
J.-W. M. van Ittersum Res Math Sci           (2021) 8:19 
https://doi.org/10.1007/s40687-021-00253-8

RESEARCH

A symmetric Bloch–Okounkov theorem
Jan-Willem M. van Ittersum2,1*

*Correspondence:
j.w.m.vanittersum@uu.nl
1Mathematisch Instituut,
Universiteit Utrecht, Postbus
80.010, 3508 TA Utrecht, The
Netherlands
Full list of author information is
available at the end of the article

Abstract

The algebra of so-called shifted symmetric functions on partitions has the property that
for all elements a certain generating series, called the q-bracket, is a quasimodular form.
More generally, if a graded algebra A of functions on partitions has the property that
the q-bracket of every element is a quasimodular form of the same weight, we call A a
quasimodular algebra. We introduce a new quasimodular algebra T consisting of
symmetric polynomials in the part sizes and multiplicities.
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1 Introduction
Partitions of integers are related in interesting ways to modular forms, starting with the
observation that the generating series of partitions is closely related to the Dedekind η-
function, i.e.,
∑

λ∈P
q|λ| =

∏

n>0
(1− qn)−1 = q1/24η(τ )−1 (q = e2π iτ ),

whereP denotes set of all partitions and |λ|denotes the integerλ is a partition of. Another
example is the occurrence of modular forms in the proof of the partition congruences
which go back to Ramanujan [1].
More recently, partitions were connected to (quasi)modular forms via the q-bracket.

Given a function f : P → Q, the q-bracket of f is defined as the following power series

〈f 〉q =
∑

λ∈P f (λ)q|λ|∑
λ∈P q|λ|

∈ Q[[q]]. (1)

Before continuing, note that it is not surprising at all that for a well-chosen function f
the q-bracket 〈f 〉q is a quasimodular form, since it is easily seen that the map (1) fromQP

to Q[[q]] is surjective. What is surprising is that one can find graded subalgebras A of QP

which (i) are “interesting” in the sense that they have an interpretation in combinatorics,
enumerative geometry or another field of mathematics and (ii) have the property that
the q-bracket of a homogeneous function f ∈ A is quasimodular of the same weight as f .
In this case we call A a quasimodular algebra. Note that the q-bracket is linear but not
multiplicative, so in order to show that an algebra is quasimodular, it is not sufficient to
show that the q-brackets of the generators of such an algebra are quasimodular. The aim
of this paper is to introduce new quasimodular algebras.
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The Bloch–Okounkov theorem [3, Theorem 0.5] provided the first quasimodular alge-
bra �∗. Write a partition λ as a non-increasing sequence (λ1, λ2, . . .) of non-negative
integers with |λ| = ∑∞

i=1 λi finite. The Q-algebra �∗ is freely generated by the so-called
shifted symmetric power sums

Qk (λ) = ck +
∞∑

i=1

(
(λi − i + 1

2 )
k−1 − (−i + 1

2 )
k−1) (k ≥ 2), (2)

where the ck are constants given by 1
x + ∑k ck

xk−1

(k−1)! = 1
2 sinh(x/2) . The function Q3

naturally occurs in the simplest case of the Gromov–Witten theory of an elliptic curve,
as discovered by Dijkgraaf [7] and for which quasimodularity was proven rigorously in
[14]. Quasimodularity of �∗ is used in many recent works in enumerative geometry [4–
6,12,13]. There are many other functions in invariants of partitions which turn out to be
elements of�∗, for example symmetric polynomials in demodified Frobenius coordinates
[23, Eq. 19]; the hook-lengthmoments [5, Theorem 13.5] (see Sect. 7.1); central characters
of the symmetric group [15, Proposition 3] and symmetric polynomials in the content
vector of a partition [15, Proof of Theorem 4].
Previously, the Bloch–Okounkov algebra �∗ and some generalizations to higher levels

(see, e.g., [8,9]), were the only known quasimodular algebras. However, there are many
examples of functions on partitions admitting a quasimodular q-bracket (and in general
not belonging to�∗) [23, Sect. 9], for example theMöller transformation of functionswith
quasimodular q-bracket (defined by [23, Eq. 45] and recalled in Sect. 7), invariantsAP for
every even polynomial defined in terms of the arm- and leg-lengths of a partition and the
moment functions

Sk (λ) = −Bk
2k

+
∞∑

i=1
λk−1
i (k even, Bk = kth Bernoulli number) (3)

that also occur in the study of so-called spin Hurwitz numbers in the algebra of super-
symmetric polynomials [10] (in that reference, these functions are only evaluated at strict
partitions—partitions without repeated parts—and quasimodularity is shown for a corre-
spondingly adapted q-bracket).
In this paper, we prove the stronger result that the algebraS generated by thesemoment

functions Sk is quasimodular. Moreover, besides the pointwise product of functions on
partitions, we define a second associative product 	, called the induced product as it
is inherited from the product of power series. The vector space Sym	(S) generated by
the elements in S under the induced product is strictly bigger than S , is a quasimodular
algebra for either of the two products, and has a particularly nice description in terms of
functionsTk,l dependingnot only on theparts of a partition, but also on theirmultiplicities.
Here, themultiplicity rm(λ) of parts of sizem in a partition λ is defined as the number of
parts of λ of sizem. More precisely, letFl be the Faulhaber polynomial of positive integer
degree l, defined by Fl(n) =

∑n
i=1 il−1 for all n ∈ Z>0. Then, Tk,l is given by

Tk,l(λ) = Ck,l +
∞∑

m=1
mkFl(rm(λ)) (k ≥ 0, l ≥ 1, k + l even) (4)
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with Ck,l a constant equal to − Bk+l
2(k+l) if k = 0 or l = 1 and 0 else. Let T be the algebra

generated by all these Tk,l under the pointwise product.
We show that Sym	(S) and T are algebras for the pointwise product as well as for

the induced product. In fact, the expression of elements of Sym	(S) in terms of the Tk,l
implies that Sym	(S) is a strict subalgebra of T (with respect to both products). Ourmain
result is the following:

Theorem 1.1 The algebras Sym	(S) and T are quasimodular algebras with respect to
the induced product.

With respect to the pointwise product, these algebras are not quasimodular because of
the following subtlety: The q-bracket of a homogeneous function f in T (with respect to
the pointwise product) often is ofmixedweight (i.e., a linear combination of quasimodular
forms of weights bounded by the weight of f ). By making use of the induced product, one
can explain these lower weight quasimodular forms, as we do in Sect. 6. For example,

〈T 2
0,2〉q = G2

2 + 5
6
G4 + 1

6
G2 + 1

288
,

where G2 and G4 are the Eisenstein series defined by (6). The right-hand side is a quasi-
modular form of mixed weight, which is explained by the fact that

T 2
0,2 = T0,2 	 T0,2 + 5

6
T0,4 + 1

6
T0,2 + 1

288
,

is a linear combination of elements of T of different weights with respect to the induced
product.
Amain theme throughout this paper is the principle to establish all identities inQP orT

before taking the q-bracket, instead of doing these computations in Q[[q]] or the space of
quasimodular forms M̃. By doing so, we discover the algebraic structure of T . Without
having the induced product at one’s disposal, for example when studying the shifted
symmetric algebra �∗, this seems impossible. See the following table for an overview of
situations where the principle is applied:

Previous definitions and results Definitions and results in this work Sections
Multiplication in Q[[q]] Induced product 	 on QP 3.2
q-bracket: QP → Q[[q]] u-bracket: QP → Q[[u1, u2, . . .]] 3.2
Connected q-
bracket: Sym⊗(QP ) → Q[[q]]

Connected product: Sym⊗(QP ) → QP 3.2

Derivative q d
dq on Q[[q]] Derivative on QP 5.1

sl2-action on M̃ sl2-action on T 5.2
Rankin–Cohen brackets on M̃ Rankin–Cohen brackets on T 5.3
Formula for 〈Hpf 〉q in [5, Eq. 152]a Formula for Tk,l f 6.2

aIn that work the hook-length moment Hp (see also Sect. 7.1) was denoted by Tp−1

A further main result of the paper is the following:

Theorem 1.2 The q-bracket is an equivariant mapping T → M̃ with respect to sl2-
actions by derivations on both spaces.

Motivated by the fact that many functions in invariants of partitions are elements of�∗,
in Sect. 7 we describe many functions on partitions which are elements of T or are
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closely related. Among those are the border strip moments, generalizing the hook-length
moments, which are defined in terms of the representation theory of the symmetric
group. The corresponding space X of border strip moments is the image of a space U
under the aforementioned Möller transform M, where U is generated by the double
moment functionsTk,l ∈ T as well as the odd double moments functions (those for which
k + l is odd). The q-brackets of these functions are contained in the space C of so-called
combinatorial Eisenstein series, having the space of quasimodular forms as a subspace.
Moreover, the space of hook-length moments H is contained in both �∗ and X—this
contrasts the situation for T , which by Remark 4.1.6 has a trivial intersection with �∗.
See the commutative diagram below for an overview of the spaces related to T with their
corresponding mappings.

We hope that this work—besides advocating the notion of a ‘quasimodular algebra’ by
giving a new example of such an algebra and studying its algebraic structure—may serve as
a tool for enumerative geometers trying to show that generating series are quasimodular
forms.
The contents of the paper are as follows. In Sect. 2 we recall notions (known to the

experts) related to quasimodular forms, partitions and special families of polynomials.
Next, in Sect. 3 wemotivate all new notions in this work and prove quasimodularity of the
algebraS . A study of the symmetric algebra T , including a proof of ourmain theorem, can
be found in Sect. 4. The sl2-action by differential operators, the proof of Theorem 1.2 and
Rankin–Cohen brackets are the content of Sect. 5. In Sect. 6 further results that arise from
comparing the two different products on T are given, and finally, in Sect. 7 we provide
many examples of functions in or closely related to T .

2 Preliminaries
2.1 Quasimodular forms

Let Hol0(H) be the ring of holomorphic functions ϕ of moderate growth on the complex
upper half planeH, i.e., for allC > 0 one has ϕ(x+ iy) = O(eCy) as y → ∞ and ϕ(x+ iy) =
O(eC/y) as y → 0. A quasimodular form of weight k and depth at most p for SL2(Z) is a
function ϕ ∈ Hol0(H) such that there exist ϕ0, . . . ,ϕp ∈ Hol0(H) so that for all τ ∈ H and
all γ = ( a b

c d
) ∈ SL2(Z), one has

(cτ + d)−kϕ
(aτ + b
cτ + d

)
= ϕ0(τ ) + ϕ1(τ )

c
cτ + d

+ . . . + ϕp(τ )
( c
cτ + d

)p
. (5)
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Equation (5) is called the quasimodular transformation property. Note that if ϕ is a quasi-
modular form, the functions ϕ0, . . . ,ϕp are quasimodular forms uniquely determined
by ϕ (the function ϕr has weight k − 2r and depth ≤ p − r). For example, taking the
identity I ∈ 	 yields ϕ0 = ϕ. Quasimodular forms of depth 0 are called modular forms.
Besides the constant functions, the simplest examples are the Eisenstein series

Gk (τ )=−Bk
2k

+
∞∑

r=1

∞∑

m=1
mk−1qmr (Bk=kth Bernoulli number and q = e2π iτ )

(6)

for positive even integers k . For k > 2 the Eisenstein series are modular forms of weight k .
The Eisenstein series G2 is a quasimodular form of weight 2 and depth 1.
Denote by M̃(≤p)

k the vector space of quasimodular forms of weight k and depth at
most p. Often we omit the depth and/or weight and simply write M̃k for the vector space
of all quasimodular forms of weight k or M̃ for the graded algebra of all quasimodular
forms. Let M denote the graded algebra of modular forms. The quasimodular form G2
generates the algebra of quasimodular forms as an algebra over the subalgebra of modular
forms, that is, M̃ = M[G2].
Often, when encountering an indexed collection of numbers or functions, we study its

generating series. The generating series corresponding to the Eisenstein series is called
the propagator or the Kronecker–Eisenstein series of weight 2 and given by

P(z, τ ) = P(z) := 1
z2

+ 2
∞∑

k=2
Gk

zk−2

(k − 2)!
. (7)

The propagator is closely related to the Weierstrass ℘-function and Jacobi theta series

℘(z, τ )=℘(z) := 1
z2

+
∑

ω∈Zτ+Z
ω �=0

( 1
(z + ω)2

− 1
ω2

)
, (8)

θ (z) :=
∑

ν∈Z+1
2

(−1)
ν�eνzqν2/2

by

P(z) = 1
2π i

℘( z
2π i , τ )+ 2G2, P(z) = − ∂

∂z
θ ′(z)
θ (z)

.

2.2 The action of sl2 on quasimodular forms by derivations

A way to produce examples of quasimodular forms is by taking derivatives of
(quasi)modular forms under the differential operator D : M̃(≤p)

k → M̃(≤p+1)
k+2 , given by

D = 1
2π i

d
dτ

= q
d
dq

.

In fact, every quasimodular form can uniquely be written as a linear combination of
derivatives of modular forms and derivatives ofG2. For more details, see [22, p. 58–60]. It
may happen that a polynomial in the derivatives of twomodular forms f ∈ Mk and g ∈ Ml
is actually modular. This is the case for the Rankin–Cohen brackets of f and g , defined by

[f, g]n =
∑

r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
Drf Dsg (n ≥ 0).
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That is, for all f ∈ Mk, g ∈ Ml and n ≥ 0, one has that [f, g]n is a modular form of
weight k + l + 2n.
Besides the differential operator D, an important differential operator on quasimodular

forms is the operator d : M̃(≤p)
k → M̃(≤p−1)

k−2 defined by ϕ �→ 2π iϕ1 (with ϕ1 defined in
the quasimodular transformation property (5)). For example dG2 = − 1

2 and in fact this
property together with the fact that d annihilates modular forms defines d completely
since d is a derivation and M̃ = M[G2].
Let W be the weight operator, which multiplies a quasimodular form by its

weight. The triple (D, d,W ) forms an sl2-triple with respect to the commutator
bracket [A, B] = AB− BA:

Definition 2.2.1 A triple (X, Y,H ) of operators is called an sl2-triple if

[H,X] = 2X, [H, Y ] = −2Y, [Y, X] = H.

Remark 2.2.2 By these commutation relations, for all n ≥ 1 one has

[d, Dn] = n(W − n+ 1)Dn−1, (9)

which turns out to be useful later.

Following a suggestion of Zagier, we make the following definition:

Definition 2.2.3 Given a Lie algebra g, a g-algebra is an algebra A together with a Lie
homomorphism g → Der(A).

As D, d andW satisfy the Leibniz rule, the algebra M̃ becomes an sl2-algebra.

2.3 Partitions as a partially ordered set

Given n ∈ Z≥0, letP(n) denote the set of all integer partitions of n and �(n) the set of all
partitions of the set [n] := {1, 2, . . . , n}. LetP =⋃n∈Z≥0 P(n) and � =⋃n∈Z≥0 �(n) be
the sets of all such partitions. Given λ ∈ P(n) wewriteλ = (λ1, λ2, . . .) with λ1 ≥ λ2 ≥ . . .

and |λ| := ∑∞
i=1 λi = n. The largest index k such that λk > 0 is called the length of λ,

denoted by �(λ). Similarly, for α ∈ �(n) we write �(α) for the cardinality of α. Moreover,
for λ ∈ P we let rm(λ) denote the number of parts of λ equal tom, i.e., rm(λ) = #{i | λi =
m}, and denote by λ′ the conjugate partition of λ. We call a partition λ strict if there are
no repeated parts, i.e., rm(λ) ∈ {0, 1} for all m. For two partitions κ , λ we write κ ∪ λ for
the union of κ and λ as multisets, i.e., rm(κ ∪ λ) = rm(κ)+ rm(λ) for allm ∈ N.
BothP and �(n) form a locally finite partially ordered set, i.e., a partially ordered set P

for which for all x, z ∈ P there exists finitely many y ∈ P such that x ≤ y ≤ z. Namely,
on P we define a partial order by κ ≤ λ if rm(κ) ≤ rm(λ) for all m ≥ 1. The ordering
on �(n) is given by α ≤ β if for all A ∈ α there exists a B ∈ β such that A ⊆ B. For
instance, we have α ≤ 1n for all α ∈ �(n), where 1n = {[n]}.
Recall that on a locally finite partially ordered set P the Möbius function μ : P2 → Z is

defined recursively by (see for example [16]): μ(x, z) = −∑x≤y≤z μ(x, y) if x < z with
initial conditions μ(x, x) = 1 and μ(x, z) = 0 else. For the above partial order on P the
value of μ(κ , λ) depends on whether the difference of κ and λ considered as multisets,
denoted by λ − κ , is a strict partition. That is,
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μ(κ , λ) =
⎧
⎨

⎩
(−1)�(λ)−�(κ) λ − κ is a strict partition

0 else.
(10)

The Möbius function μ(α,β) of two elements α,β ∈ �(n) is given by

μ(α,β) =
∏

B∈β

(−1)�(αB)−1(�(αB)− 1)! ,

where αB for B ⊂ [n] is the partition on B induced by α. A Möbius function satisfies the
following two properties:

Theorem 2.3.1 Let f, g be functions on a partially ordered set P. Then

(i)
∑

α≤γ≤β

μ(α, γ ) = δα,β =
∑

α≤γ≤β

μ(γ ,β) for all α,β ∈ P;

(ii) f (α) =
∑

γ≤α

g(γ ) ∀α ∈ P ⇐⇒ g(β) =
∑

γ≤β

μ(γ ,β) f (γ ) ∀β ∈ P.

2.4 The connected q-bracket

The q-bracket defined in the introduction (Eq. 1) is a map QP → Q[[q]]. In this sec-
tion we define the connected q-bracket following [5, p. 55–57], which naturally arises
in enumerative geometric when counting connected coverings. In our setting, the con-
nected q-bracket turns out to be easier to compute than the usual q-bracket.
For A ⊂ [n] we denote fA =∏a∈A fa.

Definition 2.4.1 Given an integer n ≥ 1, the connected q-bracket is defined as the mul-
tilinear map

〈 〉q : QP ⊗ · · · ⊗ QP

︸ ︷︷ ︸
n

→ Q

extending the q-bracket such that for all f, f1, . . . , fn ∈ QP any of the following two
equivalent conditions hold:

(i) 〈f1 ⊗ · · · ⊗ fn〉q =
∑

α∈�(n)
μ(α, 1n)

∏

A∈α

〈fA〉q ;

(ii) 〈f1 ⊗ · · · ⊗ fn〉q is the coefficient of x1 · · · xn in log〈exp(∑n
i=1 xifi)〉q .

By invoking the Möbius inversion formula (Theorem 2.3.1(ii)) condition (i) in Defini-
tion 2.4.1 implies that

∏

B∈β

〈⊗b∈Bfb〉q =
∑

α≤β

μ(α,β)
∏

A∈α

〈fA〉q ,
∏

A∈α

〈fA〉q =
∑

β≤α

∏

B∈β

〈⊗b∈Bfb〉q .

For example,

〈f ⊗ g〉q = 〈fg〉q − 〈f 〉q〈g〉q ,
〈f ⊗ g ⊗ h〉q = 〈fgh〉q − 〈f 〉q〈gh〉q − 〈g〉q〈fh〉q − 〈h〉q〈fg〉q + 2〈f 〉q〈g〉q〈h〉q ,

and

〈fg〉q = 〈f ⊗ g〉q + 〈f 〉q〈g〉q ,
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〈fgh〉q = 〈f ⊗ g ⊗ h〉q + 〈f 〉q〈g ⊗ h〉q + 〈g〉q〈f ⊗ h〉q + 〈h〉q〈f ⊗ g〉q + 〈f 〉q〈g〉q〈h〉q .

We often make use of the fact that the connected q-bracket of functions f1, . . . , fn
vanishes if one of the fi is constant.

Lemma 2.4.2 For all f1, . . . , fn ∈ QP one has

〈1⊗ f1 ⊗ · · · ⊗ fn〉q = 0.

Proof Write fn+1 = 1. Observe that
∏

A∈α〈fA〉q takes the same value for all α ∈ �(n+ 1)
which agree on [n] (but differ in the subset A of α containing n+ 1). Then, sum-
ming μ(α, 1n) over all such α yields

a · (−1)a−1(a− 1)!+ (−1)aa! = 0

as there area choices forα forwhich {n+1} is not a subset ofα, wherea is the length of such
an α, and there is only one choice for α for which {n+ 1} is a subset. By Definition 2.4.1(i)
the result follows. ��

Wewill use the second condition inDefinition 2.4.1 in our proof thatS is a quasimodular
algebra.

2.5 The discrete convolution product and Faulhaber polynomials

Let N denote the set of strictly positive integers. Given f, g : N → Q we denote by f · g
or fg the pointwise product of f and g . We define the discrete convolution product of f
and g by

(f ∗ g)(n) =
n−1∑

i=1
f (i) g(n− i)

and denote the convolution product of functions f1, . . . , fn by

n∗
i=1

fi = f1 ∗ · · · ∗ fn. (11)

Let the discrete derivative ∂ of f : N → Q be defined by ∂f (n) = f (n)− f (n− 1) for n ≥ 2
and ∂f (1) = f (1) and denote by id the identity function N → N ⊂ Q. Observe that

∂(f ∗ g) = (∂f ) ∗ g = f ∗ (∂g), (12)

∂(fg) = ∂(f ) g + f ∂(g)− ∂(f ) ∂(g), (13)

id · (f ∗ g) = (id · f ) ∗ g + f ∗ (id · g), (14)

∂2(f ∗ id) = f − ∂f. (15)

The Faulhaber polynomials Fl for l ≥ 1 are defined as the unique polynomials with
vanishing constant term satisfying ∂Fl(n) = nl−1 for all n ∈ N, or equivalently byFl(n) =∑n

i=1 il−1. The first four are given by

F1(x) = x, F2(x) = x(x + 1)
2

, F3(x) = x(x + 1)(2x + 1)
6

, F4(x) = x2(x + 1)2

4
.
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Note that these polynomials are related to the Bernoulli polynomials Bn(x), the unique
family of polynomials satisfying

∫ x+1
x Bn(u) du = xn, by the formula lFl(x) = Bl(x+1)−Bl .

Hence, the Faulhaber polynomials admit the symmetry

Fl(x) = (−1)lFl(−x − 1) (l ≥ 2), (16)

which can also be deduced directly from the definition. The generating series F(n) of the
Faulhaber polynomials equals

F(n) :=
∞∑

l=1
Fl(n)

zl−1

(l − 1)!
= ez

1− enz

1− ez
. (17)

3 Themoment functions, their q-bracket and a second product
3.1 Three proofs of the quasimodularity of the moment functions

The q-bracket of the moment function Sk defined in (3) equals the Eisenstein series Gk .
To motivate the results in the rest of this work, we provide three different proofs—and
three generalizations—of this statement using three different approaches. In the first
approach, we motivate the definition of the Tk,l (see (4)), the second approach gives an
interpretation for these functions, and the last approach gives an example of our main
principle of establishing all identities before taking the q-bracket.
First approach The key observation in this first proof is that Sk can be rewritten as

Sk (λ) = −Bk
2k

+
∞∑

m=1
mk−1rm(λ).

More generally, for k > 0 and f : N → Q we set f (0) = 0 and we let

Sk,f (λ) = − Bk+1
2(k + 1)

δf,id +
∞∑

m=1
mkf (rm(λ)). (18)

In case when f is the identity, Sk,f = Sk+1. Our first method of proof gives the following
more general statement:

Proposition 3.1.1 Let f be a polynomial of degree l without constant term and k a positive
integer satisfying k ≡ l mod 2. Then,

(i) if f equals a Faulhaber polynomial Fl , then 〈Sk,f 〉q equals

− Bk+1
2(k + 1)

δl,1 +
∑

m,r≥1
mkrl−1qmr =

⎧
⎨

⎩
Dl−1Gk−l+2 k − l ≥ 0,

DkGl−k k − l ≤ 2;

(ii) if 〈Sk,f 〉q is a quasimodular form, then f is a multiple of the Faulhaber polynomialFl .

Proof Let |x| ≤ 1 andm ≥ 1. We compute

〈xrm〉q =
∑

λ∈P xrm(λ)q|λ|∑
λ∈P q|λ|

. (19)

Observe that the multiplicities r1(λ), r2(λ), . . . uniquely determine the partition λ. Hence,
for |q| < 1 we have that
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∑

λ∈P
xrm(λ)q|λ| =

∑

r1 ,r2 ,...≥0
xrmqr1+2r2+...+mrm+...

=
⎛

⎝
∞∑

rm=0
xrmqmrm

⎞

⎠
∏

i �=m

⎛

⎝
∞∑

ri=0
qiri

⎞

⎠

= 1
1− xqm

∏

i �=m

1
1− qi

.

Substituting this result in the numerator of (19), we obtain

〈xrm〉q = 1− qm

1− xqm
.

Hence,

〈
x

1−x (1− xrm )
〉

q
= xqm

1− xqm
. (20)

Observe that applying x ∂
∂x to the right-hand sideof (20) has the sameeffect as applying 1

mD,
where D is defined in §2.1. After setting x = ez , we find that x

1−x (1 − xrm ) equals F(rm)
(see 17). Hence, by taking l − 1 derivatives x ∂

∂x = ∂
∂z and setting z = 0, it follows that

〈Sk,Fl 〉q +
Bk+1

2(k + 1)
δl,1 =

∑

m≥0
mk〈Fl(rm)〉q

=
∑

m≥0
mk
(
x

∂

∂x

)l−1 xqm

1− xqm
∣∣∣
x=1

=
∑

m≥0
mk
(
1
m
D
)l−1 qm

1− qm

=
∑

m,r≥1
mkrl−1qmr.

Part (ii) of the statement follows by writing f as a linear combination of Faulhaber poly-
nomials. ��

Second approach The double moment functions Tk,l (see (4)) are by definition equal
to Sk,Fl if k > 0. Given a partition λ, let ci(λ) = #{j ≤ i | λi = λj}. Then, one has

Tk,l(λ) = − Bk+l
2(k + l)

(δl,1 + δk,0)+
∞∑

i=1
λki ci(λ)

l−1.

In this section we give a direct proof for the quasimodularity of the q-brackets of Tk,l :

Proposition 3.1.2 For all k ≥ 0, l ≥ 1 and k + l even, one has

〈Tk,l〉q =
⎧
⎨

⎩
Dl−1Gk−l+2 if k − l ≥ 0,

DkGl−k if k − l ≤ 2.



J.-W. M. van Ittersum Res Math Sci            (2021) 8:19 Page 11 of 42    19 

Proof Denote by T 0
k,l(λ) =

∑∞
i=1 λki ci(λ)

l−1. The generating series of T 0
k,l is given by

W (X, Y )(λ) =
∞∑

i=1
XλiY ci(λ),

that is, T 0
k,l(λ) is the coefficient of xkyl−1

k !(l−1)! inW (ex, ey)(λ). Consider

∑

λ∈P
W (X, Y )(λ) q|λ| =

∑

λ∈P

∞∑

i=1
XλiY ci(λ)q|λ|. (21)

Given a, b, n ∈ Z≥0, denote by Ca,b(n), the coefficient in front of XaY bqn in (21), that is

∑

λ∈P

∞∑

i=1
XλiY ci(λ)q|λ| =:

∑

a,b,n≥0
Ca,b(n)XaY bqn.

Let p(n) denote the number of partitions of n. The coefficient Ca,b(n) equals the number
of partitions of n with at least b parts of size a, i.e., Ca,b(n) = p(n − ab). Hence, writing
m = n− ab we obtain

∑

λ∈P

∞∑

i=1
XλiY ci(λ)q|λ| =

( ∞∑

m=0
p(m)qm

)⎛

⎝
∑

a,b≥0
XaY bqab

⎞

⎠ .

In other words,

〈W (X, Y )〉q =
∑

a,b≥0
XaY bqab

so that expanding this equation for X = ex and Y = ey yields

〈T 0
k,l〉q =

∑

a,b≥0
akbl−1qab.

As Tk,l(λ) = − Bk+l
(k+l) (δl,1 + δk,0)+ T 0

k,l(λ) we obtain the desired result. ��

Third approach In this last proof we start with the observation that one can rewrite
the q-bracket as

〈f 〉q =
∑

λ∈P f (λ)uλ1uλ2 · · ·∑
λ∈P uλ1uλ2 · · ·

∣∣∣
ui=qi

. (22)

In contrast to the previous two proofs, it is only in the last step of this proof that we take
the q-bracket: First we rewrite (22) considering u1, u2, . . . to be formal variables, and in the
last step we let ui = qi. We start with the denominator, where we encounter the Möbius
function on partitions also defined in [17].

Proposition 3.1.3 There exists a function μ : P → {−1, 0, 1} defined by any one of the
following three equivalent definitions:

(i) μ(λ) is given by theMöbius functionμ(∅, λ) on the partial order on the set of partitions
in (10);

(ii) μ(λ) =
⎧
⎨

⎩
(−1)�(λ) λ is a strict partition,

0 else;
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(iii)
1∑

λ∈P uλ1uλ2 · · ·
=
∑

λ∈P
μ(λ)uλ1uλ2 · · · .

Proof The first two definitions clearly coincide using (10). For the latter, it suffices to
show that

∑

α∪β=λ

μ(α) = δλ,∅ .

Let f (λ) = 1 and g(λ) = δλ,∅ for λ ∈ P . Then, f (α) =∑γ≤α g(γ ) for all α ∈ P , so that
by Möbius inversion and by using μ(γ ,β) = μ(∅,β − γ ) the last definition is equivalent.

��
The fact that 〈Sk〉q = Gk follows directly from the following proposition:

Proposition 3.1.4 For all m ≥ 1 and f : N → Q extended by f (0) = 0, one has
∑

λ∈P f (rm(λ))uλ1uλ2 · · ·∑
λ∈P uλ1uλ2 · · ·

=
∞∑

r=1
∂f (r)urm.

Proof Fixm ≥ 1. By the previous proposition, we have
∑

λ∈P f (rm(λ))uλ1uλ2 · · ·∑
λ∈P uλ1uλ2 · · ·

=
(
∑

λ∈P
f (rm(λ))uλ1uλ2 · · ·

)(
∑

λ∈P
μ(λ)uλ1uλ2 · · ·

)
.

Denote by C(λ) the coefficient of uλ1uλ2 · · · after expanding the right-hand side of above
equation. Observe that

C(λ) =
∑

α∪β=λ

(−1)�(β)f (rm(α)),

where α ∪ β denotes the union of α and β considered as multisets and it is understood
that β is a strict partition. Suppose λ admits a part equal to m′ �= m. Then, define an
involution ω on all pairs (α,β) satisfying that α ∪ β = λ and β is strict by

ω(α,β) =
⎧
⎨

⎩
(α\{m′},β ∪ {m′}) if rm′ (β) = 0,

(α ∪ {m′},β\{m′}) if rm′ (β) = 1.

As ω changes the sign of (−1)�(β)f (rm(α)), it follows that C(λ) = 0.
Observe that C(∅) = 0 and that in case λ = (m,m, . . .) consists of a strictly positive

number of parts all equal tom one has

C(λ) = f (rm(λ))− f (rm(λ)− 1) = ∂f (rm(λ)).

Therefore, the desired result follows. ��

3.2 The induced and connected product

Motivated by the last of the three approaches in the previous section, we define the u-
bracket of a function f ∈ QP by

〈f 〉u =
∑

λ∈P f (λ)uλ∑
λ∈P uλ

(uλ = uλ1uλ2 · · ·).

Then, for all f ∈ QP one has 〈f 〉q = 〈f 〉(q,q2,q3 ,...). Observe that the u-bracket defines an
isomorphism of vector spaces

QP ∼−→ Q[[u1, u2, u3, . . .]], f �→ 〈f 〉u .
We now use the algebra structure of Q[[u1, u2, u3, . . .]] to define a product on QP .
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Definition 3.2.1 Given f, g ∈ QP we define their induced product f 	 g by

〈f 	 g〉u = 〈f 〉u〈g〉u ,
where the product of 〈f 〉u and 〈g〉u is the usual product of power series.

Remark 3.2.2 Observe that QP is a commutative algebra with the constant function 1 as
the identity for both the pointwise and the induced product. This observation should be
compared with the q-bracket arithmetic in [17].

The following proposition gives an alternative definition for the induced product.

Proposition 3.2.3 For all λ ∈ P , one has

(f 	 g)(λ) =
∑

α∪β∪γ=λ

f (α) g(β)μ(γ ).

Proof By definition
∑

λ∈P
(f 	 g)(λ)uλ =

(∑
λ∈P f (λ)uλ

) (∑
λ∈P g(λ)uλ

)
∑

λ∈P uλ

.

By Proposition 3.1.3 this equals
(
∑

λ∈P
f (λ)uλ

)(
∑

λ∈P
g(λ)uλ

)(
∑

λ∈P
μ(λ)uλ

)
.

The result follows by expanding the products. ��
Analogous to the connected q-bracket, we define the connected product. For a set S and

functions fs ∈ QP for all s ∈ S, we denote fS =∏s∈S fs .

Definition 3.2.4 For f1, . . . , fn ∈ QP , define the connected product f1 | . . . |fn to be the
following functionP → Q:

f1 | . . . | fn :=
∑

α∈�(n)
μ(α, 1)

⊙

A∈α

fA . (23)

For example, for f, g, h ∈ QP one has

f | g = fg − f 	 g,

f | g | h = fgh− f 	 gh− g 	 fh− h	 fg + 2f 	 g 	 h.

The induced and connected product allow us to establish many identities before taking
the q-bracket, as follows from the following result.

Proposition 3.2.5 For all f1, . . . , fn ∈ QP one has

• 〈f1 	 f2 	 · · · 	 fn〉q = 〈f1〉q〈f2〉q · · · 〈fn〉q ;
• 〈f1 | . . . | fn〉q = 〈f1 ⊗ · · · ⊗ fn〉q .

Proof Both statements follow directly from the definitions. For the first, note that for
all f, g ∈ QP one has

〈f 	 g〉q = 〈f 〉u〈g〉u|ui=qi = 〈f 〉u|ui=qi 〈g〉u|ui=qi = 〈f 〉q〈g〉q,
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so that the statement follows inductively. The second follows from the first, as

〈f1 | . . . | fn〉q =
∑

α∈�(n)
μ(α, 1)

∏

A∈α

〈fA〉q = 〈f1 ⊗ · · · ⊗ fn〉q . ��

Remark 3.2.6 Let R be the space of functions having a quasimodular form as q-bracket,
i.e.,R = 〈 · 〉−1

q (M̃). Then,R is a graded algebra with multiplication given by the induced
product. Namely, if f ∈ R and 〈f 〉q ∈ M̃k , we define the weight of f to be equal to k . Note
that if f, g ∈ R and 〈f 〉q and 〈g〉q are quasimodular forms of weight k and l, respectively,
then 〈f 	 g〉q = 〈f 〉q〈g〉q is a quasimodular form of weight k + l.

When establishing identities on the level of functions on partitions (before taking the
q-bracket), it turns out to be very useful to express the connected product of pointwise
products of elements of QP in terms of connected and induced products. This can be
done recursively using the following result.

Proposition 3.2.7 For all f1, . . . fn ∈ QP one has

f1f2 | f3 | f4 | . . . | fn = f1 | f2 | . . . | fn
+

∑

A�B={3,...,n}
(f1 | fA1 | fA2 | . . .)	 (f2 | fB1 | fB2 | . . .), (24)

where A1, A2, . . . enumerate the elements of A (and similarly for B).

Proof Observe that both sides of the equation in the statement are a linear combination
of terms of the form

⊙
C∈γ fC over γ ∈ �(n). We determine the coefficient of such a term

on both sides of the equation.
First of all, assume γ is such that {1, 2} ⊂ C for someC ∈ γ . Then, on the right-hand side

such a term only occurs in f1 | . . . | fn with coefficient μ(γ , 1). Moreover, let γ̃ ∈ �(n− 1)
be given by γ ∩ {2, . . . , n} subject to replacing i by i − 1 for all i = 2, . . . , n. Note that the
coefficient on the left-hand side equals μ(γ̃ , 1). As �(γ̃ ) = �(γ ), the coefficients on both
sides agree.
Next, assume C1, C2 ∈ γ with 1 ∈ C1 and 2 ∈ C2 . Then, the coefficient of

⊙
C∈γ fC on

right-hand side of (24) equals

μ(γ , 1)+
∑

μ(γ |A, 1)μ(γ |B, 1), (25)

where the sum is over all I ⊂ {2, 3, . . . , �(γ )} and A and B are given by A = C1 ∪⋃i∈I Ci
and B = C2 ∪⋃i∈Ic Ci. Letting i be the number of elements of I , we find that (25) equals

μ(γ , 1)+
�(γ )−2∑

i=0

(
�(γ )− 2

i

)
· (−1)ii! · (−1)�(γ )−i−2(�(γ )− i − 2)!

= μ(γ , 1)+
�(γ )−2∑

i=0
(�(γ )− 2)!(−1)�(γ )−2

= μ(γ , 1)− μ(γ , 1) = 0.

Correspondingly, the coefficient of
⊙

C∈γ fC on the left-hand side of (24) vanishes if there
are C1, C2 ∈ γ with 1 ∈ C1 and 2 ∈ C2 . ��
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3.3 Quasimodularity of pointwise products of moment functions

Not only do themoment functions Sk admit quasimodular q-brackets, but also the homo-
geneous polynomials in themoment functions admit quasimodular q-brackets; here, each
moment function Sk hasweight k in accordancewith the fact that 〈Sk〉q hasweight k . Given
a tuple k = (k1, ..., kn) of even integers, we write Sk = Sk1 · · · Skn . Note that, as a vector
space, S is spanned by these functions Sk . We provide two approaches to proving the
quasimodularity of the q-brackets of the Sk . First, we give a direct proof of the statement
in Theorem 3.3.1, after which, in accordance with our main principle of establishing all
identities before taking the q-bracket, we prove a more general result which will be used
frequently in the next section.

Theorem 3.3.1 The algebra S is a quasimodular algebra. More precisely, for k ∈ (2N)n

one has

〈Sk〉q =
∑

α∈�(n)

∏

A∈α

D�(A)−1G|kA|−2�(A)+2 . (26)

Proof Observe that it suffices to show that

〈⊗
k∈k Sk

〉

q
= Dn−1G|k|−2n+2 (27)

as (26) follows from (27) by Möbius inversion. Recall that 〈f1⊗ · · ·⊗ fn〉q is the coefficient
of x1 · · · xn in log〈exp(∑n

i=1 xifi)〉q (see Definition 2.4.1(ii)). Consider S0k (λ) =
∑∞

i=1 λk−1
i

for all positive even k . Euler’s formula for the generating series of partitions

∑

λ∈P
q|λ| =

∞∏

m=1
(1− qm)−1

follows from writing |λ| = ∑m≥1mrm(λ) and summing over all possible values of
r1(λ), r2(λ), etc. By the same idea, we find

∑

λ∈P
exp
(∑

k
S0k (λ) xk

)
q|λ| =

∞∏

m=1

(
1− exp

(∑
k
mk−1xk

)
qm
)−1

. (28)

The logarithm of this expression equals

∞∑

m,r=1
exp
(
r
∑

k
mk−1xk

) qmr

r
. (29)

Now, assume all parts of k are distinct. In the expansion of (29) the coefficient of xk1 · · · xkn
equals

∞∑

m,r=1
m|k|−nrn−1qmr = Dn−1G|k|−2n+2 .

Hence,
〈⊗

k∈k S
0
k

〉

q
= Dn−1G|k|−2n+2.
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By introducing distinct variables in Eq. (28) for each repeated part of k , we obtain the
same result if not all parts of k are distinct.
Note that if n ≥ 2, by Lemma 2.4.2 both sides of the equation do not change if one

replaces S0k by Sk . In case n = 1 we have established (27) in Proposition 3.1.1 or in
Proposition 3.1.2. Hence, (27) holds and (26) is then implied by Möbius inversion. ��
Denoting

pk (z) =
⎧
⎨

⎩

zk−2

(k−2)! k ≥ 0,
z−2

2 k = 0

and setting S0(λ) ≡ 1, one has the following expression for the generating series of the q-
bracket of the generators of S :

Corollary 3.3.2

∑

k1 ,...,kn≥0
〈Sk1 · · · Skn〉q pk1 (z1) · · · pkn (zn) =

∑

α∈�(n)

∏

A∈α

D|A|−1 Peven(τ ; zA)
2

,

where zA =∑a∈A za and

Peven(τ ; z1, . . . , zn) = 1
2n
∑

s∈{−1,1}n
P(τ , s1z1 + . . . + snzn)

is the totally even part of the propagator in (7).

3.4 Intermezzo: surjectivity of the q-bracket

We deduce from Theorem 3.3.1 the surjectivity of the q-bracket: Every quasimodular
form is the q-bracket of some f ∈ S .

Theorem 3.4.1 The q-bracket 〈 · 〉q : S → M̃ is surjective.

Note that this is not obvious since the q-bracket is not an algebra homomorphism.
Denote by ϑk : Mk → Mk+2 the Serre derivative, given by ϑk = D + 2kG2. Extend this
notation by letting ϑx : M̃ → M̃ for x ∈ Q be given by ϑx = D + 2xG2.

Proposition 3.4.2 Let x ∈ Q\2Z≥0. Then

M̃(≤p)
k =

p⊕

r=0
ϑ r
xMk−2r .

Proof Let f ∈ Mk with f �= 0. Observe that ϑxf is modular precisely if k = x. By our
assumption on x, this is not the case. Hence, ϑx increases the depth strictly by one. The
result follows by induction on p by the same argument as in [22, Proposition 20]. Namely,
ifϕ ∈ M̃≤p

k , then the last coefficientϕp in the quasimodular transformation (5) is amodular
form of weight k− 2p. Hence, ϕ is a linear combination of ϑp

x ϕp and a quasimodular form
of depth strictly smaller than p. ��
Proof of Theorem 3.4.1 First observe that (D + G2)〈f 〉q = 〈S2f 〉q . As D + G2 is not a
Serre derivative, by Proposition 3.4.2 it follows that it suffices to show that the q-bracket is
surjective onmodular forms. Everymodular form can bewritten as a polynomial of degree
at most 2 in Eisenstein series, see [19, Section 5]. Hence, we show that the q-bracket is
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surjective on polynomials of degree at most 2 in all Eisenstein series, possibly involving
the quasimodular Eisenstein series G2.
Eisenstein series are in the image of the q-bracket by Theorem 3.3.1. Note thatDGk can

be written a polynomial of degree 2 in Eisenstein series, explicitly:

DGk = k + 3
2(k + 1)

Gk+2 −
∑

0<j<k
j≡1 (2)

(
k
j

)
Gj+1Gk+1−j .

Also, we have an explicit formula for the q-bracket of SkSl :

〈SkSl〉q = GkGl + DGk+l−2 (30)

so that this q-bracket is expressible as a polynomial of degree at most 2 in the Eisenstein
series.
Now fix an integerm ≥ 4.We consider the Eqs. (30) for all k+ l = m. It suffices to show

that we can invert these equations, i.e., write GkGl as a linear combination of q-brackets
of products of at most two Si. A direct computation shows that the determinant of the
matrix corresponding to the equations above equals

1−
∑

0<j<m
j≡1 (2)

(
m
j

)
= 1− 2m−3 < 0.

Hence, the q-bracket is surjective. ��

Remark 3.4.3 Only the last step of above proof uses the explicit formula (30) for the
derivative of Eisenstein series. The author expects one could conclude the proof by an
abstract argument, but he is not aware of such an argument.

3.5 The connected product of moment functions

In the second approachwe compute the connected product Sk1 | . . . | Skn , which by Propo-
sition 3.2.5 yields the left-hand side of (26) after taking the q-bracket. The result is formu-
lated in Theorem 3.5.4 and depends on two technical lemma’s which we state first.
In order to do so, we start by introducing the following notation. For a partition λ and

a subset A of N, we write λ|A for the partition where a part of size m occurs rm(λ) times
ifm ∈ A and does not occur ifm /∈ A. For example, (5, 4, 3, 3, 1, 1, 1)|{4,1} = (4, 1, 1, 1).

Definition 3.5.1 Wesay f : P → Q is supported onA if f (λ) = f (λ|A) for all partitions λ.

The first lemma expresses the induced product of two functions F and G supported on
disjoint sets as the pointwise product of these functions, and of two functions F and G
supported on the same singleton set as a convolution product of functions.

Lemma 3.5.2 Suppose X and Y are subsets of N and F, F ′, G, G′ : P → Q are supported
on X, X, Y and Y , respectively. Then

(i) F 	 F ′ is supported on X;
(ii) If X and Y are disjoint, then

FG 	 F ′G′ = (F 	 F ′)(G 	 G′), in particular F 	 G = FG;
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(iii) If X = Y = {m}, then
(F 	 G)(λ) = ∂(f ∗ g)(rm(λ)),

where f and g are such that F (λ) = f (rm(λ)), G(λ) = g(rm(λ)).

Proof By Proposition 3.2.3, we have

(F 	 F ′)(λ) =
∑

α∪β∪γ=λ

(−1)�(γ ) F (α) F ′(β),

where it is understood that γ is a strict partition. We have that

(F 	 F ′)(λ) =
( ∑

α∪β∪γ=λ|X
(−1)�(γ ) F (α) F ′(β)

)( ∑

α∪β∪γ=λ|Xc
(−1)�(γ )

)

= (F 	 F ′)(λ|X ) · (1	 1)(λ|Xc ).

Recall f 	 1 = f for all functions f , hence (F 	 F ′)(λ) = (F 	 F ′)(λ|X ), which is the first
statement.
Next, we have that

(FG 	 F ′G′)(λ) =
∑

α∪β∪γ=λ

(−1)�(γ ) (FG)(α) (F ′G′)(β),

where again it is understood that γ is a strict partition. Using the fact that F, F ′, G and G′

are supported on X, X, Y and Y , respectively, we obtain

(FG 	 F ′G′)(λ) =
∑

α∪β∪γ=λ

(−1)�(γ |X )+�(γ |Y )+�(γ |Z ) F (α|X )G(α|Y ) F ′(β|X )G′(β|Y ),

(31)

where Z denotes the complement of X ∪ Y in N. We factor the right-hand side of (31) as
( ∑

α∪β∪γ=λ|X
(−1)�(γ ) F (α) F ′(β)

)( ∑

α∪β∪γ=λ|Y
(−1)�(γ )G(α)G′(β)

)( ∑

α∪β∪γ=λ|Z
(−1)�(γ )

)
.

By definition of the product	, we conclude

(FG 	 F ′G′)(λ)= (F 	 F ′)(λ|X ) (G 	 G′)(λ|Y ) (1	 1)(λ|Z)= (F 	 F ′)(λ) (G 	 G′)(λ).

By taking F ′ andG to be the constant function 1 (which is supported on every X and Y ),
we see that F 	 G′ = FG′ is implied by FG 	 F ′G′ = (F 	 F ′)(G 	 G′).
Next, for iii we have

(F 	 G)(λ) =
∑

α∪β∪γ=λ

(−1)�(γ )f (rm(α)) g(rm(β))

=
∑

α∪β∪γ=λ|{m}
(−1)�(γ )f (rm(α)) g(rm(β))

Letting i = rm(α) and j = rm(β), we have

(F 	 G)(λ) =
∑

i+j=rm(λ)
f (i) g(j)−

∑

i+j+1=rm(λ)
f (i) g(j)
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= (f ∗ g)(rm(λ))− (f ∗ g)(rm(λ)− 1)

= ∂(f ∗ g)(rm(λ)). ��

The second lemma is concerned with the vanishing of certain sums of the Möbius
functions of set partitions. Given α ∈ �(n) and a subset Z of [n], we let

α|Z = {A ∩ Z | A ∈ α s.t. A ∩ Z �= ∅} ∈ �(Z),

where �(Z) denotes the set of all partitions of the set Z. Observe that

�(α) = �(α|Z)+ |{A ∈ α | A ∩ Z = ∅}|,
in particular �(α|Z) ≤ �(α). Given Z ⊂ [n], define an equivalence relation on �(n) by
writing α ∼ β if

α|Z = β|Z and α|Zc = β|Zc . (32)

Lemma 3.5.3 Let Z ⊆ [n]. If Z �= ∅ and Z �= [n], then for all β ∈ �(n) we have
∑

α∼β

μ(α, 1) = 0.

Proof Observe that α ∼ β precisely if for all A ∈ α we have (A ∩ Z = ∅ or A ∩ Z ∈ β|Z)
and similarly we have (A ∩ Zc = ∅ or A ∩ Zc ∈ β|Zc ). Hence, every A ∈ α is the union
of some A1 ∈ α|Z ∪ {∅} and A2 ∈ α|Zc ∪ {∅} with not both A1 = ∅ and A2 = ∅.
Write a = �(β|Z), b = �(β|Zc ), and assume without loss of generality that a ≤ b. Write k
for the number of A ∈ α for which both A1 �= ∅ and A2 �= ∅. Now, �(α) = a + b − k .
Moreover, given k , Z and β , there are
(
a
k

)(
b
k

)
k !

ways to choose α ∼ β with �(α) = a+ b− k . Hence, we find

∑

α∼β

μ(α, 1) =
a∑

k=0
(−1)a+b−k−1(a+ b− k − 1)!

(
a
k

)(
b
k

)
k !

= (−1)a+b−1(a+ b− 1)!
a∑

k=0

(−a)k (−b)k
(−a− b+ 1)k (1)k

,

where (d)k = ∏k−1
i=0 (d + i) is the rising Pochhammer symbol. This expression equals up

to the constant (−1)a+b−1(a+ b− 1)! the special value 2F1(−a,−b,−a− b+ 1; 1) of the
hypergeometric function 2F1(−a,−b,−a− b+ 1; z), which vanishes by Gauss’s theorem
subject to a, b > 0. As Z �= ∅, we have a > 0. Also, b > 0 as Z �= [n]. ��

The following result not only computes the connected product of the moment func-
tions Sk , but also is one of the main technical results needed to prove Theorem 1.1.

Theorem 3.5.4 Let ki, fi for i = 1, . . . , n be such that (18) defines Ski,fi . Then,

(i) There exists a function g : N → Q such that

Sk1 ,f1 | . . . | Skn,fn = S|k|,g .
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In fact,

g =
∑

α∈�(n)
μ(α, 1) ∂�(α)−1∗

A∈α

fA,

where fA =∏a∈A fa and∗ denotes the convolution product (11).
(ii) If f1(x) = x, then ∂g = f1 ∂ g̃ with g̃ given by Sk2 ,f2 | . . . | Skn,fn = S|k|,g̃ .

Remark 3.5.5 We extend g by g(0) = 0. Here and later in this work, we usually omit the
dependence of g on f1, . . . , fn in the notation.

Proof For the first part, we letmkA fA◦rm denote
∏

i m
kAi
i ·fAi ◦rmi ,where rmi is considered

as a functionP → Q. In case n = 1 the result (i) is trivially true, so we assume n ≥ 2. By
definition of the connected product and Sk,f (see (23) and (18) respectively), we have

Sk1 ,f1 | . . . | Skn,fn =
∑

α∈�(n)
μ(α, 1)

⊙

A∈α

( ∑

m∈N�(A)

mkA fA ◦ rm
)

=
∑

m∈Nn

∑

α∈�(n)
μ(α, 1)

⊙

A∈α

mA
kA fA ◦ rm . (33)

For all m ≥ 0, the function rm : P → Q is supported on {m}. Having Lemma 3.5.2
in mind, we aim to factor the functions in (33) as a product of functions supported on
a singleton set. Given m ∈ Nn, we start by all functions supported on {m1}, that is, we
let Z(m) = {i | mi = m1} ⊂ [n]. Note that Z(m) determines all i for which the support
of rmi contains m1. Denote by E(m) the set of equivalence classes of �(n) for this choice
of Z = Z(m). We split the sum over α ∈ �(n) in (33) as a sum over the elements of E(m),
i.e.,

Sk1 ,f1 | . . . | Skn,fn =
∑

m∈Nn

∑

[β]∈E(m)

∑

α∈[β]
μ(α, 1)

⊙

A∈α

mA
kA fA ◦ rmA . (34)

Then, given m ∈ Nn, Z = Z(m) and A ∈ α|Z , the function λ �→ mA
kA fA(rmA (λ)) is

supported on {m1}, whereas for A ∈ α|Zc the function λ �→ mA
kAfA(rmA(λ)) is supported

on N\{m1}. Hence, by Lemma 3.5.2(ii) we find that (34) equals

∑

m∈Nn

∑

[β]∈E(m)

∑

α∈[β]
μ(α, 1)

( ⊙

A∈α|Z
mA

kA fA ◦ rmA

)( ⊙

A∈α|Zc
mA

kA fA ◦ rmA

)
. (35)

Instead of writing the second factor as a product of functions which are all supported on
a singleton set, we make the following observation.
As α|Z = β|Z and α|Zc = β|Zc , the only dependence on α in the above equation is

in μ(α, 1). By construction Z(m) is non-empty. Hence, by Lemma 3.5.3 we have that
if Z �= [n] then for all β ∈ E(m) we have

∑
α∈[β] μ(α, 1) = 0. This implies that we can

restrict the first sum in (35) tom ∈ Nn for whichmi = mj for all i, j, that is,

Sk1 ,f1 | . . . | Skn,fn =
∑

m∈N

∑

α∈�(n)
μ(α, 1)

⊙

A∈α

∏

a∈A
mka · fa ◦ rm .

Applying Lemma 3.5.2iii �(α)− 1 times and using (12), we obtain the desired result.
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For the second part, letZ = {1} and consider an equivalence class [β] for the equivalence
relation (32) determined by Z. We split the sum

∂g =
∑

α∈�(n)
μ(α, 1) ∂�(α)∗

A∈α

fA

over all conjugacy classes. Write A1 for the element of α for which 1 ∈ A1. Denote Â1 =
A1\{1} and γ = β|{2,...,n}. In case A1 = {1} one has by (15) that

μ(α, 1) ∂�(α)∗
A∈α

fA = −�(γ )μ(γ , 1) ∂�(γ )−1(1− ∂)∗
A∈γ

fA. (36)

In case A1 �= {1} (i.e., |A1| ≥ 2), one finds by (13) that

μ(α, 1) ∂�(α)∗
A∈α

fA = μ(γ , 1) ∂�(γ )−1(f1 ∂fÂ1
+ (1− ∂)fÂ1

) ∗ ∗
A∈γ \Â1

fA. (37)

As [β] contains one element for which (36) holds and �(γ ) elements for which (37) holds,
one finds

∑

α∈[β]
μ(α, 1)∂�(α)∗

A∈α

fA = μ(γ , 1) ∂�(γ )−1
∑

C∈γ

(
f1 ∂fC ∗ ∗

A∈γ \C
fA
)
.

By (12) and (14), this equals

μ(γ , 1)
∑

C∈γ

(
f1 ∂fC ∗ ∗

A∈γ \C
∂fA
)

= μ(γ , 1) f1 ∂�(γ )∗
A∈γ

fA.

Hence, summing over all conjugacy classes, we obtain

∂g = f1
∑

γ∈�(n−1)
μ(γ , 1) ∂�(γ )∗

A∈γ

fA = f1 ∂ g̃ .

The case when f1(x) = . . . = fn(x) = x is the easiest example (for arbitrary n ∈ N) of the
above result. In this case one generalizes Theorem 3.3.1 by a result which, in accordance
with ourmain principle of establishing identities before the q-bracket, yields this theorem
after taking the q-bracket.

Corollary 3.5.6 For all positive even k1, . . . , kn, one has

Sk1 | . . . | Skn = S|k|−n,Fn .

Proof Recall Sk = Sk−1,id and apply Theorem 3.5.4(ii) n− 1 times. ��

Later we will use Theorem 3.3.1 when the fi are Faulhaber polynomials. This is the
situation in which we prove the main result of this paper, in which case the following
lemma is useful.

Lemma 3.5.7 If f1, . . . , fn are Faulhaber polynomials of degrees d1, . . . , dn, respectively,
and g : N → Q is as in Theorem 3.5.4, then there exists a polynomial p such that ∂g(m) =
p(m) for all m ∈ N. Moreover, p is strictly of degree |d| − 1, is even or odd and p(0) = 0.
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Proof By Theorem 3.5.4(ii) we can assume w.l.o.g. that none of the degrees di equals 1.
Now, consider a monomial ∂�(α)∗A∈α

fA in ∂g . Note that both ∗ and ∂ are operators on
the space of polynomials, more precisely:

∗ : Q[x]≤k × Q[x]≤l → Q[x]≤k+l+1 and ∂ : Q[x]≤k → Q[x]≤k−1

as

xk ∗ xl = k !l!
(k + l + 1)!

xk+l+1 + O(xk+l) and ∂(xk ) = kxk−1 + O(xk−2).

Hence, the degree of such a monomial is |d| − 1. Now observe that by the symmetry (16)
one has

∂fA(x) = fA(x)− fA(x − 1) = fA(x)− (−1)|A|fA(−x).

Therefore, we see that ∂fA is even or odd and as the convolution product preserves this
property, everymonomial is even or odd. By the same arguments ∂fA(0) = 0 and hence the
constant term of every monomial vanishes. Therefore, every monomial ∂�(α)−1∗A∈α

fA
in g satisfies the desired properties, so that it remains to show that the leading coefficient
does not vanish.
As Fl = 1

l x
l + O(xl−1), the leading coefficient of a monomial as above equals

|d|∏
i di

∏n
i=1 dAi !
|d|! ,

where for a set B we have set dB =∑b∈B db. Hence, the leading coefficient of ∂g equals

|d|∏
i di

·
∑

α∈�(n)
μ(α, 1)

( |d|
dA1 , . . . , dAr

)−1
, (38)

where α = {A1, . . . , Ar}. Note that this number has the following combinatorial interpre-
tation. Let n balls be given which are colored such that d1 balls are colored in the first
color, d2 in the second color, etc. Suppose we use the same multiset of colors to addition-
ally mark each ball with a dot (possibly of the same color), that is, d1 balls are marked
with a dot of the first color, d2 with a dot of the second color, etc. Given a subset C of the
set of all colors, it may happen that if we consider all balls colored by the colors of C , all
the dots on these balls are colored by the same set of colors C . We then say that the balls
are well-colored with respect to C . For example, both the empty set of colors and the set
of all possible colors give rise to a well-coloring of balls. If we independently at random
color and mark the balls as above, the probability that the balls colored by a subset C are
well-colored is

(|d|
dC

)−1
. Hence, by applying Möbius inversion the number

∑

α∈�(n)
μ(α, 1)

( |d|
dA1 , . . . , dAr

)−1

equals the probability that if we independently at random color and mark the balls as
above, there does not exist a proper non-empty subset C of the colors such that the
balls colored by C are well-colored. If we mark at least one ball of every color i with
color i + 1 (modulo n), such a set C cannot exist. Hence, the number (38) is positive, so
the polynomial p is strictly of degree |d| − 1. ��
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4 Three quasimodular algebras
4.1 Introduction

Given integers k, l with k ≥ 0 and l ≥ 1 recall the definition of the double moment
functions in (4) by

Tk,l(λ) = − Bk+l
2(k + l)

(δl,1 + δk,0)+
∞∑

m=1
mkFl(rm(λ)).

Unless stated explicitly, we always assume that

k ∈ Z≥0, l ∈ Z≥1, k + l ∈ 2Z. (39)

Moreover, it turns out to be useful to define T0,0 ≡ T−1,1 ≡ −1 and Tk,l ≡ 0 for other
pairs (k, l) with k < 0 or l < 1.

Remark 4.1.1 The double moment functions specialize to the moment functions studied
in the previous section whenever l = 1, i.e., Tk,1 = Sk+1. Also, as Fl(1) = 1, for a strict
partition λ one has Tk,l(λ) = Sk (λ). Hence, our functions Tk,l can be seen as an extension
of the algebra of supersymmetric polynomials, mentioned in the introduction, to functions
on all partitions (and not only on strict partitions).

Remark 4.1.2 In case k + l is odd, the q-bracket of Tk,l does not vanish—in contrast to
the shifted symmetric functions for which the q-bracket vanishes for all odd weights.
However, the q-bracket of a polynomial involving the double moment functions in both
even and odd weights also is a polynomial in the so-called combinatorial Eisenstein series,
defined in Definition 7.2.4.

These double moment functions give rise to three different graded algebras, which turn
out to be quasimodular (see page 1).

Definition 4.1.3 Define the Q-algebras S , Sym	(S) and T by the condition that

• S is generated by the moment functions Sk under the pointwise product;
• Sym	(S) is generated by the elements of S under the induced product;
• T is generated by the double moment functions under the pointwise product.

Our main result Theorem 1.1 is slightly refined by the following statement.

Theorem 4.1.4 Let X be any of the algebras S , Sym	(S) and T . Then, X is

• quasimodular;
• closed under the pointwise product;
• closed under the induced product if X �= S .

Moreover, the three algebras are related by S � Sym	(S) � T .

Remark 4.1.5 Observe that being closed under the pointwise product is not implied by
being quasimodular. For example, the algebra R = 〈 · 〉−1

q (M̃) in Remark 3.2.6 is quasi-
modular, closed under the induced product and T ⊂ R, but R is not closed under the
pointwise product [23, Section 9].
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In the next section we provide different bases for these algebras: in this way we obtain
many examples of functions with a quasimodular q-bracket, and moreover, the study of
these bases leads to a proof of Theorem 4.1.4.

Remark 4.1.6 The algebras T and �∗ are different algebras, as follows from the observa-
tion that f (λ) = (−1)k f (λ′) for all f ∈ �∗

k , which follows by writing a shifted symmetric
polynomial as a symmetric polynomial in the Frobenius coordinates. This does not hold
for all f ∈ T , as can easily be checked numerically. On the other hand, it is not true
that f (λ) �= ±f (λ′) for all f ∈ T , as Q2 = T1,1 with Qk defined by Eq. (2). More precisely,
one has

T ∩ �∗ = Q[Q2].

Namely, if f ∈ T ∩ �∗, consider a strict partition λ (i.e., a partition for which rm(λ) ≤ 1
for all m). Then, we have that f (λ) is symmetric polynomial in the parts λ1, λ2, . . .. On
the other hand, as f ∈ �∗, it follows that f (λ) is a shifted symmetric polynomial in
the parts λ1, λ2, . . .. The only polynomials of degree d in the variables xi that are both
symmetric and shifted symmetric are up to a constant given by

(∑
i xi
)d , hence f ∈ Q[Q2].

4.2 The basis given by double moment functions

In this section we show that T is closed under the induced product. Moreover, we show
thatS and Sym	(S) are subalgebras ofT . In the next section, we use these results to define
a weight grading on T . Observe that as a vector space T is spanned by the functions Tk,l ,
defined byTk,l =

∏
i Tki,li , for all k, l ∈ Zn satisfying the conditions (39) for all pairs (k, l) =

(ki, li).

Theorem 4.2.1 The algebra T is closed under the induced product.

Proof Observe that

Tk,l 	 Tk ′ ,l′ = Tk,lTk ′ ,l′ − Tk,l |Tk ′ ,l′ .

Hence, it suffices to show that Tk,l |Tk ′ ,l′ can be expressed in terms of elements of T .
By Theorem 3.5.4 and Lemma 3.5.7, we have that an expression of the form:

Tk1 ,l1 | · · · |Tkn,ln

is an element of T . Proposition 3.2.7 implies that f1f2 | f3 | f4 | . . . | fn equals

(f1 | f2 | . . . | fn) +
∑

A�B={3,...,n}

(
(f1 | fA1 | fA2 | . . .) · (f2 | fB1 | fB2 | . . .)

− (f1 | fA1 | fA2 | . . .)
∣∣ (f2 | fB1 | fB2 | . . .)

)
.

Hence, by using this proposition recursively, we can replace the pointwise products inTk,l
andTk ′ ,l′ by a linear combination of connected products of doublemoment functionsTk,l ,
showing that Tk,l |Tk ′ ,l′ is an element of T . ��
Now, we determine a basis for the three algebras. Let T mon be the set of all monomials

for the pointwise product in T . Two elements of T mon are considered to be the same if
one can reorder the products so that they agree, for example T1,1T3,5 and T3,5T1,1 are the
same function. In other words, every elements of T mon can be written as Tk,l in a unique
way up to commutativity of the (pointwise) product.
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Theorem 4.2.2 We have

S � Sym	(S) � T . (40)

Moreover, a basis for

• T is given by T mon;
• Sym	(S) is given by all Tk,l ∈ T mon satisfying ki ≥ li for all i;
• S is given by all Tk,l ∈ T mon satisfying li = 1 for all i.

Proof It suffices to prove the second part, as from the stated bases statement (40) follows
immediately.
By definition the elements of T mon generate T as a vector space. Hence, it suffices to

show that they are linearly independent, i.e., that if
∑

α∈I
cαTα(λ) = 0 (41)

for all λ ∈ P , where I is the set of all pairs (k, l) up to simultaneous reordering and cα ∈ Q,
we have that cα = 0 for all α.
First of all, let λ = (N1, N2) and consider (41) as N1 → ∞. Note that Tk,l(λ) grows as

N |k|
1 + Nkmin

2 N |k\kmin|
1

plus lower-order terms, where kmin is the smallest of the ki in k . Hence, |k| should be
constant among allTα in (41).Moreover, we conclude that kmin should be constant among
all Tα in (41). Continuing by considering the lower-order terms, we conclude that k is
constant among all Tα . Similarly, by instead considering partitions consisting ofN1 times
the part 1 and N2 times the part 2, we conclude that l is constant among all Tα . Hence,
there is at most one α with nonzero coefficient cα . We conclude that cα = 0 for all α ∈ I .
For Sym	(S) we show, first of all, that indeedTk,l ∈ Sym	(S) if ki ≥ li for all i. Let k ≥ l

of the same parity be given. By Corollary 3.5.6 we find that

T1,1 |T1,1 | . . . |T1,1︸ ︷︷ ︸
l−1

|Tk−l+1,1 = S2 | S2 | . . . | S2︸ ︷︷ ︸
l−1

| Sk−l+2 = Tk,l .

Therefore, Tk,l ∈ Sym	(S) for all k ≥ l. Moreover, by applying Möbius inversion on
Eq. (23), which defines the connected product, we find

Tk,l =
∑

α∈�(n)

⊙

A∈α

(TkA1 ,lA1 |TkA2 ,lA1 | . . .). (42)

As we already showed that Tk,l ∈ Sym	(S) if k ≥ l, we find Tk,l ∈ Sym	(S) if ki ≥ li for
all i.
Next, we show that all elements in Sym	(S) are a linear combination of the Tk,l satis-

fying ki ≥ li. As S clearly is contained in the space generated by the Tk,l for which ki ≥ li,
it suffices to show that the latter space is closed under 	. For this we follow the proof of
Theorem 4.2.1 observing that in each step ki ≥ li, so that indeed the Tk,l for which ki ≥ li
form a generating set for Sym	(S).
As we already showed that the Tk,l are linearly independent, we conclude that the Tk,l ∈

T mon satisfying ki ≥ li for all i form a basis for Sym	(S).
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The last part of the statement follows directly, as by definition all Tk,l ∈ T mon satisfy-
ing li = 1 for all i generate S , and by the above they are linearly independent. ��

4.3 The basis defining the weight grading

By definition, the double moment functions generate T under the pointwise product. In
this section we show that we can replace the pointwise product in the latter statement
by the induced product. Again we will consider every reordering of the factors in Tk1 ,l1 	
· · · 	 Tkn,ln due to commutativity of the products to be the same element. Then, we have:

Theorem 4.3.1 The elements Tk1 ,l1 	 · · · 	 Tkn,ln form a basis for T . A basis for the
subspace Sym	(S) is given by the subset of elements for which ki ≥ li for all i.

Proof Assign to Tk,l weight k + l. This defines a weight filtering on T with respect to
the pointwise product. Consider the subspace of elements of weight at most w in T . The
number of basis elements in the basis given by the pointwise product in the previous
section equals the number of induced products of the Tk,l . Hence, it suffice that the
induced products of the Tk,l generate T . For this we proceed by induction first on the
weight and then on the depth. Here, by depth we mean the unique filtering under the
pointwise product for which every Tk,l has depth 1, usually called the total depth.
Trivially, every element of weight 0 or depth 0 is generated by (empty) induced products

of the Tk,l . Next, consider Tk,l ∈ T and assume all elements of lower weight and of the
same weight and lower depth are generated by induced product of the Tk,l . Let Tk,l ∈ T
of weight w be given and write k ′, l′ for k, l after omitting the last (nth) entry. Then

Tk,l = Tk ′ ,l′ 	 Tkn,ln − Tk ′ ,l′ |Tkn,ln .

Note that Tk ′ ,l′ is of weight strictly less than w, hence is generated by induced products
of the Tk,l . Moreover, by Proposition 3.2.7 and Theorem 3.5.4 it follows that the depth
of Tk ′ ,l′ |Tkn,ln is at most n− 1. Hence, by our induction hypothesis, it is generated by
induced products of the Tk,l . We conclude that Tk,l is generated by induced products of
the Tk,l , which proves the first part of the theorem.
The second part follows by the same proof, everywhere restricting to those Tk,l for

which k ≥ l. ��

By the above theorem, we can define a weight grading on T .

Definition 4.3.2 Define a weight grading on T by assigning to Tk,l weight k + l and
extending under the induced product.

Note that both the grading on T and the grading on S correspond to the grading on
quasimodular forms after taking the q-bracket. Hence, the grading on S is the restriction
of the grading on T .
The weight grading defines a weight operator. In Sect. 5 we extend this weight operator

to an sl2-triple acting on T , so that T becomes an sl2-algebra.
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4.4 The n-point functions

As induced products of theTk,l form a basis for T , knowing 〈f 〉q for all f ∈ T is equivalent
to knowing the following generating function, called the n-point function

Fn(u1, . . . un, v1, . . . vn) =
∑

k,l
〈Tk1 ,l1 	 · · · 	 Tkn,ln〉q

uk11 · · ·uknn vl1−1
1 · · · vln−1

n
k1! · · · kn!(l1 − 1)! · · · (ln − 1)!

for all n ≥ 0. Here the sum is over all ki, li such that ki + li is even and m! is consider to
be 1 form < 0. As the q-bracket is a homomorphismwith respect to the induced product,
we directly conclude that

Fn(u, v) =
n∏

i=1
F1(ui, vi). (43)

We also define the partition function by

�(t) =
∞∑

n=0

1
n!
∑

k,l
〈Tk1 ,l1 	 · · · 	 Tkn,ln〉qtk1 ,l1 · · · tkn,ln .

The following result (together with (43)) expresses these functions in terms of the Jacobi
theta series (see (8)).

Theorem 4.4.1 For all n ≥ 0 one has

F1(u, v) = −1
2

θ ′(0)θ (u+ v)
θ (u)θ (v)

, �(t) = exp
(
[x0y0]F1

(
∂

∂x
,

∂

∂y

)∑

k,l
tk,lxkyl

)
,

where [x0y0] denotes taking the constant coefficient.

Proof We have that

F1(u, v) =
n∏

i=1

(
− 1
2u

− 1
2v

+
(∑

k,l
Dl−1Gk−l+2 +

∑

k,l
DkGl−k

)
ukvl−1

k !(l − 1)!

)
,

where in the sum it is understood that k+l is even, k ≥ 0, l ≥ 1. The expression for F1(u, v)
in the statement now follows from [20, ��3]. The expression for � follows immediately
from this result. ��

5 Differential operators
5.1 The derivative of a function on partitions

Note that for all f ∈ QP one has

D〈f 〉q = 〈S2f 〉q − 〈S2〉q〈f 〉q . (44)

Hence, by letting Df := S2 | f = S2f − S2 	 f for f ∈ QP , we have that D〈f 〉q = 〈Df 〉q .
Moreover, D acts as a derivation:

Proposition 5.1.1 The map D : QP → QP is an equivariant derivation, i.e., D is linear,
satisfies the Leibniz rule and

D〈f 〉q = 〈Df 〉q.
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In fact, for all k ≥ 1, the mapping f �→ Sk | f is a derivation. Recall the definition of the
Möbius function μ defined in Proposition 3.1.3 and denote S0k = Sk − Sk (∅).

Lemma 5.1.2 For all even m ≥ 2 one has

(i) S0m 	 μ = −S0m μ;
(ii) The mapping (QP ,	) → (QP ,	), f �→ Sm | f is a derivation, uniquely determined

on T by

Sm |Tk,l = Tk+m−1,l+1 .

Remark 5.1.3 In case m ≥ 4, the derivation f �→ Sm | f does not correspond to a
derivation on M̃, i.e., a derivation dm such that dm〈f 〉q = 〈Sm | f 〉q for all f ∈ T . For
instance, although the q-brackets of Tm,m and Tm−1,m+1 are the same, the q-brackets
of Sm |Tm,m = T2m−1,m+1 and Sm |Tm−1,m+1 = T2m−2,m+2 are different.

Proof First of all, by Proposition 3.1.4, one has
( ∑

λ∈P
uλ

)
〈S0k 	 μ〉u =

( ∑

m,r≥1
mk−1urm

)( ∑

λ∈P
μ(λ)uλ

)
. (45)

LetSm be the set of strict partitions not containingm as a part. Then, we can rewrite (45)
as
∑

m

∑

λ∈Sm

mk−1μ(λ)umuλ = −
∑

λ∈P
S0k (λ)μ(λ)uλ ,

since μ(λ∪ (m)) = −μ(λ) for λ ∈ Sm, so that for r ≥ 2 the coefficient of urmuλ cancels in
pairs. We conclude that S0k 	 μ = −S0k μ.
For the second part, note that (i) implies that

Sk 	 μ = −
(
Sk + Bk

k

)
μ.

Let f, g ∈ QP be given. Then

Sk | (f 	 g) = Sk (f 	 g)− Sk 	 f 	 g.

If α ∪ β ∪ γ = λ then Sk (λ) = Sk (α)+ Sk (β)+ Sk (γ )+ Bk
k , hence

Sk (λ) (f 	 g)(λ) =
∑

α∪β∪γ=λ

(
Sk (α)+ Sk (β)+ Sk (γ )+ Bk

k

)
f (α) g(β)μ(γ )

= (Sk f )	 g + f 	 (Skg) +
∑

α∪β∪γ=λ

(
Sk (γ )+ Bk

k

)
f (α) g(β)μ(γ )

= (Sk f )	 g + f 	 (Skg) −
∑

α∪β∪γ=λ

(Sk 	 μ)(γ ) f (α) g(β)

= (Sk f )	 g + f 	 (Skg) − Sk 	 f 	 g.

Therefore,

Sk | (f 	 g) = (Sk f )	 g + f 	 (Skg)− 2 Sk 	 f 	 g = (Sk | f )	 g + f 	 (Sk | g),
i.e., the mapping f �→ Sk | f is a derivation. The formula Sm |Tk,l = Tk+m−1,l+1 follows
directly from Theorem 3.5.4. ��
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Proof of Proposition 5.1.1 As S2 | f = S2f − S2 	 f is derivation by the above lemma, the
results follows directly from (44). ��

5.2 The equivariant q-bracket

In this section we extend the action by the sl2-triple (D, d,W ) on quasimodular forms
to T . As the derivation d does not act on all power series in q, but only on quasimodular
forms, we cannot hope to define d on all functions on partitions as we did with D. On the
algebra T , however, this is possible. We define an sl2-action on this space and we show
that the q-bracket restricted to T is an equivariant map of sl2-algebras.
Note that the following definition agrees with the definition ofD in the previous section:

Definition 5.2.1 Define the derivations D,W, d on T by

DTk,l = Tk+1,l+1,

W Tk,l = (k + l)Tk,l ,

dTk,l = k(l − 1)Tk−1,l−1 − 1
2δk+l−2.

One immediately checks that D,W and d satisfy the commutation relation of an sl2-
triple on T . The corresponding acting of sl2 on T makes the q-bracket equivariant, so
that a refined version of Theorem 1.2 is:

Theorem 5.2.2 (The sl2-equivariant symmetric Bloch–Okounkov theorem) The alge-
bra T is an sl2-algebra with respect to the above action of sl2 on T . Moreover, the q-bracket
becomes an equivariant map of sl2-algebras, i.e., for f ∈ T one has

D〈f 〉q = 〈Df 〉q, W 〈f 〉q = 〈Wf 〉q, d〈f 〉q = 〈df 〉q .

Proof We already observed that the first of the three equality holds and the second is the
homogeneity statement. Hence, it suffices to prove the last statement. Using (9) we find
that for a ≥ 0, b ≥ 2 one has

d(DaGb) = a(a+ b− 1)Da−1Gb − 1
2δa+b−2.

Hence,

d〈Tk,l〉q = k(l − 1)〈Tk−1,l−1〉q − δk+l−2 = 〈dTk,l〉q
and the last statement follows from the Leibniz rule. ��

5.3 Rankin–Cohen brackets

The sl2-action allows us to define Rankin–Cohen brackets on T .

Definition 5.3.1 For two elements f, g ∈ T and n ≥ 0 the nth Rankin–Cohen bracket is
given by

[f, g]n =
∑

r,s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
l + n− 1

r

)
Drf 	 Dsg. (46)
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Note that the formula (46) would have defined the Rankin–Cohen brackets on M̃ if D
acts by q ∂

∂q and the induced product is replaced by the usual product, whereas in this
line D acts on T as explained in the previous sections.
If f, g ∈ ker d, then 〈f 〉q and 〈g〉q are modular forms. The Rankin–Cohen bracket of two

modular forms is a modular form; analogously, we have:

Proposition 5.3.2 If f, g ∈ ker d, then [f, g]n ∈ ker d.

Proof Using (9), we find that

d[f, g]n =
∑

r,s≥0
r+s=n

(−1)r
(k + n− 1)!
s!(k + r − 2)!

(l + n− 1)!
(r − 1)!(k + s − 1)!

Dr−1f 	 Dsg

+ (−1)r
(k + n− 1)!

(s − 1)!(k + r − 1)!
(l + n− 1)!
r!(l + s − 2)!

Drf 	 Ds−1g,

where 1
(−1)! should taken to be 0. This is a telescoping sum, vanishing identically. ��

Remark 5.3.3 The above bracket makes the algebra T into a Rankin–Cohen algebra,
meaning the following. Let A∗ = ⊕k≥0Ak be a graded K -vector space with A0 = K
and dimAk < ∞ (for usA = T ). We sayA is a Rankin–Cohen algebra if there are bilinear
operations [ , ]n : Ak ⊗Al → Ak+l+2n (k, l, n > 0) which satisfy all the algebraic identities
satisfied by the Rankin–Cohen brackets on M̃ [21].

5.4 A restricted sl2-action

Theorem 5.2.2 does not make S into an sl2-algebra. Namely, D does not preserve S .
However, if we allow ourselves to deform the sl2-triple (D, d,W ) as in [18], we can define
an sl2-action on S . This action, however, does not make S into an sl2-algebra, as the
deformed operators are not derivations.
The operator taking the role of d is the operator s : Sk → Sk−2 defined by

s = 1
2
∑

k,l≥0
(k + l)Sk+l

∂2

∂Sk+1 ∂Sl+1
− 1

2
∂

∂S2
.

The operator D is replaced by multiplication with S2.

Lemma 5.4.1 The triple (S2, s,W − 1
2 ) forms an sl2-triple of operators acting on S .

Proof Observe that

[s, S2]f =
∑

k
(k + 1)Sk+1

∂

∂Sk+1
f − 1

2 f = (W − 1
2 )f.

As s and S2 decrease, respectively, increasing the weight by 2, the claim follows. ��

Theorem 5.4.2 The q-bracket 〈 · 〉q : S → M̃ is an equivariant mapping with respect
to the sl2-triple (S2, s,W − 1

2 ) on S and the sl2-triple (D + G2, d,W − 1
2 ) on M̃, i.e., for

all f ∈ S one has

(D + G2)〈f 〉q = 〈S2f 〉q, (W − 1
2 )〈f 〉q = 〈(E − 1

2 )f 〉q, d〈f 〉q = 〈sf 〉q . (47)
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Proof The first of the three equalities in (47) follows from the definition of the q-bracket;
the second is the homogeneity statement of Theorem 5.2.2. Hence, it remains to prove
the last equation d〈f 〉q = 〈sf 〉q .
Given k ∈ Nn, let ki ∈ Nn−1 be given by ki := (k1, . . . , ki−1, ki+1, . . . , kn) omitting ki.

Similarly, define ki,j ∈ Nn−2 by omitting ki and kj . Then

sSk =
∑

i �=j
(ki + kj − 2)Ski+kj−2Ski,j −

1
2
∑

i: ki=2
Ski .

By Theorem 3.3.1, one finds
〈
Ski+kj−2Ski,j

〉

q
=

∑

β∈�(n)
∃I∈β : {i,j}⊂I

D�(I)−2G|kI |−2�(I)+2
∏

B �=I
D�(A)−1G|kB|−2�(A)+2.

For I ∈ β and l ∈ NI , let

C(I, l) :=
∑

i,j∈I,i �=j
(li + lj − 2) = (�(I)− 1)(|l| − �(I)).

It follows that
∑

i �=j(ki + kj − 2)
〈
Ski+kj−2Ski,j

〉

q
equals

∑

β∈�(n)

∑

I∈β

2C(I, k)D�(I)−2G|kI |−2�(I)+2
∏

B �=I
D�(B)−1G|kB|−2�(B)+2 .

On the other hand, observe that if f is of weight |l| − 2�(I)+ 2, Eq. (9) yields

[d, D�(I)−1]f = C(I, l)D�(I)−2f.

Hence, using dGk = − 1
2δk,2, we obtain

[d, D�(I)−1]G|kI |−2�(I)+2 = C(B, kI )D�(I)−2G|kI |−2�(I)+2 − 1
2
δkI ,(2) .

Therefore,

d〈Sk〉q =
∑

β∈�(n)

∑

I∈β

C(I, kI )D�(I)−2G|kI |−2�(I)+2
∏

B �=I
D�(B)−1G|kB|−2�(B)+2

− 1
2
∑

i: ki=2

∑

β∈�([n]\{i})

∏

B∈β

D�(B)−1G|kB|−2�(B)+2 ,

which by the above reasoning is exactly equal to 〈sSk〉q . ��

6 Relating the two products
6.1 The structure constants

In Theorem 3.5.4, we deduced that

Tk1 ,f1 | . . . |Tkn,fn = T|k|,g with g(f1, . . . , fn) =
∑

α∈�(n)
μ(α, 1)∂�(α)−1∗

A∈α

fA.

In the particular case that f1 = . . . = fn is the identity function, we saw in Corollary 3.5.6
that g = Fn. If f1, . . . , fn are Faulhaber polynomials, the function g is not necessarily equal
Faulhaber polynomial on all m ∈ N, but, by Lemma 3.5.7, ∂g equals some polynomial.
Also, using g is uniquely determined by ∂g , the function g equals some polynomial. We
expand g as a linear combination of Faulhaber polynomials.
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Definition 6.1.1 Given integers l1, . . . , ln, we define the structure constants C
l
i by

g(Fl1 , . . . ,Fln ) =
|l|−1∑

i=0
Cl
i F|l|−i .

Observe that Cl
i = 0 for odd i, as ∂g is even or odd. Corollary 3.5.6 is the statement

C (1,...,1)
i =

⎧
⎨

⎩
1 i = 0

0 else.

More generally, by Theorem 3.5.4(ii) one hasC1,l
i = Cl

i , so that w.l.o.g. we can assume li >

1. In this section, we give an explicit, but involved, formula for these coefficients in terms of
Bernoulli numbers and binomial coefficients. In order to do so, for l1, l2 ≥ 1 and i ∈ Z≥0,
we introduce the following numbers:

Bl1 ,l2
i :=

⎧
⎨

⎩

(l1−1)!(l2−1)!
(l1+l2−1)! i = 0,

ζ (1− i)
(
(−1)l2

(l1−1
i−l2
)+ (−1)l1

(l2−1
i−l1
))

i > 0,

which by [2, Proposition A.10] satisfy
l1+l2−2∑

i=0
Bl1 ,l2
i

Bl1+l2−i
l1 + l2 − i

= (−1)l1l2
Bl1+l2 − Bl1Bl2

l1l2
.

Note that ζ (1− i) = (−1)i+1 Bi
i for i ≥ 1. The following polynomials can be expressed in

terms of these coefficients:

Lemma 6.1.2 For all l1, l2, . . . , lr ≥ 2 one has the following identities:

(i) Fl1 (x) =
∞∑

i=0
Bl1 ,1
i xl1−i;

(ii) (∂Fl1 ∗ ∂Fl2 )(x) =
∞∑

i=0
Bl1 ,l2
i xl1+l2−i−1;

(iii) ∂(Fl1 · · ·Flr )(x) = 2
∑

|i|≡1 (2)
Bl1 ,1
i1 · · ·Blr ,1

ir x|l|−|i|.

Proof The first two equations, of which the former is the well-known expansion of the
Faulhaber polynomials, follow by considering the corresponding generating series. In
order to prove (ii), we let n ∈ N and consider

G(n) :=
∞∑

l1 ,l2=1
(∂Fl1 ∗ ∂Fl2 )(n)

zl1−1
1

(l1 − 1)!
zl2−1
2

(l2 − 1)!

=
∑

m1+m2=n
em1z1+m2z2

= enz1
ez1−z2 − 1

+ enz2
ez2−z1 − 1

.

As the generating series of the Bernoulli numbers
∑∞

j=0 Bj
zj
j! = z(ez − 1)−1 implies that

1
ez1−z2 − 1

= 1
z1 − z2

+
∞∑

j=1

j−1∑

i=0

Bj

j
(−1)i

zj−i−1
1 zi2

(j − 1− i)!i!
,
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we find

G(n) =
∞∑

k=1

( k−1∑

i=0

zi1z
k−i−1
2

i!(k − i − 1)!
+

∞∑

j=1

j−1∑

i=0

Bj

j
(−1)i
( zk+j−i−1

1 zi2
(j − i − 1)!i!

+ zi1z
k+j−i−1
2

i!(j − i − 1)!

))
nk

k !

=
∞∑

l1 ,l2=1

∞∑

i=0
(−1)iBl1 ,l2

i
zl1−1
1

(l1 − 1)!
zl2−1
2

(l2 − 1)!
nl1+l2−i−1.

Since Bl1 ,l2
i vanishes for odd i if l1, l2 > 1, this proves the second equation. The third

equation follows from the first by noting that

∂(Fl1 · · ·Flr )(x) = (Fl1 · · ·Flr )(x)− (−1)|l|(Fl1 · · ·Flr )(−x). ��
Using these identities, one obtains.

Cl
i = B1,1

i = δi,0, Cl1 ,l2
i = Bl1 ,1

i + Bl2 ,1
i − Bl1 ,l2

i

These easy expressions for small n are misleading, as 6Cl1 ,l2 ,l3
i equals

1
4
δi,2 + 3

∑

i1 ,i2≡0 (2)
i1+i2=i

Bl1 ,1
i1 Bl2 ,1

i2 −
∑

i1≡1 (2),j1
i1+j1=i

Bl1 ,1
i1 Bl1 ,l2+l3−i1

j1 + 2
∑

j1+j2=i
Bl1 ,l2
j1 Bl1+l2−j1 ,l3

j2

up to full symmetrization, i.e., summing over all σ ∈ S3 with li replaced by lσ (i). In general,
given α ∈ �(n), write α = {A1, . . . , Ar} and denote Aj = ∪j

i=1Aj . Also, for a vector k and
a set B we let kB = ∑b∈B kb. Then, the above observations allows us to write down the
following formula, which is very amenable to computer calculation:

Proposition 6.1.3 Let l1, . . . , ln > 1. Then,

Cl
i =

∑

α∈�(n)
2rμ(α, 1)

∑

i1 ,...,in|iA|≡1 (2)

( n∏

k=1
Blk ,1
ik

)
⎛

⎜⎜⎜⎝
∑

j1 ,...,j�(α)−1
|i|+|j|=i+r

r−1∏

s=1
BlAs−js−1 ,lAs+1−iAs+1+1
js

⎞

⎟⎟⎟⎠

Here, j0 := lA0 − iA0 .

Note that the latter formula is written in an asymmetric way, but (by associativity of the
convolution product) is symmetric in the li.

6.2 From the pointwise product to the induced product

Suppose an element of T is given, written in the basis with respect to the pointwise
product. How do we determine its (possibly mixed) weight and its representation in terms
of the basis with respect to the 	 product? A first answer is given by applying Möbius
inversion to Eq. (23), as given by Eq. (42), i.e.,

Tk,l =
∑

α∈�(n)

⊙

A∈α

(TkA1 ,lA1 |TkA2 ,lA2 | . . .). (48)

However, as every factor TkA1 ,lA1 |TkA2 ,lA2 | . . . in the above equation is a linear combina-
tion of generators of different weights, it is useful to have a recursive version of this result.
For this, we write ∂

∂Tk,l
for the derivative of f ∈ T in the former basis (with respect to the

pointwise product) and ∂
∂Tk,l

for
∏

i
∂

∂Tki,li
.



   19 Page 34 of 42 J.-W. M. van Ittersum Res Math Sci           (2021) 8:19 

Proposition 6.2.1 Let k, l ≥ 1. There exist differential operators si,j for all i, j ∈ Z such
that si,j = 0 if j < 0 and for all f ∈ T one has

Tk,l f =
∑

i≥0

∑

j≥−l+1
Tk+i,l+j 	 si,j(f ).

Explicitly,

si,j =
∑

|a|=i
ta,j , ta,j =

∑

b
Cl,b
|b|−j

∂

∂Ta,b
,

where a and b are vectors of integers of the same length and with |a| = i, the structure
constants Cl,b

|b|−j are as in Proposition 6.1.3 and l, b denotes the vector (l, b1, b2, . . .).

Proof By linearity, it suffices to prove the statement for monomials Tk,l . Hence,
assume f = Tk,l . Applying (48), extracting the factor containing Tk,l and applying (48)
again, yields

Tk,l f =
∑

A⊂[n]
(Tk,l |TkA1 ,lA1 |TkA2 ,lA2 | . . .)	 Tk[n]\A,l[n]\A

=
∑

a,b
(Tk,l |Ta1 ,b1 |Ta2 ,b2 | . . .)	 ∂

∂Ta,b
f.

By Definition 6.1.1 this equals

Tk,l f =
∑

a,b

∑

j∈Z
Cl,b
j T|a|+k,|b|+l−j 	 ∂

∂Ta,b
f

Replacing j by −j + |b| and writing i = |a|, one obtains

Tk,l f =
∑

i≥0

∑

j∈Z
Tk+i,l+j 	

∑

|a|=i

∑

b
Cl,b
|b|−j

∂

∂Ta,b
f,

as desired. ��

Corollary 6.2.2 For all k, l ≥ 1 and f ∈ T one has

〈Tk,l f 〉q =
∑

a≥0

∑

b≥2
DaGb〈Ta,b

k,l f 〉q ,

where Ta,b
k,l = sa−l+1,a+b−k−1 + sa+b−l,a−k .

Proof Distinguishing two cases in the previous result yields
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〈Tk,l f 〉q =
∑

j<k+i−l
Dl+j−1Gk+i−l−j+2 	 si,j(f ) +

∑

i≥0

∑

j≥k+i−l
Dk+iGl+j−k−i 	 si,j(f )

=
∑

a≥0

∑

b≥2
DaGb〈(sa+b−k−1,a−l+1 + sa−k,a+b−l)(f )〉q . ��

7 Related functions on partitions
We apply our results to interesting functions on partitions.

7.1 Hook-length moments

First of all, we focus on the hook-length moments Hk [5, part III]. These functions form
a bridge between the symmetric algebra studied in this note and the shifted symmetric
functions: The Hk themselves are shifted symmetric as

Hk (λ) = 1
2

k∑

i=0

(
k − 2
i − 1

)
(−1)iQi(λ)Qk−i(λ) (49)

and they are also equal to the Möller transform of the symmetric Sk , i.e., Hk = M(Sk ),
meaning the following. Denote zν = n!

|Cν | with |Cν | the size of the conjugacy class corre-
sponding to ν. Recall that

zν =
∞∏

m=1
mrm(ν)rm(ν)!.

Given f ∈ QP , theMöller transform of f at a partition λ ∈ P(n) is given by [23, Eqn (45)]

M(f )(λ) =
∑

ν!n
z−1
ν χλ(ν)2f (ν),

where the sum ν ! n is over all partitions of size n and χλ(ρ) denotes the character
of the representation corresponding to the partition λ evaluated at the conjugacy class
corresponding to ρ. Then 〈M(f )〉q is a quasimodular form if and only if 〈f 〉q is a quasi-
modular form (which follows directly by the column orthogonality relations for the sym-
metric group). In the next section, we study the Möller transform of elements of T , but
first, we explain the Murnaghan–Nakayama rule, used in [5, part III] to show equality
betweenM(Sk ) and (49) and give two other expressions for the hook-length moments.
To start with the latter, the hook-length moments, as their name suggests, are defined as

moments of the hook-lengths, i.e.,

Hk (λ) = −Bk
2k

+
∑

ξ∈Yλ

h(ξ )k−2,

where Yλ denotes the Young diagram of a partition λ and h(ξ ) denotes the hook-length of
a cell ξ ∈ Yλ.
Next, the following constructions related to the Young diagram, give rise to the

Murnaghan–Nakayama rule for the characters of the symmetric group. Given parti-
tions λ, ν with νi ≤ λi for all i, we define the skew Young diagram λ/ν by removing
the cells of Yν from Yλ. Denote by |λ/ν| = |λ| − |ν| the number of cells of this diagram.
We call λ/ν a border strip of λ if it is connected (through edges, not only through vertices)
and contains no 2×2-block. If γ = λ/ν we write λ\γ for ν. The height of a border strip γ

is defined to be one less than the number of columns and denoted by ht(γ ). Givenm ∈ Ns,
we let a border strip tableau γ of type m be a sequence γ1, . . . , γs such that γi is a border



   19 Page 36 of 42 J.-W. M. van Ittersum Res Math Sci           (2021) 8:19 

γ1

γ2

γ3

γ3 γ1

γ2

γ2

γ3

γ1

γ3

γ2

γ1

Fig. 1 The Young diagrams corresponding to the border strip tableaux of type (2, 1, 2) within λ = (4, 2, 1, 1)

strip of λ�γ1 � · · ·�γi−1 and |γi| = mi. Write Yγ for the skew Young diagram consisting
of all boxes of all the γi and write ht(γ ) = ht(γ1) + . . . + ht(γs). Denote by BST(λ, m)
and BST(λ/ν, m) the set of all border strip tableau of typemwithin λ and λ/ν, respectively
(Fig. 1).
TheMurnaghan–Nakayama rule (recursively) expresses the characters of the symmet-

ric groups in terms the heights of border strip tableau. Namely, if ρ′ ⊆ ρ (both ρ′ and ρ

considered as multisets)

χλ(ρ) =
∑

γ∈BST(λ,ρ′)
(−1)ht(γ )χλ\γ (ρ − ρ′),

where ρ−ρ′ denotes the difference of (multi)sets. Of particular interest are the cases ρ′ =
ρ and ρ′ = (ρ1), yielding a direct or recursive combinatorial formula for χλ(ρ), respec-
tively:

χλ(ρ) =
∑

γ∈BST(λ,ρ)
(−1)ht(γ ) and χλ(ρ) =

∑

|γ |=ρ1

(−1)ht(γ ) χλ\γ (ρ2, ρ3, . . .),

where the latter sum is over all borders strips γ of λ of length ρ1. The skew charac-
ter χλ/ν(ρ′) is defined by (|λ/ν| = |ρ′|)

χλ/ν(ρ′) =
∑

γ∈BST(λ/ν,ρ′)
(−1)ht(γ )

so that

χλ(ρ) =
∑

|ν|=|ρ′|
χλ/ν(ρ′)χν(ρ − ρ′).

To conclude, we have the following definitions of the hook-length moments:

Definition 7.1.1 The hook-length momentsHk (k ≥ 2 even) are defined by either of the
following equivalent definitions [5, Section 13]:

(i) Hk (λ) = −Bk
2k

+
∑

ξ∈Yλ

h(ξ )k−2 ;

(ii) Hk (λ) = −Bk
2k

+
∞∑

m=1
|BST(λ, m)|mk−2 ;

(iii) Hk = 1
2

k∑

i=0

(
k − 2
i − 1

)
(−1)iQi Qk−i ;

(iv) Hk = M(Sk ).

7.2 Border strip moments

The hook-length moments are Möller transformations of the Sk . In this section we study
the Möller transformation of the algebra T , which contains the vector space spanned
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by all the Sk . In order to do so, we express elements of T in terms of functions Uk,l for
which the induced product and Möller transformation are easy to compute. However,
these function do not admit the property that the q-bracket is quasimodular if ki + li is
even for all i: eachUk,l lies in the space generated by all the Tk,l (possibly with ki+ li odd).
Let

N(l) = {(m1, . . . , m1︸ ︷︷ ︸
l1

, m2, . . . , m2︸ ︷︷ ︸
l2

, . . .) | mi ≥ 1}

the set of tuples of n := |l| positive integers, where the first l1, the second l2, etc., integers
agree. For k ∈ Zn≥0, define

Uk,l =
∑

m∈N(l)
mk

∞∏

a=1

(
ra(λ)
ra(m)

)
.

Observe that this product converges since ra(m) = 0 for all but finitely many values of a.
Let U be the algebra generated by the Uk,l .
Generalize the hook-length moments in Definition 7.1.1(ii) by the following notion:

Definition 7.2.1 The border strip moments are given by

Xk,l(λ) =
∑

m∈N(l)

∑

γ∈BST(λ,m)

χγ (m)2

zm
mk .

Let X be the vector space spanned by all the Xk,l . Define a filtration on X by assigning
to Xk,l degree |k| + |l|.
Remark 7.2.2 Observe that for n = 1 and l = 1, the sum restricts to a sum over all border
strips γ of λ and for such a border strip γ the factor χγ (m)2 equals 1 and zm equals m.
As the set of hook-lengths is in bijection with the set of all border strip lengths, one has
that −Bk

2k + Xk,1 = Hk+1.

Denote by
{n
j
}
the Stirling numbers of the second kind (i.e., the number of elements

in �(n) of length j).

Proposition 7.2.3 For all k ≥ 0, l ≥ 1, k, k ′ ∈ Zn≥0, and integer vectors l, l′ with |l| =
|l′| = n, one has

(i) Tk,l = − Bk+l
2(k + l)

(δl,1 + δk,0)+
l∑

j=1

{
l
j

}
(j − 1)!Uk,j ;

(ii) Uk,l 	Uk ′ ,l′ = Uk∪k ′ ,l∪l′ ;
(iii) M(Uk,l) = Xk,l .

Proof For the first property, we use the known identity

xl−1 =
l∑

j=1

{
l
j

}
(j − 1)!

(
x − 1
j − 1

)
.

As Fl(x) and
(x
j
)
are the unique polynomials with constant term equal to zero and such

that ∂Fl(x) = xl−1 and ∂
(x
j
) = (x−1

j−1
)
, respectively, we find

Fl(x) =
l∑

j=1

{
l
j

}
(j − 1)!

(
x
j

)
,
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which yields property (i).
Next, we show that for all i, j ≥ 0 one has

∂

(
x
i

)
∗
(
x
j

)
=
(

x
i + j

)
.

Both
(
x
i

)
∗
(
x
j

)
=

x∑

m=0

(
m
i

)(
x −m

j

)
and

(
x + 1

i + j + 1

)

are polynomials of degree at most i + j + 1 taking the value 0 for x = 0, 1, . . . , i + j − 1
and the value 1 for x = i + j; hence, they are equal. Therefore,

∂

(
x
i

)
∗
(
x
j

)
= ∂

(
x + 1

i + j + 1

)
=
(

x
i + j

)
.

By Lemma 3.5.2 property (ii) follows.
Finally, we have that

M(Uk,l)(λ) =
∑

m∈N(l)
mk
∑

ν!n
z−1
ν χλ(ν)2

∞∏

a=1

(
ra(ν)
ra(m)

)
.

Observe that givenm and ν the term

z−1
ν χλ(ν)2

∞∏

a=1

(
ra(ν)
ra(m)

)
(50)

vanishes unless ra(ν) ≥ ra(m) for all positive a. Let ν′ be the partition obtained from ν by
removing ra(m) parts of size a from ν for all positive a. Denote by n′ = n − |m| the size
of ν′. By the Murnaghan–Nakayama rule one has

χλ(ν) =
∑

ξ∈BS(λ,m)
χξ (m)χλ\ξ (ν′).

One has

z−1
ν

∞∏

a=1

(
ra(ν)
ra(m)

)
=

∞∏

a=1

1
ara(ν)ra(m)! (ra(ν)− ra(m))!

= 1
zν′zm

.

Hence, (50) equals

∑

ξ∈BS(λ,m)

∑

ρ∈BS(λ,m)

χξ (m)χρ(m)
zm

∑

ν′!n′
zν′χλ\ξ (ν′)χλ\ρ(ν′).

The orthogonality relation for the symmetric group is the statement
∑

ν′!n′
zν′ χλ\ξ (ν′)χλ\ρ(ν′) = δλ\ξ ,λ\ρ .

Hence, we obtain the desired result. ��

The q-bracket of an element in X is not necessarily a quasimodular form. However, it
always lies in the following space of q-analogues of zeta values, see [11].
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Definition 7.2.4 Let C≤� be the Q-vector space consisting of all polynomials in the com-
binatorial Eisenstein series

Gk (τ ) = −Bk
2k

+
∞∑

r=1

∞∑

m=1
mk−1qmr (k ≥ 1, not necessarily even)

and their derivatives of weight ≤ �, where to DrGk we assign the weight k + 2r.

Now, Proposition 7.2.3 implies the following result:

Theorem 7.2.5 For all f ∈ X≤k , one has 〈f 〉q ∈ C≤k .

Proof By Proposition 7.2.3, f equals the Möller transform of some polynomial in the Tk,l
with respect to the product 	. Here, however, it may happen that k + l is odd. Mutatis
mutandis in either of three approaches in Sect. 3.1, we find that the q-bracket of Tk,l lies
in Ck+l , which proves the result. ��

Theorem 7.2.6 For all weights k one hasM(Tk ) ⊂ X≤k . More precisely,

M(Tk1 ,l1 	 · · · 	 Tkn,ln )
(l1 − 1)! · · · (ln − 1)!

= Xk,l + elements in X of lower degree. (51)

Proof Observe that Proposition 7.2.3 implies that M(Tk ) ⊂ X≤k . Equation (51) follows
from this proposition after noting that the Möller transformation of Tk,l − (l− 1)!Uk,l has
degree strictly smaller than k + l. ��

Example 7.2.7 The following two equations provide examples of linear combinations of
elements of X with a quasimodular q-bracket whenever k + l and ki are even integers.

M(Tk,l) = − Bk+l
2(k + l)

(δk,1 + δl,0)+
l∑

j=1

{
l
j

}
(j − 1)!Xk,j ,

M(Sk1 	 Sk2 	 · · · 	 Skn ) =
∑

A⊂[n]

(∏

i/∈A

Bki
2ki

)
XkA,(1,1,...,1).

See Appendix A for a table of elements in X with quasimodular q-bracket and of small
degree.

Remark 7.2.8 Inmany examples theXk,l are not shifted symmetric functions or generated
by shifted symmetric functions under the induced product. For example, M(T0,2) �=
M(S2) and besides Q2 = M(S2) = S2 there are no other non-trivial functions generated
by �∗ under the pointwise product. It remains an open question whether the elements
of X are in some sense related to shifted symmetric functions.

7.3 Moments of other partition invariants

So far we provided many examples of functions on partitions in �∗ and T related to the
representation theory of the symmetric group. Now, we see that many purely combina-
torial notions lead to different bases for S . We compare these bases to corresponding
bases of �∗. Most of these bases take the following form. Suppose an index set I and a
sequence {si}∞i∈I of elements of QP are given. Then, we define the kth moment of s by
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(whenever this sum converges)

Mk (s)(λ) =
∑

i∈I

(
si(λ)k − si(∅)k

)
.

For example, let the functions p, q for the index set N be given by

pi(λ) = λi , qi(λ) = λi − i.

Then, by definition,

Sk = Sk (∅)+Mk−1(p), Qk = Qk (∅)+Mk−1(q).

Note that by definition Mk (s)(∅) = 0. As the functions below will not respect the weight
grading anyway, we will not include a constant term.
The sequences a, c, h, x of functions on partitions are of further interest. Define these

sequence, indexed by ξ = (i, j) ∈ Z2≥0, by 0 if ξ /∈ Yλ and

aξ (λ) : arm length of ξ hξ (λ) : hook-length of ξ

xξ (λ) = i cξ (λ) : content of ξ , i.e., i − j

if ξ ∈ Yλ. For h and c it is known that the corresponding moment functions are shifted
symmetric, for the latter see [15, Theorem 4]. The moment functions corresponding to a
and x turn out to be equal and to be elements of S .

Theorem 7.3.1

S = Q[Mk (a) | k ≥ 0 even] = Q[Mk (x) | k ≥ 0 even].

Proof As the Faulhaber polynomials Fk with k odd form a basis for the space of all odd
polynomials, the functions

∞∑

i=1
Fk (λi) =

∞∑

i=1

λi∑

a=1
ak−1

generate S , which corresponds to the first equality in the statement. By interchanging the
sums one obtains

∞∑

i=1
Fk (λi) =

∞∑

a=1
ak−1

∞∑

m=a
rm(λ) =

∑

(i,j)∈Yλ

ik−1. (52)

Hence, the result is also true for s = x. ��

Remark 7.3.2 Note that for a given i the number of (i, j) ∈ Yλ equals λ′i, where λ′ is the
conjugate partition of λ. Hence, (52) can be written as

∞∑

i=1
ik−1λ′i

and consequently these functions for k odd generate S . Note that these functions are
different from the Sk (λ′). In fact, the algebra generated by the Sk (λ′) is distinct from the
algebra S , in contrast to the algebra of shifted symmetric functions, for which Qk (λ′) =
(−1)kQk (λ).
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A Table of double moment functions up to weight 4
For all basis elements f ∈ T≤4 in the basis provided by Theorem 4.3.1, we compute
its representation in the basis consisting of double moment function and the quanti-
ties 〈f 〉u, 〈f 〉q, D(f ), d(f ) andM(f ).

Weight at most 2

f 1 T1,1 T0,2
〈f 〉u 1 − 1

24 +
∑

m,r≥1murm − 1
24 +
∑

m,r≥1 rurm
〈f 〉q 1 G2 G2
D(f ) 0 T2,2 T1,3
d(f ) 0 − 1

2 − 1
2

M(f ) 1 X1,1 − 1
24 X0,2 + X0,1 − 1

24

Weight 4

f T3,1 T2,2 T1,3 T0,4
〈f 〉u 1

240 +∑m3urm
∑

m2rurm
∑

mr2urm 1
240 +∑ r3urm

〈f 〉q G4
5
6G4 − 2G2

2
5
6G4 − 2G2

2 G4
D(f ) T4,2 T3,3 T2,4 T1,5
d(f ) 0 2T1,1 2T0,2 0
M(f ) X3,1 + 1

240 X2,2 + X2,1 2X1,3 + 3X1,2 + X1,1 6X0,4 + 12X0,3+
7X0,2 + X0,1 + 1

240

f T1,1 	 T1,1 = T1,1 	 T0,2 =
T 2
1,1 − T2,2 T1,1T0,2 − T1,3

〈f 〉u ∑
m1m2ur1m1u

r2
m2 − 1

12
∑

murm + 1
576

∑
m1r2ur1m1u

r2
m2 − 1

24
∑

(m+ r)urm + 1
576〈f 〉q G2

2 G2
2

D(f ) 2 · T2,2 	 T1,1 T2,2 	 T0,2 + T1,1 	 T1,3
d(f ) −T1,1 − 1

2T1,1 − 1
2T0,2

M(f ) X(1,1),(1,1) − 1
12X1,1 + 1

576 X(1,0),(1,2) + X(1,0),(1,1)+
− 1

24 (X1,1 + X0,2)+ 1
576

f T0,2 	 T0,2 =
T 2
0,2 − 5

6T0,4 − 1
6T0,2 − 1

288
〈f 〉u ∑

r1r2ur1m1u
r2
m2 − 1

12
∑

rurm + 1
576〈f 〉q G2

2
D(f ) 2 · T1,3 	 T0,2
d(f ) −T0,2
M(f ) X(0,0),(2,2) + X(0,0),(2,1) + X(0,0),(1,2)+

X(0,0),(1,1) − 1
12X0,2 − 1

12X0,1 + 1
576

Received: 18 January 2021 Accepted: 28 January 2021

References
1. Ahlgren, S., Ono, K.: Addition and counting: the arithmetic of partitions. Not. Am. Math. Soc. 48(9), 978–984 (2001)



   19 Page 42 of 42 J.-W. M. van Ittersum Res Math Sci           (2021) 8:19 

2. Arakawa, T., Ibukiyama, T., Kaneko, M.: Bernoulli Numbers and Zeta. Functions with an Appendix by Don Zagier
(Springer Monographs in Mathematics). Springer, Tokyo (2014)

3. Bloch, S., Okounkov, A.: The character of the infinite wedge representation. Adv. Math. 149(1), 1–60 (2000)
4. Bryan, J., Kool, M., Young, B.: Trace identities for the topological vertex. Sel. Math. (N.S.) 24(2), 1527–1548 (2018)
5. Chen, D., Möller, M., Zagier, D.: Quasimodularity and large genus limits of Siegel–Veech constants. J. Am. Math. Soc.

31(4), 1059–1163 (2018)
6. Chen, D., Möller, M., Sauvaget, A., Zagier, D.: Masur–Veech volumes and intersection theory on moduli spaces of

Abelian differentials. Invent. Math. 222(1), 283–373 (2020)
7. Dijkgraaf, R.: Mirror symmetry and elliptic curves. In: Dijkgraaf, R., Faber, C., van der Geer, G. (eds.) The Moduli Space of

Curves (Texel Island, 1994), pp. 149–163. Birkhäuser, Boston (1995)
8. Engel, P.: Hurwitz Theory of Elliptic Orbifolds, I (2017). Preprint arXiv:1706.06738
9. Eskin, A., Okounkov, A.: Pillowcases and quasimodular forms. In: Algebraic Geometry and Number Theory. Progress in

Mathematics, vol. 253, pp. 1–25. Birkhäuser Boston, Boston (2006)
10. Eskin, A., Okounkov, A., Pandharipande, R.: The theta characteristic of a branched covering. Adv. Math.217(3), 873–888

(2008)
11. Gangl, H., Kaneko, M., Zagier, D.: Double zeta values and modular forms. In: Automorphic Forms and Zeta Functions,

pp. 71–106. World Science Publication, Hackensack, NJ (2006)
12. Goujard, E., Möller, M.: Counting Feynman-like graphs: quasimodularity and Siegel–Veech weight. J. Eur. Math. Soc.

(JEMS) 22(2), 365–412 (2020)
13. Hahn, M.A., van Ittersum, J.W.M., Leid, F.: Triply mixed coverings of arbitrary base curves: quasimodularity, quantum

curves and recursions (2019). Preprint arXiv:1901.03598
14. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: Dijkgraaf, R., Faber, C., van der

Geer, G. (eds.) The Moduli Space of Curves (Texel Island 1994), pp. 149–163. Birkhäuser, Boston (1995)
15. Kerov, S., Olshanski, G.: Polynomial functions on the set of Young diagrams. CR Acad. Sci. Paris Sér. I Math. 319(2),

121–126 (1994)
16. Rota, G.C.: On the foundations of combinatorial theory I. Theory of Möbius functions. Zeitschrift für Wahrschein-

lichkeitstheorie und verwandte Gebiete 2, 340–368 (1964)
17. Schneider, R.: Arithmetic of partitions and the q-bracket operator. Proc. Am. Math. Soc. 145(5), 1953–1968 (2017)
18. van Ittersum, J.W.M.: When is the Bloch–Okounkov q-bracket modular? Ramanujan J. 52(3), 669–682 (2020)
19. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Serre, J.-P., Zagier,

D.B. (eds.), modular functions of one variable, VI (proceedings international conference, university Of Bonn, Bonn
1976), Vol. 627 of Lecture Notes in Math., pp. 105–169. Springer, Berlin, (1977)

20. Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(3), 449–465 (1991)
21. Zagier, D.: Modular forms and differential operators. Proc. Indian Acad. Sci. Math. Sci. 104, 57–75 (1994)
22. Zagier, D.: Elliptic modular forms and their applications. In: Ranestad, K. (ed.) The 1-2-3 of Modular Forms, pp. 1–103.

Springer, Berlin (2008)
23. Zagier, D.: Partitions, quasimodular forms, and the Bloch–Okounkov theorem. Ramanujan J. 41(1–3), 345–368 (2016)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1706.06738
http://arxiv.org/abs/1901.03598

	A symmetric Bloch–Okounkov theorem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Quasimodular forms
	2.2 The action of sl2 on quasimodular forms by derivations
	2.3 Partitions as a partially ordered set
	2.4 The connected q-bracket
	2.5 The discrete convolution product and Faulhaber polynomials

	3 The moment functions, their q-bracket and a second product
	3.1 Three proofs of the quasimodularity of the moment functions
	3.2 The induced and connected product
	3.3 Quasimodularity of pointwise products of moment functions
	3.4 Intermezzo: surjectivity of the q-bracket
	3.5 The connected product of moment functions

	4 Three quasimodular algebras
	4.1 Introduction
	4.2 The basis given by double moment functions
	4.3 The basis defining the weight grading
	4.4 The n-point functions

	5 Differential operators
	5.1 The derivative of a function on partitions
	5.2 The equivariant q-bracket
	5.3 Rankin–Cohen brackets
	5.4 A restricted sl2-action

	6 Relating the two products
	6.1 The structure constants
	6.2 From the pointwise product to the induced product

	7 Related functions on partitions
	7.1 Hook-length moments
	7.2 Border strip moments
	7.3 Moments of other partition invariants

	A Table of double moment functions up to weight 4
	Weight at most 2
	Weight 4

	References




