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1 Introduction
Partitions of integers are related in interesting ways to modular forms, starting with the
observation that the generating series of partitions is closely related to the Dedekind -
function, i.e.,

Yoa =Tla-g"" = ¢ @@=,

rEP n>0
where & denotes set of all partitions and |A| denotes the integer A is a partition of. Another

example is the occurrence of modular forms in the proof of the partition congruences
which go back to Ramanujan [1].
More recently, partitions were connected to (quasi)modular forms via the g-bracket.
Given a function f : & — Q, the g-bracket of f is defined as the following power series
] 2]

(g = % e Qllq]l M
Before continuing, note that it is not surprising at all that for a well-chosen function f
the g-bracket (f), is a quasimodular form, since it is easily seen that the map (1) from Q7
to Q[[q]] is surjective. What is surprising is that one can find graded subalgebras A of Q7
which (i) are “interesting” in the sense that they have an interpretation in combinatorics,
enumerative geometry or another field of mathematics and (ii) have the property that
the g-bracket of a homogeneous function f € A is quasimodular of the same weight as f.
In this case we call A a quasimodular algebra. Note that the g-bracket is linear but not
multiplicative, so in order to show that an algebra is quasimodular, it is not sufficient to
show that the g-brackets of the generators of such an algebra are quasimodular. The aim
of this paper is to introduce new quasimodular algebras.
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The Bloch—Okounkov theorem [3, Theorem 0.5] provided the first quasimodular alge-
bra A*. Write a partition A as a non-increasing sequence (A1, Ay, ...) of non-negative
integers with [A| = Y72, A; finite. The Q-algebra A* is freely generated by the so-called
shifted symmetric power sums

oo
Q) = e + Y (i—i+ )T =i+ k=2, 2)
i=1
where the ¢; are constants given by }C + Yk (f:)! - 25in&(x 7 - The function Q3

naturally occurs in the simplest case of the Gromov—Witten theory of an elliptic curve,
as discovered by Dijkgraaf [7] and for which quasimodularity was proven rigorously in
[14]. Quasimodularity of A* is used in many recent works in enumerative geometry [4—
6,12,13]. There are many other functions in invariants of partitions which turn out to be
elements of A*, for example symmetric polynomials in de modified Frobenius coordinates
[23, Eq. 19]; the hook-length moments [5, Theorem 13.5] (see Sect. 7.1); central characters
of the symmetric group [15, Proposition 3] and symmetric polynomials in the content
vector of a partition [15, Proof of Theorem 4].

Previously, the Bloch—Okounkov algebra A* and some generalizations to higher levels
(see, e.g., [8,9]), were the only known quasimodular algebras. However, there are many
examples of functions on partitions admitting a quasimodular g-bracket (and in general
not belonging to A*) [23, Sect. 9], for example the Moller transformation of functions with
quasimodular g-bracket (defined by [23, Eq. 45] and recalled in Sect. 7), invariants Ap for
every even polynomial defined in terms of the arm- and leg-lengths of a partition and the
moment functions

B
Sr(A) = Tk Z Akl (k even, By = kth Bernoulli number) (3)
i=1

that also occur in the study of so-called spin Hurwitz numbers in the algebra of super-
symmetric polynomials [10] (in that reference, these functions are only evaluated at strict
partitions—partitions without repeated parts—and quasimodularity is shown for a corre-
spondingly adapted g-bracket).

In this paper, we prove the stronger result that the algebra S generated by these moment
functions Sy is quasimodular. Moreover, besides the pointwise product of functions on
partitions, we define a second associative product ©, called the induced product as it
is inherited from the product of power series. The vector space Sym®(S) generated by
the elements in S under the induced product is strictly bigger than S, is a quasimodular
algebra for either of the two products, and has a particularly nice description in terms of
functions T ; depending not only on the parts of a partition, but also on their multiplicities.
Here, the multiplicity r,, (1) of parts of size m in a partition A is defined as the number of
parts of A of size m. More precisely, let F; be the Faulhaber polynomial of positive integer
degree /, defined by F;(n) = >, i forall n € Z-o. Then, Ty is given by

Ti() = Ciy + Y mF Filrm(1) (k> 0,1> 1,k +1[even) (4)

m=1
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with Cy; a constant equal to —% if k=0o0r/=1and 0 else. Let 7 be the algebra
generated by all these Ty ; under the pointwise product.

We show that Sym®(S) and 7 are algebras for the pointwise product as well as for
the induced product. In fact, the expression of elements of Sym®(S) in terms of the Ty
implies that Sym®(S) is a strict subalgebra of 7 (with respect to both products). Our main
result is the following:

Theorem 1.1 The algebras Sym®(S) and T are quasimodular algebras with respect to
the induced product.

With respect to the pointwise product, these algebras are not quasimodular because of
the following subtlety: The g-bracket of a homogeneous function f in 7 (with respect to
the pointwise product) often is of mixed weight (i.e., a linear combination of quasimodular
forms of weights bounded by the weight of /). By making use of the induced product, one
can explain these lower weight quasimodular forms, as we do in Sect. 6. For example,

(T2)g = G2 + 2Ga + 2Gy + ——
02lq = T2 T g T gF2 T 9eg

where Gy and G, are the Eisenstein series defined by (6). The right-hand side is a quasi-
modular form of mixed weight, which is explained by the fact that
1
ﬁ)
is a linear combination of elements of 7 of different weights with respect to the induced

5 1
T02,2 = To2 © Topo + ETOA + gTo,z +

product.

A main theme throughout this paper is the principle to establish all identities in Q7 or T
before taking the g-bracket, instead of doing these computations in Q[[g]] or the space of
quasimodular forms M. By doing so, we discover the algebraic structure of 7. Without
having the induced product at one’s disposal, for example when studying the shifted
symmetric algebra A*, this seems impossible. See the following table for an overview of
situations where the principle is applied:

Previous definitions and results Definitions and results in this work Sections
Multiplication in Q[[g]] Induced product © on Q7 3.2
q-bracket: Q7 - QllgN u-bracket: Q7 — Q[[u1, us, .. .]] 3.2
Connected q- Connected product: Sym®(@9ﬂ) - Q7 3.2
bracket: Sym®(Q7") — Q[q]]
Derivative qd%von Qllgqll Derivative on Q7 5.1
sly-action on M sly-action on T 5.2
Rankin—Cohen brackets on M Rankin—Cohen brackets on T 5.3
Formula for (H,f), in [5, Eq. 152]° Formula for Ty ;f 6.2

2In that work the hook-length moment H,, (see also Sect. 7.1) was denoted by T),_;

A further main result of the paper is the following:

Theorem 1.2 The g-bracket is an equivariant mapping T — M with respect to sl-
actions by derivations on both spaces.

Motivated by the fact that many functions in invariants of partitions are elements of A*,
in Sect. 7 we describe many functions on partitions which are elements of 7 or are
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closely related. Among those are the border strip moments, generalizing the hook-length
moments, which are defined in terms of the representation theory of the symmetric
group. The corresponding space X of border strip moments is the image of a space U
under the aforementioned Moller transform M, where U/ is generated by the double
moment functions Tj; € 7 as well as the odd double moments functions (those for which
k + [ is odd). The g-brackets of these functions are contained in the space C of so-called
combinatorial Eisenstein series, having the space of quasimodular forms as a subspace.
Moreover, the space of hook-length moments H is contained in both A* and X' —this
contrasts the situation for 7, which by Remark 4.1.6 has a trivial intersection with A*.
See the commutative diagram below for an overview of the spaces related to 7 with their
corresponding mappings.
H — A*

\<> \<jq

X \1\7

M\<>q\£
()g—— C
]

ui
T —(Ya— M

We hope that this work—besides advocating the notion of a ‘quasimodular algebra’ by
giving a new example of such an algebra and studying its algebraic structure—may serve as
a tool for enumerative geometers trying to show that generating series are quasimodular
forms.

The contents of the paper are as follows. In Sect. 2 we recall notions (known to the
experts) related to quasimodular forms, partitions and special families of polynomials.
Next, in Sect. 3 we motivate all new notions in this work and prove quasimodularity of the
algebra S. A study of the symmetric algebra 7, including a proof of our main theorem, can
be found in Sect. 4. The sly-action by differential operators, the proof of Theorem 1.2 and
Rankin—Cohen brackets are the content of Sect. 5. In Sect. 6 further results that arise from
comparing the two different products on 7 are given, and finally, in Sect. 7 we provide
many examples of functions in or closely related to 7.

2 Preliminaries

2.1 Quasimodular forms

Let Holp($)) be the ring of holomorphic functions ¢ of moderate growth on the complex
upper half plane 9, i.e., for all C > 0 one has p(x +iy) = 0(e9) as y — ooand p(x+iy) =
0(e“/?) as y — 0. A quasimodular form of weight k and depth at most p for SLy(Z) is a
function ¢ € Holg($)) such that there exist ¢y, . . ., ¢, € Holg($)) so that for all T € $) and
ally = (4 Z) € SLy(Z), one has

at+b
ct+d

c
ct+d

et +d)*o(E0) = po@) + @) —— + ... + O (——)"  ©)

ct+d
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Equation (5) is called the quasimodular transformation property. Note that if ¢ is a quasi-
modular form, the functions g¢q, ..., ¢, are quasimodular forms uniquely determined
by ¢ (the function ¢, has weight k — 2r and depth < p — r). For example, taking the
identity I € I yields g9 = ¢. Quasimodular forms of depth 0 are called modular forms.
Besides the constant functions, the simplest examples are the Eisenstein series

oo o0
Gi(r)= _];_ll; +Z Z mk_lqmr (Bx =kth Bernoulli number and g = ¢*7'7)
r=1m=1
(6)
for positive even integers k. For k > 2 the Eisenstein series are modular forms of weight k.
The Eisenstein series Gy is a quasimodular form of weight 2 and depth 1.

Denote by ]V[,gsp ) the vector space of quasimodular forms of weight k and depth at
most p. Often we omit the depth and/or weight and simply write M for the vector space
of all quasimodular forms of weight k or M for the graded algebra of all quasimodular
forms. Let M denote the graded algebra of modular forms. The quasimodular form Go
generates the algebra of quasimodular forms as an algebra over the subalgebra of modular
forms, that is, M = M[G,].

Often, when encountering an indexed collection of numbers or functions, we study its
generating series. The generating series corresponding to the Eisenstein series is called
the propagator or the Kronecker—Eisenstein series of weight 2 and given by

1 k—2

PGT) = PE) = +22Gkh. )

The propagator is closely related to the Weierstrass g-function and Jacobi theta series

S) ®

1
z+w? o?

plen=piei=z + 3 |

welT+HL
w#0
0(z) :== Z (—I)L"Je"zq‘ﬂ/2
veZ—i—%
by

1 3 6'(2)
P(z) = —p(&, 2Go, Pz) = —— .
(2) 27”,50(2,” 7) + 2G> (2) 32 00

2.2 The action of sl; on quasimodular forms by derivations
A way to produce examples of quasimodular forms is by taking derivatives of

(quasi)modular forms under the differential operator D : ]VI]((SP N M/E?;H)' given by
1 d d
= —— = g—.
2widr dg

In fact, every quasimodular form can uniquely be written as a linear combination of
derivatives of modular forms and derivatives of Gy. For more details, see [22, p. 58—60]. It
may happen that a polynomial in the derivatives of two modular forms f € My andg € M;
is actually modular. This is the case for the Rankin—Cohen brackets of f and g, defined by

hgln = Z(—l)’<k+n_l)<l+:’_l>D7DSg (n>0).

N
r,5>0
r+s=n
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That is, for all f € My,g € M; and n > 0, one has that [f, g], is a modular form of
weight k + [/ + 2n.

Besides the differential operator D, an important differential operator on quasimodular
forms is the operator 0 : A~/[]((Sp ) ]VI,((S_I;_D defined by ¢ — 2mig; (with ¢; defined in
the quasimodular transformation property (5)). For example 0G3 = —% and in fact this
property together with the fact that ? annihilates modular forms defines ® completely
since 0 is a derivation and M = M [Ga].

Let W be the weight operator, which multiplies a quasimodular form by its
weight. The triple (D,d, W) forms an sly-triple with respect to the commutator
bracket [A, B] = AB — BA:

Definition 2.2.1 A triple (X, Y, H) of operators is called an sly-triple if

[HX] =2X [HY]=-2Y [\,X]=H

Remark 2.2.2 By these commutation relations, for all # > 1 one has
[0,D"] = n(W —n+1)D"}, 9)

which turns out to be useful later.
Following a suggestion of Zagier, we make the following definition:

Definition 2.2.3 Given a Lie algebra g, a g-algebra is an algebra A together with a Lie
homomorphism g — Der(A).

As D, v and W satisfy the Leibniz rule, the algebra M becomes an sly-algebra.

2.3 Partitions as a partially ordered set

Given n € Zxo, let #(n) denote the set of all integer partitions of # and I1(n) the set of all
partitions of the set [1] := {1,2,...,n}. Let & = UneZ>0 P(n)and I1 = UneZ>0 I[1(#n) be
the sets of all such partitions. Given A € & (n) wewrite A = (A, A, ...)withA; > Ay > ...
and |[A| ;= Z?il A; = n. The largest index k such that A; > 0 is called the length of A,
denoted by £(A). Similarly, for « € T1(n) we write £(«) for the cardinality of «. Moreover,
for A € & we let r,, (1) denote the number of parts of A equal to m, i.e., 1, (A) = #{i | ; =
my}, and denote by A’ the conjugate partition of 1. We call a partition A strict if there are
no repeated parts, i.e., r,(A) € {0, 1} for all m. For two partitions «, > we write ¥ U A for
the union of ¥ and A as multisets, i.e., 1y, (k U A) = ry, (k) + 15, (X) for all m € N.

Both & and I1(n) form a locally finite partially ordered set, i.e., a partially ordered set P
for which for all x, z € P there exists finitely many y € P such that x < y < z. Namely,
on & we define a partial order by x < A if r,,(k) < ry, (1) for all m > 1. The ordering
on Il(n) is given by o < g if for all A € o there exists a B € 8 such that A C B. For
instance, we have o < 1, for all « € I1(n), where 1,, = {[n]}.

Recall that on a locally finite partially ordered set P the Mobius function  : P2 — Zis
defined recursively by (see for example [16]): u(x,z) = — foysz ulx y) if ¥ < z with
initial conditions p(x, x) = 1 and u(x, z) = 0 else. For the above partial order on & the
value of p(k, A) depends on whether the difference of ¥ and A considered as multisets,
denoted by A — «, is a strict partition. That is,
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(=1)fW—tE) ) _ k is a strict partition
ik, L) = (10)
0 else.

The Mobius function u (e, 8) of two elements «, 8 € T1(n) is given by
ue, B) = [ (=D (ees) - 1),
Bep

where op for B C [#] is the partition on B induced by o. A Mdbius function satisfies the
following two properties:

Theorem 2.3.1 Let f, g be functions on a partially ordered set P. Then
(@) Z wle, y) = Sap = Z uly,B) foralla, B € P;

a<y<p a<y<p

(i) fl@ =) gly) YaeP < gB) =) wuypfly) YVBeP.

Y=o y=<p

2.4 The connected g-bracket
The g-bracket defined in the introduction (Eq. 1) is a map Q7 — Q[[g]]. In this sec-
tion we define the connected g-bracket following [5, p. 55-57], which naturally arises
in enumerative geometric when counting connected coverings. In our setting, the con-
nected g-bracket turns out to be easier to compute than the usual g-bracket.

For A C [n] we denote fy = [[,c4fa-

Definition 2.4.1 Given an integer n > 1, the connected q-bracket is defined as the mul-
tilinear map

(:07®---0Q7 - Q

n

extending the g-bracket such that for all £f;,...,f, € Q7 any of the following two
equivalent conditions hold:

D (i®®fidg = Y ol
aell(n) Aca
(i) (h ® - ®fu)q is the coefficient of x1 - - - &, in log(exp(>_1, Xifi)g-

By invoking the Mobius inversion formula (Theorem 2.3.1(ii)) condition (i) in Defini-
tion 2.4.1 implies that

[[@®veafilg = D @B [[)e,  []de = D [[(®beafv)q-

Bep a<p Aca Aea B<a Bep

For example,

<f®g>q
f ®g®h)y

(fe)g — {)q(8)q>
{feh)g — (Fqlehlg — (@)qiM)g — (M q{fg)q + 2{f)q(@)q(h)g

and

(fg>q = { ®g)qg+ (f>q<g>q:
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fgh)g = @ h)g+ (flg(g®h)g+ (€)qlf ® Mg+ (Mglf @&+ {flglg)q(h)g.

We often make use of the fact that the connected g-bracket of functions fi, ..., f;
vanishes if one of the f; is constant.

Lemma 2.4.2 Forallf,...,f, € Q7 one has
10A® - ®fu)g =0.

Proof Write f;,11 = 1. Observe that [ [, ., (fa)4 takes the same value for all o« € TI(n + 1)
which agree on [n] (but differ in the subset A of o containing # + 1). Then, sum-
ming u(a, 1,) over all such « yields

a-(-1)*Ya—1)+ (-1 =0

as there are a choices for « for which {r+1} is not a subset of o, where a is the length of such
an «, and there is only one choice for o for which {n + 1} is a subset. By Definition 2.4.1(i)
the result follows. O

We will use the second condition in Definition 2.4.1 in our proof that S is a quasimodular
algebra.

2.5 The discrete convolution product and Faulhaber polynomials

Let N denote the set of strictly positive integers. Given £, g : N — Q we denote by f - g
or fg the pointwise product of f and g. We define the discrete convolution product of f
and g by

n—1

(Frg)m) = D fli)gln—1i)

i=1

and denote the convolution product of functions fi, . . ., f, by
n
Xfi=fAxxfu 11)
i=1

Let the discrete derivative d of f : N — Q be defined by df (n) = f(n) — f(n — 1) forn > 2
and 9f (1) = f (1) and denote by id the identity function N — N C Q. Observe that

Af xg) = (3f) xg = f *(3g), (12)

Afg) = d(f) g +f d(g) — d(f) B(g), (13)
id- (f xg) = (id-f) x g +f = (id - ), (14)
% (f *id) = f — of (15)

The Faulhaber polynomials F; for I > 1 are defined as the unique polynomials with
vanishing constant term satisfying 8 F;(n) = n/~! for all # € N, or equivalently by F;(n) =
S, i1 The first four are given by

x(x+1) x(x+1)(2x +1) *(x+1)

FW=5 F@=""—, Fl)="r""" Falw) = = -
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Note that these polynomials are related to the Bernoulli polynomials B, (x), the unique
family of polynomials satisfying | B () du = &7, by the formula [F;(x) = B;(x+1)—B;.
Hence, the Faulhaber polynomials admit the symmetry

Fix) = ) F(-—x-1)  (>2), (16)

which can also be deduced directly from the definition. The generating series F{(n) of the
Faulhaber polynomials equals

-1

Fn) =Y Film)— loe 17)
I=1

(-1 “1-e&

3 The moment functions, their g-bracket and a second product
3.1 Three proofs of the quasimodularity of the moment functions
The g-bracket of the moment function Sy defined in (3) equals the Eisenstein series Gy.
To motivate the results in the rest of this work, we provide three different proofs—and
three generalizations—of this statement using three different approaches. In the first
approach, we motivate the definition of the Ty (see (4)), the second approach gives an
interpretation for these functions, and the last approach gives an example of our main
principle of establishing all identities before taking the g-bracket.

First approach The key observation in this first proof is that Sy can be rewritten as

Sk(A) = —— + Z w1y, (0).
More generally, for k > 0 and f : N — Q we set f(0) = 0 and we let

Skr(h) =

s + Z ) 18)

In case when f is the identity, Sy = Sg41. Our first method of proof gives the following

more general statement:

Proposition 3.1.1 Letf be a polynomial of degree | without constant term and k a positive
integer satisfying k = [ mod 2. Then,

(i) iff equals a Faulhaber polynomial F, then (Syr), equals

Dl_le71+2 k—1>0,
DkGl_k k—1<2

Bk+1 kllmr
2k + 1) “+Zm -

(i) if (Skf)q is a quasimodular form, then f is a multiple of the Faulhaber polynomial F;.

Proof Let x| <1andm > 1. We compute

ery x"m()\)qlll
Z)\eﬁ” ql)»l

Observe that the multiplicities r1 (1), r2(1), . . . uniquely determine the partition A. Hence,

(xrm>q = (19)

for |g| < 1 we have that
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Z xrm()\)ql)»l — Z xrmqr1+2r2+...+mrm+.‘.
rep r1,r2,...=0
9] 00
— Z xrmqmrm 1_[ Z qiri
rm=0 i;ﬁm r;i=0
= I1
1-— xqm it 1-—

Substituting this result in the numerator of (19), we obtain

oy, = 124"
1 1—xg™
Hence,
m
(51— = 2 2
q 1 —xg™

Observe thatapplyingx 3 xd . totheright-hand side of (20) has the same effect as applymg =D,
where D is defined in §2 1. After setting x = €, we find that 1% (1 — x") equals F(ry,)

(see 17). Hence, by taking / — 1 derivatives x 33 = az and settmgz = 0, it follows that

B
(Skrdg + sy = > mF(Filrm))g

2(k+1) ey
l
= A\ _ag”
ax 1 — xg™ lx=1
m=>0

I
—
S
>
~—
T
—
e
BN
N

Part (ii) of the statement follows by writing f as a linear combination of Faulhaber poly-

nomials. o

Second approach The double moment functions Ty (see (4)) are by definition equal
to Sy 7, if k > 0. Given a partition A, let ¢;(A) = #{j < i | A; = Aj}. Then, one has

Tii(A) =

(841 + ko) 4—}{:A a()'~

By
2(/<+z) s

In this section we give a direct proof for the quasimodularity of the g-brackets of T} ;:

Proposition 3.1.2 Forallk > 0,1 > 1 and k + [ even, one has

DIFG_iyy ifk—12>0,

(Tktlg = ,
DGy ifk—1<2
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Proof Denote by T,g ) = ¥ )»ff ¢;(1)!~1. The generating series of T,g ; is given by

oo
WX () = Y XHre®,
i=1

thatis, T 1()‘) is the coefficient of ~7— k'(l i in W(e*, e”)(A). Consider

oo
2 WE NG M = Y0y XHya®gh (21)
rED AP i=1

Given a, b, n € Z=o, denote by C, ;,(n), the coefficient in front of X qu” in (21), that is

ZiniYCi(k)qlM — Z Ca,b(n)Xaqun,

reZ i=1 a,b,n>0

Let p(n) denote the number of partitions of n. The coefficient C, (1) equals the number
of partitions of # with at least b parts of size g, i.e., C, (1) = p(n — ab). Hence, writing
m = n — ab we obtain

Z ZXA Yc,(k) Al (Zp(m)q > Z Xaybqﬂb

reP i=1 a,b>0
In other words,
(WX Y)g = > X¥bq®
a,b>0

so that expanding this equation for X = ¢* and Y = ¢’ yields

Tkl Z dkbl 1 ab
a,b>0
As Ty (A) = —(BkkT*ll)(Bl,l + ko) + T]?l(k) we obtain the desired result. O

Third approach In this last proof we start with the observation that one can rewrite
the g-bracket as

erﬂ’f()‘) Up Upy * -
D ohes Wity o+ lui=q

(f)q =

(22)

In contrast to the previous two proofs, it is only in the last step of this proof that we take
the g-bracket: First we rewrite (22) considering u1, uy, . . . to be formal variables, and in the
last step we let u; = g'. We start with the denominator, where we encounter the Mobius
function on partitions also defined in [17].

Proposition 3.1.3 There exists a function u : & — {—1,0, 1} defined by any one of the
following three equivalent definitions:

(i) w(r)isgiven by the Mobius function (9, 1) on the partial order on the set of partitions
in (10);
(=)™ Nisa strict partition,

(i) u@) =
else;
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i) = = 3 pWwn sy

Zke(@ UnUpy * - reP

Proof The first two definitions clearly coincide using (10). For the latter, it suffices to
show that

Z wl@) = 8p.
aUB=Ar
Letf(A) = 1 and g(1) = 8,9 for . € L. Then, f (@) = Zysa gly) forall @ € &2, so that
by Mébius inversion and by using i (y, 8) = u(4, B — y) the last definition is equivalent.
O

The fact that (Sx),; = Gi follows directly from the following proposition:
Proposition 3.1.4 Forallm > 1andf : N — Q extended by f(0) = 0, one has

Y onen S rmR) upguny - -
Dorew Wiyl

o0
=Y () up,
r=1
Proof Fix m > 1. By the previous proposition, we have

Yo rm(W) upy 1, - - (Zf(rm()»)) Up Uy, - ) (Z W) gy -+ ) :

Liep Wnalhiy -+ rep reP

Denote by C(1) the coefficient of u,, u;, - - - after expanding the right-hand side of above
equation. Observe that
Cw = 3 ) Of ),
aUB=Ar
where o U 8 denotes the union of ¢ and § considered as multisets and it is understood
that B is a strict partition. Suppose A admits a part equal to m’ # m. Then, define an
involution w on all pairs (o, B) satisfying that « U 8 = X and B is strict by

(a\{m'}, pU{m'}) ifrpw(B) =0,
(@ U{m'}, p\{m'}) if ryw(B) = L

As o changes the sign of (—1)[(ﬂ)f(rm(oc)), it follows that C(1) = 0.
Observe that C(#) = 0 and that in case A = (m, m, .. .) consists of a strictly positive

(o, B) =

number of parts all equal to m one has

CH) = flrm@) = flrm() —1) = 9f (rm(1)).

Therefore, the desired result follows. O

3.2 The induced and connected product
Motivated by the last of the three approaches in the previous section, we define the u-
bracket of a function f € Q7 by

Zkeﬂf()‘) U
fly, = =&~ = (up = up, up, - - ).
“ Dser o
Then, for all f € Q7 one has g =)

isomorphism of vector spaces

Q7 5 Qllup, uus, ..., f (flu.

We now use the algebra structure of Q[[u1, ug, u3, .. .]] to define a product on Q7.

2q5..) Observe that the u-bracket defines an
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Definition 3.2.1 Givenf g € Q7 we define their induced product f © g by

fOQu = Nul@u

where the product of {f), and (g), is the usual product of power series.

Remark 3.2.2 Observe that Q7 is a commutative algebra with the constant function 1 as
the identity for both the pointwise and the induced product. This observation should be
compared with the g-bracket arithmetic in [17].

The following proposition gives an alternative definition for the induced product.

Proposition 3.2.3 Forall A € &, one has

Foom = > fl@gp) uy)

aUBUy=A

Proof By definition

T (oo — Buer/ D) ey g)u)

red Ysew W

By Proposition 3.1.3 this equals

(Zf(k) MA) (Z ) uk) (Z () u,\>.

rez? reP re?

The result follows by expanding the products. O

Analogous to the connected g-bracket, we define the connected product. For a set S and
functions f; € Q7 foralls € S, we denote fs = [ [,sfs-

Definition 3.2.4 For fi,...,f, € Q7, define the connected product fi | ...|f, to be the
following function &2 — Q:

fil o= Y we)(Ofa. (23)

aell(n) Aca
For example, for £ g i1 € Q7 one has

flg =fg—-f0Og
flglh =fgh—fOgh—gOMm—hOfg+2fOgOh

The induced and connected product allow us to establish many identities before taking
the g-bracket, as follows from the following result.

Proposition 3.2.5 Forallfy,...,f, € Q7 one has

* (fl ®f2®"'®fn>q = (fl)q(fZ)q"‘(fn)q;
* (f1| |fn)q = (fl@"'@fn)tp

Proof Both statements follow directly from the definitions. For the first, note that for
all £ g € Q7 one has

(f®g>q = (f)ﬂ@)g'ulzqi = (f)ﬂui:q"(g)ﬂui:qi = (f>q<g>q’
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so that the statement follows inductively. The second follows from the first, as

Al Afdg = Y we) ][ty = (Ao &fi. o

aell(n) Aca

Remark 3.2.6 Let R be the space of functions having a quasimodular form as g-bracket,
ie,R= (- );I(Z\N/I ). Then, R is a graded algebra with multiplication given by the induced
product. Namely, if f € R and {f), € My, we define the weight of f to be equal to k. Note
that if f g € R and {f)4 and (g),4 are quasimodular forms of weight k and /, respectively,
then {f © g)q = (f)4(g)q is a quasimodular form of weight k + /.

When establishing identities on the level of functions on partitions (before taking the
g-bracket), it turns out to be very useful to express the connected product of pointwise
products of elements of Q7 in terms of connected and induced products. This can be
done recursively using the following result.

Proposition 3.2.7 Forallfi,...f, € Q7 one has

fl\B1fal - = fill 1
+ Y Al fal ) OBl S5 (24)

AUB={3,...,n}
where A1, Ay, . . . enumerate the elements of A (and similarly for B).

Proof Observe that both sides of the equation in the statement are a linear combination
of terms of the form @Cey fc over y € T1(n). We determine the coefficient of such a term
on both sides of the equation.

First of all, assume y issuch that {1, 2} C C for some C € y. Then, on the right-hand side
such a term only occursin fi | ... | f, with coefficient w(y, 1). Moreover, let 7 € I1(n —1)
be given by y N {2, ..., n} subject to replacing i by i — 1 foralli = 2, ..., n. Note that the
coefficient on the left-hand side equals u(y, 1). As £(7) = £(y), the coefficients on both
sides agree.

Next, assume Cy, C € y with 1 € C; and 2 € Cy . Then, the coefficient of @Ceyfc on
right-hand side of (24) equals

M(V’ 1) + Z /‘L(VlA» I)H(V|B: 1), (25)

where the sum is overall/ C {2,3,...,£(y)} and A and B are given by A = C1 U | J;; C;
and B = C U | ;e C;. Letting i be the number of elements of /, we find that (25) equals

Uy)—2

D+ ) <Z(y)i_2) (=D (DT ey - i - 2!
i=0
£y)-2
=uy, D+ > (Ey)—21(-1)""2

i=0

=u(y, 1) —uly, 1) =0.

Correspondingly, the coefficient of @Cey fc on the left-hand side of (24) vanishes if there
are C;,Cy e ywithl € Ciand2 € C,. O
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3.3 Quasimodularity of pointwise products of moment functions

Not only do the moment functions S admit quasimodular g-brackets, but also the homo-
geneous polynomials in the moment functions admit quasimodular g-brackets; here, each
moment function Sy has weight k in accordance with the fact that (Sy ), has weight k. Given
a tuple k = (ky, ..., k,) of even integers, we write S = Sk, - - - S,. Note that, as a vector
space, S is spanned by these functions Si. We provide two approaches to proving the
quasimodularity of the g-brackets of the Si. First, we give a direct proof of the statement
in Theorem 3.3.1, after which, in accordance with our main principle of establishing all
identities before taking the g-bracket, we prove a more general result which will be used
frequently in the next section.

Theorem 3.3.1 The algebra S is a quasimodular algebra. More precisely, for k € (2N)"
one has

(Sk)q = Z HDZ(A)AG\M—M(A)H' (26)
aell(n) Aca

Proof Observe that it suffices to show that

<®keksk> = D" G-2ut2 (27)
- q

as (26) follows from (27) by Mobius inversion. Recall that (f] ® - - - ® f;)4 is the coefficient
of x1 - - - x,, in log(exp(3_j_ xifi))4 (see Definition 2.4.1(ii)). Consider S,?(A) =y )Lf_l
for all positive even k. Euler’s formula for the generating series of partitions

> q% = TJa—gm
m=1

reZ?
follows from writing |A| = Zmzl mry,(X) and summing over all possible values of

r1(A), r2(X), etc. By the same idea, we find

]

Z exp (Zk S,?(A)xk> g™ = 1_[ (1 — exp (Zk mk_lxk) qm)_l‘ (28)

rez m=1

The logarithm of this expression equals

o qmr
mgzzl exp (r Zk mk_lxk) — (29)

Now, assume all parts of k are distinct. In the expansion of (29) the coefficient of x - - - &y,

equals

e¢]

Z mlk\fnrnflqmr — DnilG\k|—2n+2'

m,r=1

Hence,

<®kek 52> = D" Gij-ani2
- q
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By introducing distinct variables in Eq. (28) for each repeated part of k, we obtain the
same result if not all parts of k are distinct.

Note that if # > 2, by Lemma 2.4.2 both sides of the equation do not change if one
replaces S,? by S. In case n = 1 we have established (27) in Proposition 3.1.1 or in
Proposition 3.1.2. Hence, (27) holds and (26) is then implied by Mébius inversion. O

Denoting
2 k=0
nie) = (T 1=
5 k=0

and setting So(1) = 1, one has the following expression for the generating series of the g-
bracket of the generators of S:

Corollary 3.3.2

Peven ;2
D Sk Skdapr (@) Pk @) = ) HD'AH%,
ki,...ky,>0 acll(n) Aca

where za = ) o4 2a and

1
P"t;21, ..., 2y) = o Z P(t,s121 + ...+ Suzn)
se{—-11}"

is the totally even part of the propagator in (7).

3.4 Intermezzo: surjectivity of the g-bracket
We deduce from Theorem 3.3.1 the surjectivity of the g-bracket: Every quasimodular
form is the g-bracket of some f € S.

Theorem 3.4.1 The g-bracket (-)4:S — M is surjective.

Note that this is not obvious since the g-bracket is not an algebra homomorphism.
Denote by 0 : My — My, the Serre derivative, given by ¥, = D + 2kG,. Extend this
notation by letting ¥, : M — M forx € Qbe given by ¥, = D + 2xGa.

Proposition 3.4.2 Let x € Q\2Z>o. Then

~

p
M = P oMy,
r=0

Proof Let f € M with f # 0. Observe that ¥,f is modular precisely if k = x. By our
assumption on x, this is not the case. Hence, ¥, increases the depth strictly by one. The
result follows by induction on p by the same argument as in [22, Proposition 20]. Namely,
ifp € MZ?, then the last coefficient ¢p in the quasimodular transformation (5) is a modular
form of weight k — 2p. Hence, ¢ is a linear combination of 9% ¢p and a quasimodular form
of depth strictly smaller than p. O

Proof of Theorem 3.4.1 First observe that (D + G2){f); = (Saf)q. As D + Ga is not a
Serre derivative, by Proposition 3.4.2 it follows that it suffices to show that the g-bracket is
surjective on modular forms. Every modular form can be written as a polynomial of degree
at most 2 in Eisenstein series, see [19, Section 5]. Hence, we show that the g-bracket is
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surjective on polynomials of degree at most 2 in all Eisenstein series, possibly involving
the quasimodular Eisenstein series G;.

Eisenstein series are in the image of the g-bracket by Theorem 3.3.1. Note that DG can
be written a polynomial of degree 2 in Eisenstein series, explicitly:

k+3 k
DGy = ———Gpyo — E Git1Grr1—j-
k 2(k+1) k+2 I k() }+1 k+1]
<]<

j=1(2)

Also, we have an explicit formula for the g-bracket of S;S;:
(SkS1)g = GrG + DGy (30)

so that this g-bracket is expressible as a polynomial of degree at most 2 in the Eisenstein
series.

Now fix an integer m > 4. We consider the Egs. (30) for all k +/ = m. It suffices to show
that we can invert these equations, i.e., write G;G; as a linear combination of g-brackets
of products of at most two S;. A direct computation shows that the determinant of the
matrix corresponding to the equations above equals

-y (m) —1-2"3 <

O<j<m J
j=1(2)
Hence, the g-bracket is surjective. ]

Remark 3.4.3 Only the last step of above proof uses the explicit formula (30) for the
derivative of Eisenstein series. The author expects one could conclude the proof by an
abstract argument, but he is not aware of such an argument.

3.5 The connected product of moment functions
In the second approach we compute the connected product Sg, | ... | Sg,, which by Propo-
sition 3.2.5 yields the left-hand side of (26) after taking the g-bracket. The result is formu-
lated in Theorem 3.5.4 and depends on two technical lemma’s which we state first.

In order to do so, we start by introducing the following notation. For a partition A and
a subset A of N, we write 1|4 for the partition where a part of size m occurs r,, (1) times
if m € A and does not occur if m ¢ A. For example, (5,4, 3,3, 1, 1, 1)|j41y = (4, 1, 1, 1).

Definition 3.5.1 Wesayf : & — Qissupported on Aiff (L) = f(A|a) for all partitions A.

The first lemma expresses the induced product of two functions F and G supported on
disjoint sets as the pointwise product of these functions, and of two functions F and G
supported on the same singleton set as a convolution product of functions.

Lemma 3.5.2 Suppose X and Y are subsets of Nand F,F', G, G' : & — Q are supported
on X, X, Y and Y, respectively. Then

(i) F QO F issupported on X;
(if) If X and Y are disjoint, then

FGOFG = (FOF) GO G), in particular  F O G = FG;
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(iii) IfX =Y = {m}, then
(FOGM) = a(f xg)(rm())
where f and g are such that F(\) = f (r,(X)), G(A) = g(r(1)).

Proof By Proposition 3.2.3, we have
FOF)M) = > (DY F@F(P)
aUBUy =1
where it is understood that y is a strict partition. We have that
> 0V FF@E)( Y D)
aUBUy=A|x aUBUy =A|xc

(FOF)x) - 10 Dlxe).

(FOF)()

Recall f ©® 1 = f for all functions f, hence (F ® F')(1) = (F © F’)(A|x), which is the first
statement.
Next, we have that

FGOFG)(H) = Y (D (FG)) (F'G)PB),
aUBUy=A

where again it is understood that y is a strict partition. Using the fact that F, F/, G and G’
are supported on X, X, Y and Y, respectively, we obtain

(FGOFG0) = Y (~)URHEMHYID F|y) Glaly) F'(Blx) G'(Bly),
aUBUy =1
(31)

where Z denotes the complement of X U Y in N. We factor the right-hand side of (31) as
> (D" F@) F’(ﬂ))( > )G G’(ﬂ))( 3 (—1)“”),
aUpUy=A|x aUBUy=ily aUBUy =1y

By definition of the product ©, we conclude
(FG O F'G)(3)=(F © F)(Ax) (G © G")(Aly) (1 0 1)(Alz)=(F © F')(») (G © G)(%).

By taking F’ and G to be the constant function 1 (which is supported on every X and Y),
we see that F © G’ = FG' is implied by FG © F/'G' = (F © F')(G © G).
Next, for iii we have

FoeW =Y DVfEua)grnP)

aUBUy =1

= > DO Em@) grm(B)

aUBUy=A|im)

Letting i = ry,(«) and j = r,,(B), we have

FoG)W = Y. fOgH- Y. [fig))

i+j=rm() i+j4+1=rm(1)
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(f *@)(rm(A) — (f xg)(rm(%) — 1)
A(f *g)(rm (1)) m

The second lemma is concerned with the vanishing of certain sums of the Mobius
functions of set partitions. Given « € I1(n) and a subset Z of [n], we let

alz={ANZ|Acast. ANZ £ @) € I(2),
where I1(Z) denotes the set of all partitions of the set Z. Observe that
la) = lalz)+{Aea |ANZ =0},

in particular £(¢|z) < €(@). Given Z C [u], define an equivalence relation on I1(#x) by
writing o ~ B if

alz =Blz and «alzc = Bz (32)

Lemma 3.5.3 Let Z C [n]. If Z # W and Z # [n), then for all B € T1(n) we have

Z ula, 1) =0.

a~p

Proof Observe that @ ~ § precisely if forall A € « wehave ANZ =0WorANZ € Blz)
and similarly we have (A N Z¢ = P or A N Z¢ € B|zc). Hence, every A € « is the union
of some Ay € a|z U {#} and Ay € «a|zc U {#} with not both A; = ¢ and Ay = 0.
Write a = £(B|z), b = €(B]z¢), and assume without loss of generality that a < b. Write k
for the number of A € « for which both A} # ¢ and Ay # (. Now, £(a) = a+ b — k.
Moreover, given k, Z and B, there are

a\ (b
k!
()
ways to choose o ~ B with £(«) = a + b — k. Hence, we find

a

b
1) = Y () N a+ b —k— 1) <Z) <k>k!

a~p k=0

—a)k(—b)k
— b+ (1)

_ o (
_ (_1\atb-1 _
= (-1) (a+b 1)!];:0 —a

where (d); = f;ol (d + i) is the rising Pochhammer symbol. This expression equals up
to the constant (—1)*t?~1(a + b — 1)! the special value F(—a, —b, —a — b + 1;1) of the
hypergeometric function o F;(—a, —b, —a — b + 1;z), which vanishes by Gauss’s theorem
subjecttoa, b > 0. As Z # ), we have a > 0. Also, b > 0 as Z # [n]. O

The following result not only computes the connected product of the moment func-
tions Sk, but also is one of the main technical results needed to prove Theorem 1.1.

Theorem 3.5.4 Let ki, f; fori = 1, ..., n be such that (18) defines Sy, s. Then,

(i) There exists a function g : N — Q such that

Sifi | - Skufy = Sikie

Page 19 of 42
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In fact,

g= ) we)d@lxy,

aell(n) Aea

where f4 = [],c4fa and 3K denotes the convolution product (11).
(i) Iffi(x) = x, then 9g = f1 g with g given by Sip, | - - - | Sk,.f,, = Sik).g-

Remark 3.5.5 We extend g by g(0) = 0. Here and later in this work, we usually omit the
dependence of g on fi, . . ., f;; in the notation.

ka.
Proof For the first part, we let m*4 f4 or,, denote [ | ;m iA’ -fa; ©Tm;, where 1y, is considered
as a function & — Q. In case n = 1 the result (i) is trivially true, so we assume n > 2. By
definition of the connected product and Sy (see (23) and (18) respectively), we have

Skofil <o 1Sk, = Z u(a,l)@( Z mkifﬁorm>

aell(n) Aca  peNUA)
- Y T we Ot @
meN" ¢ell(n) Aea

For all m > 0, the function r,, : & — Q is supported on {m}. Having Lemma 3.5.2
in mind, we aim to factor the functions in (33) as a product of functions supported on
a singleton set. Given m € N”, we start by all functions supported on {1}, that is, we
let Z(m) = {i | m; = m1} C [n]. Note that Z(m) determines all i for which the support
of rp,; contains m11. Denote by E(m) the set of equivalence classes of Il(#) for this choice
of Z = Z(m). We split the sum over « € I1(n) in (33) as a sum over the elements of E(m),

ie.,

Skl Sty = D D > e ) () matafy o, (34)

meN" [B]eE(m) ae[p] Aca

Then, given m € N*, Z = Z(m) and A € «|z, the function 1 +— mkij&(rﬂ(k)) is
supported on {m}, whereas for A € «|zc the function A — mk—"fﬁ (rmy (1)) is supported
on N\{m1}. Hence, by Lemma 3.5.2(ii) we find that (34) equals

DY D e 1)( ©) m“@or,m)( O mkf\@o%). (35)

meN" [BleE(m) ae[B] Aealz Aealze

Instead of writing the second factor as a product of functions which are all supported on
a singleton set, we make the following observation.

As a|z = Blz and «|zc = B]z¢, the only dependence on « in the above equation is
in pu(e, 1). By construction Z(m) is non-empty. Hence, by Lemma 3.5.3 we have that
if Z # [n] then for all 8 € E(m) we have Zae[ﬂ] (e, 1) = 0. This implies that we can
restrict the first sum in (35) to m € N” for which m; = m; for all i, j, that is,

Skl - Skpy = > > e VO[] faorm.

meN aell(n) Aeca acA

Applying Lemma 3.5.2iii £(«) — 1 times and using (12), we obtain the desired result.
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For the second part, let Z = {1} and consider an equivalence class [S] for the equivalence
relation (32) determined by Z. We split the sum

ag = Y e, 1) Xk fy

aell(n) Aea

over all conjugacy classes. Write A; for the element of « for which 1 € A;. Denote A; =
Ai\{1} and y = Bl ,n}. In case A; = {1} one has by (15) that

e, 1) 359 sk f1 = —L(y)uly, 1) 9° 711 - 9) k fa. (36)
Aea Aey

In case A1 # {1} (i.e., |[A1] = 2), one finds by (13) that

w0 Sk fu = ply, DOV TNR AL, + A -0)f)x K fa (37)

Aca Aey\A

As [B] contains one element for which (36) holds and £(y) elements for which (37) holds,

one finds
> e, 3N Kk fa = ply, 1) 901 Z(fl ofcx 3k fA)-
aclp] Aca Cey Aeric

By (12) and (14), this equals

n DY (Aofex 3k o) = (DAY K fa.

Cey Aey\C Aey
Hence, summing over all conjugacy classes, we obtain

0g=fi Yy wpDIV kM =fiog

yell(n—1) Aey

The case when fi(x) = ... = f,(x) = «x is the easiest example (for arbitrary n € N) of the
above result. In this case one generalizes Theorem 3.3.1 by a result which, in accordance
with our main principle of establishing identities before the g-bracket, yields this theorem
after taking the g-bracket.

Corollary 3.5.6 For all positive even ki, . . ., ky, one has
Sk |- 1Sk, = Sikj=n7,, -

Proof Recall Sg = Sk_1q and apply Theorem 3.5.4(ii) n — 1 times. o

Later we will use Theorem 3.3.1 when the f; are Faulhaber polynomials. This is the
situation in which we prove the main result of this paper, in which case the following

lemma is useful.

Lemma 3.5.7 Iffi,...,f, are Faulhaber polynomials of degrees d;, . . ., d,, respectively,
and g : N — Q is as in Theorem 3.5.4, then there exists a polynomial p such that dg(m) =
p(m) for all m € N. Moreover, p is strictly of degree |d| — 1, is even or odd and p(0) = 0.
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Proof By Theorem 3.5.4(ii) we can assume w.Lo.g. that none of the degrees d; equals 1.
Now, consider a monomial §¢© k. coJa in 0g. Note that both * and 9 are operators on
the space of polynomials, more precisely:

*: Qx]<x x Qx]l<; = Qlxl<kii41 and 9 : Qx]l<x — Qx]<x—1

as
xk *xl — ka+l+1 + O(xk+l) and a(xk) — kxkfl + O(xk72)
(k+1+1) ‘

Hence, the degree of such a monomial is |d| — 1. Now observe that by the symmetry (16)
one has

o) = falx) —falx —1) = fale) — (=1)"fa(—x).

Therefore, we see that dfy is even or odd and as the convolution product preserves this
property, every monomial is even or odd. By the same arguments df4 (0) = 0 and hence the
constant term of every monomial vanishes. Therefore, every monomial 3¢ ~1 b
in g satisfies the desired properties, so that it remains to show that the leading coefficient
does not vanish.

As F; = %xl + O(x/1), the leading coefficient of a monomial as above equals

|d| H;’:l dA,'!
l_[i di |d|' ’

where for a set B we have set dg = ), _p d). Hence, the leading coefficient of dg equals

\d| 3 ( \d| )1
_ /,L(Ol, 1) - ) (38)
Hidi well(n) dAv---:dA,
where @ = {A}, ..., A,}. Note that this number has the following combinatorial interpre-

tation. Let # balls be given which are colored such that d; balls are colored in the first
color, d in the second color, etc. Suppose we use the same multiset of colors to addition-
ally mark each ball with a dot (possibly of the same color), that is, d; balls are marked
with a dot of the first color, dy with a dot of the second color, etc. Given a subset C of the
set of all colors, it may happen that if we consider all balls colored by the colors of C, all
the dots on these balls are colored by the same set of colors C. We then say that the balls
are well-colored with respect to C. For example, both the empty set of colors and the set
of all possible colors give rise to a well-coloring of balls. If we independently at random
color and mark the balls as above, the probability that the balls colored by a subset C are

-1
well-colored is (liicl) . Hence, by applying M&bius inversion the number
T
Z ula, 1) ( 4 J
aell(n) Ao A,

equals the probability that if we independently at random color and mark the balls as
above, there does not exist a proper non-empty subset C of the colors such that the
balls colored by C are well-colored. If we mark at least one ball of every color i with
color i + 1 (modulo #), such a set C cannot exist. Hence, the number (38) is positive, so
the polynomial p is strictly of degree |d| — 1. ]
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4 Three quasimodular algebras

4.1 Introduction

Given integers k [ with k > 0 and / > 1 recall the definition of the double moment
functions in (4) by

B oo
TuiG) = =557 50+ dko) + 3 m“ Filrn(),

m=1

Unless stated explicitly, we always assume that
keZx=oleZ=1,k+1e2Z (39)

Moreover, it turns out to be useful to define Tpg = T_1,; = —1 and Ty; = O for other
pairs (k [) withk < Oor!l < 1.

Remark 4.1.1 The double moment functions specialize to the moment functions studied
in the previous section whenever [ = 1, i.e.,, Tx; = Sg+1. Also, as F;(1) = 1, for a strict
partition A one has Ty ;(A) = Sx(1). Hence, our functions Ty ; can be seen as an extension
of the algebra of supersymmetric polynomials, mentioned in the introduction, to functions
on all partitions (and not only on strict partitions).

Remark 4.1.2 In case k + [ is odd, the g-bracket of Ty; does not vanish—in contrast to
the shifted symmetric functions for which the g-bracket vanishes for all odd weights.
However, the g-bracket of a polynomial involving the double moment functions in both
even and odd weights also is a polynomial in the so-called combinatorial Eisenstein series,
defined in Definition 7.2.4.

These double moment functions give rise to three different graded algebras, which turn
out to be quasimodular (see page 1).

Definition 4.1.3 Define the Q-algebras S, Sym©(S) and 7 by the condition that

» S is generated by the moment functions S; under the pointwise product;
+ Sym@®(S) is generated by the elements of S under the induced product;
« 7T is generated by the double moment functions under the pointwise product.

Our main result Theorem 1.1 is slightly refined by the following statement.

Theorem 4.1.4 Let X be any of the algebras S, Sym®(S) and T. Then, X is

o quasimodular;
o closed under the pointwise product;
« closed under the induced product if X # S.

Moreover, the three algebras are related by S C Sym®(S) C 7.

Remark 4.1.5 Observe that being closed under the pointwise product is not implied by
being quasimodular. For example, the algebra R = (- );1(1\7[ ) in Remark 3.2.6 is quasi-
modular, closed under the induced product and 7 C R, but R is not closed under the
pointwise product [23, Section 9].
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In the next section we provide different bases for these algebras: in this way we obtain
many examples of functions with a quasimodular g-bracket, and moreover, the study of
these bases leads to a proof of Theorem 4.1.4.

Remark 4.1.6 The algebras 7 and A* are different algebras, as follows from the observa-
tion that f(1) = (—1)¥f(1') for all f € A%, which follows by writing a shifted symmetric
polynomial as a symmetric polynomial in the Frobenius coordinates. This does not hold
for all f € 7, as can easily be checked numerically. On the other hand, it is not true
that f(A) # £f(\/) forall f € 7, as Qy = T1,1 with Qi defined by Eq. (2). More precisely,

one has

TNA*=Q[Ql

Namely, if f € 7 N A*, consider a strict partition A (i.e., a partition for which r,,(X) < 1
for all m). Then, we have that f(A) is symmetric polynomial in the parts A1, Ag,.... On
the other hand, as f € A*, it follows that f() is a shifted symmetric polynomial in
the parts A1, Ao, . ... The only polynomials of degree d in the variables x; that are both
symmetric and shifted symmetric are up to a constant given by (}_; x,')d, hencef € Q[Q2].

4.2 The basis given by double moment functions

In this section we show that 7 is closed under the induced product. Moreover, we show
that S and SymO (S) are subalgebras of 7. In the next section, we use these results to define
a weight grading on 7. Observe that as a vector space 7 is spanned by the functions Ty ;,
defined by Ty ; = []; Tk, forallk, [ € Z" satistying the conditions (39) for all pairs (k, [) =
(ki, 1;).

Theorem 4.2.1 The algebra T is closed under the induced product.

Proof Observe that
TK:! ® TK/J/ = TKJTK/’I — TKJ | TK/J/ .

Hence, it suffices to show that Ty, | Ty’ can be expressed in terms of elements of 7.
By Theorem 3.5.4 and Lemma 3.5.7, we have that an expression of the form:

Tin | 1 Thoyt,

is an element of 7. Proposition 3.2.7 implies that fifs | 3 | fa | - - . | fu equals

Al + D (Alfa o) (S S |-

AUB={3,...,n}

- (fl |fA1 |fA2 [...) ‘ (fZ |fBl |fBz [ .. ))

Hence, by using this proposition recursively, we can replace the pointwise products in Ty ;
and Ty y by alinear combination of connected products of double moment functions T,
showing that Ty ; | Ty’ ; is an element of 7. |

Now, we determine a basis for the three algebras. Let 7™°" be the set of all monomials
for the pointwise product in 7. Two elements of 7™°" are considered to be the same if
one can reorder the products so that they agree, for example T1,; T35 and T53577,; are the
same function. In other words, every elements of 7™°" can be written as T ; in a unique
way up to commutativity of the (pointwise) product.
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Theorem 4.2.2 We have
S C Sym®(S) C 7. (40)

Moreover, a basis for

o T isgiven by T™°";
o Sym®(S) is given by all Ty, € T™" satisfying k; > I; for all i;
o Sisgiven by all Ty, € T™°" satisfying l; = 1 for all i.

Proof 1t suffices to prove the second part, as from the stated bases statement (40) follows
immediately.
By definition the elements of 7™°" generate 7 as a vector space. Hence, it suffices to

show that they are linearly independent, i.e., that if

Zco, To(r) = 0 (41)

ael

forallA € &2, where is the set of all pairs (k, [) up to simultaneous reorderingand ¢, € Q,
we have that ¢, = O for all «.
First of all, let A = (N1, N2) and consider (41) as N1 — 00. Note that Ty ;(1) grows as

‘Kl kmin Vi\kmin |
N+ Ny;™ Ny

plus lower-order terms, where ki, is the smallest of the k; in k. Hence, |k| should be
constant among all 7, in (41). Moreover, we conclude that kpin should be constant among
all Ty in (41). Continuing by considering the lower-order terms, we conclude that k is
constant among all T,. Similarly, by instead considering partitions consisting of Nj times
the part 1 and Ny times the part 2, we conclude that [ is constant among all 7. Hence,
there is at most one « with nonzero coefficient c¢,. We conclude that ¢, = 0 forallo € 1.

For Sym®(S) we show, first of all, that indeed Ty ; € Sym®(S)ifk; > /; foralli. Letk > [
of the same parity be given. By Corollary 3.5.6 we find that

Tyl Tl T | Trprr = S2lSal oo 182 [ Sk—iya = Ty
—_—
-1 -1

Therefore, Ty; € Sym®(S) for all k > I. Moreover, by applying Mébius inversion on
Eq. (23), which defines the connected product, we find

Ty = Z O(TkAl,lAl | Thayota, |-+ ) (42)

aell(n) Aca

As we already showed that Tj; € Sym®(S) if k > [, we find Tj; € Sym®(S) if k; > [; for
all 4.

Next, we show that all elements in Sym®(S) are a linear combination of the Ty ; satis-
fying k; > ;. As S clearly is contained in the space generated by the Ty ; for which k; > [;,
it suffices to show that the latter space is closed under ©. For this we follow the proof of
Theorem 4.2.1 observing that in each step k; > /;, so that indeed the T} ; for which k; > /;
form a generating set for Sym®(S).

As we already showed that the Ty ; are linearly independent, we conclude that the Ty ; €
T ™mon satisfying k; > [; for all i form a basis for Sym®(S).
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The last part of the statement follows directly, as by definition all T ; € 7™ satisfy-
ing /; = 1 for all i generate S, and by the above they are linearly independent. ]

4.3 The basis defining the weight grading

By definition, the double moment functions generate 7 under the pointwise product. In
this section we show that we can replace the pointwise product in the latter statement
by the induced product. Again we will consider every reordering of the factors in Ty, ; ©
-+ O Ty, 1, due to commutativity of the products to be the same element. Then, we have:

Theorem 4.3.1 The elements Ty ; © --- © Ty, form a basis for T. A basis for the
subspace Sym®(S) is given by the subset of elements for which k; > 1; for all i.

Proof Assign to Ty weight k + /. This defines a weight filtering on 7 with respect to
the pointwise product. Consider the subspace of elements of weight at most w in 7. The
number of basis elements in the basis given by the pointwise product in the previous
section equals the number of induced products of the Tj;. Hence, it suffice that the
induced products of the Ty ; generate 7. For this we proceed by induction first on the
weight and then on the depth. Here, by depth we mean the unique filtering under the
pointwise product for which every Ty has depth 1, usually called the total depth.

Trivially, every element of weight 0 or depth 0 is generated by (empty) induced products
of the Ty ;. Next, consider Ty; € 7 and assume all elements of lower weight and of the
same weight and lower depth are generated by induced product of the Ty ;. Let Ty ; € T
of weight w be given and write k', /' for k, [ after omitting the last (nth) entry. Then

T = Ty © Ty, — Tiy | T, -

Note that T}y is of weight strictly less than w, hence is generated by induced products
of the Ty;. l(/lz)reover, by Proposition 3.2.7 and Theorem 3.5.4 it follows that the depth
of Ty y| Tk, is at most n — 1. Hence, by our induction hypothesis, it is generated by
induced products of the Ty ;. We conclude that Ty is generated by induced products of
the Ty, which proves the first part of the theorem.

The second part follows by the same proof, everywhere restricting to those Tj; for
which k > 1. O

By the above theorem, we can define a weight grading on 7.

Definition 4.3.2 Define a weight grading on 7 by assigning to Tj; weight k + [ and
extending under the induced product.

Note that both the grading on 7 and the grading on S correspond to the grading on
quasimodular forms after taking the g-bracket. Hence, the grading on S is the restriction
of the grading on 7.

The weight grading defines a weight operator. In Sect. 5 we extend this weight operator
to an sl -triple acting on 7, so that 7 becomes an sl;-algebra.
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4.4 The n-point functions
As induced products of the Ty, form a basis for 7, knowing (f), forallf € 7 is equivalent
to knowing the following generating function, called the n-point function

ulil e u’ng"vil_l e Vf;’_l

Tgre eyl — 1)+ (I, — 1)

F,(ut, ... upvi,...vy) = Z(Tkl’ll [OEEEXO) Tkmln)
ki

for all n > 0. Here the sum is over all k;, /; such that k; + /; is even and m! is consider to
be 1 for m < 0. As the g-bracket is a homomorphism with respect to the induced product,
we directly conclude that

Fuwy) = [ [Fa(wsv). (43)
i=1

We also define the partition function by

o0
1
o) = E ;E (Thpy, © - O T, qtka,ly * oyl -
"kl

n=0
The following result (together with (43)) expresses these functions in terms of the Jacobi

theta series (see (8)).

Theorem 4.4.1 For all n > 0 one has

. 1 0/(0)9(14“‘ V) o 0.0 8 8 k1
Fi(w,v) = —EW; o) = exp([x ¥ 1F1 (a; 8_y> %:tk,lx y ))

where [x°y°] denotes taking the constant coefficient.

Proof We have that

n

1 1 -1 k ukyi=1
Fi(w,v) = H(_Z ~ 5 + (ZD Gi—142 + ZD Gl—k)m )

i=1 k1l ki

where in the sum it is understood that k+/is even, k > 0,/ > 1. The expression for F} (i, v)
in the statement now follows from [20, $&3]. The expression for ® follows immediately
from this result. O

5 Differential operators
5.1 The derivative of a function on partitions
Note that for all f € Q7 one has

D{f)q = (Saf Vg — (S2)¢{f)q- (44)

Hence, by letting Df := S, |f = Sof — S» O f for f € Q7, we have that D{f)q = (Df)q.
Moreover, D acts as a derivation:

Proposition 5.1.1 The map D : Q7 — Q7 is an equivariant derivation, i.e,, D is linear,
satisfies the Leibniz rule and

D(f)q = <Df>q

Page 27 of 42
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In fact, for all k > 1, the mapping f + S | f is a derivation. Recall the definition of the
Mobius function p defined in Proposition 3.1.3 and denote S? = S; — S(9).

Lemma 5.1.2 For all even m > 2 one has

(i) SpO =Sy 7
(i) The mapping (Q7, ) — (Q7, ®).f +> Sy |f is a derivation, uniquely determined
onT by

Sl Tt = Thgm—1,141-

Remark 5.1.3 In case m > 4, the derivation f +— S, |f does not correspond to a

derivation on M, i.e., a derivation 9, such that d,, fg = (Smlf)q forall f € T. For
instance, although the g-brackets of T, ,, and Ty,_1,,,+1 are the same, the g-brackets
of S | Trym = Tom—1,m+1 and Sy; | Trn—1,m+1 = Tom—2,m+2 are different.

Proof First of all, by Proposition 3.1.4, one has

( Z uk)(S,(g Ou)y = ( Z mk_lu:n)( Z (i) ul). (45)
mr>1

rez re?

Let .#, be the set of strict partitions not containing m as a part. Then, we can rewrite (45)

as
o2 T ) uin = = S0 () s,
m AE€ES rez?
since u(A U (m)) = —u(X) for A € .7, so that for r > 2 the coefficient of u},u; cancels in

pairs. We conclude that S,? Ou= —S,? nw.
For the second part, note that (i) implies that

SkOpn = —(Sk-f-B;(—k),Uﬁ

Let £ g € Q7 be given. Then

SklfOg) = Sk(fOg) —SkOf0g

Ifa UBUy = A then Sp(A) = Sg(e) + Sk(B) + Sk(y) + Z£, hence

B
S FOQR) = D (Skle) +Su(B) +Sir) + T )@ eB) uly)
aUBUy =1

= SN +O + Y (S0)+ ) @eB )
aUBUy =1

= SNOL+OGD — Y. (ScOmWf(@g(®)
aUBUy =1

= (SKf)0g+fO(Skg) — SkOf Og

Therefore,

Sklfog) = Sif)Og+fOSkg) =25 0f0g = (Sklf)Og+f O(Sk12)

i.e., the mapping f +— Si |f is a derivation. The formula S, | Ty = Ty ym—1,1+1 follows
directly from Theorem 3.5.4. ]
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Proof of Proposition 5.1.1 As Sy |f = Saof — So O f is derivation by the above lemma, the
results follows directly from (44). O

5.2 The equivariant g-bracket
In this section we extend the action by the sl-triple (D, 9, W) on quasimodular forms
to 7. As the derivation ? does not act on all power series in g, but only on quasimodular
forms, we cannot hope to define ? on all functions on partitions as we did with D. On the
algebra 7, however, this is possible. We define an sly-action on this space and we show
that the g-bracket restricted to 7 is an equivariant map of sly-algebras.

Note that the following definition agrees with the definition of D in the previous section:

Definition 5.2.1 Define the derivations D, W, 0 on 7 by

DTy = Tiyri41
W Tk = (k +1)Tk)1,
0Ty = k(I — DT_1-1 — 38412

One immediately checks that D, W and 0 satisfy the commutation relation of an sl,-
triple on 7. The corresponding acting of slp on 7 makes the g-bracket equivariant, so
that a refined version of Theorem 1.2 is:

Theorem 5.2.2 (The sly-equivariant symmetric Bloch—Okounkov theorem) The alge-
bra T is an sly-algebra with respect to the above action of sly on T. Moreover, the q-bracket
becomes an equivariant map of sly-algebras, i.e., for f € T one has

Dif)g = (Df)g W{flg=(Wflgp 0{f)g= (g

Proof We already observed that the first of the three equality holds and the second is the
homogeneity statement. Hence, it suffices to prove the last statement. Using (9) we find
that fora > 0,5 > 2 one has

AD*Gp) = ala+b—1)D* Gy — 38,4p-2.
Hence,
UTgi)g = k(= I(Tr—1,0-1)qg — Sky1—2 = (0 Txi)q

and the last statement follows from the Leibniz rule. O

5.3 Rankin-Cohen brackets

The sly-action allows us to define Rankin—Cohen brackets on 7 .

Definition 5.3.1 For two elements f, g € 7 and # > 0 the nth Rankin—Cohen bracket is
given by

gel = X (I oy o (a6)

S r
1,5>0
r+s=n
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Note that the formula (46) would have defined the Rankin—Cohen brackets on MifD
acts by q% and the induced product is replaced by the usual product, whereas in this
line D acts on 7 as explained in the previous sections.

Iff, g € ker?, then {f), and (g), are modular forms. The Rankin—Cohen bracket of two
modular forms is a modular form; analogously, we have:

Proposition 5.3.2 Iff, g € kerd, then [f, g],, € kerd.

Proof Using (9), we find that

(k+n—1) (+n-—1)

ot gl = -1y D f oD
&l ”Z:O( STk s S OP¢
ris=n
(k+n—1) (l+n—1) 1
-1 r DV DS a
N R 7 e s e A R
where ﬁ should taken to be 0. This is a telescoping sum, vanishing identically. O

Remark 5.3.3 The above bracket makes the algebra 7 into a Rankin—Cohen algebra,
meaning the following. Let A, = @;>0Ax be a graded K-vector space with A9 = K
anddim Ay < oo (forus A = 7). We say A is a Rankin—Cohen algebra if there are bilinear
operations [, ], : Ax ® A; = Ag1140, (k |, n > 0) which satisfy all the algebraic identities
satisfied by the Rankin—Cohen brackets on M [21].

5.4 Arestricted sly-action
Theorem 5.2.2 does not make S into an sly-algebra. Namely, D does not preserve S.
However, if we allow ourselves to deform the sly-triple (D, 9, W) as in [18], we can define
an sly-action on S. This action, however, does not make S into an sly-algebra, as the
deformed operators are not derivations.

The operator taking the role of d is the operator s : Sy — Si_; defined by
32 10

1
= N k4 DSy — 2%
s =32 S s T 298

k1>0

The operator D is replaced by multiplication with S,.
Lemma 5.4.1 The triple (So, 5, W — %) forms an sly-triple of operators acting on S.

Proof Observe that

9
Sk

o S20f = Yok DSk ge—f = 3f = (W= 3)f
k +

As s and S; decrease, respectively, increasing the weight by 2, the claim follows. ]

Theorem 5.4.2 The gq-bracket (-); : S — M is an equivariant mapping with respect
to the sly-triple (So, 5, W — %) on S and the sly-triple (D + Gy, 0, W — %) on M, ie, for
allf € S one has

D+ G){f)g = (S2f ) (W =D{f)g = (E=Df)gy )g = (&f)g.  (47)
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Proof The first of the three equalities in (47) follows from the definition of the g-bracket;
the second is the homogeneity statement of Theorem 5.2.2. Hence, it remains to prove
the last equation 0(f), = (sf)q4.

Given k € N, let k' € N"~! be given by k' := (ky, ..., ki_1, ki1, . . ., k,) omitting ;.
Similarly, define k" e N2 by omitting k; and k;. Then

1
Sk = Z(k, + k] - 2)Ski+k/_25ki,j - E SE‘ .
i#j i k=2
By Theorem 3.3.1, one finds
<5ki+k,—25g,/> = D DG aunga [ [ DY Glrg2ear o
1 BeT(n) B#I
AIep: ijicl

Forl € Band[ e N/, let

CuLD = Y (i+h—2) = (ed) -1\l - £()).

ijeLi#f
It follows that Zi#j(k,' + ki —2) <Ski+l<,—25 ki,j> equals
=g

Y > 2CE DGy sy [ [ PP Gl -aemy 42
Bell(n) Iep B#I

On the other hand, observe that if f is of weight |{| — 2¢(I) + 2, Eq. (9) yields
[0) Dl(l)fllf — C([, DD@([)*Zf:

Hence, using 0G; = —%Sk,z, we obtain

_ _ 1
[, DD NG —aunr2 = CBk)ID D 72G o042 — 55&,(2)-

Therefore,

WUSklg = Y. D CUkID DGy ayia [ [ PP Glrg—2e8)42
Bell(n) Iep B#I

_% Y. 2 TP 'Gpuzemies

irk;=2 BeIl([n]\{i}) Bp
which by the above reasoning is exactly equal to (sSg), . ]
6 Relating the two products

6.1 The structure constants
In Theorem 3.5.4, we deduced that

kafl [ oon ] Tkn,fn = T\kl,g with g(fi,....[fn) = Z u(a, 1)8“"‘)_1 *fA
aell(n) Aeca
In the particular case that fi = ... = f; is the identity function, we saw in Corollary 3.5.6

thatg = F,.Iffi, . . ., f, are Faulhaber polynomials, the function g is not necessarily equal
Faulhaber polynomial on all m € N, but, by Lemma 3.5.7, dg equals some polynomial.
Also, using g is uniquely determined by dg, the function g equals some polynomial. We
expand g as a linear combination of Faulhaber polynomials.
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Definition 6.1.1 Given integers [y, . . ., [,,, we define the structure constants CI.L by

11
gFi, . F) =Y Ci Fig—i-

i=0
Observe that Cf = 0 for odd j, as dg is even or odd. Corollary 3.5.6 is the statement

1 i=0
Ci(l,...,l) _

0 else.
More generally, by Theorem 3.5.4(ii) one has Cil’l = Cf, so that w.l.o.g. we can assume /; >
1. In this section, we give an explicit, but involved, formula for these coefficients in terms of
Bernoulli numbers and binomial coefficients. In order to do so, for /1, [y > 1 and i € Zxo,

we introduce the following numbers:

(=1 (—1)! _
gt . | Gy (=0

=0 (D) + D) =0
which by [2, Proposition A.10] satisfy

h+l—2
Z B{lylz Bll+lz—i _ (_1)1112 Bl1+lz BllBlz
P Lo+l —id hiy

Note that ¢(1 — i) = (-1 ),+1 Bi fori > 1. The following polynomials can be expressed in
terms of these coefficients:

Lemma 6.1.2 Forallly, ly, ..., 1, > 2 one has the following identities:

o0
i) Ft) = Y Bl

i=0

(ii) (0F;, * 0F,)(x) Bhbyh+hi-L,

Il
.Mg

Il
o

(i) 9(Fy -+ Fp)x) = Z Bfi’l---ij’lx‘l‘—lﬂ.
lil=1(2)

Proof The first two equations, of which the former is the well-known expansion of the
Faulhaber polynomials, follow by considering the corresponding generating series. In
order to prove (ii), we let # € N and consider

00 Zil 1 ZéZ*l
Gn) ==Y (0Fy * 0F)(m) ST
h,b=1
— Z e'Mmzt+myzy
mi1+mo=n
e?1 e'"%2

e —1  en 7 —1°

As the generating series of the Bernoulli numbers Z B, ], = z(e* — 1)~! implies that

oo j—1 j—i—1 _;
1 B] 4 %

1
= + —<(-1)——,
e — 1 zZ1 — 22 j=le= j )(j—l—i)!i!
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we find
oo k-1 i k—i—1 oo j— 1 ktj—i—1_; i ki1 .
2122 / iz Z2 Ziz, "
B Pt - + "
! Z<Z Ak ZZ 7Y ( —nut i —i— 1)!)) k!
k=1 " i=0 —1 i=0
[e'SHNe'e) -y le 1 le 1 ‘
= (-1)'B}*? L 2 b=l
hgzlg SRV PRI

Since Bfl’lz vanishes for odd i if [}, Iy > 1, this proves the second equation. The third
equation follows from the first by noting that

8(Fy, -+ Fi)) = (Fiy -+ Fi)0) = (DH(F - F) (=), 0
Using these identities, one obtains.
¢l =B =50 C'2 =B +BY B

These easy expressions for small # are misleading, as 6Cl.ll’lz’l3 equals

1 Z Z —i Z A
Z(SLQ + 3 Bfi,lsg,l _ 811,1811,124—13 i1 + 2 lel,lsz;+2 J1,43
i1,i2=0(2) i1=12),1 J1tja=i
i1+ip=i i+Hj1=i

up to full symmetrization, i.e., summing over all o € S3 with/; replaced by /;;). In general,
given o € I1(n), write « = {Ay, ..., A,} and denote A/ = U’ 14;. Also, for a vector k and
a set Bwe let kg = )",z kp. Then, the above observations allows us to write down the
following formula, which is very amenable to computer calculation:

Proposition 6.1.3 Letly,...,Il,, > 1. Then,

Z 2" (e, 1) Z (l_[ Blk') Z l_[ lAS_/S vlagy —iag, 1
]

aell(n) Lyenin 1w fo(@)—1 S=1
lig|=1(2) li|+|jl=i+r

Here, jo := la, — ia,.

Note that the latter formula is written in an asymmetric way, but (by associativity of the

convolution product) is symmetric in the /;.

6.2 From the pointwise product to the induced product

Suppose an element of 7 is given, written in the basis with respect to the pointwise
product. How do we determine its (possibly mixed) weight and its representation in terms
of the basis with respect to the ® product? A first answer is given by applying Mobius
inversion to Eq. (23), as given by Eq. (42), i.e.,

Tis = Y OTapia, | Trapiny |-+ (48)
aell(n) Aca
However, as every factor Ty apla, | T ol | ... in the above equation is a linear combina-

tion of generators of different weights, it is useful to have a recursive version of this result.
For this, we write % for the derivative of f € T in the former basis (with respect to the

pointwise product) and —— aT for []; BTk n

19
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Proposition 6.2.1 Let kI > 1. There exist differential operators s;; for all i,j € Z such
that s;j = 0ifj < O and forall f € T one has

Titf =Y D Tisitsj @ sij(f).

i>0 j>—I+1
Explicitly,
Sij = Z ta), taj = Z Clbl ]3T
. a, b
|al=i
where a and b are vectors of integers of the same length and with |a| = i, the structure

constants Cll’bk‘_j are as in Proposition 6.1.3 and I, b denotes the vector (I, by, by, . . .).
Proof By linearity, it suffices to prove the statement for monomials Tj; Hence,

assume f = Ty ;. Applying (48), extracting the factor containing Tj; and applying (48)
again, yields

Totf = Y (Tt Tag b, | Trapay ) © Tk idinia

AcC[n]
d
=Y (Tat | Tapoy | Tayy | ) © ———f
ab BT@Q

By Definition 6.1.1 this equals

b 0
Totf = )Y C Tkl @ T,

ab jeL

Replacing j by —j + |b| and writing i = ||, one obtains

Tklf Z Z Tk+l I+j © Z Z C|b|—] BT

i>0 jeZ lal=i b

as desired. O

Corollary 6.2.2 Forallk ! > 1andf € T one has
(Teifdg = DY DGy(Tff)g

a=0 b=2
ab __
where ‘Ik,l = Sq—I+La+b—k—1 + Satb—La—k-

Proof Distinguishing two cases in the previous result yields
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(Teiflg = Y DY 'Gryicijn @sii(f) + Y Y DGy i © si5(f)

j<kti—l i20 j=k—+i—
=YY D*Gyl(satb-k-ta-i+1+ Sa—kato-1))g- o
a=0 b2

7 Related functions on partitions

We apply our results to interesting functions on partitions.

7.1 Hook-length moments

First of all, we focus on the hook-length moments H [5, part III]. These functions form
a bridge between the symmetric algebra studied in this note and the shifted symmetric
functions: The Hy themselves are shifted symmetric as

1 (k—2\,

mo) = 33 (327 ) vamac )
=l

and they are also equal to the Moller transform of the symmetric S, i.e., Hy = M(S¢),

meaning the following. Denote z, = ﬁ with |C,| the size of the conjugacy class corre-

sponding to v. Recall that
o0
zy = 1_[ ) (V)L
m=1

Givenf € Q7 the Méller transform of f at a partition A € H(n) is given by [23, Eqn (45)]
M) =D 2 X WP ),

vn

where the sum v - # is over all partitions of size # and x*(p) denotes the character
of the representation corresponding to the partition A evaluated at the conjugacy class
corresponding to p. Then (M(f)), is a quasimodular form if and only if {f), is a quasi-
modular form (which follows directly by the column orthogonality relations for the sym-
metric group). In the next section, we study the Moller transform of elements of 7, but
first, we explain the Murnaghan—Nakayama rule, used in [5, part III] to show equality
between M (Sy) and (49) and give two other expressions for the hook-length moments.

To start with the latter, the hook-length moments, as their name suggests, are defined as
moments of the hook-lengths, i.e.,

By k—2
He(3) = =2+ gEZYA h(E) 2,
where Y; denotes the Young diagram of a partition A and /4(£) denotes the hook-length of
acell¢ € Y.

Next, the following constructions related to the Young diagram, give rise to the
Murnaghan—Nakayama rule for the characters of the symmetric group. Given parti-
tions A, v with v; < X; for all i, we define the skew Young diagram )\/v by removing
the cells of Y, from Y;. Denote by |1/v| = |A| — |v| the number of cells of this diagram.
We call /v a border strip of X if it is connected (through edges, not only through vertices)
and contains no 2 x 2-block. If y = A/v we write 1\ y for v. The height of a border strip y
is defined to be one less than the number of columns and denoted by ht(y ). Given m € N,
we let a border strip tableau y of type m be a sequence yj, . . ., s such that y; is a border
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" w] m | L1 [ 7

Y2 73 72

Y3 Y1 Y1
Y2

Fig. 1 The Young diagrams corresponding to the border strip tableaux of type (2, 1, 2) within A = (4,2,1, 1)

stripof A\ y1 N -\ yi—1 and |y;| = m;. Write Y), for the skew Young diagram consisting
of all boxes of all the y; and write ht(y) = ht(y1) + ... + ht(ys). Denote by BST(%, m)
and BST(A /v, m) the set of all border strip tableau of type m within A and A /v, respectively
(Fig. 1).

The Murnaghan—Nakayama rule (recursively) expresses the characters of the symmet-
ric groups in terms the heights of border strip tableau. Namely, if o’ C p (both p’ and p
considered as multisets)

o) = D (DM (o — p),
y€BST(A,p0")
where p — p’ denotes the difference of (multi)sets. Of particular interest are the cases p’ =
p and p’ = (p1), yielding a direct or recursive combinatorial formula for x*(p), respec-
tively:
)= D DM and  xMe)= D (DM MV (gm0,
y€BST(A,p) lyl=p1
where the latter sum is over all borders strips y of A of length p;. The skew charac-
ter x*(0’) is defined by (|A/v| = [0'])

)= Y (=)W
y€BST(A/v,p")

so that

)= D xM)x e - 0).
[vi=lp’|
To conclude, we have the following definitions of the hook-length moments:

Definition 7.1.1 The hook-length moments Hy (k > 2 even) are defined by either of the
following equivalent definitions [5, Section 13]:

B
() He0) = =+ ) W)

seY,

By — _
(i) Hp(h) = —ﬁqumgmsm, m)| w2
N Ln (k=2\,
m”ﬂzigﬁ_JFDQ@ﬁ
(iv) Hp = M(Sp).

7.2 Border strip moments
The hook-length moments are Moller transformations of the Sy. In this section we study
the Moller transformation of the algebra 7, which contains the vector space spanned
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by all the Sg. In order to do so, we express elements of 7 in terms of functions Uy for

which the induced product and Moller transformation are easy to compute. However,

these function do not admit the property that the g-bracket is quasimodular if k; + /; is

even for all i: each Uy ; lies in the space generated by all the T} ; (possibly with k; + /; odd).
Let

N(D = {(m1,...,m1,m2,...,l’l’l2,...) | m; = 1}

I 1%
the set of tuples of n := |[| positive integers, where the first /;, the second /y, etc., integers
agree. For k € Z>0, define

- 2 1)

meN(l) a=1
Observe that this product converges since r,(m) = 0 for all but finitely many values of a.
Let U/ be the algebra generated by the Ly ;.
Generalize the hook-length moments in Definition 7.1.1(ii) by the following notion:

Definition 7.2.1 The border strip moments are given by

X () = Z Z Mmk‘

Z,
meN() yeBSTGom)

Let X’ be the vector space spanned by all the X ;. Define a filtration on X’ by assigning
to Xy ; degree |k| + |/].

Remark 7.2.2 Observe that for » = 1 and [ = 1, the sum restricts to a sum over all border
strips y of A and for such a border strip y the factor x? (m)? equals 1 and z,, equals 1.
As the set of hook-lengths is in bijection with the set of all border strip lengths, one has
that —— +Xk1 = Hj41.

Denote by { } the Stirling numbers of the second kind (i.e., the number of elements
in I(n) oflength]).

Proposition 7.2.3 Forall k > 0,1 > 1,k k' € 2% and integer vectors L, L' with |l| =

|I'| = n, one has

W) Tir = — (k+l)(511+5k0)+2{} G — D! Uy

j=1
(i) U © Uy = U gor's

(iil) M(Ug;) = Xiy-

Proof For the first property, we use the known identity
/

R

j=1
As Fi(x) and (f) are the unique polynomials with constant term equal to zero and such

that 8. F;(x) = x/~! and 8( )= (;C 11 ), respectively, we find

- {Jo-n()

J
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which yields property (i).
Next, we show that for all i, j > 0 one has

a(f)"‘(f) - (zi;)

are polynomials of degree at most i + j + 1 taking the value O forx = 0,1,...,i 4+ —1
and the value 1 for x = i + j; hence, they are equal. Therefore,

8@*@ - a(zi/il 1> - (zi;)

By Lemma 3.5.2 property (ii) follows.
Finally, we have that

MU = Z kzz IXA(U)ZH(;" (m))

meN(]) vkn

Observe that given m and v the term

e (1)

vanishes unless r,(v) > r,(m) for all positive a. Let v/ be the partition obtained from v by
removing r,(m) parts of size a from v for all positive a. Denote by #n' = n — |m| the size
of v'. By the Murnaghan—Nakayama rule one has

)= Y xFm) M),
£ BS(um)

One has

71 ra(v) ad 1 1
H (ra(m)) ey ~ 2

Hence, (50) equals

Z Z é(m))(p(l’l’l) Z 2o W) V().

£eBS(A,m) peBS(A,m) vEn'

The orthogonality relation for the symmetric group is the statement
Z 2y X)XV (Y) = Snea-
v'En'

Hence, we obtain the desired result. O

The g-bracket of an element in & is not necessarily a quasimodular form. However, it
always lies in the following space of g-analogues of zeta values, see [11].
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Definition 7.2.4 Let C<, be the Q-vector space consisting of all polynomials in the com-
binatorial Eisenstein series

Gi(r) = —= + Z Z m*~1g™ (k= 1, not necessarily even)

r=1m=1

and their derivatives of weight < ¢, where to D" Gy we assign the weight k + 2r.
Now, Proposition 7.2.3 implies the following result:
Theorem 7.2.5 Forall f € Xy, one has (), € C<.

Proof By Proposition 7.2.3, f equals the Méller transform of some polynomial in the Ty
with respect to the product ©. Here, however, it may happen that k + / is odd. Mutatis
mutandis in either of three approaches in Sect. 3.1, we find that the g-bracket of Ty lies
in Cyy, which proves the result. O

Theorem 7.2.6 For all weights k one has M(T) C X<. More precisely,

M(Ty, © - O T, 1,)
(=D, —1)

= Xy, + elements in X of lower degree. (51)

Proof Observe that Proposition 7.2.3 implies that M(7;) C X<4. Equation (51) follows
from this proposition after noting that the Moller transformation of Tj; — (/ — 1)!Uj; has
degree strictly smaller than k + [. o

Example 7.2.7 The following two equations provide examples of linear combinations of
elements of X’ with a quasimodular g-bracket whenever k + / and k; are even integers.

!
Biyi
M(Ty1) = ) (8k1 + 810 +;{ } G — DX

M(S, O S, ©---0,) = Z(]‘[fk) k(L)
AcC[n] i¢A

See Appendix A for a table of elements in X with quasimodular g-bracket and of small
degree.

Remark 7.2.8 In many examples the X; ; are not shifted symmetric functions or generated
by shifted symmetric functions under the induced product. For example, M(Tp2) #
M(S2) and besides Q2 = M(S2) = S5 there are no other non-trivial functions generated
by A* under the pointwise product. It remains an open question whether the elements
of X' are in some sense related to shifted symmetric functions.

7.3 Moments of other partition invariants

So far we provided many examples of functions on partitions in A* and 7 related to the
representation theory of the symmetric group. Now, we see that many purely combina-
torial notions lead to different bases for S. We compare these bases to corresponding
bases of A*. Most of these bases take the following form. Suppose an index set I and a
sequence {s;}7c; of elements of Q7 are given. Then, we define the kth moment of s by
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(whenever this sum converges)

M©)3) = Y (s =),
iel

For example, let the functions pq for the index set N be given by
pi(d) = A, gi(A) = A — i
Then, by definition,

Sk = Sk@) + My-1(p), Q= Q) + My-1(g)-

Note that by definition M (s)(¥) = 0. As the functions below will not respect the weight
grading anyway, we will not include a constant term.

The sequences g, ¢, i, x of functions on partitions are of further interest. Define these
sequence, indexed by & = (i, /) € Z2>0, by0if& ¢ Y, and

ag(A) : arm length of & he(A) : hook-length of &
xe(A) = i cg(A) : content of &, ie., i—j

if ¢ € Y,. For k and ¢ it is known that the corresponding moment functions are shifted
symmetric, for the latter see [15, Theorem 4]. The moment functions corresponding to a
and x turn out to be equal and to be elements of S.

Theorem 7.3.1
S = Q[Mi(a) | k > 0even] = Q[M(x) | k > 0 even].

Proof As the Faulhaber polynomials F; with k odd form a basis for the space of all odd
polynomials, the functions

00 00 A
D Fil) = Y0 d !
i=1 i=1 a=1

generate S, which corresponds to the first equality in the statement. By interchanging the
sums one obtains

YFG) =AY ) = ) i (52)
i=1 a=1 m=a

(i)Y

Hence, the result is also true for s = x. O

Remark 7.3.2 Note that for a given i the number of (i, j) € Y equals A}, where 1’ is the

conjugate partition of A. Hence, (52) can be written as

o0
I
i=1

and consequently these functions for k odd generate S. Note that these functions are
different from the Si(1'). In fact, the algebra generated by the Si(1') is distinct from the
algebra S, in contrast to the algebra of shifted symmetric functions, for which Qx(1') =

(=% Qr(n).
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A Table of double moment functions up to weight 4
For all basis elements f € 74 in the basis provided by Theorem 4.3.1, we compute
its representation in the basis consisting of double moment function and the quanti-

ties () (/) D), 0(f) and ().

Weight at most 2

f 1 TLI T(),z
1 1
{hu 1 —a T Zm,rzl miy, —aq Zm,rzl rity,
<f>q 1 G Gy
D(f) 0 1o T13
1 1
o(f) 0 -5 1 -1 1
M(f) I | Xi1—9 Xo2 +Xo1 — 55
Weight 4
f 131 To T3 Toa
lu aig + L mu, 52 m*ruj, 52 mrlul, 315 + 2 riul,
{fq Gy 2G4 — 2G2 2G4 —2G2 Gy
D(f) Ty T33 To4 Ty5
o(f) 0 2711 2To, 0
M) X3 + 75 X22 + X2 2X1,3 + 3X12 + X11 6Xo4 + 12X 3+
7Xo02 + Xo1 + 555
f T11 ©T1,1 = T, O Tog =
T12,1 — T Ti1To2 — T3
fu ermmzu%u% -5 mul, + 2 szlrzu;ﬁluiﬁz — L S+ ), +
fq G; G2
D(f) 2 . T2,2 @ Tl,l T2’2 @ T0,2 + Tl,l @ T1)3
o(f) —Ta _%Tl,l - %To,z
M) Xanan — 13511 + 575 Xa,0,12) + X@,0,0)+
— 31 X11 + Xo2) + 55
f Too © Too =
2 5 1 1
Ty = ErT0,4r— gT?,z ~m
{fu sz’lrzuwlzlu;flz — 33 2T, + =
{fq G}
D(f) 2-T1,30 Toa
o(f) —To
M(f) X022 + )E(o,o),(z,n + X0,0),1,2)t
X011 — 5X02 — 5X01 + 575

Received: 18 January 2021 Accepted: 28 January 2021
Published online: 15 March 2021

References
1. Ahlgren, S, Ono, K:: Addition and counting: the arithmetic of partitions. Not. Am. Math. Soc. 48(9), 978-984 (2001)



19

Page 42 of 42 J.-W. M. van Ittersum Res Math Sci(2021)8:19

2. Arakawa, T, Ibukiyama, T, Kaneko, M.: Bernoulli Numbers and Zeta. Functions with an Appendix by Don Zagier
(Springer Monographs in Mathematics). Springer, Tokyo (2014)

3. Bloch, S, Okounkov, A: The character of the infinite wedge representation. Adv. Math. 149(1), 1-60 (2000)

4. Bryan, J, Kool, M,, Young, B.: Trace identities for the topological vertex. Sel. Math. (N.S.) 24(2), 1527-1548 (2018)

5. Chen, D, Méller, M., Zagier, D.: Quasimodularity and large genus limits of Siegel-Veech constants. J. Am. Math. Soc.
31(4), 1059-1163 (2018)

6. Chen, D, Moller, M., Sauvaget, A, Zagier, D.: Masur-Veech volumes and intersection theory on moduli spaces of
Abelian differentials. Invent. Math. 222(1), 283-373 (2020)

7. Dijkgraaf, R:: Mirror symmetry and elliptic curves. In: Dijkgraaf, R, Faber, C,, van der Geer, G. (eds.) The Moduli Space of
Curves (Texel Island, 1994), pp. 149-163. Birkhauser, Boston (1995)

8. Engel, P.: Hurwitz Theory of Elliptic Orbifolds, | (2017). Preprint arXiv:1706.06738

9. Eskin, A, Okounkov, A.: Pillowcases and quasimodular forms. In: Algebraic Geometry and Number Theory. Progress in
Mathematics, vol. 253, pp. 1-25. Birkhduser Boston, Boston (2006)

10. Eskin, A, Okounkov, A, Pandharipande, R:: The theta characteristic of a branched covering. Adv. Math. 217(3), 873-888
(2008)

11. Gangl, H., Kaneko, M., Zagier, D.: Double zeta values and modular forms. In: Automorphic Forms and Zeta Functions,
pp. 71-106. World Science Publication, Hackensack, NJ (2006)

12. Goujard, E, Mdller, M.: Counting Feynman-like graphs: quasimodularity and Siegel-Veech weight. J. Eur. Math. Soc.
(JEMS) 22(2), 365-412 (2020)

13. Hahn, M.A, van Ittersum, JW.M,, Leid, F.: Triply mixed coverings of arbitrary base curves: quasimodularity, quantum
curves and recursions (2019). Preprint arXiv:1901.03598

14. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: Dijkgraaf, R, Faber, C,, van der
Geer, G. (eds.) The Moduli Space of Curves (Texel Island 1994), pp. 149-163. Birkhauser, Boston (1995)

15. Kerov, S, Olshanski, G.: Polynomial functions on the set of Young diagrams. CR Acad. Sci. Paris Sér. I Math. 319(2),
121-126 (1994)

16. Rota, G.C: On the foundations of combinatorial theory I. Theory of Mobius functions. Zeitschrift fir Wahrschein-
lichkeitstheorie und verwandte Gebiete 2, 340-368 (1964)

17.  Schneider, R.: Arithmetic of partitions and the g-bracket operator. Proc. Am. Math. Soc. 145(5), 1953-1968 (2017)

18. van lttersum, JW.M.: When is the Bloch-Okounkov g-bracket modular? Ramanujan J. 52(3), 669-682 (2020)

19. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Serre, J.-P., Zagier,
D.B. (eds.), modular functions of one variable, VI (proceedings international conference, university Of Bonn, Bonn
1976), Vol. 627 of Lecture Notes in Math., pp. 105-169. Springer, Berlin, (1977)

20. Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449-465 (1991)

21. Zagier, D.: Modular forms and differential operators. Proc. Indian Acad. Sci. Math. Sci. 104, 57-75 (1994)

22. Zagier, D.: Elliptic modular forms and their applications. In: Ranestad, K. (ed.) The 1-2-3 of Modular Forms, pp. 1-103.
Springer, Berlin (2008)

23. Zagier, D.: Partitions, quasimodular forms, and the Bloch-Okounkov theorem. Ramanujan J. 41(1-3), 345-368 (2016)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


http://arxiv.org/abs/1706.06738
http://arxiv.org/abs/1901.03598

	A symmetric Bloch–Okounkov theorem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Quasimodular forms
	2.2 The action of sl2 on quasimodular forms by derivations
	2.3 Partitions as a partially ordered set
	2.4 The connected q-bracket
	2.5 The discrete convolution product and Faulhaber polynomials

	3 The moment functions, their q-bracket and a second product
	3.1 Three proofs of the quasimodularity of the moment functions
	3.2 The induced and connected product
	3.3 Quasimodularity of pointwise products of moment functions
	3.4 Intermezzo: surjectivity of the q-bracket
	3.5 The connected product of moment functions

	4 Three quasimodular algebras
	4.1 Introduction
	4.2 The basis given by double moment functions
	4.3 The basis defining the weight grading
	4.4 The n-point functions

	5 Differential operators
	5.1 The derivative of a function on partitions
	5.2 The equivariant q-bracket
	5.3 Rankin–Cohen brackets
	5.4 A restricted sl2-action

	6 Relating the two products
	6.1 The structure constants
	6.2 From the pointwise product to the induced product

	7 Related functions on partitions
	7.1 Hook-length moments
	7.2 Border strip moments
	7.3 Moments of other partition invariants

	A Table of double moment functions up to weight 4
	Weight at most 2
	Weight 4

	References




