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Abstract
Purpose  In facioscapulohumeral muscular dystrophy (FSHD) fatigue is a major complaint. We aimed to investigate whether 
during isometric sustained elbow flexions, performance fatigability indexes differ in patients with FSHD with respect to 
healthy controls.
Methods  Seventeen patients with FSHD and seventeen healthy controls performed two isometric flexions of the dominant 
biceps brachii at 20% of their maximal voluntary contraction (MVC) for 2 min and then at 60% MVC until exhaustion. 
Muscle weakness was characterized as a percentage of predicted values. Maximal voluntary strength, endurance time and 
performance fatigability indices (mean frequency of the power spectrum (MNF), muscle fiber conduction velocity (CV) and 
fractal dimension (FD)), extracted from the surface electromyogram signal (sEMG) were compared between the two groups.
Results  In patients with FSHD, maximal voluntary strength was 68.7% of predicted value (p < 0.01). Compared to healthy 
controls, FSHD patients showed reduced MVC (p < 0.001; r = 0.62) and lower levels of performance fatigability, character‑
ized by reduced rate of changes in MNF (p < 0.01; r = 0.56), CV (p < 0.05; 0.37) and FD (p < 0.001; r = 0.51) and increased 
endurance time (p < 0.001; r = 0.63), during the isometric contraction at 60% MVC.
Conclusion  A decreased reduction in the slopes of all the considered sEMG parameters during sustained isometric elbow 
flexions suggests that patients with FSHD experience lower levels of performance fatigability compared to healthy controls.
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Introduction

Fatigue is known to be a common symptom in muscular 
dystrophies (Kalkman et al. 2005). Among the dystrophies 
whose genetic defects have been identified at the molecular 
level, facioscapulohumeral muscular dystrophy (FSHD), 
presents the most peculiar mutation: the FSHD gene defect 
is in fact not located in any protein-coding gene (Tupler 
and Gabellini 2004). Instead, in the majority of patients, 
the disease was associated with the contraction of a poly‑
morphic region known as D4Z4 (chromosome 4q35) that 
is characterized by an array of tandemly repeated units of 
3.3 kb (van Deutekom et al. 1993; Wijmenga et al. 1992). 
The primary mediator of FSHD pathology is thought to be 
the expression of DUX4, a gene epigenetically repressed 
in most somatic tissues located in each unit of the D4Z4 
repeat array (Lemmers et al. 2010). In patients with FSHD, 
inadequate DUX4 protein expression in skeletal muscle 
is favored by D4Z4 chromatin relaxation (Lassche et al. 
2020). Clinically, FSHD is characterized by slowly pro‑
gressive weakness of the muscles of the face, shoulder, 
and upper arm. However, many patients also have weak‑
ness of the trunk and leg muscles; in fact, sometimes these 
are the most pronounced symptoms. In addition, some 
patients have no symptoms or only very mild symptoms 
(Mul et al. 2016). Progression of the disease is associ‑
ated with atrophy and fatty infiltration of the muscle tissue 
which can be visualized on MRI (Mul et al. 2017).

In FSHD, fatigue occurs as an early leitmotif of the 
disease and as a disabling symptom in daily activities; in 
a recent qualitative study, patients described fatigue as 
“an overwhelming and unpredictable experience” with‑
out recognizing the underlying causes, making it difficult 
to cope with and thus massively affecting participation, 
social contacts, and quality of life (Schipper et al. 2017). 
Furthermore, in a survey involving 328 participants with 
FSHD, one of the symptoms with the highest prevalence 
was fatigue (93.8%) (Hamel et al. 2019).

For the purposes of this study, fatigue will be discussed 
within the taxonomy proposed by Kluger et al. (2013). 
Specifically, fatigue is defined as a symptom or percep‑
tion, characterized by feelings of tiredness and weakness, 
in which physical and cognitive functions are impaired 
because of interactions between performance fatigability 
and perceived fatigability. Performance fatigability refers 
to the decline in an objective measure of performance, 
such as the generation of maximal voluntary force (MVC), 
the ability to provide an adequate signal for voluntary 
muscle activation, or the involuntary twitch response 
to stimulation (Enoka and Duchateau 2016). To assess 
muscle contractility or the degree of muscle activation 
before and during a performance task in FSHD, several 

studies have been conducted using electrophysiological 
responses evoked by muscle or peripheral nerve stimula‑
tion. For example, Schulte-Mattler et al. (2003) described 
excessive fatigability during isometric ankle dorsiflexion 
in four patients with FSHD. Later, Schillings et al. (2007) 
described reduced performance fatigability after a 2-min 
sustained isometric MVC of the biceps brachii (BB) in 
65 patients with FSHD, compared to control subjects. 
Recently, Bachasson et al. (2014) demonstrated similar 
fatigability during intermittent isometric contractions in 
the quadriceps femoris in 19 FSHD patients compared to 
controls, using femoral nerve magnetic stimulation. How‑
ever, to overcome the limitations of electrical/magnetic 
stimulation in clinical populations (discussed in Place 
and Millet 2020), such as the impossibility to test neu‑
romuscular function under physiological conditions, pain 
during stimulation that can lead to biased measurements, 
the contribution of intramuscular processes to the super‑
imposed force during fatigue and insufficient stimulation 
intensity, performance fatigability can be assessed using 
surface electromyography (sEMG). For example, spectral 
parameters, muscle fiber conduction velocity (CV) or non-
linear parameters (reviewed in Rampichini et al. 2020) 
are suitable to be used as indirect indices of performance 
fatigability. Indeed, fatigability during isometric constant 
force contractions, can be observed by the decrease of CV 
mainly related to a decrease of intracellular pH (Komi and 
Tesch 1979). A decrease in the fractal dimension (FD) 
of the sEMG signal has been associated with fatigability, 
aging, and disease (Beretta-Piccoli et al. 2020; Goldberger 
et al. 2002; Arjunan and Kumar 2013). These findings sug‑
gest a potential utility of the fractal analysis of the sEMG 
signal as a complementary tool for assessing fatigability 
during a performance test.

Therefore, the primary objective of this study was to 
investigate whether patients fatigue differently than healthy 
controls (HC) during sustained isometric elbow flexions. We 
hypothesized that since FSHD is characterized by a tran‑
sition from fast-glycolytic to slow-oxidative muscle fibres 
(Celegato et al. 2006), patients would show less performance 
fatigability compared to controls.

Methods

Participants

This cross-sectional study was performed according to the 
Declaration of Helsinki, with the approval of the local Eth‑
ics Committee of the University of Pisa. Seventeen patients 
with FSHD and seventeen HC were recruited after providing 
written informed consent.
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The study was part of a crowdfunding project (#Sport‑
4therapy) conducted at CRIAMS-Sport Medicine Centre 
Voghera and sponsored by the University of Pavia, aiming 
to identify the correct sports therapy approach in patients 
affected by rare neuromuscular diseases (Siciliano et al. 
2019), including FSHD (Berardinelli and D’Antona 2019). 
Data collection began in 2013 and was completed in 2019. 
Inclusion criteria were age of ≥ 16 years, a clinical or genetic 
diagnosis of FSHD, and enrollment in the Italian National 
Registry for FSHD. Exclusion criteria were wheelchair 
bound at selection, use of corticosteroids, severe cardiac 
and respiratory dysfunction, and psychological/psychiat‑
ric disorders. A diagnosis of FSHD had to be confirmed 
by DNA testing (Lemmers et al. 2012) at the University 
of Modena and Reggio Emilia (Italy). Patients with FSHD 
were enrolled in the study. The severity of the disease was 
assessed using the FSHD clinical score (Lamperti et al. 
2010), which ranges from 0, when there are no objective 
signs of functional impairment, to 15, when all tested muscle 
groups are severely impaired and the patient is wheelchair 
dependent. Each section describes the functional assessment 
of six muscle districts that are peculiarly affected in FSHD: 
face (score 0–2); shoulder girdle (score 0–3); upper limbs 
(score 0–2); distal legs (score 0–2); pelvic girdle (score 
0–5); abdominal muscles (score 0–1). The protocol assigns 
an independent score to each muscle group, providing an 
accurate description of the distribution of muscle weakness 
for each individual. The main characteristics of the patients 
are listed in Table 1.

FSHD categories

Patients were allocated to the four clinical categories accord‑
ing to the Comprehensive Clinical Evaluation Form (CCEF, 
Ricci et al. 2016). The CCEF classifies (1) subjects with 
facial and scapular girdle muscle weakness typical of FSHD 
(category A), (2) subjects with muscle weakness limited 
to the scapular girdle or facial muscles (category B), (3) 
asymptomatic/healthy subjects (category C), and (4) sub‑
jects with a myopathic phenotype presenting clinical fea‑
tures not consistent with the canonical phenotype of FSHD 
(category D).

Since patients belonging to category A have the most 
peculiar signs of the disease, they were compared with the 
other categories, to highlight differences in the clinical vari‑
ables considered.

FSHD asymmetry

Significant asymmetry of muscle involvement was previ‑
ously observed in the upper extremities, showing right-sided 
dominance, regardless of handedness (Rijken et al. 2014). 
Asymmetry of muscle involvement was clinically evaluated 

and a comparative analysis between patients with predomi‑
nant right-sided or left-sided involvement was performed to 
determine if side involvement correlated with the clinical 
severity of the disease.

Experimental procedures

Perceived fatigability

The degree of perceived fatigability was assessed before the 
fatigue task using the fatigue subscale of the Checklist Indi‑
vidual Strength (CIS fatigue). This scale consists of eight 
questions regarding fatigability experienced during the pre‑
vious 2 weeks; each question was scored on a 7-point Likert 
scale (Vercoulen et al. 1994). A total score ≥ 35 indicates 
severe fatigue. The CIS fatigue has good internal consist‑
ency (Cronbach a 0.83–0.92), high discriminant validity, and 

Table 1   Descriptive statistics of the socio-demographic and clinical 
variables

a Variable with three missing values (n = 14)
FSHD facioscapulohumeral muscular dystrophy, IQR interquartile 
range
Categories definition see text

n Median IQR

Socio-demographic variables
Gender
 Woman 8 – –
 Man 9 – –
 Age – 33.0 31.25

Clinical variables
FSHD categories
 A 12 – –
 B 3 – –
 C 0
 D 2 – –

FSHD asymmetry
 Right > Left 9 – –
 Right = Left 5 – –
 Right < Left 3 – –

D4Z4 contraction (kb)/number of alleles – 27.00 11.50
 (11–19)/ 1–3 2
 (20–26)/ 4–5 7
 (27–31)/ 6 3
 (33–35)/ 7–8 3
 (36–41)/ 9–10 2

D4Z4 contraction (kb) – 27.00 11.50
Checklist individual strengtha – 25.50 15.00
Severity of FSHD (clinical score) – 4.00 6.25
Scapular girdle involvement score 2.00 1.00
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high sensitivity to change in patients with FSHD (Kalkman 
et al. 2007).

Performance fatigability

The selected protocol has been shown to induce fatigue in 
the elbow flexors in healthy subjects and patients (Beretta-
Piccoli et al. 2017, 2020). Briefly, participants were asked 
to perform two MVCs, separated by 2 min rest, followed by 
a 20% MVC contraction that lasted 2 min and a 60% MVC 
that was held until the force level dropped below 90% of the 
target (endurance time, i.e. the time for which a subject can 
sustain the requested mechanical task). The two sub-maxi‑
mal contractions were separated by a 5-min rest. Since arm 
muscles show early disability in FSHD (Derry et al. 2012; 
Rijken et al. 2014; Tawil 2018), the BB was selected as the 
affected muscle. In particular, the BB is subject to selective 
muscle wasting resulting in so-called ‘Popeye’ arms because 
of the contrast between atrophied perihumeral musculature 
and sparing of the forearm and distal deltoid muscles (Mul 
et al. 2016). Furthermore, because this muscle has long fib‑
ers that run parallel to the skin, high quality sEMG acquisi‑
tions, according to Barbero et al. (2012) may be recorded. 
Finally, sub-maximal contractions were selected because 
they are more representative of the intensity of activities 
performed during daily life.

EMG and force measurements

Myoelectric signals were recorded from the dominant BB 
in a monopolar configuration. Participants were seated on a 
height-adjustable chair with their arm positioned on an iso‑
metric ergometer (MUC1, OT-Bioelettronica, Turin, Italy), 
equipped with a load cell (Model TF022, CCT Transduc‑
ers, Turin, Italy). The wrist was fastened to the ergometer, 
with the elbow flexed at 120°. A bi-dimensional array of 64 
electrodes (3 mm diameter, 8 × 8 grid, 10 mm interelectrode 
spacing; model ELSCH064NM3; OT-Bioelettronica) was 
positioned on the BB according to Barbero et al. (2012) with 
the distal edge close to the cubital fossa and the midline of 
the array aligned with the midline of the BB along a line 
from the cubital fossa to the acromion. The ground electrode 
was placed on the contralateral wrist.

The torque of the elbow was measured using a torque 
meter operating linearly in the range 0–1000 Nm. The 
torque signal was amplified (MISO II; OT-Bioelettronica) 
and saved on a computer. The EMG signals were amplified 
with a variable factor ranging from 2000 to 5000 (EMG-
USB2 + ; OT-Bioelettronica), filtered with the hardware 
filter (10–500 Hz bandpass) and then with an offline But‑
terworth anti-causal bandpass filter (2nd order—20–400 Hz 
bandpass) and sampled together with the torque signal at 
2048 Hz using a 16-bit A/D converter, with 5 V dynamic 

range, and stored on a computer. The torque signal was dis‑
played on a screen, as real-time biofeedback.

Assessment of muscle weakness

Normative data on the maximal voluntary isometric force 
exerted by healthy subjects at 90° elbow flexion were 
retrieved from the study by Meldrum et al. (2007). The value 
was then corrected for a 60° elbow flexion using the follow‑
ing predictive equation from Bober et al. (2002):

where Y is the estimated peak torque, and x is the specific 
joint angle.

Signal processing

The channels used for CV estimation were selected based 
on visual inspection of individual differential signals, along 
one of the array columns, as described previously (Beretta-
Piccoli et al. 2017; Fig. 1), and their number typically ranged 
from four and seven (Farina et al. 2004). CV was estimated 
using a multichannel algorithm (Farina and Merletti 2003) 
on single differential signals based on matching temporally 
and spatially filtered signals, using non-overlapping signal 
epochs of 1 s, on the selected channels. Changes in CV dur‑
ing fatiguing contractions have a profound impact on the 
shape of the motor unit (MU) action potential waveform and 
therefore on the amplitude and spectral variables extracted 
from the sEMG signal. Estimation of the CV slope (i.e. rate 
of change), might be useful to characterize the peripheral 
components of muscle fatigue during an isometric task 
(Merletti and Farina 2016) and this variable may be consid‑
ered as one of the most robust EMG fatigue indices (Koll‑
mitzer et al. 1999; Linssen et al. 1993; Rainoldi et al. 2001; 
Dedering et al. 2000).

Each of the selected signal epochs was used to estimate 
the mean frequency of the power spectrum (MNF) and the 
fractal dimension of the sEMG signal (FD); these variables 
were averaged over all selected channels. MNF (a param‑
eter used to quantify the changes in the spectral content 
of the sEMG signal based on the Fourier transform) was 
computed offline with a numerical algorithm (Merletti et al. 
1990) using the following calculation formula (Rampichini 
et al. 2020):

where PS(f) is the sEMG power spectrum calculated by 
Fourier transform, and f1 and f2 determine the bandwidth 
of the surface electromyography (f1 = lowest frequency and 

Y(%) = 55.49 + 0.88x + 0.004x2− 0.0001x3,

MNF =
∫ f2

f1
f ∙ PS(f ) ∙ df

∫ f2

f1
PS(f ) ∙ df

,
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f2 = highest frequency of the bandwidth). MNF is related 
to changes in muscle fiber CV and subsequent changes in 
intracellular action potential duration (Bigland-Ritchie 
et al. 1981). It has been shown during static contractions 
that MNF shifts to lower frequencies with increasing fatigue 
(Lindström et al. 1977; Merletti et al. 1990; Merletti and Lo 
Conte 1997; Viitasalo and Komi 1977), due to decreased 
CV as a result of local metabolic changes in the working 
muscle, mainly H+ and K+ distribution across the sarco‑
lemma (Dimitrova and Dimitrov 2003; Masuda et al. 1983). 
However, modifications of MU action potential shape, MU 
firing rate and synchronization may also contribute to MNF 
changes (Bigland-Ritchie and Woods 1984; Brody et al. 
1991; Gabriel and Kamen 2009).

FD was estimated using the box-counting method as 
previously reported (Gitter and Czerniecki 1995). Briefly, 
a grid of square boxes is used to cover the EMG sig‑
nal, and the number of boxes through which the signal 
passes is counted. If one decreases the side of the boxes 
in a dichotomous process, the number of boxes counted 
increases exponentially. However, if one plots the loga‑
rithm of the number of boxes required to cover the signal 

against the logarithm of the inverse of the box area, one 
obtains an approximately linear relationship. The slope of 
the interpolation line (estimated by the least mean squared 
method) is the FD (Mesin et al. 2009). Therefore, the fol‑
lowing expression defines the FD of the sEMG signal:

where N is the number of boxes required to cover the 
signal, L is the box side, and the ratio is the slope of the 
interpolation line.

FD has been proposed as an index to monitor changes in 
the sEMG signal during an isometric fatigue task (Beretta-
Piccoli et al. 2015; Boccia et al. 2016; Mesin et al. 2009). 
Although the use of non-linear analysis of the sEMG 
signal is desirable, as it is more sensitive than spectral 
analysis for assessing performance fatigability(Farina 
et al. 2002), it is difficult to relate these parameters to 
physiological changes in muscle properties resulting from 
fatigue. Nevertheless, Mesin et al. (2016) demonstrated an 
inverse relationship between FD and MU synchronization 
and a positive relationship with the MU firing rate during 
simulated isometric fatigue contractions.

FD = log N ∕ log (1∕L),

Fig. 1   Representation of the position of sEMG array on the biceps 
brachii muscle. An example of EMG signals detected in single differ‑
ential mode from each column of a FSHD patient during an isometric 
elbow flexion at 60% MVC is shown on the right panel. The innerva‑

tion zone can be identified by the V shape of the signals. The selected 
channels for muscle fiber estimation are located in the distal portion 
of column 5, where the pure propagation of motor unit action poten‑
tials is visible between the innervation zone and the distal tendon
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Performance fatigability was indirectly quantified as the 
slopes of the considered sEMG variables during endurance 
contraction.

Statistical analysis

Descriptive statistics were used to represent the variables 
included in the comparative analysis; categorical variables 
were described by frequency distributions, while continuous 
variables were described by synthetic indicators (median and 
interquartile range, IQR). At the bivariate level, the analyses 
were conducted using nonparametric statistical indicators 
and tests to account for the small sample size and general‑
ized non-normality of the distributions. Linear regression 
over time was applied to MNF, CV and FD to extract initial 
values and slopes, the latter normalized with respect to their 
initial values.

Differences in the sEMG measures between FSHD 
patients and HC, as well as differences in the continuous 
clinical variables related to FSHD categories and asym‑
metry, were assessed using the Mann–Whitney U test. The 
Cohen’s r estimate of effect size was calculated using (Cohen 
1988):

where z is the value obtained in the Mann–Whitney U 
test and N the total number of observations, as suggested by 
Fritz et al. (2011). Cohen’s guidelines outline that the effect 
size is low if the value of r varies around 0.1, medium if r 
varies around 0.3, and large if r varies more than 0.5 (Cooli‑
can 2009). Eventually, the Wilcoxon signed-rank test was 
run to determine differences between predicted and meas‑
ured maximal voluntary strength in patients with FSHD, 
and whether the slopes of the EMG parameters at 20% MVC 
differed from zero. The statistical significance was set at 
α = 0.05. All statistical analyses have been carried out with 
Stata/IC 16.0 (StataCorp, College Station, Texas, USA).

Results

Socio‑demographic and clinical variables

Twelve out of 17 patients belonged to category “A”, accord‑
ing to Ricci et al. (2016), presenting facial and scapular 
girdle muscle weaknesses. More accentuated muscle weak‑
ness on the right side was observed in nine patients, eight of 
whom were right-handed (Table 1, “Right > Left” category), 
while it was more accentuated on the left side for three 
patients and was equally distributed in five of them. The 

r =
�z�
√
N
,

number of patients per D4Z4 contraction/number of repeats 
is described in Table 1. The median clinical score assessing 
the severity of FSHD was 4 [IQR = 6.25], while the median 
scapular girdle involvement score was 2 [IQR = 1]. The dif‑
ference in median age between patients with FSHD and HC 
was not statistically significant.

Perceived fatigability

Perceived fatigability, assessed in patients with FSHD 
using the CIS fatigue subscale, was reported as mild (25.5, 
[IQR = 15]).

Performance fatigability

The time courses of MNF, CV and FD during 20% and 60% 
MVC are shown in Fig. 2 for a representative subject. The 
hypothesis test highlighted some statistically significant dif‑
ferences between the two groups, which are shown in Fig. 3: 
(1) the initial values of MNF and FD at 20% MVC yielded 
higher values in the FSHD group (p 0.05 and p 0.001, 
respectively), while their negative slopes showed a less steep 
decline at 60% MVC (p 0.01). (2) A similar decrease was 
also observed for the negative slope of CV at 60% MVC in 
the FSHD group (p 0.05). At 20% MVC, the slope of MNF 
was not different from 0 in the FSHD group (p = 0.14), and 
in both groups for CV (p = 0.08 and p = 0.53, respectively). 
In addition, exerted force was lower in the FSHD group, 
while endurance time was longer compared to the HC group 
(p = 0.001). Effect size analysis revealed high values for 
MNF slope and FD slope during 60% MVC contraction (r 
estimates and 0.56 and 0.51, respectively), FD initial value 
during low-level contraction (r = 0.61), and maximum vol‑
untary force (r = 0.62) and endurance time (r = 0.63). Moreo‑
ver, the initial values of MNF at 20% MVC and the slope of 
CV at 60% MVC showed a medium effect (r-estimates and 
0.33 and 0.37, respectively). A smaller effect size was found 
for the remaining parameters.

Muscle weakness in FSHD patients

The median MVC at 60° of isometric elbow flexion was 
19.79 [IQR = 10.87] kg, while the predicted MVC in heathy 
subjects was 28.82 [IQR = 11.76] kg. Consequently, the 
maximal strength was 31.3% significantly lower than the 
predicted value (p < 0.01).
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Differences in clinical variables related to FSHD 
category and asymmetry

Because of the small sample size, for a robust assessment 
of differences in clinical variables, FSHD category and 
asymmetry were recoded into binary variables: “A” and 
“Not A”, and “Right > Left” and “Not Right > Left” for 
FSHD categories and asymmetry, respectively. D4Z4 con‑
traction length showed no statistically significant differ‑
ences between FSHD categories, whereas patients with 
more severe right-sided muscle (category “Right > Left”) 
reported a significantly lower FSHD severity (z = − 2.156; 
p < 0.05).

Discussion

In this study, sEMG parameters, known as indirect indices 
of performance fatigability, were examined in FSHD sub‑
jects and HC during isometric fatigue contractions of the 
elbow flexors. The results showed significant differences 
in all parameters considered between the two groups; in 

particular, FSHD patients presented lower MVC and lower 
levels of performance fatigability (i.e. reduced slope of 
MNF, CV and FD), and increased time to exhaustion dur‑
ing isometric fatigue contraction at 60% MVC.

Muscle weakness, strength, and endurance time

In agreement with previous studies, the results presented 
a fairly consistent picture, characterized by the inability of 
patients with FSHD to exert maximal strength comparable 
to the one of HC (Bachasson et al. 2014; Doix et al. 2017; 
Kalkman et al. 2007; Turki et al. 2012). This finding is cor‑
roborated by an increased predicted muscle weakness expe‑
rienced by patients with FSHD. A recent study by Lassche 
et al. (2020) hypothesized that muscle weakness in FSHD 
is not caused by alterations in sarcomeric contractility, or 
excitation–contraction coupling (Vandebrouck et al. 2002), 
but is due to DUX4-induced toxicity and consequential loss 
of muscle fibers or to an unknown impaired metabolic cause.

In addition, the patients’ endurance time was significantly 
longer than in HC, suggesting an increased resistance to 
the development of fatigue (Fig. 3a), probably for several 
reasons:

Fig. 2   Time course of mean power spectrum frequency (MNF), 
muscle fiber conduction velocity (CV) and fractal dimension (FD) 
for a representative patient with FSHD. Surface EMG signals were 

acquired from the biceps brachii using bi-dimensional arrays during 
isometric contractions at 20% and 60% MVC. Data are normalized 
with respect to their initial values
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First, patients with FSHD may exhibit fibrosis and fatty 
infiltration (Friedman et al. 2012) which are associated with 
changes in muscle composition and, particularly from fast-
glycolytic (type IIX) to slow-oxidative (type I) muscle fibers 
(Celegato et al. 2006). Indeed, these structural alterations 
evaluated by MRI, have been associated with a significantly 
decreased phosphocreatine/ATP ratio (Janssen et al. 2014), 

histological findings of biopsies showing more dominant 
type I fibers (Dubowitz et al. 2020), and loss of muscle 
strength. Second, weaker participants have been less fati‑
gable than stronger ones (Hunter and Enoka 2001) because 
intramuscular pressure is lower, the blood occlusion is also 
lower (Zwarts and Arendt-Nielsen 1988) and negative feed‑
back from afferent groups III and IV is reduced (Gandevia 

Fig. 3   Box-and-whisker plots of a maximal voluntary contrac‑
tion (MVC) of isometric elbow flexions, and endurance time at 60% 
MVC; b initial values and c slopes of mean power spectrum fre‑
quency (MNF), conduction velocity (CV) and fractal dimension (FD) 

during the 20% and 60% MVC. Slopes were normalized with respect 
to their initial values. HC, healthy controls. Asterisks denote statisti‑
cal significance at * p < 0.05, ** p < 0.01, *** p < 0.005



European Journal of Applied Physiology	

1 3

2001). Reduced fatigability in patients with FSHD with 
respect to HC was also described in Doix et al. (2017), 
before and after short-term neuromuscular electrical stimu‑
lation training of the anterior tibialis muscle, which may be 
affected similarly to the BB in earlier stages of the disease 
(Olsen et al. 2006; Dorobek et al. 2013).

Performance fatigability

Interestingly, the fatigability indices extracted from the 
sEMG signal suggested an increased resistance to fatigue in 
the FSHD patients (Fig. 3b). Indeed, the reduction in the nor‑
malized slope of MNF, CV and FD during high-level fatigue 
contraction, a sign of an increase in performance fatigabil‑
ity (Merletti and Farina 2016; Beretta-Piccoli et al. 2017 
and 2020), was significantly lower in patients with FSHD 
compared to HC. Similar results were reported by Schil‑
lings et al. (2007), who described lower peripheral fatigue 
in FSHD patients compared to controls, which was directly 
related to lower maximal effort and blood flow occlusion 
compared to controls. Moreover, the lower decrease in CV 
slope may also be explained by a larger contribution of 
fatigue-resistant type I muscle fibers, a well-known feature 
of FSHD (D’Antona et al. 2007).

However, the reduction in fatigability also affects the 
slope of MNF (which is related to both a reduction in muscle 
fibers CV and an increase in MU firing rate and synchroni‑
zation Bigland-Ritchie and Woods 1984; Brody et al. 1991; 
Gabriel and Kamen 2009), and the slope of FD (which is 
related to an increase in MU firing rate and synchroniza‑
tion (Rampichini et al. 2020). It is, therefore, reasonable to 
hypothesize that the reduced fatigability in FSHD is also 
due to central factors, as also suggested by Schillings et al. 
(2007).

On the contrary, during the 20% MVC contraction, the 
normalized slopes of the fatigability indices did not differ, 
suggesting that the level of contraction was not fatiguing 
(confirmed by the slopes of CV, which did not differ from 0 
in the two groups) and hypothesizing that there is a greater 
recruitment of type I muscle fibers than type II in FSHD 
patients (Fig. 3b).

Initial values

During low-level contraction, which was non fatiguing for 
both groups, increased initial values of MNF and FD were 
observed in patients with FSHD (Fig. 3c). This result is not 
surprising, since a greater impact of the physiological factors 
affect the initial values of MNF. Unexpectedly, no signifi‑
cant difference was observed in muscle fiber CV, although 
reduced CV levels have been reported in previous studies in 
other neuromuscular disorders (Naumann and Reiners 1996; 
Al-Ani et al. 2001; Butugan et al. 2014).

Probably, this is related to a heterogeneous control group, 
in which individuals have different fatigue patterns. On the 
contrary, the result of the initial values of FD of the sEMG 
signal, which quantitatively indicates the chaotic behavior 
of the signal, and is related to the degree of interference 
(Mesin et al. 2009), suggests an increased complexity of the 
signal compared to the controls, especially at 20% MVC. 
Several studies determined that FD can be used to quantify 
the complexity of MU recruitment patterns (Arjunan and 
Kumar 2016). Since it is well known that MU recruitment 
is impaired in neuromuscular disorders and more MUs are 
recruited in myopathies even at low forces (Sanders et al. 
1996), an increase in signal complexity may be hypothe‑
sized. Furthermore, Derry et al. (2012) observed a more 
complex MU action potential morphology during low-level 
(10–20% MVC) isometric contractions of the BB in FSHD 
patients compared to controls. Eventually, they showed that 
as the disease progressed and muscle fibers were increas‑
ingly lost due to the degenerative process, complexity 
increased.

Influence of FSHD category and asymmetry 
over fatigability

Surprisingly, no statistically significant differences in clini‑
cal variables were detected between FSHD categories clas‑
sified as A or not-A, suggesting that the two groups are com‑
parable from a clinical point of view. In particular, the fact 
that the D4Z4 array does not differ between the categories 
seems to underline a labile relationship with the clinical pic‑
ture and even that the size of the deletion is not sufficient to 
tell whether a patient with eight repeated units belongs to 
A or not-A category. The two categories considered share 
common pathophysiological traits, at least as far as fatigue 
is concerned. For instance, the most conclusive common 
event is loss of strength and a fast-to-slow shift of muscle 
fiber type composition.

The results regarding asymmetry, which is a very com‑
mon feature in FSHD, unexpectedly showed that patients 
with more accentuated muscle weakness on the right side 
have a better clinical picture, highlighted by a lower median 
severity score compared to those with more left sided or 
equal right/left involvement.

The prevalence of right-sided involvement is consistent 
with previous findings and has been associated with mechan‑
ical factors and, in particular, with preferential use of the 
right side by right-handed individuals (Brouwer et al. 1992; 
Tasca et al. 2014).

Limitations

A limitation of this study is related to the model used to 
fit time-dependent changes in EMG parameters during the 
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high-level isometric contractions. Linear trend analysis was 
used. However, changes in MNF and CV may also follow an 
exponential trend during sub-maximal contractions (Merletti 
et al., 1991). Here, a linear model greatly simplified the anal‑
ysis, and inspection of the data showed that the assumption 
of linear trends was reasonable for all parameters. Moreover, 
as fatigability assessment is task dependent (Enoka 1995), 
protocol specifications are known to influence findings and 
underlying mechanisms of fatigue. Furthermore, the major‑
ity of studies on fatigability in FSHD patients have been 
conducted using electrical stimulation, thus the results may 
not be comparable. In addition, we evaluated fatigability in 
the dominant BB only, which may not represent the disease 
condition of the whole individual. Although the BB is often 
one of the first muscles to manifest signs of weakness in 
FSHD, it is not excluded that muscles of the shoulder girdle 
with a more complex architecture (e.g. the trapezius) may be 
a better choice for evaluating early structural changes. Then, 
we cannot exclude phenomena of compensation of muscle 
groups that may affect the developed force. Moreover, our 
results are based on a small group of patients, thus the sta‑
tistical power is rather low, especially for the comparisons 
between patients. Finally, the rate of perceived exertion after 
the tasks was not measured, so it was not possible to perform 
a correlation analysis between the state level of perceived 
and performance fatigability.

Conclusions

In summary, we reported impaired neuromuscular func‑
tion in FSHD compared to HC, due to muscle weakness, 
which caused patients to exert lower MVC and reduced 
fatigability, as evidenced by longer endurance time and a 
lower decrease in the slopes of all sEMG fatigability indi‑
ces considered during sustained isometric elbow flexions.

Further studies need to be conducted to evaluate per‑
formance fatigability in the FSHD subcategories and also 
to investigate the patients’ fatigue induced by functional 
exercise unrelated to individual MVC (e.g. walking, sit-
to-stand transfer) to clarify the impact of fatigue on their 
activities of daily living.
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