistence, at least for complexes
of up to dimension 2 if simplicial, and embedded in the 3D-Euclidean space if cubical.
Here, the dimensional bound for simplicial complexes or the Euclidean embedding for
cubical complexes exclude some shapes known not to admit perfect functions (such
as the “dunce hat” shown in Fig. 5). Making this notion of optimality explicit in a way
generalizable to the case of multivariate data is one of the aims of this paper.

Interpreting and analyzing multivariate data. Nowadays, one of the greatest chal-
lenges in visual analytics and data analysis consists in representing and interpreting
multivariate data, that is data measured bymultiple filtering functions or directly given
in the form of vector fields, such as simulations based on models with partial differen-
tial equations, e.g., computational fluid dynamics, electromagnetic fields, or weather
forecasts. However, multivariate data are often too large to be processed and their
entire information is typically not derivable from methods independently acting on
single components.

In this work, we address the problem of detecting the most significant piece of
hidden information in multivariate data, and we try to give theoretical insights to the
problem of capturing the interdependence among component values stated in Kehrer
and Hauser (2013). An example of Morse-based techniques applied to visual analytics
over multivariate data is provided in Iuricich et al. (2016). Therein, a discrete gradient
vector field simultaneously consistentwith two scalar fields (temperature and pressure)
is applied to segment the Hurricane Isabel dataset: the hurricane’s eye is detected as
the largest cluster of critical cells of the gradient vector field. In general, not all discrete
gradient vector fields need to have the same amount of critical cells. This motivates
us in investigating minimality in terms of number of cells. To address that, our strat-
egy consists in generalizing to the multi-parameter case the perfectness-optimality
properties derived from the interplay between (persistent) homology computation and
discrete Morse Theory. All along the paper, the case of vectorial data or multiple mea-
sures will be called multi-parameter case as opposed to the one-parameter case of
scalar field data and single measures.

Multi-parameter Persistent Homology - MPH Carlsson and Zomorodian (2009) is
a natural generalization of the usual one-parameter persistent homology where the
application of homology to a multi-parameter filtration provides a multi-parameter
persistence module. The multi-parameter case is much more complex than the one-
parameter one in terms of both encoding of information and computability Cagliari
et al. (2010). Unfortunately, a multi-parameter counterpart to (discrete) Morse theory
is only partially developed in Allili et al. (2017).
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However, some analogies still hold. these analogies to the one-parameter case are
related to the possibility of computing discrete gradient vector fields being consistent
with a multifiltration, meaning by that, that the associated Morse complex preserves
the MPH information. Motivated by this fact, the algorithms (Allili et al. 2017; Allili
et al. 2017; Iuricich et al. 2016) retrieve a discrete gradient vector field consistent
with a multi-filtration. The Morse-based reduction preprocessing for computing MPH
invariants is shown to be effective in Scaramuccia et al. (2020).

The construction of such gradient vector field is efficiently achieved, actually in
linear time in Iuricich et al. (2016) and Allili et al. (2017) whenever the worst-case
size of a cell star is negligible with respect to the whole complex size. The algorithm
in Iuricich et al. (2016) improves that in Allili et al. (2017) in terms of speed but it is
equivalent to it in terms of retrieved critical cells Scaramuccia et al. (2020). However,
even for these algorithms, the question about whether they retrieve the minimum,
also known as optimal, number of critical cells necessary to get the same persistence
modules was left as an open problem. In contrast, as mentioned above, it was answered
positively, at least in low dimensions, for one-parameter filtrations in Robins et al.
(2011).

Having the guarantee from the abovementioned papers that discrete gradient vector
fields consistent with given multi-filtrations can be easily constructed, it is now of key
interest to understand whether it is possible to achieve the minimum number of critical
cells while preserving persistent homology. In order to answer to this question, it is
convenient to develop an analogue for multi-parameter persistent homology of the
well-known standard Morse inequalities that relate the number of critical cells of a
discrete gradient vector field to the Betti numbers of the underlying cell complex.

Contributions. As a first contribution of this paper, we show that an analogue for
multi-parameter persistent homology of the well-known standard Morse inequalities
can be obtained by replacing Betti numbers by a sort of relative Betti numbers defined
using the dimension of the relative homology of subsequent sublevel sets. Therefore,
by analogy with usual perfectness in Morse theory Lewiner et al. (2003), we define
relative-perfectness as the property of attaining an equality between its critical cells
and such relative Betti numbers. This provides a new optimality criterion for any
algorithm retrieving a discrete gradient vector field compatible with a multi-filtration.

We observe that for one-parameter filtrations, relative-perfectness simply means
that each critical cell corresponds to a positive (i.e., giving birth) or negative (i.e.,
giving death) cell of exactly one persistence pair. This is the same property yielding
optimality in Robins et al. (2011). To go a little bit further, it is crucial to ask what kind
of information the critical cells can carry about the corresponding persistencemodules.
In the context of multi-parameter persistent homology, births and deaths are not paired
in a single invariant like the persistence diagram, but separately detected by invariants
known as Betti tables Eisenbud (2005). The zeroth Betti table ξ0 detects births and the
first Betti table ξ1 detects deaths. For a bi-filtration there is also a second Betti table
ξ2. As observed in Knudson (2008), births and deaths in multi-parameter persistent
homology do not necessarily happen due to the entrance of “real” critical cells in the
multi-filtration, but can also be ascribed to the appearance of “virtual” critical cells.
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The latter are detected by the second Betti table ξ2. For a general multifiltration with
n-parameters there might be non-trivial ξ0, . . . , ξn Betti tables.

Our second contribution of this paper consists of inequalities showing that, for
general discrete gradients consistent with a bi-filtration, the number of critical cells
bounds from above a linear combination of values from Betti tables thus providing an
estimation of the latter ones. In addition, in the case when the gradient vector field is
relative-perfect, we can even deduce double inequalities with the number of critical
cells bounding from below the number of births and deaths captured by ξ0 and ξ1, up
to those due to “virtual” cells captured by ξ2.

Since one of our inequalities holds under the relative-perfectness assumption, as a
last contribution, we prove that relative-perfectness formulti-filtrations can be actually
achieved by algorithms (Allili et al. 2017; Iuricich et al. 2016), at least in the case of
simplicial complex domains of dimension 2. Analogously to the one-parameter case,
in Robins et al. (2011) this can be seen as an optimality property among all consistent
discrete gradients.

Organization of the paper. In Sect. 2, we review the technical tools for this paper:
combinatorial cell complexes and their homology, filtrations and persistent homology,
Betti tables of persistence modules, combinatorial Morse theory.We conclude the sec-
tion illustrating some known connections between persistent homology and discrete
Morse theory. In Sect. 3, we introduce the notions of multi-parameter Morse numbers
and relative-perfectness for a discrete gradient vector field consistent with a multi-
filtration and show, through their mutual relations, the link to the optimality notion.
We also show the consistency of the new definitions with known results, in the case of
one-parameter persistent homology, precisely connecting Morse numbers and births
and deaths instants. In Sect. 4, we extend such connection to the case of bi-filtrations
showing the relation between Morse numbers and Betti tables for relative-perfect
gradient vector fields. In Sect. 5, we prove that for simplicial complexes of dimen-
sion 2 any generic assignment on the vertices permits the algorithmic construction of
such relative-perfect gradient vector fields. Section 6 contains a brief discussion on
potentialities of these results and open questions.

2 Preliminaries

2.1 Cell complexes and their homology

Intuitively, cell complexes are objects that can be decomposed into elementary pieces
with simple topology, known as cells, and glued together along their boundaries,
themselves decomposed into faces. In this paper we describe cell complexes following
the combinatorial framework of Lefschetz (1942). Such abstraction turns out useful
to describe the discrete Morse complex and its homology.

By a cell complex we mean a finite set K , whose elements are called cells, with a
gradation Kq , q ∈ Z, and an incidence function κ : K × K → F over a field F, such
that: (i) Kq = ∅ for q < 0, (i i) for every cell τ ∈ K there exists a unique number
q, called the dimension of τ and denoted dim τ , such that τ ∈ Kq , (i i i) κ(τ, σ ) �= 0
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implies dim τ = dim σ + 1, (iv) for each τ and σ in K ,
∑

ρ∈K κ(τ, ρ) · κ(ρ, σ ) = 0.
The dimension of a cell complex is themaximal dimension of its cells. The nine shapes
in Fig. 1 are examples of cell complexes whose dimensions range from 0 to 2.

A facet of τ in K is a cell σ such that κ(τ, σ ) �= 0. Reciprocally, τ is a cofacet
of σ . Moreover, σ is a face of τ and τ is a coface of σ if there is a sequence of cells
ordered by the facet relation starting with σ and ending with τ . A subcomplex A of
K is a subset of K such that the restriction of the incidence function to A × A turns
A into a cell complex.

Simplicial complexes are an important class of cell complexes whose cells and
face relations admit a fully combinatorial treatment. The cells of dimension q ≥ 0
in a simplicial complex are called q-simplices. Points, edges, triangles and tetrahedra
correspond to q-simplices with q equal to 0, 1, 2, and 3, respectively. Assume a total
ordering of K0 is given and every simplex σ in K is coded as [v0, v1, . . . , vq ], where
the vertices v0, v1, . . . , vq are listed according to the prescribed ordering of K0. The
incidence function

κ(τ, σ ) :=
{

(−1)i if τ = [v0, v1, . . . , vq ] and σ = [v0, v1, . . . , vi−1, vi+1, . . . , vq ]
0 otherwise.

describes the incidence relations among simplices.
For a cell complex K and for all q ∈ Z, we letCq(K ) be the vector space generated

by Kq over F. We define a linear map called the boundary operator ∂q : Cq(K ) −→
Cq−1(K ) by setting

∂q(τ ) :=
∑

σ∈Kq−1

κ(τ, σ )σ

The pair (C∗(K ), ∂∗) is by definition the chain complex of K . We define the homol-
ogy of K as the homology of its chain complex: Hq(K ) = ker(∂q)/im(∂q+1), where,
as usual, for any linear map h, the notations ker(h), im(h) and coker(h) denote the
kernel, the image, and the cokernel of h respectively, and we will make use of it all
along the paper.

In the case of a simplicial complex one obtains the usual simplicial homology.
The dimension of the vector space Hq(K ) is often denoted by βq(K ), and called the
qth Betti number of K . Betti numbers reveal topological features such as the number
of holes of the cell complex. In particular, β0, β1, β2 are the number of connected
components, tunnels, and voids, respectively.

In what follows we will be interested in applying homology to increasing families
of subcomplexes in order to turn homology into a tool for analyzing cell complexes
at multiple scales.

2.2 Multi-filtrations andmulti-parameter persistent homology

In its original setting, the persistent homology of a cell complex is defined as the homol-
ogy of a nested family of subcomplexes parameterized by a single index. Nevertheless,
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generalizations have been proposed which originate from different choices of the set
of parameters. In this paper we will be interested in considering families of nested sub-
complexes dependingonn ≥ 1 integer parameters. For everyu = (ui ), v = (vi ) ∈ Z

n ,
we write u � v if and only if ui ≤ vi for 1 ≤ i ≤ n. To specify that u � v and u j < v j

for some index j , we also write u � v.
An n-filtration (generally speaking, a multi-filtration) of a cell complex K is a

family K = {Ku}u∈Zn such that Ku is a subcomplex of K v whenever u � v, Ku = ∅
for u � 0, and Ku = K whenever u is sufficiently large. The value of the parameter
u will be called the filtration grade.

A multi-filtration of a cell complex K is said to be one-critical if, for every σ ∈ K ,
there exists one and only one filtration grade u ∈ Z

n such that σ ∈ Ku −⋃n
i=1 K

u−ei ,
with e1, e2, . . . , en denoting the standard basis of Z

n , where ei indicates the element
of Z

n with all entries equal 0 except for the i th entry equal 1. Throughout this paper
we will always assume multi-filtrations to be one-critical, thus dropping the term one-
critical for brevity. Moreover, we often refer to a multi-filtration as a multi-filtered
complex.

Applying homology to a multi-filtered cell complex now yields multi-parameter
persistent homology. Denoting by Hq(·) the qth homology functor, for any n-filtration
K = {Ku}u∈Zn of a cell complex, we obtain the n-parameter (generally speaking,
multi-parameter) persistence module V = {Vu, i

u,v
V

}u�v∈Zn with Vu = Hq(Ku)

and iu,v
V

= iu,v
q : Hq(Ku) → Hq(K v) induced by the inclusion maps Ku ↪→ K v .

An example of n-filtration with n = 2 together with its persistence module for the
homology degree q = 0 is shown in Fig. 1.

The rank of linear maps iu,v
q provides a continuously parameterized family of Betti

numbers βq(u, v), called persistent Betti numbers Cerri et al. (2013) or rank invariant
Carlsson and Zomorodian (2009), giving the number of q-holes in K that persist at
least from u to v along the filtration. When n = 1, we obtain persistence intervals with
endpoints u < v. A maximal interval with endpoints u < v signals that at grade u a
q-cell σ , therefore called a positive cell, enters into the filtration creating a new class
in Hq(Ku) that did not exist in Hq(Ku−1), while at grade v a (q + 1)-cell τ , therefore
called a negative cell, enters into the filtration killing the class created by σ .

From a different perspective, as observed in Carlsson and Zomorodian (2009),
the instants when a homology class is created or destroyed along a multi-parameter
filtration are captured by Betti tables of the persistence modules seen as graded mod-
ules over a polynomial ring. More precisely, for V a finitely presented n-parameter
persistence module, the i th multi-graded Betti table of V, with i ≥ 0, is a function
ξVi : Z

n → N defined by

ξVi (u) := dim TorPni (V, F)(u).

with Pn the polynomial ring F[x1, x2, . . . , xn]. By the Hilbert’s Syzygy Theorem,
ξVi is identically 0 for i > n, and so we obtain a finite family of discrete invariants
ξV0 , ξV1 , . . . , ξVn : Z

n → N.
In order to go through computations of Betti tables, we can consider the Koszul

complex Weibel (1995) whose homologies, in any degree, are the same that define
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Fig. 1 On the left, a 2-filtered simplicial complexK. By applying homology in degree 0 toK, the persistence
module V is shown in the middle. For each filtration grade, the corresponding F-vector space is represented
by the span of its generators, one for each connected component. The inclusion maps between subsequent
cell complexes in the 2-filtered complex correspond to linear maps between vector spaces in the persistence
module, which can be represented as matrices with respect to the chosen generators. On the right, we show
the Betti tables ξi with i = 0, 1, 2 are depicted. From top to bottom respectively, the non-null values capture
the multigrades in the filtration with new born homology classes (ξ0), deaths of homology classes (ξ1), and
relations among previously independent deaths of homology classes (ξ2)

the Betti tables of V. The relation with the Koszul complex is a convenient one for
computing Betti tables. At the same time, the link between the two notions whenV is a
persistence module provides a useful way of visualizing algebraic invariants. Indeed,
Betti tables capture relations among homological features: we have non-zero values
at multigrades where, either new connected components are born (ξV0 ), or connected
components die (ξV1 ), or previously independent deaths get related (ξV2 ), and so on
(See Fig. 1). In particular:

– in the case n = 1, for each grade u, the Koszul complex is given by the chain
complex

0 Vu−1
iu−1,u
V

Vu 0

whose homology gives the following formulas for the Betti tables of V:

ξV0 (u) = dim
(
Vu

/

im(iu−1,u
V

)

)
= dim

(
coker(iu−1,u

V

)

ξV1 (u) = dim
(
ker(iu−1,u

V
)
)

.
(1)
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– In the case n = 2, setting x = u − e1, y = u − e2, and z = u − e1 − e2 for each
multigrade u, the Koszul complex is given by the chain complex

0 Vz
splu

V

Vx ⊕ Vy
mrgu

V

Vu 0,

with the linear maps splu
V
and mrgu

V
defined to combine the persistence module

linear maps i z,x
V

, i z,y
V

, i x,u
V

, i y,u
V

according to the matrix expressions splu
V

=
[
i z,x
V

i z,y
V

]

andmrgu
V

= [
i x,u
V

−i y,u
V

]
. Intuitively, as by one-criticality K z = K x∩K y , themap

splu
V
) comes from mapping elements of the intersection K x ∩ K y separately into

K x and K y (hence, the word split), whereas the map mrgu
V
) comes from mapping

a pair of elements that live separately in K x and K y into Ku that contains both
(hence the word merge). The homology of the Koszul complex gives the following
formulas for the Betti tables of V:

ξV0 (u) = dim
(
Vu

/

im(mrgu
V
)

)
= dim

(
coker(iu−1,u

V

)

ξV1 (u) = dim
(
ker(mrgu

V
)
/

im(splu
V
)

)

ξV2 (u) = dim
(
ker(splu

V

)
(2)

In the rest of the paper, when V = {Hq(Ku), iu,v
q }, we will write ξ

q
i in place of ξVi .

2.3 Perfectness of discrete gradient vector fields

Many of the familiar results from smooth Morse theory Milnor (1963) apply also in
the combinatorial setting. In this section, we restrict ourselves to consider only chain
complexes of K over F = Z/2Z. Following Forman (1998), a discrete vector is a
pair of cells (σ, τ ) of K × K with σ a facet of τ . A discrete vector field V is a set
of discrete vectors of K inducing a partition on the cells of K into three disjoint sets
M, S, T such that M is the set of unpaired cells, called critical cells, S is the set of
cells paired to a cofacet, T is the set of cells paired to a facet, and there is a bijection
between S and T .

A V -path connecting two cells σ and σ ′ is a sequence
(σ0, τ0, σ1, τ1, . . . , σr−1, τr−1, σr ), with r ≥ 1 such that σ0 = σ , σr = σ ′, (σi , τi )

is a discrete vector of V , and σi+1 is a facet of τi . If σr = σ0, the V -path is said to
be closed, and if r = 1, the V -path is said to be trivial. A discrete vector field V not
containing any non-trivial closed V -path is called a discrete gradient vector field. An
example of discrete gradient vector field is shown in Fig. 2 (left).

For any pair (τ, σ ) ∈ M × M of critical cells of a discrete gradient vector field V ,
there is a separatrix from τ to σ if τ is a cofacet of σ or τ has a facet connected to
σ through a V -path. The parity of the number of such separatrices defines the value
of an incidence function κ ′ : M × M → Z/2Z. The critical set M together with the
incidence function κ ′ form a cell complex called the discrete Morse complex of V . As
in smooth Morse theory, the discrete Morse complex M and the original cell complex
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Fig. 2 Left: a simplicial complex K filtered by sublevel sets of a function f taking 2 values over each
simplex. Middle: a discrete gradient vector field V on K . Each arrow is from a q-simplex, say σ , to a
(q + 1)-simplex, say τ , that contains σ as a face, and is used to visualize the discrete vector (σ, τ ) in V .
A critical cell is a simplex from which no arrow starts and no arrow ends. Here, V is consistent with f
since all discrete vectors involve simplices having the same function value under f but not relative-perfect.
Right: a discrete gradient vector field V on K consistent with f that is also relative-perfect. The two critical
vertexes correspond to new born connected component and the critical edge correspond to the death of one
connected component

K have isomorphic homology.Moreover, the number of q-dimensional critical cells of
V , called the qthMorse number and denoted by mq(V ), bounds the qth Betti number
of K , i.e. the following Morse inequalities hold: for any q ≥ 0,

mq(V ) ≥ βq(K ) := dim Hq(K ). (3)

Ideally, wewould like theMorse inequalities to be equalities, but it usually is not so.
If that is the casewe speak of a perfect gradient vector field. Some cell complexes (e.g.,
the dunce hat and the Bing’s house) do not admit a perfect discrete Morse gradient.
Some complexes admit a perfect discrete Morse gradient depending on the choice of
coefficients. As reviewed in Varli et al. (2018), every sphere of dimension d > 4 has
a triangulation which does not admit a perfect discrete Morse function. On the other
hand, it is easy to see that every 1-dimensional cell complex (i.e. graph) has a perfect
discrete Morse function, and every 2-dimensional subcomplex of a 2-manifold has a
Z2-perfect discrete Morse function.

The rest of the paper will be devoted to study the analogue of perfectness for a
discrete gradient vector field consistent with a multi-filtration.

2.4 Consistency of discrete gradient vector fields withmulti-filtrations

We are interested in discrete gradient vector fields consistent with multi-filtrations as
studied in Allili et al. (2017).

Definition 1 A discrete gradient vector field V on a cell complex K is consistent with
a multi-filtration K = {Ku}u∈Zn of K if for all (σ, τ ) in V , σ ∈ Ku if and only if
τ ∈ Ku .

As an example, the discrete gradient vector field on the left of Fig. 2 is consistent
with the sublevel set filtration induced by the function illustrated on the right.
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Consistency of V with a multi-filtration is interesting because it ensures that per-
sistence modules are preserved. Indeed, if V is a discrete gradient vector field on a cell
complex K consistent with the multi-filtration K = {Ku}u∈Zn , and M is the discrete
Morse complex of V , lettingM = {Mu}u∈Zn be the multi-filtration inherited fromK,
the restriction of the incidence function of M to Mu × Mu yields a cell complex for
every filtration grade u ∈ Z

n . Moreover, for every q ≥ 0 and every u ∈ Z
n , there is

an isomorphism πu
q : Hq(Ku) → Hq(Mu) such that the diagram

Hq(Ku)
iu,v
q

πu
q

Hq(K v)

πv
q

Hq(Mu)
iu,v
q

Hq(Mv)

(4)

commutes for every u � v ∈ Z
n .

2.5 Retrieval of consistent discrete gradient fields

The retrieval of discrete gradient vector fields consistent with suitable n-filtrations is
guaranteed by algorithms such as ProcessLowerStars Robins et al. (2011) when
n = 1 , and Matching Allili et al. (2017), or equivalently
ComputeDiscreteGradient Iuricich et al. (2016), when n ≥ 1.

In order to apply such algorithms, the multi-filtration needs to be constructed as
follows. Assuming K to be a simplicial complex, first a function f0 : K0 → Z

n is
given on the vertices of K with the property of being component-wise injective. Next,
f0 is extended to the whole K by setting f = ( fi ) : K → Z

n , fi (τ ) = max{ fi (σ ) :
σ is a facet of τ }. Finally, the multi-filtration K = {Ku}u∈Zn is defined by sublevel
sets Ku = {σ ∈ K : f (σ ) � u}.

The requirement for f0 to have injective components is not very restrictive as it
can be achieved by arbitrarily small perturbations. The extension of the values of the
function to other simplices using the max is quite natural in view of the results of
Cavazza et al. (2013) showing that this reflects multi-parameter interpolation from the
vertices in the discrete case. Moreover, multi-filtration is one-critical.

All the above-mentioned algorithms are based on a common subroutine acting
locally on lower stars. We call this subroutine HomotopyExpansion and we report
its pseudocode in Appendix A. For every cell σ in K , its lower star is defined as the
set of all the cofaces of σ in K on which the function f takes a value smaller or equal
than that on σ itself: L f (σ ) = {τ ∈ K : σ is a face of τ s.t. f (τ ) � f (σ )}.

While for n = 1 it is sufficient to run HomotopyExpansion on lower stars of
each vertex, for n > 1, it needs to be run on lower stars of minimal simplices of any
dimension contained in level sets of f , with minimality taken with respect to the facet
relation (Fig. 3).

In the following sections, after extending the concept of perfectness to discrete
gradient fields consistent with multi-filtration, we will prove that the discrete gradient
fields retrieved by such algorithms are relative-perfect, at least when dim K ≤ 2.
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Fig. 3 Working example for the subroutine HomotopyExpansion. Each image in the figure represents
an operation performed at a specific line with respect to the code in Appendix A: a the input lower star of
vertex 5; b Vertex 5 is paired to edge [1,5] at line 8; c Edge [2,5] is found critical at line 24; d edge [3,5] is
paired to triangle [2,3,5] at line 17; e edge [4,5] is paired to triangle [3,4,5] at line 17; f the discrete gradient
vector field retrieved by HomotopyExpansion

3 Relative-perfect discrete gradient vector fields

In this section, we introduce a notion of perfectness of gradient vector fields for (multi-
parameter) persistent homology (Definition 3) as a generalization of the notion for the
case of standard homology. In order to support our approach, Proposition 1 relates
relative homology with the number of critical cells. Moreover, in Proposition 2 and
Proposition 3 we show the meaning of relative-perfectness in the case of 1-parameter
persistent homology, and the differences between the 1- and themulti-parameter cases.

We start with an analogue for the usual Morse inequalities (3) in the persistence
setting. We assume V to be a discrete gradient vector field consistent with a multi-
filtration K = {Ku}u∈Zn of a cell complex K , and M the discrete Morse complex of
V . Recall that we always assume multi-filtrations to be one-critical. We first introduce
the discrete Morse numbers for V .

Definition 2 For any u ∈ Z
n and q ∈ Z, we set mq(u) to be the number of critical

q-cells of V contained in Mu − ⋃n
i=1 M

u−ei , and call it the qth (multi-parameter)
Morse number of V .

Recall that we introduced in Sect. 2.2 the notation ei to indicate the i-th element
of the standard basis of Z

n . Because
⋃n

i=1 M
u−ei is a subcomplex of Mu , we can
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consider the homology of the relative pair (Mu,
⋃n

i=1 M
u−ei ), and analogously for

K . They are related as follows.

Lemma 1 Let S ⊆ S′ be non-empty subsets of Q = {0, 1}n. For each filtra-
tion grade u ∈ Z

n, and each homology degree q ∈ Z, there are isomor-
phisms ϕS

q : Hq
(⋃

s∈S K u−s
) → Hq

(⋃
s∈S Mu−s

)
and ϕS′

q : Hq
(⋃

s∈S K u−s
) →

Hq
(⋃

s∈S Mu−s
)
that make the diagram

Hq(
⋃

s∈S K u−s)

ϕS
q

Hq(
⋃

s∈S′ Ku−s)

ϕS′
q

Hq(
⋃

s∈S Mu−s) Hq(
⋃

s∈S′ Mu−s),

whose horizontal maps are induced by inclusions, commute.

Proof With each non-empty subset S of Q we associate the subcomplex
⋃

s∈S K u−s

of Ku .With S = ∅, we associate Ku−∑n
i=1 ei . For S ⊆ S′ ⊆ Q, we have

⋃
s∈S K u−s ⊆⋃

s∈S′ Ku−s . The inclusion of subsets of Q is a well-founded partial order relation.
For each S ⊆ Q, we take the map ϕS

q to be the restrictions of the map πu
q of diagram

(4) to
⋃

s∈S K u−s , so the considered diagrams commute. We now prove that the maps
ϕS
q are isomorphisms. We prove the claim by well-founded induction on the relation

≤. If S is the empty subset, the diagram in the claim coincides with that of (4) and
so the claim is true. Let S′ be a subset of Q and let us assume the claim is true for
every S ⊆ S′. By the inductive step the maps ϕS

q and ϕ
{s′}
q are isomorphisms so that

ψ S′
q = ϕS

q ⊕ϕ
{s′}
q : Hq(

⋃
s∈S K u−s)⊕Hq(Ku−s′) → Hq(

⋃
s∈S Mu−s)⊕Hq(Mu−s′)

satisfy the claimed property. Moreover, because the multi-filtration is one-critical,
denoting by l.u.b.(s, s′) the least upper bound of s and s′ in Q ⊆ Z

n , and letting T =
{t ∈ {0, 1}n : t = l.u.b.(s, s′), s ∈ S}, we have ⋃

s∈S K u−s ∩ Ku−s′ = ⋃
t∈T Ku−t .

Analogously,
⋃

s∈S Mu−s ∩ Mu−s′ = ⋃
t∈T Mu−t . Because T ⊆ S′, by the inductive

step we deduce that ϕT
q : Hq(

⋃
s∈S K u−s ∩ Ku−s′) → Hq(

⋃
s∈S Mu−s ∩ Mu−s′)

satisfies the claimed property.
We now take the triples (

⋃
s∈S′ Ku−s,

⋃
s∈S K u−s, Ku−s′) and

(
⋃

s∈S′ Mu−s,
⋃

s∈S Mu−s, Mu−s′) with S ⊆ S′ ⊆ Q. As we have seen, their Mayer-
Vietoris exact sequences are connected by maps that make the following diagram
commute

· · · Hq (
⋃

s∈S K u−s) ⊕ Hq (Ku−s′ )

ψ S
q

Hq (
⋃

s∈S′ Ku−s)

ϕS′
q

Hq−1(
⋃

s∈S K u−s ∩ Ku−s′ ) · · ·
ϕT
q−1

· · · Hq (
⋃

s∈S Mu−s) ⊕ Hq (Mu−s′ ) Hq (
⋃

s∈S′ Mu−s) Hq−1(
⋃

s∈S Mu−es ∩ Mu−e′
s ) · · ·

with ψ S
q and ϕT

q−1 isomorphisms. By the Five Lemma, we deduce that also ϕS′
q is an

isomorphism, proving the claim. ��

123



Journal of Combinatorial Optimization

Lemma 2 For each filtration grade u ∈ Z
n, and each homology degree q ∈ Z,

Hq

(

Ku,

n⋃

i=1

Ku−ei

)

∼= Hq

(

Mu,

n⋃

i=1

Mu−ei

)

.

Proof Lemma 1 implies that the map ϕS
q : Hq(

⋃
s∈S K u−s) → Hq(

⋃u−s
s∈S ), with S =

{e1, e2, . . . , en}, is an isomorphisms for any q ∈ Z. Thus, we are in the position of
applying the Five Lemma to the following long exact sequence of pairs:

Hq (
⋃n

i=1 K
u−ei )

∼=

Hq (Ku )

∼=

Hq (Ku ,
⋃n

i=1 K
u−ei ) Hq−1(

⋃n
i=1 K

u−ei )

∼=

Hq−1(Ku )

∼=

Hq (
⋃n

i=1 M
u−ei ) Hq (Mu ) Hq (Mu ,

⋃n
i=1 M

u−ei ) Hq−1(
⋃n

i=1 M
u−ei ) Hq−1(Mu ).

Hence dim Hq(Ku,
⋃n

i=1 K
u−ei ) = dim Hq(Mu,

⋃n
i=1 M

u−ei ), proving the claim.
��

Proposition 1 For any homology degree q ∈ Z, and any filtration grade u ∈ Z
n, it

holds that

mq(u) ≥ dim Hq

(

Ku,

n⋃

i=1

Ku−ei

)

.

Moreover, in order to have mq(u) = dim Hq(Mu,
⋃n

i=1 M
u−ei ), it is sufficient that

the relative boundary map ∂relq : Cq(Mu,
⋃n

i=1 M
u−ei ) → Cq−1(Mu,

⋃n
i=1 M

u−ei )

is trivial for all integers q.

Proof By definition,mq(u) is equal to the number of q-dimensional critical cells of V
in Mu − ⋃n

i=1 M
u−ei . Therefore, mq(z) = dimCq(Mu) − dimCq(

⋃n
i=1 M

u−ei ) =
dimCq(Mu,

⋃n
i=1 M

u−ei ).
On the other hand, dim Hq(Mu,

⋃n
i=1 M

u−ei ) = dim ker(∂relq )/im (∂relq+1) ≤
dimCq(Mu,

⋃n
i=1 M

u−ei ). Moreover, if ∂relq is trivial for all q ∈ Z, then ker(∂relq ) =
Cq(Mu,

⋃n
i=1 M

u−ei ) and im (∂relq+1) = 0.
Hence, dim Hq(Mu,

⋃n
i=1 M

u−ei ) = dimCq(Mu,
⋃n

i=1 M
u−ei ) = mq(u). Thus, the

claim follows by applying Lemma 2. ��
The inequality of Proposition 1 can be seen as a generalization of standard Morse

equalities (3) for persistencemodules,where homologyneeds to be replaced by relative
homology. This motivates the following definition of relative-perfectness.

Definition 3 We say that V is a relative-perfect discrete gradient vector field if

mq(u) = dim Hq

(

Ku,

n⋃

i=1

Ku−ei

)

for every q ∈ Z.
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An example of a relative-perfect discrete gradient compared to one that is only con-
sistent with f is shown in Fig. 2: for u = (1, 2) and q = 1, in the middle, we have
a critical 1-simplex, thus m1(1, 2) = 1. However, K (1,2) is composed of the two
vertexes with values (0, 1) and (1, 2) along with the critical 1-simplex whereas the
union of all previous steps reduces to K (0,1). Hence, dim H1(Ku,

⋃n
i=1 K

u−ei ) = 0
which is strictly less thanm1(1, 2) = 1; on the right, we see a relative-perfect discrete
gradient with each of its critical simplices appearing at a multigrade where the relative
homology is non-trivial.

A standard application of the rank-nullity formula to the long exact homology
sequence of the pair (Ku,

⋃n
i=1 K

u−ei ) gives the following result.

Proposition 2 For any q ∈ Z and any u ∈ Z
n, denoting by juq : Hq(

⋃n
i=1 K

u−ei ) →
Hq(Ku) the maps induced by the inclusion of cell complexes, it holds that

dim Hq

(

Ku,

n⋃

i=1

Ku−ei

)

= dim coker( juq ) + dim ker( juq−1).

Proof Let us consider the long exact homological sequence of the pair
(Ku,

⋃n
i=1 K

u−ei ):

· · ·
δuq+1

Hq(
⋃n

i=1 K
u−ei )

iuq
Hq(Ku)

juq
Hq(Ku,

⋃n
i=1 K

u−ei )
δuq · · · .

Because the sequence is exact, applying the rank-nullity dimension formula,wededuce
that

dim coker(iuq ) + dim ker(iuq−1)

= dim Hq(K
u) − dim ker( juq ) + dim im(δuq )

= dim Hq(K
u) − dim ker( juq ) + dim Hq

(

Ku,

n⋃

i=1

Ku−ei

)

− dim ker(δuq )

= dim Hq(K
u) − dim ker( juq ) + dim Hq

(

Ku,

n⋃

i=1

Ku−ei

)

− dim im( juq )

= dim Hq

(

Ku,

n⋃

i=1

Ku−ei

)

.

��
In other words, a discrete gradient vector field V consistent with a multi-filtration

is relative-perfect provided that each of its critical cells contributes either to the birth
or to the death of a homology class:

1. dim coker( juq ) is the number of linearly independent q-cycles in Hq(Ku) not com-
ing from Hq(

⋃n
i=1 K

u−ei );
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Fig. 4 In the multi-parameter case, birth of new homology classes may not correspond to newly added
critical cells (loops on the left) or critical cells may be negative for homological classes simply due to the
union of previous steps and never existing along the multi-filtration (2-simplices on the right)

2. dim ker( juq−1) is the number of linearly independent (q − 1)-cycles in
Hq−1(

⋃n
i=1 K

u−ei ) that become trivial in Hq−1(Ku).

For the case n = 1, we have juq = iu−1,u
q , that is the map induced by the inclusion

of Ku−1 into Ku . Hence, also recalling Eq. (1), for n = 1 our definition of relative-
perfectness can be equivalently reformulated as follows.

Proposition 3 A discrete gradient vector field V consistent with a 1-filtration K =
{Ku}u∈Z of a cell complex K is relative-perfect if and only if each critical k-cell σ of
V is either a positive or a negative cell. Equivalently, V is relative-perfect if and only
if

mq(u) = ξ
q
0 (u) + ξ

q−1
1 (u).

The latter is precisely the property proved in Robins et al. (2011) for the discrete
gradient vector field retrieved by algorithm ProcessLowerStarswhen applied to
3D cubical grids endowed with 1-filtrations.

In the multi-parameter case, relative-perfectness still ensures that all critical cells
correspond to births or deaths of homology classes. However, in this case new homol-
ogy classes can be created even without adding new cells, as shown in Fig. 4. Thus,
the idea of positive and negative cells is ineffective in the multi-parameter case, unless
one introduces the idea of virtual cells as highlighted in Knudson (2008). Moreover
in Fig. 4, one can also notice the dual situation where critical cells can be necessary
to kill virtual homology classes that is classes simply coming from the union of previ-
ous steps and never appearing in the multi-filtration. Next section will make this idea
precise in the case of two parameters.

We conclude the section noting that, contrary to usual perfectness, it is possible to
have relative-perfect discrete gradient vector fields on the dunce hat, as shown in Fig.
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Fig. 5 A relative-perfect discrete gradient vector field consistent with the filtration induced by the vertex
indexing

5. In Section 2.5 we will show that this is always the case for simplicial complexes of
dimension 2 endowed with filtrations induced by component-wise injective functions
on the vertices.

4 Estimation of Betti tables via critical cells

In this section, we focus our attention on bi-filtrations, i.e. the case n = 2. Our goal
is to show that, for a discrete gradient vector field consistent with a bi-filtration, the
number of critical cells gives bounds on the Betti tables values of the corresponding
persistence module. Such bounds can be seen as a sort of Morse inequalities for
persistent homology, generalizing the standard Morse inequalities (3) for homology.
Such inequalities will shed new light on relative-perfectness.

In this section, we consider the persistence module V = {Vu, i
u,v
q }u�v∈Zn with

Vu = Hq(Ku) and iu,v
q : Hq(Ku) → Hq(K v) induced by the inclusion maps Ku ↪→

K v , and assume that K is equipped with a discrete gradient vector field consistent
with the multi-filtration of K . Moreover, in accordance with Eq. (2), for any u ∈ Z

2,
we set x = u − e1, y = u − e2, and z = u − e1 − e2.

Our first step is to relate the dimensions of the kernel and cokernel of the linear
maps juq : Hq(K x ∪ K y) → Hq(Ku) induced by inclusions to the values in the Betti
tables of the persistence module V.
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Lemma 3 Given the commutative diagram of finite dimensional vector spaces

C
γ

μ

D

ι

A

it holds that

1. dim ker(μ) = dim(im(γ ) ∩ ker(ι)) + dim ker(γ );
2. dim ker(ι) = dim (im(γ ) ∩ ker(ι)) − dim im(γ ) + dim (im(γ ) + ker(ι));
3. dim coker(ι) = dim coker(μ) − dim D + dim (im(γ ) + ker(ι)).

Proof The first claim follows by the commutativity of the diagram, while the second
claim follows immediately from the Grassmann’s formula relating the dimensions of
the sum and intersection of vector spaces. As for the third claim, repeatedly applying
the rank-nullity formula, the Grassmann’s formula, and the the first claim, we see that

dim coker(ι) = dim A − dim im(ι)

= dim A − dim im(μ) + dim im(μ) − (dim D − dim ker(ι))

= dim coker(μ) + (dimC − dim ker(μ)) − dim D + dim ker(ι)

= dim coker(μ) + (dim ker(γ ) + dim im(γ )) − (dim(im(γ ) ∩ ker(ι))

+ dim ker(γ )) − dim D + dim ker(ι)

= dim coker(μ) − dim D + dim(im(γ ) + ker(ι)).

��

Proposition 4 For any q ∈ Z, let αu
q : Hq(K x ) → Hq(K x ∪ K y), βu

q : Hq(K y) →
Hq(K x ∪ K y), i uq : Hq(K x ∪ K y) → Hq(Ku) be the linear maps induced by the
inclusions of cell complexes. It holds that:

1. dim coker(iuq ) = ξ
q
0 (z) − dim Hq(K x ∪ K y) + dim(ker(iuq ) + im(αu

q − βu
q )).

2. dim ker(iuq ) = ξ
q
1 (z)+ξ

q−1
2 (z)−dim Hq(K x∪K y)+dim(ker(iuq )+im(αu

q −βu
q )).

Proof By Lemma 3 applied to the commutative diagram

Hq(K x ) ⊕ Hq(K y)
αu
q−βu

q

mrguq

Hq(K x ∪ K y)

iuq

Hq−1(Ku).
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with mrguq as in Eq. (2), we get

dim coker(iuq ) = dim coker(mrguq) − dim Hq(K
x ∪ K y)

+ dim(ker(iuq ) + im(αu
q − βu

q )), (5)

dim ker(mrguq) = dim ker(αu
q − βu

q )

+ dim(ker(iuq ) ∩ im(αu
q − βu

q )), (6)

dim ker(iuq ) = dim
(
im(αu

q − βu
q ) ∩ ker(iuq )

)

− dim im(αu
q − βu

q ) + dim
(
im(αu

q − βu
q ) + ker(iuq )

)
(7)

From (5) we immediately get the first claim because dim coker(mrguq) = ξ
q
0 (z)

by Eq. (2). To prove the second claim, let us now consider the Mayer-Vietoris exact
homological sequence of the triad (K x ∪K y, K x , K y). Observing that by construction
K x ∩ K y = K z , we have

· · · Hq (K z )
spluq

Hq (K x ) ⊕ Hq (K y )
αuq−βuq

Hq (K x ∪ K y )
δuq

Hq−1(K
z )

spluq−1 · · · (8)

From (2), (6), and the exactness of sequence (8) at Hq(K x ) ⊕ Hq(K y), we see that

ξ
q
1 (z) = dim ker(mrguq) − dim im(spluq)

= dim ker(αu
q − βu

q ) + dim(ker(iuq ) ∩ im(αu
q − βu

q )) − dim im(spluq)

= dim(ker(iuq ) ∩ im(αu
q − βu

q )).

(9)

Analogously, from (2), the exactness of sequence (8) at Hq(K x ∪ K y), we get

ξ
q−1
2 (z) = dim ker(spluq−1) = dim im(δuq ). (10)

By applying the rank-nullity formula linking the dimensions of the kernel and the
image of a linear map and, again, the same exactness, we get

ξ
q−1
2 (z) = dim Hq(K

x ∪ K y) − dim ker(δuq )

= dim Hq(K
x ∪ K y) − dim im(αu

q − βu
q ).

(11)

Hence, from (7), (9), and (11), we get

dim ker(iuq ) = ξ
q
1 (z) − dim im(αu

q − βu
q ) + dim

(
im(αu

q − βu
q ) + ker(iuq )

)

= ξ
q
1 (z) + ξ

q−1
2 (z) − dim Hq (K x ∪ K y) + dim

(
im(αu

q − βu
q ) + ker(iuq )

)
.

��

123



Journal of Combinatorial Optimization

Corollary 1 For any q ∈ Z,

ξ
q
0 (u) + ξ

q−1
1 (u) − ξ

q−1
2 (u) ≤ dim Hq (Ku , K x ∪ K y) ≤ ξ

q
0 (u) + ξ

q−1
1 (u) + ξ

q−2
2 (u)

Proof By Proposition 2, dim Hq(Ku, K x ∪ K y) = dim coker(iuq ) + dim(ker(iuq−1)).
Thus, from Proposition 4,

dim Hq(K
u, K x ∪ K y)

= ξ
q
0 (u) + ξ

q−1
1 (u) + ξ

q−2
2 (u)

− dim Hq(K
x ∪ K y) + dim(ker(iuq ) + im(αu

q − βu
q ))

− dim Hq−1(K
x ∪ K y) + dim(ker(iuq−1) + im(αu

q−1 − βu
q−1)).

(12)

Since it holds that (ker(iuq ) + im(αu
q − βu

q )) ⊇ im(αu
q − βu

q ) for any integer q, from
Eq. (12) we deduce that

dim Hq(K
u, K x ∪ K y) ≥ ξ

q
0 (u) + ξ

q−1
1 (u) + ξ

q−2
2 (u)

− dim Hq(K
x ∪ K y) + dim im(αu

q − βu
q )

− dim Hq−1(K
x ∪ K y) + dim im(αu

q−1 − βu
q−1)

= ξ
q
0 (u) + ξ

q−1
1 (u) − ξ

q−1
2 (u),

again by Eq. (11), thus proving the left-hand inequality.
On the other hand, for all integers q, we have

dim Hq(K
x ∪ K y) − dim(ker(iuq ) + im(αu

q − βu
q )) ≥ 0

so that Eq. (12) implies the right-hand inequality. ��
As an immediate consequence of Proposition 1, we deduce the following result

showing that the number of critical cells of a discrete gradient vector field may be
used to estimate Betti tables of persistence modules at least for bi-filtrations.

Corollary 2 For any u ∈ Z
2 and q ∈ Z,

mq(u) ≥ ξ
q
0 (u) + ξ

q−1
1 (u) − ξ

q−1
2 (u).

Moreover, if the gradient is relative-perfect, then it also holds

mq(u) ≤ ξ
q
0 (u) + ξ

q−1
1 (u) + ξ

q−1
2 (u).

Wemay interpret Corollary 2 as a generalization of Proposition 2 to the bi-filtration
case, taking care of the possible presence of virtual cells as discussed after Proposition
3. This is achieved by adding the term relative to the second Betti table ξ2.

Inequalities in Corollary 2 are sharp. To see that the first inequality can be an
equality, we take q = 1, the simplicial complex K of dimension 1 with four vertices
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a, b, c, d and four edges [a, b], [b, c], [c, d], [d, a], the function f defined on the
vertices by f (a) = (0, 0), f (c) = (1, 1), f (b) = (3, 2), f (d) = (2, 3). Moreover,
the second inequality turns out be an equality taking q = 2, the simplicial complex
K with four vertices a, b, c, d, five edges [a, b], [b, c], [c, d], [d, a], [b, d] and two
triangles [a, b, d] and [b, c, d], the function f defined on the vertices by f (a) = (0, 0),
f (c) = (1, 1), f (b) = (3, 2), f (d) = (2, 3).

5 Retrieval of relative-perfect discrete gradient vector fields

Throughout this section we assume K to be a simplicial complex of dimension at most
2, filtered by the sublevel sets of the extension of a component-wise injective function
f defined on the vertices of K as described in Sect. 2.5. Our goal is to prove that,
under such assumptions, there always exists a discrete gradient vector field compatible
with such filtration that is relative-perfect. The proof will be constructive and based
on repeatedly using the routine HomotopyExpansion (see Appendix A for details) on
the sets of a suitable partition of K to build the desired discrete vector field. To this
aim, we start proving further properties of the considered multi-filtration.

We start observing that lower stars of simplices are contained in level sets.

Lemma 4 For every σ ∈ K, it holds that L f (σ ) ⊆ f −1( f (σ )).

Proof By definition, f is not decreasing with dimension, so that f (σ ) � f (τ ) for
every coface τ of σ . By definition of lower star, τ ∈ L f (σ ) implies that f (τ ) � f (σ ).
Thus, for τ ∈ L f (σ ), f (τ ) � f (σ ) � f (τ ), yielding the claim. ��

Next we see that there are simplices, which we call primary, whose lower stars
coincide with level sets and therefore form a partition of K .

Lemma 5 For every u ∈ f (K ), there exists a unique simplex σ ∈ K such that
f −1(u) = L f (σ ).

Proof In order to prove uniqueness, suppose there are two cells σ, σ ′ ∈ K such that
L f (σ ) = f −1(u) = L f (σ

′). Because any cell belongs to its own lower star, we get
σ ′ ∈ L f (σ ) and σ ∈ L f (σ

′), implying that σ ′ is a face of σ and σ is a face of σ ′.
Hence, σ = σ ′. Let us prove existence. By component-wise injectiveness of f on the
vertices of K , if u ∈ f (K ), then for each 1 ≤ i ≤ n there exists a unique vertex vi
such fi (vi ) = ui . By the definition of f , vi is a face of τ for every τ ∈ f −1

i (ui ). Thus,
vi is a face of τ for every τ ∈ f −1(u). The simplex σ generated by all such vertices
vi , 1 ≤ i ≤ n, is also a face of τ for every τ ∈ f −1(u). Moreover, f (σ ) = u = f (τ ).
Hence, for every τ ∈ f −1(u), we have τ ∈ L f (σ ), implying f −1(u) ⊆ L f (σ ). On
the other hand, from f (σ ) = u, by Lemma 4, we also deduce that L f (σ ) ⊆ f −1(u),
concluding the proof. ��

The next result shows that the number of V -paths exiting from a simplex is equal
to the codimension of that simplex with respect to the primary simplex whose lower
star it belongs to.
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Lemma 6 Let σ ∈ K be a primary simplex. Each simplex τ ∈ L f (σ ) with dim τ −
dim σ = p has exactly p facets contained in L f (σ ).

Proof By Lemma 5, L f (σ ) ⊆ f −1( f (s)). Hence, all the facets of τ that admit σ as
a face belong to L f (σ ). The total number of such facets of τ is equal to p. Indeed,
letting t = dim τ and s = dim σ , so that t = s + p, a facet of τ that admits σ

as a face is generated by t vertices, chosen among the t + 1 vertices of τ , s + 1 of
which are already fixed as generators of σ . Therefore, the number of such facets is(
(t+1)−(s+1)

t−(s+1)

) = ( p
p−1

) = p. ��
The following lemma shows that branching of V -paths is not possible in the lower

star of a primary simplex, provided that K is of dimension at most 2.

Lemma 7 No V -path (σ0, τ0, σ1, τ1, . . . , σr−1, τr−1, σr ) containing only cells of
L f (σ ) can branch, for any σ ∈ K, provided that dim τi − dim σ ≤ 2.

Proof By contradiction, let (σ0, τ0, σ1, τ1, . . . , σr−1, τr−1, σr ) in L f (σ ) branch at
some simplex τi with 0 ≤ i ≥ r − 1. Because V is a discrete vector field, σi can be
paired only to τi and, analogously, σi+1 can be paired only to τi+1. Hence, the simplex
τi must have at least one more facet, different from σi and σi+1, belonging L f (σ ),
for a branching to occur. Because dim τi − dim σ ≤ 2, this contradicts Lemma 6 with
p = dim τi − dim σ . ��
Lemma 8 Let σ be a primary simplex. Let τ be a critical cell of V belonging to L f (σ )

with dim τ − dim σ = 2. Let ρ′ and ρ′′ be the two distinct facets of τ also belonging
to L f (σ ). There exists one and only one simplex σ̄ such that ρ′ and ρ′′ are connected
to σ̄ via V -paths entirely contained in L f (σ ).

Proof Because dim τ = dim σ + 2, by Lemma 6 ρ′ and ρ′′ are the only two facets
of τ contained in L f (σ ). Without loss of generality, we can assume ρ′ is classified
by HomotopyExpansion earlier than ρ′′. When it happens, either ρ′ is classified
as critical or paired to another cell. If ρ′ is paired to another cell, it cannot be σ

otherwise ρ′i enters Ord0, τ enters Ord1, and r ′′ and τ are eventually paired at line
17, contradicting the assumption that τ is critical. An analogous argument shows that
ρ′ cannot be classified as critical. Thus, ρ′ needs to be paired to a cofacet different
from τ . As a consequence of such pairing, ρ′′ enters Ord0, and τ enters Ord1. Again,
ρ′′ cannot be classified as critical, nor paired to τ because we are assuming that τ will
eventually be classified as critical. Thus, ρ′′ will rather be paired to some other cofacet
τ ′ that entered into Ord1 before τ .

Let us now consider two maximal V -paths (ρ′
0, τ

′
0, . . . , τ

′
r−1, ρr ) and (ρ′′

0 , τ ′′
0 , . . . ,

τ ′′
s−1, ρ

′′
s ) starting from ρ′ and ρ′′, respectively, i.e. ρ′ = ρ′

0 and ρ′′ = ρ′′
0 . By Lemma

7, there are only two such paths. Moreover, because such V -paths are maximal, ρ′
r

and ρ′′
s must be either critical or paired with σ . Let us consider all the possible cases.

If both ρ′
r and ρ′′

s are paired to σ , then the claim is proved with σ̄ = ρ′
r = ρ′′

s the
unique simplex paired to σ . If one of them is paired to σ and the other is critical,
we get a contradiction. Indeed, the one paired to σ is classified earlier because the
instruction is at line 8. After that, Ord1 is never empty, so that the other one cannot
be classified as critical. Analogously, if ρ′

r �= ρ′′
s and both are classified critical, then
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we get a contradiction because after the first one is classified as critical Ord1 is never
empty. The only remaining case is when ρ′

r = ρ′′
s is classified as critical, which again

proves the claim. ��

Theorem 1 For every simplicial complex K of dimension not greater than 2, and
for every component-wise injective function f : K0 → Z

n, there exists a relative-
perfect discrete gradient vector field V consistent with the sublevel set multi-filtration
K = {Ku}u∈Zn induced by f by setting Ku = {σ ∈ K : f (σ ) � u} and fi (σ ) =
max{ fi (σ ) : σ is a facet of τ }.

Proof By Proposition 1, it suffices to show that, for any filtration grade u ∈ Z
n and

any homology degree q ∈ Z, each q-simplex τ of V in Mu − ⋃n
i=1 M

u−ei satisfies
∂relq τ = 0.

Let τ be a q-simplex belonging to Mu − ⋃n
i=1 M

u−ei . In other words, τ is a
critical q-simplex of V belonging to Ku −⋃n

i=1 K
u−ei . Because Ku −⋃n

i=1 K
u−ei =

f −1(u), and because by Lemma 5 there is a unique primary simplex σ in K such that
L f (σ ) = f −1(u), we have τ ∈ L f (σ ). Let p = dim τ − dim σ . Since the sub-
routine HomotopyExpansion works independently over each L f (σ ) with σ a primary
simplex, we can confine ourselves to showing that for each of the cases p = 0, 1, 2
the boundary of τ in L f (σ ) relative to

⋃n
i=1 K

u−ei is trivial.
If p = 0, that is τ is a critical simplex of the same dimension as σ , then τ = σ and

line 8 in the sub-routine HomotopyExpansion ensures that L f (σ ) = {σ }. Thus,
for p = 0, we have ∂relτ = 0.

If p = 1, then σ is the only facet of τ in L f (σ ). Line 8 in the sub-routine
HomotopyExpansion ensures that σ is non-critical, implying that ∂relτ = 0 also
in this case.

If p = 2, we prove that ∂relτ = 0 by analyzing all the maximal V -paths contained
in L f (σ ) starting from the facets of the critical cell τ . Because p = 2, τ has exactly
two facets in L f (σ ) by Lemma 6. By Lemma 8, the two faces of τ in L f (τ ) admit
each a V -path to the same simplex ρ. If ρ is not critical, then ∂relτ = 0, trivially.
Assume on the contrary that ρ is critical. By Lemma 7, V -paths cannot branch inside
L f (σ ). This means that precisely two V -paths connect τ to ρ. Hence, ∂relτ = 0 in
this case as well because we are taking coefficients in Z/2Z. ��

As mentioned above, a consequence of Theorem 1 is that, even if some simplicial
complexes of dimension 2 such as the dunce hat do not admit perfect discrete gradient
vector fields with respect to standard homology, they always admits relative-perfect
gradients. However, the lack of perfectness with respect to standard homology implies
a lack of relative-perfectness in dimension 3. For example, the simplicial complex
obtained taking the cone over the dunce hat from a ninth vertex, endowed with the
filtration induced by the vertex indexing, does not admit a relative-perfect discrete
gradient vector field.
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6 Conclusions

Inspired by Morse inequalities, we have introduced in Definition 3 the notion of
relative-perfectness of a discrete gradient vector field consistent with a one-critical
multi-parameter filtration.Relative-perfectness boils down to theMorse complexof the
gradient vector field having the minimal number of critical cells necessary to preserve
multi-parameter persistence. Strictly speaking, such a definition had no previous one-
parameter counterpart. However, we have shown that relative-perfectness generalizes
to the multi-parameter case the optimality property satisfied by the output discrete
gradient field obtained through algorithm Robins et al. (2011).

Specifically for the multi-parameter case, we have highlighted the phenomenon
of “virtual” critical cells, already treated in Knudson (2008), concerning homological
changes not depending on any particular critical cells added. In the same way, we have
noticed the dual phenomenon of “virtual” homological changes where critical cells
are added to preserve, rather than to change, homology. Both phenomena were known
to be algebraically captured by Betti tables of the persistence-module associated to
the multi-filtration.

For the case of two-parameter filtrations, we have proven in Corollary 2 sharp
inequalities relating a relative-perfect discrete gradient and the Betti tables of the
associated persistence module. These results show a link between multi-parameter
persistent homology and discrete Morse theory that can be leveraged for a better
understanding of the former. For instance, our results could turn out useful in situ-
ations where one first needs to compute Betti tables as a preprocessing step ahead
of persistence computations as in RIVET Lesnick and Wright (2015), because the
computations of critical cells can be exploited in both steps. The results of this paper
suggest that analogous inequalities could hold for a larger number of parameters.
However, deriving such inequalities would almost surely require more sophisticated
techniques of homological algebra such as the spectral sequence of Mayer-Vietoris.

Concerning computability, we have proven that algorithms (Allili et al. 2017; Iuri-
cich et al. 2016) under their assumptions, i.e., for one-critical filtrations, ensure the
relative-perfectness of the output discrete gradient fieldwhenever in the case of simpli-
cial complexes of dimension up to 2 with no restriction on the number of parameters in
the filtration. A limitation of such algorithmic construction is that the gradient vector
field is computed from a function which is extended from the vertices to other sim-
plices by taking the maximum. While this may be natural for spatial data, it is not so
for a Vietoris-Rips complex built from finite metric spaces. From another perspective,
it would be interesting to ascertain whether the algorithms considered in those papers
permit the construction of relative-perfect gradient vector fields also for simplicial
complexes of dimension higher than two. A counterexample to this is easily built by
coning on the dunce hat in Fig. 5. However, this does not exclude the possibility of
such result provided that lower links of simplices are good enough. In general, defining
suitable classes of simplicial complexes admitting relative-perfect discrete gradients
seems not to be more difficult than it is in the one-parameter or the classical Morse
theory case.

Our contribution in defining relative-perfectness can be applied to computingmulti-
parameter persistent homology through a preprocessing performing a reduction before
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actual computations. Other approaches exist. As discussed in Fugacci and Kerber
(2019), it is important to remark that in the multi-parameter case, by reducing to the
Morse complex bymeans of a relative-perfect discrete gradient field, does not ensure to
obtain the “smallest” filtered complex preserving the persistence module. Rather, the
obtained filtered object is the most convenient among theMorse complexes preserving
the multi-filtration. Indeed, this gap can be filled as proposed in Fugacci and Kerber
(2019) reducing directly on the boundary matrix of the multi-filtered chain complex.
In terms of chain complex size, authors prove their reduction to be optimal within the
class of all filtered chain complexes whose homology is isomorphic to the input one.
In that work, authors highlight that a consistent Morse complex belong to that class
but not all the elements in the class are Morse complexes. Our result in Proposition
2 ensures that, their notion of optimality is satisfied by a relative-perfect reduction.
Thus, relative-perfectness, whenever applicable, captures the same idea but places it
into the framework of discrete Morse theory. In terms of computation performance,
this implies that, for simplicial complexes of dimension up to 2, the algorithms (Allili
et al. 2017; Iuricich et al. 2016) satisfy the same optimality property as in Fugacci
and Kerber (2019). For higher dimensions, the last two mentioned algorithms do not
ensure the optimality achieved by the algorithm Fugacci andKerber (2019).Moreover,
timings have been compared showing that Fugacci and Kerber (2019) is generally an
order ofmagnitude faster than Iuricich et al. (2016).However,we remark that a discrete
gradient stores additional information with respect to the only boundary matrix. For
instance, the gradient provides an implicit remapping of the Morse complex onto the
original complex. As already stated, the interplay between discrete Morse theory and
multi-parameter persistence might shed some light on the understanding of the latter’s
invariants.

This last observation motivates another possible direction for future works towards
the analysis and visualization of multivariate data. Indeed, via a discrete gradient field,
one can get a topologicallymeaningful subdivision of the domain according to amulti-
filtration. A pair in a discrete gradient is consistent with a multi-filtration whenever
such pairing is possible for all filtration components. This can be exploited to give
a meaning and to detect interdependence among components. More practically, our
future interest consists in comparing relative-perfectness to the analysis and visual-
ization techniques based on classical Pareto points Smale (1975), that is points of
the domain where it is impossible to increase a component value along a component
without decreasing some other component. Some theoretical results already exist that
relate discontinuity points in the persistence space to Pareto points Cerri and Frosini
(2009).
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A Appendix: HomotopyExpansion

Algorithms like ProcessLowerStars Robins et al. (2011) for n = 1, and
Matching Allili et al. (2017), or ComputeDiscreteGradient Iuricich et al.
(2016), for n ≥ 1, build discrete gradient vector fields from the values of a function on
the vertices by first partitioning the simplicial complex into subsets of simplices, then
calling a function like HomotopyExpansion to locally build on each such subset a
set of discrete vectors and a set of unpaired cells. The final discrete gradient vector field
is obtained as the union of all the discrete vectors built by HomotopyExpansion.
ProcessLowerStars partitions the simplicial complex by using lower stars of
vertices, Matching and ComputeDiscreteGradient do so using lower stars
of primary simplices, the difference being in how such lower stars are obtained.

Basically HomotopyExpansion works as follows. When Homotopy
Expansion processes the lower star L f (σ ) of a simplex σ , assuming it is equipped
with a suitable indexing, the simplex σ is inserted into the list of critical cellsMσ if and
only if its lower stars reduces to σ itself. Otherwise, σ is paired with the cofacet δ in
L f (σ ) that has minimal index value. The algorithm proceeds with further pairings that
can be topologically thought of as the process of constructing L f (σ ) by simple homo-
topy expansions. When no pairing is possible a simplex is classified as critical and the
process is continued from that cell. A cell α is candidate for belonging to a discrete
vector of Vσ when the number of its unclassified facets, _unclassified_facetsσ (α)

contains exactly one element whose number of unclassified facets is zero. For this
purpose, the lists Ord0 and Ord1, which store simplices with zero and one available
unclassified faces respectively, are created.
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Algorithm 1 HomotopyExpansion
1: Input: The lower star L f (σ ) of a simplex σ ∈ K and an indexing map I on its simplices compatible

with the facet relation.
2: Output: A set Vσ of discrete vectors and a set Mσ of unpaired cells.
3: if L f (σ ) contains only σ then
4: add σ to Mσ , set classified(σ ):=true
5: else
6: set Ord0 and Ord1 equal to empty ordered lists
7: set δ := the cofacet of σ in L f (σ ) of minimal index I (δ)
8: add (σ, δ) to Vσ , set classified(σ ):=true, classified(δ):=true
9: append all α ∈ L f (σ ) − {σ, δ} with num_unclassified_facetsσ (α) = 0 to Ord0
10: append all α ∈ L f (σ ) − {σ } with num_unclassified_facetsσ (α) = 1 and α > δ to Ord1
11: while Ord1 �= ∅ or Ord0 �= ∅ do
12: while Ord1 �= ∅ do
13: set α := the first elemnet in Ord1
14: if num_unclassified_facetsσ (α) = 0 then
15: append α to Ord0
16: else
17: for λ ∈ unclass_facetsσ (α), add (λ, α) to Vσ , remove λ from Ord0 ,
18: set classified(α):=true, classified(λ):=true,
19: append all β ∈ L f (σ ) − {σ } with num_unclassified_facetsσ (β) = 1 and either

β > α or β > λ to Ord1
20: end if
21: end while
22: if Ord0 �= ∅ then
23: set γ := the first element in Ord0
24: add γ to Mσ , set classified(γ ):=true
25: append all τ ∈ L f (σ ) − {σ } with num_unclassified_facetsσ (τ ) = 1 and τ > γ to

Ord1
26: end if
27: end while
28: end if
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