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We present a novel reformulation of balanced truncation, a classical model reduction
method. The principal innovation that we introduce comes through the use of system re-
sponse data that has been either measured or computed, without reference to any prescribed
realization of the original model. Data are represented by sampled values of the transfer
function or the impulse response corresponding to the original model. We discuss parallels
that our approach bears with the Loewner framework, another popular data-driven model
reduction method. We illustrate our approach numerically in both continuous-time and
discrete-time cases.
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1 Introduction

Model reduction (MoR) here refers to system-theoretic techniques used to create compactly represented
reduced models that are capable of reproducing the input-output behaviour of large-scale dynamical sys-
tems with high accuracy. This is accomplished by encoding fine scale dynamical features of the original
systems efficiently into reduced dynamical systems, allowing them to closely mimic the input/output
behavior of the original system for a wide range of input conditions, while having substantially lower
order than the system whose behaviour they mimic. Such reduced models should be cheap to simulate
and easy to manipulate and control. We refer the reader to [1,2,10,47] for details on a variety of MoR
techniques.
Balanced truncation (BT) [38,39] is one of the most successful and commonly deployedMoRmethods.

For linear dynamical systems such as those that we consider in this paper, BT retains asymptotic
stability of the original systems and provides a priori bounds for the model reduction error. BT
effectively discards those states that are both difficult to reach and to observe, as quantified through
the relative magnitude of the system’s Hankel singular values. Typically, the loss of these states is
expected to have little effect on the observed input-output dynamics of the system and the resulting
reduced model may replace the original system in simulations or analysis without much lost with
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regard to accuracy. Extensions of BT to nonlinear systems have emerged over the years, starting with
[51] and continuing with more recent approaches tailored to particular classes of nonlinearities, such
as bilinear systems in [7], quadratic-bilinear systems in [8], and to switched systems in [24].
The major computational cost of BT is the need to solve large-scale Lyapunov equations in order

to obtain the system Gramians, or better, their square-root factors. Many methods have been pro-
posed to accomplish this efficiently; see, e.g., [11, 34, 35, 43, 50, 54, 61] and references therein. All such
methods make central use of the system state-space representation and, in the context of BT, produce
explicit state-space projections that ultimately are engaged to generate a reduced model. Thus, BT
is “intrusive” to the extent that internal representations of the system dynamics play a central role
in determining a final reduced model. This is to be contrasted with “nonintrusive” methods that are
data-driven, requiring access only to system response and behavior data, e.g., transfer function or
frequency response measurements.
In this paper, we develop a new, data-driven formulation for BT. We achieve this by recognizing

that BT does not make independent use of the two system Gramians (which separately each depend on
internal and hence generally inaccessible variables). BT rather makes fundamental use of their product,
which preserves important system invariants that do not depend on the underlying system realization.
In this work, we describe how the product of Gramians can be approximated directly through transfer
function sampling to any accuracy desired. We explicitly derive reduced-order quantities using observed
response data in this way and as consequence, arrive at a novel, non-intrusive formulation of BT.
The rest of the paper is organized as follows: In §2, we review the basic elements of BT and detail the

usual steps involved for computing balanced ROMs. We introduce our main result in §3, a data-driven
approach to BT and discuss how one estimates key quantities through quadrature in the frequency-
domain, that in turn, involves quantities that are extracted from data. In §4, we include refinements
that take into account symmetries implicit in real-valued dynamics as well as extensions to MIMO,
discrete-time and application to infinite-dimensional systems. Even though our main focus is frequency
domain data, in §5 we revisit the problem using time-domain data instead and make connections to
earlier works. Conclusions are provided in §6, while appendices elaborating on the quadrature rules
considered and detailing the proof of Proposition 3.2 follow the bibliography. Numerical experiments
and various illustrations are provided in §§3, 4, and 5.

2 Balanced Truncation

Consider LTI systems

E ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t), (1)

where the input mapping is given by u ∶ R → R
m
, the (generalized) state trajectory/variable is

x ∶ R → R
n
, and the output mapping is y ∶ R → R

p
. The system matrices are given by E, A ∈ R

n×n
,

andB ∈ R
n×m

, C ∈ R
p×n

. Assume E is nonsingular and that the matrix pencil (A,E) is asymptotically
stable, meaning that the eigenvalues of (A,E) (or equivalently of E

−1
A) are located in the open left

half-plane. The transfer function of the LTI system (1), defined as H(s) = C(sE −A)−1B is a p ×m

matrix-valued rational function in s.
The two fundamental quantities in BT are the reachability and observability Gramians. The reach-

ability Gramian P provides a measure of how easily a state can be accessed from the zero state. In
the time domain, P is given by

P = ∫ ∞

0

e
E

−1
At

E
−1
BB

T
E

−T
e
A

T
E

−T
t
dt. (2)

Taking ı̇ı
2
= −1, this can be represented equivalently in the frequency domain as

P =
1

2π
∫ ∞

−∞

(ı̇ıζE −A)−1BB
T (−ı̇ıζET

−A
T )−1dζ. (3)
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In a complementary way, the observability Gramian describes how easily a state can be observed,
and may be represented as E

T
QE where Q is defined as:

Q =

1

2π
∫ ∞

−∞

(−ı̇ıωET
−A

T )−1CT
C(ı̇ıωE −A)−1dω. (4)

P and Q satisfy the following generalized Lyapunov equations:

APE
T
+ EPA

T
+BB

T
= 0, (5)

A
T
QE +E

T
QA+C

T
C = 0. (6)

Even though E
T
QE is the observability Gramian in this case; the Lyapunov equation (6) for Q enjoys

a fundamental structural similarity to (5) and so similar computational algorithms are applicable to
both (see, e.g., [11, 43, 57]). The solutions, P and Q, to (5) and (6), respectively, are symmetric
positive-semidefinite matrices, and one may compute square factors L,U ∈ R

n×n
(e.g., via a Cholesky

factorization) so that

P = UU
T

and Q = LL
T
. (7)

This provides the essential elements allowing us to define balanced truncation (BT), which we summa-

rize in Algorithm 1. The singular values of L
T
EU, i.e., the diagonal entries of diag(S1,S2) in (8), are

Algorithm 1 Balanced truncation (BT) (square-root implementation)

Input: LTI system described by matrices E, A ∈ R
n×n

, B ∈ R
n×m

, and C ∈ R
p×n

.
Output: BT reduced-system: Ar ∈ R

r×r
,Br ∈ R

r×m
,Cr ∈ R

p×r
.

1: Compute the Lyapunov factors U,L ∈ R
n×n

from (7) and pick a truncation index, 1 ≤ r ≤

min(rank(U), rank(L)).
2: Compute the SVD of the matrix L

T
EU, partitioned as follows

L
T
EU = [Z1 Z2] [S1

S2

] [YT
1

Y
T
2

] , (8)

where S1 ∈ R
r×r

and S2 ∈ R
(n−r)×(n−r)

.
3: Construct the model reduction bases

Wr = LZ1S
−1/2
1 and Vr = UY1S

−1/2
1 . (9)

4: The reduced-order system matrices are given by

Er = W
T
r EVr = Ir (10)

Ar = W
T
r AVr = S

−1/2
1 Z

T
1 (LT

AU)Y1S
−1/2
1 , (11)

Br = W
T
r B = S

−1/2
1 Z

T
1 (LT

B), (12)

Cr = CVr = (CU)Y1S
−1/2
1 . (13)

the Hankel singular values of the associated dynamical system and these values are system invariants
that are independent of realization. BT truncates the states that correspond to small Hankel singular
values in S2. The rth-order reduced model Hr(s) = Cr(sEr − Ar)−1Br resulting from BT in Algo-
rithm 1 is asymptotically stable and satisfies ∥H −Hr∥H∞

≤ 2 trace(S2), where ∥ ⋅ ∥H∞
denotes the

H∞-norm of a dynamical and where we assumed, for simplicity, that the Hankel singular values are
distinct. For details, we refer the reader to [1].
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3 A Data Driven Framework for Balancing

The main innovation that we introduce centers on the observation that the key quantities L
T
EU,

L
T
AU, L

T
B, and CU, appearing in Steps 1 and 3 of Algorithm 1, may be replaced by unitarily

equivalent quantities that are well approximated directly from data. “Data” in our setting correspond
to sampling of the transfer function H(s); we assume access to the values of H(ı̇ıω̂) at a finite number
of frequencies ω̂. (We consider time-domain sampling in §5.) Our choice of frequency sampling, ω̂,
will be associated with numerical quadratures used to approximate (3) and (4). Further details are
provided below and in Appendix A, however we note here that some quadrature rules also engage
asymptotics of the integrand which in our setting may then require measuring the leading two Markov
parameters of H(s), i.e., the leading two coefficients in the expansion of H(s) around s = ∞. For
H(s) = C(sE − A)−1B, M0 = CE

−1
B is the zeroth Markov parameter (the first coefficient) and

M1 = CE
−1
AE

−1
B is the first Markov parameter (the second expansion coefficient). These quantities

can be measured nonintrusively, as explained in, e.g., [31] with practical applications ranging from
Vector Network Analyzers [32] to 3D Laser Vibrometers. [62].

To simplify initial discussion, we consider first SISO systems, taking B = b and C = c
T
, for

b, c ∈ R
n

and the associated (scalar-valued) transfer function, H(s)1. Generalization to MIMO
systems is straightforward and discussed in §4.2.

3.1 Computing key quantities from data

For large-scale dynamical systems, solving the Lyapunov equations (5) and (6) for the Gramians P

and Q is computationally demanding. There are many methods for solving these equations; see,
e.g., [1, 5, 11, 34, 50, 54] and the references therein. Then, using any of these techniques for Lyapunov
equations, one proceeds by finding a low-rank approximation to U and L, and Algorithm 1 proceeds
by using these approximate low-rank factors. Regardless of the underlying Lyapunov solvers, these
approximate balancing approaches are intrusive in the sense that they depend on explicit system
realizations, model projection, i.e., U and L are approximated first, followed by an explicit projection
step. What we discuss below sidesteps this by focusing on a quantity that is unitarily equivalent to
L
T
EU, leading to an non-intrusive data-driven approach to BT.
Assume that we employ a numerical quadrature rule to approximate the frequency integral defining

P in (3), producing an approximate Gramian

P ≈ P̃ =

ℓp

∑
j=1

ρ
2

j(ı̇ıζjE −A)−1bbT (−ı̇ıζjET
−A

T )−1 + ρ
2

∞E
−1
bb

T
E

−T
(14)

with ρ
2

j and ζj denoting, respectively, quadrature weights and nodes. The last term involving the
weight ρ∞ corresponds to a “node at infinity” and relates to the asymptotic decay of the integrand
in (3) in the neighborhood of ζ = ∞. The presence of this term in (14) will depend on the choice
of numerical quadrature. We will investigate choices where this term is present and others where
it is absent. In either case, we label the total number of quadrature points (including potentially a
“node at infinity”) as Np. If the ρ∞-term in (14) is absent, then ℓp = Np; otherwise, ℓp = Np − 1.
Picking a distribution of quadrature nodes on the imaginary axis is natural in this context; we focus on
two standard exemplars derived from the trapezoid rule and Clenshaw-Curtis quadrature and provide
further details in Appendix A. Quadrature node distributions can be chosen on different integration
contours as well (e.g.,[60]) and the approach that we propose is equally applicable in these modified
circumstances as well.
The Balanced POD approach of [61] uses this type of approximation for P, employing the trapezoid

rule as an underlying numerical quadrature approximation. A modified version of Balanced POD based

1
We distinguish matrix- and vector-valued quantities from scalar-valued quantities with boldface; hence H(s) for SISO

vs. H(s) for the MIMO counterpart, and similarly for Markov parameters, M0 and M1 for SISO vs. M0 and M1

for the MIMO counterparts.
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on a time-domain quadrature applied to (2) was later proposed in [49] with an application to fluid
dynamics. As is the case with other approximate balancing techniques, Balanced POD is intrusive in
the sense that access to an explicit state-space realization is required. Any approximate balancing
technique produces some sort of approximation to the Lyapunov factors U and L from (7), including
ADI approaches (described in, e.g., [11, 35, 44, 56]).
To the extent that system response data may be utilized, generally speaking its use is directed

toward explicit sampling of evolving states of the system which tacitly requires a defined state space
realization. This contrasts significantly with the nonintrusive data-driven approach that we propose
below. While there are important common themes that we adopt from Balanced POD, we do not require
any knowledge of a state space realization; we do not sample state trajectories even implicitly, and we
do not attempt to approximate the Lyapunov factors in (7). Our approach has much in common with
TF-IRKA in [6] in that we are able to express a model reduction strategy that is traditionally formulated
in terms of state space realizations in a manner that requires only transfer function evaluations. We
revisit Balanced POD and interpret it within our framework in §3.3.

Evidently, we may decompose the quadrature-based Gramian approximation as P̃ = ŨŨ
∗
with a

square-root factor Ũ ∈ C
n×Np defined as

Ũ = [ ρ1(ı̇ıζ1E −A)−1b ⋯ ρℓp(ı̇ıζℓpE −A)−1b ρ∞E
−1
b] . (15)

Note that both P and its quadrature approximation, P̃, are real-valued matrices, yet the explicit
square-root factor, Ũ, is overtly complex and subsequent computation engages complex floating point
arithmetic. A reasonable concern that may arise at this point is the potential loss of an underlying
structural system symmetry, leaving us possibly with a complex-valued reduced model as an artifact
of rounding errors. We address this concern in §4.1 and show how the underlying system symmetry
associated with real dynamics may be explicitly preserved, allowing also the whole procedure to be
implemented in real arithmetic.
By applying a similar quadrature approximation to Q, we obtain

Q ≈ Q̃ =

ℓq

∑
k=1

φ
2

k(−ı̇ıωkE
T
−A

T )−1ccT (ı̇ıωkE −A)−1 + φ
2

∞E
−T

cc
T
E

−1
, (16)

where φ
2

k and ωk denote, respectively, quadrature weights and nodes associated with approximating

Q from (4). We introduce a corresponding square-root factor from Q̃ = L̃L̃
∗
where

L̃
∗
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1c
T (ı̇ıω1E −A)−1

φ2c
T (ı̇ıω2E −A)−1

⋮

φℓqc
T (ı̇ıωℓqE −A)−1
φ∞c

T
E

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ C

Nq×n. (17)

Let us suppose for the moment that the quadratures described in (14) and (16) exactly recovered
the Gramians described in (3) and (4), respectively, so that as a consequence we have

UU
T
= ŨŨ

∗
and LL

T
= L̃L̃

∗
. (18)

This, in turn, assures us of the existence of partial isometries, Ψp ∈ C
Np×n and Ψq ∈ C

Nq×n such that

Ũ
∗
= ΨpU

T
and L̃

∗
= ΨqL

T
.

Thus, L̃
∗
EŨ = Ψq(LT

EU)Ψ∗
p and so, L̃

∗
EŨ is unitarily equivalent to L

T
EU, modulo its kernel and

cokernel. More precisely, L
T
EU is isomorphic to a linear transformation induced by L̃

∗
EŨ viewed as
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a mapping of the quotient space, C
Np/Ker(Ũ) onto Ran(L̃∗

EŨ). This is a significant observation since

the singular values of L
T
EU are the Hankel singular values of the system which are system invariants

(i.e., independent of system realization) and play a fundamental role in BT (see, Step 2 of Algorithm 1).

Although L
T
EU itself is evidently tied closely to knowledge of a state-space realization, the unitarily

equivalent matrix, L̃
∗
EŨ will provide essentially equivalent information while being directly derivable

from data, as we will see.

Proposition 3.1. Let Ũ and L̃ be as defined in (15) and (17). Define the matrix L̃ = L̃
∗
EŨ ∈

C
Nq×Np . Then, for 1 ≤ k ≤ Nq and 1 ≤ j ≤ Np,

L̃k,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−φkρj
H(ı̇ıωk) −H(ı̇ıζj)

ı̇ıωk − ı̇ıζj
, for 1 ≤ k ≤ ℓq, 1 ≤ j ≤ ℓp,

φkρ∞H(ı̇ıωk), for 1 ≤ k ≤ ℓq = Nq, j = Np = ℓp + 1,

φ∞ρjH(ı̇ıζj), for k = Nq = ℓq + 1, 1 ≤ j ≤ ℓp = Np,

φ∞ρ∞M0, for k = Nq = ℓq + 1, j = Np = ℓp + 1.

(19)

Proof. Let ek denote the kth canonical vector (of conforming length). Then, it follows from the

definitions of L̃ and Ũ that, for 1 ≤ k ≤ ℓq and 1 ≤ j ≤ ℓp, the following holds true

L̃k,j = e
T
k L̃ej = (eTk L̃∗)E(Ũej) = φkρjc

T (ı̇ıωkE −A)−1 E (ı̇ıζjE −A)−1b
=

φkρj

ı̇ıωk − iζj
c
T (ı̇ıωkE −A)−1 [(ı̇ıωkE −A) − (ı̇ıζjE −A)] (ı̇ıζjE −A)−1b

= −
φkρj

ı̇ıωk − ı̇ıζj
c
T [(ı̇ıωkE −A)−1 − (ı̇ıζjE −A)−1]b = −φkρj

H(ı̇ıωk) −H(ı̇ıζj)
ı̇ıωk − ı̇ıζj

.

Next, if 1 ≤ k ≤ ℓq = Nq, and j = Np = ℓp + 1 we can write that

L̃k,j = e
T
k L̃ej = (eTk L̃∗)E(Ũej) = φkc

T (ı̇ıωkE −A)−1 E ρ∞E
−1
b

= φkρ∞c
T (ı̇ıωkE −A)−1b = φkρ∞H(ı̇ıωk).

Similarly, we find the exact derivation of L̃k,j in Proposition 3.1 for the case k = Nq = ℓq + 1 and
1 ≤ j ≤ ℓp = Np. Finally, for k = Nq = ℓq + 1, j = Np = ℓp + 1, it follows that:

L̃k,j = e
T
k L̃ej = (eTk L̃∗)E(Ũej) = φ∞c

T
E

−1
E ρ∞E

−1
b

= φ∞ρ∞c
T
E

−1
b = φ∞ρ∞M0.

The observation that the quadrature-based approximate quantity L̃ = L̃
∗
EŨ may be obtained solely

from transfer function samples is consistent with it being a system invariant, producing approximations
to Hankel singular values that are also system invariants and not dependent on any specific state-space
realization. Note that L̃ has at most rank-n, i.e., the McMillan degree of the underlying system.
Of course, it will not be the case that the quadratures described in (14) and (16) are exact, so before

we proceed we seek some assurance that the error induced by the quadrature approximation can be
controlled. We have the following result:

Proposition 3.2. Suppose the quadratures in (14) and (16) produce approximations P̃ and Q̃ to P

and Q, respectively, that satisfy ∥Q − Q̃∥F ≤
δ

1+δ
σmin(Q) and ∥P − P̃∥F ≤

δ

1+δ
σmin(P) for some

Preprint. 2021-04-05
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δ ∈ (0, 1) where σmin( ⋅ ) denotes the smallest singular value. Then there exist isometries Ψp ∈ C
Np×n

and Ψq ∈ C
Nq×n such that

∥L̃∗
EŨ −Ψq(LT

EU)Ψ∗

p∥F ≤ 2 δ ∥E∥2 ∥L∥2 ∥U∥2 (20)

Let σ1 ≥ σ2 ≥ ⋯ ≥ σn denote the singular values of L
T
EU (i.e., the Hankel singular values of the

system (1)), and let σ̃1 ≥ σ̃2 ≥ ⋯ ≥ σ̃n denote the singular values of L̃
∗
EŨ. Then,

( n

∑
k=1

(σk − σ̃k)2)
1

2

≤ 2 δ ∥E∥2 ∥L∥2 ∥U∥2

The proof of this proposition may be found in Appendix B.
This leads us to consider a quadrature-based approximation to BT that uses Ũ and L̃ in lieu of U

and L in Step 2 of Algorithm 1, replacing the SVD of L
T
EU instead with the SVD of the (nearly)

unitarily equivalent matrix, L̃ = L̃
∗
EŨ that can be computed nonintrusively, generated essentially

solely from transfer function measurements.
Recall the singular values of L

T
EU (the Hankel singular values) are independent of system real-

ization. Our nonintrusive, quadrature-based approach provides a new way of accessing the Hankel
singular values without recourse to a system realization.

3.1.1 Numerical examples

We compare in what follows the computed Hankel singular values of two dynamical systems, for which
the matrix representation is available in [40], namely

• The heat equation (referred to as [heat]) describing the thermal response of a thin rod - the
dimension of the LTI is n = 200 and it has single input and single output.

• The International Space Station example (referred to as [iss1r]) that models the component 1r
of the International Space Station - the dimension of the LTI is n = 270 and it has three inputs
and three outputs.

For more details on these models, we refer the reader to [18]. In Figs. 1 and 2, we depict the true Hankel
singular values together with the approximate ones obtained via the non-intrusive quadrature-based
approach as described above. We use two representative quadrature rules described in Appendix A,
labeled as [ExpTrap] and [B/CC]. As the figures illustrate, the quadrature-based estimates for the Hankel
singular values approximate the true values accurately.

5 10 15 20 25 30 35 40 45 50

10-15

10-10

10-5

Approx BT HSV
True HSV

5 10 15 20 25 30 35 40 45 50

10-15

10-10

10-5

Approx HSV - B\CC
True HSV

Figure 1: The computed (Hankel) singular values for the NICONET [heat] model using a trapezoid

quadrature with 120 nodes in the interval [10−3, 103]ı̇ı (left) and using 120 nodes with L = 4

and L = 3 in [B/CC] for Ũ and L̃, respectively (right).
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10 20 30 40 50 60 70 80

10-6

10-4

10-2
Approx BT HSV
True HSV

10 20 30 40 50 60 70 80

10-6

10-4

10-2
Approx HSV - B\CC
True HSV

Figure 2: The computed (Hankel) singular values for the NICONET [iss1r] model using a trapezoid

quadrature with 400 nodes in the interval [10−1, 102]ı̇ı (left) and using 400 nodes with L = 10

and L = 10.5 in [B/CC] for Ũ and L̃, respectively (right).

3.2 Data-driven Balanced Truncation

Although BT yields reduced models in a manner that reflects system invariants and in that sense is
independent of system realizations, BT typically does require explicit access to a state-space represen-
tation and thus, in a practical sense, remains tied to system realizations. In particular, note that in
Step 3 of Algorithm 1, model reduction bases Wr and Vr are constructed and then used to project
state space quantities. Through our (implicit) use of quadrature approximations for the reachability
and observability Gramians, we are able to avoid any explicit reference to model reduction bases or to
specific system realizations, and effect BT in a coordinate system determined solely by input-output
data.
Notice that in Step 4 of Algorithm 1, we have Ar = S

−1/2
1 Z

T
1 (LT

AU)Y1S
−1/2
1 , and so the con-

struction of Ar makes reference to both L
T
AU and the SVD of L

T
EU, reflecting equivalent basis

transformations on both A and E. Proposition 3.1 showed how we can replace L
T
EU with the (nearly)

unitarily equivalent matrix, L̃ = L̃
∗
EŨ (which could then be computed directly from data). So, we

might expect that we could construct a realization equivalent to Ar by replicating on A an equivalent

change of basis that had been visited upon E by L̃ = L̃
∗
EŨ. Pleasantly, we find this to be the case in

our next result by examining M̃ = L̃
∗
AŨ. Similar observations will hold for br and cr.

Proposition 3.3. Let Ũ and L̃ be as defined in (15) and (17). Define the matrix M̃ = L̃
∗
AŨ ∈

C
Nq×Np . Then, the (k, j) entry of M̃, for 1 ≤ k ≤ Nq and 1 ≤ j ≤ Np, is given by

M̃k,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−φkρj
ı̇ıωkH(ı̇ıωk) − ı̇ıζjH(ı̇ıζj)

ı̇ıωk − ı̇ıζj
, for 1 ≤ k ≤ ℓq, 1 ≤ j ≤ ℓp,

φkρ∞ (ı̇ıωkH(ı̇ıωk) −M0) , for 1 ≤ k ≤ ℓq = Nq, j = Np = ℓp + 1,

φ∞ρj (ı̇ıζjH(ı̇ıζj)−M0) , for k = Nq = ℓq + 1, 1 ≤ j ≤ ℓp = Np,

φ∞ρ∞M1, for k = Nq = ℓq + 1, j = Np = ℓp + 1.

(21)

Likewise, defining h̃ = L̃
∗
b ∈ C

Nq×1 and g̃
T
= c

T
Ũ ∈ C

1×Np , we find component-wise,

h̃k = {φkH(ı̇ıωk), for 1 ≤ k ≤ ℓq,

φ∞M0, for k = Nq = ℓq + 1.
and (22)

g̃j = {ρjH(ı̇ıζj), for 1 ≤ j ≤ Np,

ρ∞M0, for j = Np = ℓp + 1.
(23)
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Proof. The proof is similar to that of Proposition 3.1. Notice first that for any square matrix, T, and
any ς, µ ∈ C that are not eigenvalues of T, one may verify

ς(ςI−T)−1 − µ(µI −T)−1 = −(ς − µ)(ςI −T)−1T(µI −T)−1.
By setting T = AE

−1
and simplifying, one finds

ς(ςE −A)−1 − µ(µE −A)−1 = −(ς − µ)(ςE −A)−1A(µE −A)−1.
Now, using the definitions of L̃ and Ũ,

M̃k,j = e
T
k M̃ej = (eTk L̃∗)A(Ũej)

= φkρjc
T (ı̇ıωkE −A)−1A(ı̇ıζjE −A)−1b

= −
φkρj

ı̇ıωk − ı̇ıζj
c
T [ı̇ıωk(ı̇ıωkE −A)−1 − ı̇ıζj(ı̇ıζjE −A)−1]b

= −φkρj
ı̇ıωkH(ı̇ıωk) − ı̇ıζjH(ı̇ıζj)

ı̇ıωk − ı̇ıζj
.

Next, if 1 ≤ k ≤ ℓq = Nq, and j = Np = ℓp + 1 we can write that

M̃k,j = e
T
k M̃ej = (eTk L̃∗)A(Ũej) = φkc

T (ı̇ıωkE −A)−1Aρ∞E
−1
b

= φkρ∞c
T [ı̇ıωk(iωkE −A)−1 −E

−1]b = φkρ∞ (ı̇ıωkH(ı̇ıωk) −M0) .
Similarly, we can find the exact derivation of L̃k,j in (21) for the case k = Nq = ℓq+1, 1 ≤ j ≤ ℓp = Np.
Next, for k = Nq = ℓq + 1, j = Np = ℓp + 1, it follows that:

M̃k,j = e
T
k M̃ej = (eTk L̃∗)A(Ũej) = φ∞c

T
E

−1
A ρ∞E

−1
b

= φ∞ρ∞c
T
E

−1
AE

−1
b = φ∞ρ∞M1.

Finally, one can write

h̃k = e
T
k h̃ = (eTk L̃)b = {φkc

T (ı̇ıωkE −A)−1b = φkH(ı̇ıωk), for 1 ≤ k ≤ ℓq,

φ∞c
T
E

−1
b = φ∞M0, for k = Nq = ℓq + 1.

and

g̃j = g̃
T
ej = c

T (Ũej) = {ρjcT (ı̇ıζjE −A)−1b = ρjH(ı̇ıζj), for 1 ≤ j ≤ Np,

ρ∞c
T
E

−1
b = ρ∞M0, for j = Np = ℓp + 1.

At this point, we are able to replace the quantities L
T
EU, L

T
AU, L

T
b, and c

T
U in Algorithm 1

with equivalent quantities that are derivable directly from data (i.e., from transfer function samples).
We assemble this together in Algorithm 2, yielding a computationally feasible strategy for approxi-
mate balanced truncation (QuadBT), using only transfer function sampling without access to internal
properties, yet still capable of recovering to any accuracy desired the same (or state-space equivalent)
reduced models as BT.
It is revealing to contrast the construction of Ar in (11) with the construction of Ãr in (26). While

the former computes the inner term L
T
AU and requires access to internal quantities characterizing

the dynamics, the latter approximates this term through M̃, which may be constructed directly from

transfer function samples. Moreover, the quantities S̃
−1/2
1 Z̃

∗

1 and Ỹ1S̃
−1/2
1 are available from the SVD

of the data matrix L̃ in (19).
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Algorithm 2 Quadrature-based (data-driven) balanced truncation (QuadBT)

Input: LTI system described through a transfer function evaluation map, H(s);
quadrature nodes, ζj , and weights, ρj , for j = 1, 2, . . . , Np;
quadrature nodes, ωk, and weights, φk, for k = 1, 2, . . . , Nq,
and a truncation index, 1 ≤ r ≤ min(Np, Nq).

Output: QuadBT reduced-system: Ãr ∈ R
r×r

, b̃r, c̃r ∈ R
r
.

1: Sample transfer function values, {H(ı̇ıζj)}Np

j=1 and {H(ı̇ıωk)}Nq

k=1. Using the samples and quadrature

weights, {ρj} and {φk}, construct L̃ ∈ C
Nq×Np , M̃ ∈ C

Nq×Np , h̃, and g̃ as in (19), (21), (22), and
(23), respectively,

2: Compute the SVD of L̃:

L̃ = [Z̃1 Z̃2] [S̃1

S̃2

] [Ỹ∗

1

Ỹ
∗

2

] , (24)

where S̃1 ∈ R
r×r

and S̃2 ∈ R
(Nq−r)×(Np−r).

3: Construct the reduced order matrices:

Ẽr = S̃
−1/2
1 Z̃

∗

1 L̃ Ỹ1S̃
−1/2
1 = Ir, (25)

Ãr = S̃
−1/2
1 Z̃

∗

1 M̃ Ỹ1S̃
−1/2
1 , (26)

b̃r = S̃
−1/2
1 Z̃

∗

1h̃, and (27)

c̃r = g̃
T
Ỹ1S̃

−1/2
1 . (28)

Remark 3.1. In the analysis above, we have assumed that the quadrature nodes {ζj} for P̃ and {ωk}
for Q̃ are distinct from each other. However, it may be more convenient to choose the same quadrature
nodes (and weights) for both P̃ and Q̃. This leads to only minor changes to the analysis and in

Algorithm 2. The vectors h̃ in (22) and g̃ in (23) stay unchanged. The principal change occurs on

the diagonal entries of L̃ and M̃: assuming that ωk = ζk, then the (k, k) entry of L̃ in (19) is replaced
by

L̃k,k = −φkρkH
′(ı̇ıωk),

where H
′
denotes the derivative of H. The (k, k) entry of M̃ in (21) is replaced by

M̃k,k = −φkρk (ωkH
′(ı̇ıωk) +H(ı̇ıωk)) .

The remaining entries in L̃ and M̃ are unchanged.

3.2.1 Numerical examples - the SISO case

In this section we will test the approximation capability of our newly proposed method and compare
it with that of classical balanced truncation.

1. [BT-classic]: The classical BT approach (Algorithm 1).

2. [ExpTrap-N]: The new method QuadBT (Algorithm 2) computed using the exponential trapezoid
rule with N points (without derivative samples); more details in Appendix A.

3. [B/CC-N]: The new method QuadBT (Algorithm 2) computed using Boyd/ Clenshaw-Curtis rule
with N points (without derivative samples); more details in Appendix A.
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First, we start with the [heat] numerical test case. Choose both 60 and 120 logarithmically-spaced

points in the interval [10−3, 103]ı̇ı as nodes for [ExpTrap] (the left and right nodes are different). In

[B/CC], choose L = 4 and L = 3 for Ũ and L̃, respectively, with both 60 and 120 nodes. Then, we vary
the reduction order from r = 2 to r = 14 in increments of two and collect both the H∞ and the H2

norms of the error systems corresponding to [BT-classic] and both quadrature schemes. The results are
presented in 4, illustrating that both QuadBT models (with [ExpTrap-N] and [B/CC-N]) almost exactly
replicate the performance of [BT-classic].

2 4 6 8 10 12 14

10-10

10-6

10-2

BT-classic
ExpTrap-60
B/CC-120
ExpTrap-60
B/CC-120

2 4 6 8 10 12 14

10-9

10-5

10-1

BT-classic
ExpTrap-60
B/CC-120
ExpTrap-60
B/CC-120

Figure 3: The relative H∞ (left) and H2 (right) error approximation for different quadratures and
nodes applied to the Niconet [heat] model.

We continue with the [iss1r] numerical test case. To enforce a SISO system, we restrict our attention
to the first input and first output. Then, choose either 200 or 400 points logarithmically-spaced points
in the interval [10−1, 102]ı̇ı as nodes for the [ExpTrap] scheme (the left and right nodes are different).

In [B/CC], we choose L = 10 and L = 9 for Ũ and L̃, respectively and use both 200 and 400 nodes.
We then vary the reduction order in the interval [2, 24] (in increments of two) and collect both the
H∞ norm and also the H2 norm of the error systems corresponding to all three reduced models. The
results are presented in Fig. 4. As in the [heat] case, these figures show that transfer-function based
QuadBT very closely mimics (in many cases exactly replicates) the H∞ and H2 performance of the
projection-based BT. In this example, [B/CC] quadrature outperforms [ExpTrap].

5 10 15 20

10-3

10-2

10-1

BT-classic
ExpTrap-200
B/CC-200
ExpTrap-400
B/CC-400

5 10 15 20

10-2

10-1

BT-classic
ExpTrap-200
B/CC-200
ExpTrap-400
B/CC-400

Figure 4: The relative H∞ (left) and H2 (right) error approximation for different quadratures and
nodes applied to the Niconet [iss1r] model.

3.3 Connections to approximate BT methods

Due to its compelling theoretical properties, an immense amount of literature has developed around
effective methods for approximating BT for large-scale dynamical systems, often focusing on efficient
handling of the main computational bottleneck in BT, namely, the computation of Gramians, which
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requires the solution of two large-scale Lyapunov equations (5)-(6). We list a small selection of these
works here [11, 34, 35, 44, 54, 57]; further references and detail can be found within these resources.
A common approach for approximate BT involves constructing low-rank approximate factors to P

and Q, i.e., P ≈ ÛÛ
T
and Q ≈ L̂L̂

T
, with rank(Û) and rank(L̂) much smaller than n. Then we use

Û and L̂ in Algorithm 1 in place of the true square-root factors U and L. Unfortunately, regardless
of how Û and L̂ are computed, this construction requires access to internal dynamics and state-space
quantities. The reduced model is then obtained by an explicit projection as in (10)-(13). This is

fundamentally different from what we develop in this work; we do not compute Û or L̂ and we do not
require access to state-space quantities. We only assume access to transfer function samples. Despite
these major contrasts, there are striking similarities that motivate the underlying approximation theory.
The quadrature approximation (14) toP has been a major force behind the frequency-domain version

of Balanced POD [61]. Indeed, the Balanced POD approach of [61] engages a numerical quadrature for
the Gramians, P and Q, using unit quadrature weights; ρj = 1 for j = 1, . . . , ℓp (14) and φk = 1 for
j = 1, . . . , ℓq in (16), and omitting the node at infinity in both cases. The approach of [61] was later
referred to as Poor Man’s Truncated Balanced Reduction in [45]; however, the implementation there
is restricted to symmetric systems. Significantly, Balanced POD is not data-driven in the sense that we
explore here, but rather it is both projection-based and intrusive, requiring explicit access to a state-
space representation. Nonetheless, it is clear that one may immediately arrive at a transfer-function
based data-driven formulation of Balanced POD by using the QuadBT framework developed here.
Along similar lines, Gauss-Kronrod quadrature was used to approximate the Hankel singular values

in [12], but as with earlier methods, the use of explicit state-space representations is still required.
Similar quadrature strategies were later used in [17] to extend BT to structure-preserving model re-
duction for integro-differential equations. In all these methods, numerical quadrature in the frequency
domain to approximate the Gramians can be viewed as a common starting point for our framework.
Significantly, we have avoided an explicit projection strategy by directly working with transfer function
evaluations.
Evidently, numerical quadrature can also be applied to the time-domain representation of P as in (2)

and this has also been considered as a strategy for approximate BT, see, e.g., [13,14,27,38,41,55]. We
explore these connections in §5 where a time-domain formulation of our data-driven BT framework is
considered.
ADI-type methods (see, e.g.,[9, 11, 21, 35, 44, 54, 56]) are among the most common tools in use for

producing approximate low-rank Gramian factors Û and L̂. These methods are iterative in character
and depend on ADI-shift parameters whose choice determines the speed of convergence. Even though
the resulting low-rank factor Û obtained via ADI methods will have a different structure than Ũ in
(15), one may view either result as a low-rank factor for frequency-domain Balanced POD. Both factors
span the same (Krylov) subspaces provided that the ADI parameters are chosen to be the negative
of the quadrature nodes [5]. Significantly, low-rank ADI solutions have also been connected to time-
domain quadrature methods [13,14]. These connections highlight the powerful approximation-theoretic
framework unifying these approaches and that is the reason we choose to emphasize it. Nonetheless,
our approach is distinct from other methods in the sense that it never constructs approximate solutions
to P or Q, nor attempts to approximate low-rank factors). Our approximate BT reduced model is
constructed directly from data.

3.4 Comparison with interpolatory Loewner model reduction

For the sampling points {µk}Nq

k=1 and {λj}Np

j=1, consider L ∈ C
Nq×Np , M ∈ C

Nq×Np , defined elementwise
as:

Lk,j = −
H(ı̇ıµk) −H(ı̇ıλj)

ı̇ıµk − ı̇ıλj
and Mk,j = −

ı̇ıµkH(ı̇ıµk) − ı̇ıλjH(ı̇ıλj)
ı̇ıµk − ı̇ıλj

, (29)

for k = 1, 2, . . . , Nq and j = 1, 2, . . . , Np.

Preprint. 2021-04-05



I. V. Gosea, S. Gugercin, C. Beattie: Quadrature-based balanced truncation from data 13

The matrices L and M in (29) are called, respectively, the Loewner and shifted-Loewner matrices.

Notice that L and M bear evident similarities to the key matrices L̃ in (19) and M̃ in (21) that are
central to QuadBT. Indeed, assuming that the node at infinity is absent from the quadrature rules in
(14) and (16), and that the quadrature nodes in QuadBT determine µk = iωk for k = 1, 2, . . . , Nq and

λj = iζj for j = 1, 2, . . . , Np in (29), the matrices L̃ in (19) and M̃ in (21) used in QuadBT will be
diagonal scalings of L and M:

L̃ = diag(φ1, . . . , φNq
)L diag(ρ1, . . . , ρNp

),
and

M̃ = diag(φ1, . . . , φNq
)M diag(ρ1, . . . , ρNp

).
Despite these equivalences, the matrices L and M of (29) were originally conceived to play a role in

quite a different model reduction scheme which we refer to as the interpolatory Loewner model reduction
framework. This model reduction framework was introduced in [37] as a data-driven interpolation-
based system identification and complexity reduction technique. It has become a popular and powerful
tool for model reduction over the last decade, and has been successfully extended to parametrized
linear dynamical systems [30], structured linearized systems [52], bilinear [3] and quadratic-bilinear
systems [23], and has been formulated to work with time-domain data as well [42].
The principal feature of the interpolatory Loewner framework is the construction of a rational in-

terpolant matching the given sampled transfer function data. This provides immediately a realization
of a reduced model that matches the system response at specified driving frequencies (or equivalently,
at specified complex interpolation points). The quality of the final reduced model is strongly tied to
the choice of interpolation points and in the MIMO setting, also to the choice of tangent directions.
If some additional flexibility exists in where the system may be sampled, H2-optimal reduced order
interpolants may be feasibly computed [6]. For a detailed account of theoretical developments as well
as implementation details for Loewner-based methods relating especially to rational interpolation, we
refer the reader to [2, 4], and the references therein.
Although our QuadBT framework makes use of matrices that are, at least in many cases of interest,

diagonally scaled Loewner and shifted Loewner matrices, rational interpolation plays no role for us.
Instead, we have observed that there are strong links among (a) quadrature rules (14) and (16), (b)
the (limiting) implicit Gramian factorizations described in (18), and (c) the related Loewner / shifted
Loewner factorizations. These links couple together the features developed in Propositions 3.1, 3.2,
and 3.3, and allow us ultimately to mimic BT in a purely data-driven manner.

3.4.1 Numerical examples

We use the [heat] and [iss1r] models from §3.1.1 as test cases. QuadBT is implemented using only the
[ExpTrap] quadrature.

We choose 120 logarithmically-spaced points in the interval [10−3, 103]ı̇ı for the [heat] model and

400 logarithmically-spaced points in the interval [10−1, 102]ı̇ı for the [iss1r] model. In the interpolatory
Loewner framework, the singular values of L and/or the augmented matrix [ L M ] play a fundamental
role in determining reduction order, analogous to Hankel singular values in BT; see [2, §4.3]. Therefore,
in addition to the QuadBT quantities, we construct L and M corresponding to the same transfer
function samples and compute (i) the true Hankel singular values, (ii) QuadBT-based Hankel singular
values, and (iii) the singular values of L and [ L M ]. Results are depicted in Fig. 5. While the
Hankel singular values computed via [ExpTrap] approximate the true ones fairly well, the singular values
corresponding to the Loewner method appear to follow the trend, only up to a scaling factor. This
simple example shows the importance of the quadrature weights appearing in the QuadBT framework.

Next, we consider the SISO version of the [iss1r] model and apply both QuadBT with [ExpTrap] using

200 logarithmically-spaced points in the interval [10−1, 102]ı̇ı and the Loewner-based interpolation
method. We vary the reduction order from r = 2 to r = 24, and collect the H∞ and the H2 norms of
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Figure 5: The computed singular values for the heat model (left) and the [iss1r] model (right).

the error systems for both methods. The results are presented in Fig. 6 where the label [Loewner-200]
refers to the Loewner method with N = 200 points. Fig. 6 shows that for the same transfer function
data, it pays off to use appropriate quadrature weights to perform QuadBT as QuadBT outperforms
the Loewner approach and mimics BT much more closely.

5 10 15 20

10-3

10-2

10-1

BT-classic
BT-ExpTrap-200
Loewner-200

5 10 15 20

10-2

10-1

BT-classic
BT-ExpTrap-200
Loewner-200

Figure 6: Relative H∞ (left) and H2 (right) approximation errors for different methods applied to the
[iss1r] model.

4 Refinements and Extensions

4.1 Keeping it real

The original system has been presumed to be real, insofar as real-valued inputs and real-valued initial
states assure real-valued outputs. This guarantees in turn that a real realization involving matrices
E, A ∈ R

n×n
, B ∈ R

n×m
,C ∈ R

p×n
is possible, though not necessarily explicitly available. Equiva-

lently, the associated system transfer function H(s) = C(sE −A)−1B displays a conjugate symmetry
of system poles and residues (i.e., complex poles and residues must occur in conjugate pairs). If we
utilize symmetric quadrature rules in the approximations given in (14) and (16) — that is, if the sets

of quadrature nodes and associated weights, {(ζj , ρj)}Np

j=1 and {(ωk, φk}Nq

k=1, are symmetrically dis-
tributed on the real axis with respect to 0 — then we will be able to retain this conjugate symmetry,
accomplish computations equivalent to Steps 2, 3, and 4 of QuadBT using only real arithmetic, and be
assured that the final reduced model will inherit the conjugate symmetry of the original system, thus
representing a reduced-order real dynamical system.
For simplicity, we return to the SISO case and suppose that both node sets have an even number

of points that are symmetrically distributed across the real axis, say Np = 2νp and Nq = 2νq. (More
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general settings are considered in [2], p. 203). Relabel these node sets as

ζ−νp < ζ−νp+1 < ⋯ < ζ−1 < 0 < ζ1 < ⋯ < ζνp−1 < ζνp ,

ω−νq < ω−νq+1 < ⋯ < ω−1 < 0 < ω1 < ⋯ < ωνq−1 < ωνq ,

noting that ζ−j = −ζj and for the corresponding weights, ρ−j = ρj , for j = 1, ..., νp. Similarly, we have
ω−k = −ωk and φ−k = φk for k = 1, ..., νq. The nodes/weights are then reordered with respect to this
± node pairing:

{ ζ1, ζ−1, ζ2, ζ−2, . . . , ζνp , ζ−νp} and {ω1, ω−1, ω2, ω−2, . . . , ωνq , ω−νq}. (30)

When the samples obtained in Step 1 of QuadBT are reordered in the same way, they appear now as
a sequence of conjugate pairs:

{H(ı̇ıζj), H(ı̇ıζj)}νpj=1 and {H(ı̇ıωk), H(ı̇ıωk)}νqk=1.
Notice that one need only explicitly evaluate the first function of each pair.
Now instead of (19), we reconsider the construction of L̃ taking into account the new node ordering

given in (30). With respect to this node ordering, L̃ can be partitioned into 2 × 2 blocks, L̃
(2)
k,j ,

conforming to the conjugate pairing of quadrature nodes in (30) — left data at (ı̇ıωk,−ı̇ıωk); right data
at (ı̇ıζj ,−ı̇ıζj):

L̃
(2)
k,j = −φkρj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
H(ı̇ı ωk)−H(ı̇ı ζj)

ı̇ı ωk−ı̇ı ζj

H(ı̇ı ωk)−H(ı̇ı ζj)
ı̇ı ωk−(−ı̇ı ζj)

H(ı̇ı ωk)−H(ı̇ı ζj)(−ı̇ıωk)−ı̇ı ζj
H(ı̇ı ωk)−H(ı̇ı ζj)(−ı̇ı ωk)−(−ı̇ı ζj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

for j = 1, ..., νp and k = 1, ..., νq. Note that each L̃
(2)
k,j satisfies a Sylvester equation:

L̃
(2)
k,j [ ı̇ı ωk 0

0 −ı̇ı ωk

] − [ ı̇ı ζj 0

0 −ı̇ı ζj
] L̃

(2)
k,j

= φkρj ([ 1

1
] [H(ı̇ı ζj) H(ı̇ı ζj) ] − [ H(ı̇ı ωk)

H(ı̇ı ωk) ] [ 1 1 ]) .
This uniquely determines each L̃

(2)
k,j (and hence, L̃) when the sets of quadrature nodes, {ζj} and {ωk},

are disjoint as we have assumed.

L̃ is unitarily equivalent to a real matrix as we next demonstrate explicitly. Define J =
1√
2
[ 1 −ı̇ı

1 ı̇ı ]
and consider a unitary equivalence defined by

L̃
R
= (Iνq ⊗ J

⋆) L̃ (Iνp ⊗ J).
L̃
R

can be partitioned into 2 × 2 blocks, conforming precisely to the earlier partitioning of L̃, and

indeed one finds for each block, L̃
(2)R
k,j = J

⋆
L̃
(2)
k,jJ for j = 1, ..., νp and k = 1, ..., νq. One may check

directly that L̃
(2)R
k,j is real. Indeed, each block may be determined uniquely from a corresponding (real)

Sylvester equation:

L̃
(2)R
k,j [ 0 ωk

−ωk 0
]− [ 0 ζj

−ζj 0
] L̃

(2)R
k,j = 2φkρj [ Re (H(ı̇ı ζj) −H(ı̇ı ωk)) Im (H(ı̇ı ζj))

Im (H(ı̇ı ωk)) 0
] ,

for j = 1, ..., νp and k = 1, ..., νq. One may solve these Sylvester equations for L̃
(2)R
k,j , in real arithmetic,

independently of one another in parallel.
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Similar considerations may be applied to (21), (22), and (23), which define respectively, the com-

plementary matrix M̃, and vectors h̃ and g̃. For M̃, we find as before, a unitarily equivalent real
matrix:

M̃
R
= (Iνq ⊗ J

⋆) M̃ (Iνp ⊗ J),
which may be partitioned into sub-matrices, M̃

(2)R
k,j = J

⋆
M̃

(2)
k,jJ for j = 1, ..., νp and k = 1, ..., νq,

conforming to the partitioning for L̃
R
. These sub-matrices are directly computable from real Sylvester

equations:

M̃
(2)R
k,j [ 0 ωk

−ωk 0
] − [ 0 ζj

−ζj 0
] M̃

(2)R
k,j

= 2φkρj [ Im (ωk H(ı̇ı ωk) − ζj H(ı̇ı ζj)) Re (ζj H(ı̇ı ζj))
Re (ωk H(ı̇ı ωk)) 0

] ,
for j = 1, ..., νp, k = 1, ..., νq. For h̃ and g̃, we may define corresponding real vectors,

h̃

(R)
= (Iνq ⊗ J

⋆)h̃ and g̃

(R)T
= g̃

T (Iνp ⊗ J).
If we return to QuadBT (Algorithm 2) and replace L̃, M̃, h̃, and g̃ with their real counterparts derived

above, L̃
(R)

, M̃
(R)

, h̃
(R)

, and g̃
(R)

, then the computations in Steps (3) and (4) may be done entirely
in real arithmetic, and the final reduced model defined in Step (4) will be real, even in the presence of
rounding errors.

4.2 MIMO Systems

We have thus far presented an analysis framework specific to SISO dynamical systems, however the
MIMO case follows from this nearly immediately; the only change occurs in the construction of L̃, M̃,
h̃ and c̃r, and not in Algorithm 2 itself. Specifically, assume that the underlying dynamical system has
m inputs and p outputs (e.g., as in (1)). In this case, the transfer function function is a matrix-valued
rational function and we will denote it by H(s) so that for any frequency ŝ ∈ C, we have H(ŝ) ∈ C

p×m
.

Therefore, assuming the same set-up as in Proposition 3.1, in defining L̃, we have

L̃k,j = −φkρj
H(ı̇ıωk) −H(ı̇ıζj)

ı̇ıωk − ı̇ıζj
∈ C

p×m
, (31)

as the (k, j)th block of L̃ and therefore L̃ ∈ C
(p⋅Nq)×(m⋅Np). Similarly, in Proposition 3.3, we will have

M̃k,j = −φkρj
ı̇ıωkH(ı̇ıωk) − ı̇ıζjH(iζj)

ı̇ıωk − ı̇ıζj
∈ C

p×m
, (32)

as the (k, j)th block of M̃ and thus M̃ ∈ C
(p⋅Nq)×(m⋅Np). Since we are dealing with MIMO systems, we

replace h̃ with H̃ = L̃
∗
B ∈ C

(Nq⋅p)×m and g̃
T
with G̃ = CŨ ∈ C

p×(Np⋅m)
with the kth row block of

H̃ and jth columns block of G̃ given by

H̃k = φkH(ı̇ıωk) ∈ C
p×m

and G̃j = ρjH(ı̇ıζj) ∈ C
p×m

.

Then, Algorithm 2 simply proceeds with these new definitions.
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4.2.1 Numerical example: the MIMO case

For this scenario, we utilize the [iss1r] numerical test case, having p = 3 outputs and m = 3 inputs. We
follow the specifications in §4.2 to adapt the newly-proposed method to the MIMO case.
Choose both 200 and 400 logarithmically-spaced points in the interval [10−1, 102]ı̇ı as nodes for

[ExpTrap] (the left and right nodes are chosen to be distinct). For [B/CC], choose L = 10 and L = 10.5

for Ũ and L̃, respectively, using both 200 and 400 nodes. We then vary the reduction order from r = 2
to r = 24, and compute the relative H∞ and H2 errors, corresponding to both quadrature schemes.
The results are presented in Fig. 7. As in the SISO case, QuadBT accurately mimics BT performance.
In this MIMO example, [B/CC] outperforms [ExpTrap].

5 10 15 20

10-2

10-1

BT-classic
ExpTrap-200
B/CC-200
ExpTrap-400
B/CC-400

5 10 15 20

10-1

BT-classic
ExpTrap-200
B/CC-200
ExpTrap-400
B/CC-400

Figure 7: Relative H∞ (left) and H2 (right) approximation errors for different quadrature schemes
([ExpTrap] vs [B/CC]) and different numbers of nodes (200 vs 400) for [iss1r] MIMO model.

4.3 Discrete-time systems

Consider discrete-time dynamical systems characterized by the difference equations

Exk+1 = Axk +Buk,

yk = Cxk,
(33)

where the input mapping is given by u ∶ Z → R
m
, the state trajectory/variable is x ∶ Z → R

n
, and

the output mapping is y ∶ Z → R
p
. The system matrices, as in the continuous case, are given by

A,E ∈ R
n×n

, and B ∈ R
n×m

, C ∈ R
p×n

. We assume that the discrete system is asymptotically stable,
i.e., the eigenvalues of the matrix pencil (A,E) are located in the open unit disc.
The reachability Gramian P in the frequency domain is given by

P =
1

2π
∫ 2π

0

(eı̇ıζE −A)−1BB
T (e−ı̇ıζET

−A
T )−1dζ. (34)

Similarly, the observability Gramian can be represented as

Q =

1

2π
∫

2π

0

(e−ı̇ıωET
−A

T )−1CT
C(eı̇ıωE −A)−1dω (35)

P and Q satisfy the following Stein equations:

APA
T
+BB

T
= EPE

T
, A

T
QA +C

T
C = E

T
QE. (36)

As in the continuous-time case, we employ a numerical quadrature rule to approximate the the Gramian
P defined in (34) to obtain the approximant

P ≈ P̃ =

Np

∑
j=1

ρ
2

j(eı̇ıωjE −A)−1BB
T (e−ı̇ıωjE

T
−A

T )−1 (37)
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with ρ
2

j and ωj ∈ [0, 2π] denoting, respectively, quadrature weights and nodes.
We apply a similar quadrature approximation for Q and obtain

Q ≈ Q̃ =

Nq

∑
k=1

φ
2

k(e−ı̇ıζkET
−A

T )−1CT
C(eı̇ıζkE −A)−1, (38)

where φ
2

k and ζk ∈ [0, 2π] denote, respectively, quadrature weights and nodes associated with ap-
proximating Q. The rest of the QuadBT formulation for discrete systems follows immediately as in
Algorithm 2. We omit those details here for brevity.

4.3.1 Numerical example: the discrete-time case

We analyze an nth-order low-pass digital Butterworth filter with normalized cutoff frequency Wc.
Choose the parameters n = 40 and Wc = 0.6. The realization can be obtained in MATLAB using the
command butter. In Fig. 8 we depict the frequency response and the poles of the resulting discrete-time
system.

0 0.5 1
-150

-100

-50

0

-0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 8: The frequency response and the poles of the digital Butterworth filter model.

Next, choose both 150 and 300 linearly-spaced points in the interval [0, 2π) as the ωj ’s and ζk’s in
(37) and (38), for [ExpTrap]. Here, the left and right nodes are chosen to be the same. For the [B/CC]
quadrature, the values of ωj ’s and ζk’s are chosen to be Chebyshev nodes instead; again both using
150 and 300 nodes. We vary the reduction order from r = 2 to r = 40 and collect the relative H∞ and
H2 errors, corresponding to both quadrature schemes and classical BT. The results are presented in
Fig. 9. QuadBT via both [ExpTrap] and [B/CC] almost exactly replicates the BT behavior, illustrating
the success of our proposed method in the discrete-time setting as well.

4.4 An infinite-dimensional example

We revisit a numerical example from [6] describing the response of an infinite-dimensional linear
system, in this case a one-dimensional heat equation. The evolution of the temperature distribution

on a semi-infinite rod is characterized by the PDE ∂y

∂t
−

∂
2
y

∂z2 = 0, where y(z, t) denotes the temperature
at position z and time t. The temperature is controlled at the location z = 0, while the temperature
at z = 1 is the quantity of interest. By enforcing particular initial and boundary conditions as in [6],
one may explicitly derive a transfer function describing the mapping from y(0, t) to y(1; t):

H(s) = Y (1, s)
Y (0, s) = e

−
√
s
, (39)
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5 10 15 20 25 30 35 40

10-10

10-5

100
BT-classic
ExpTrap-150
B/CC-150
ExpTrap-300
B/CC-300

5 10 15 20 25 30 35 40

10-10

10-5

100

BT-classic
ExpTrap-150
B/CC-150
ExpTrap-300
B/CC-300

Figure 9: The relative H∞ approximation error for different quadratures applied to the Butterworth
digital filter model.

where Y (⋅, s) denotes the Laplace transform of y(⋅, t). Balanced truncation can be approached within
an operator-theoretic framework using ideas found for example in [19, 48]. However, we are able to
bypass these subtleties, since the transfer function H(s) in (39) is immediately available, as well as its

derivative H
′(s) = −

e
−
√
s

2
√
s
.

We directly apply QuadBT with [ExpTrap] using 50 logarithmically-spaced points in the interval[10−2, 101]ı̇ı. The results are depicted in Fig. 10. In the left plot, we show the approximation error,∣ H(ı̇ıω) − Hr(ı̇ıω) ∣, for r = 8, 12, 16, 20. Moreover, in the right side of Fig. 10, we present the

approximate Hankel singular values of the transfer function H(s) = e
−
√
s
. The reduced models via

QuadBT successfully approximates the original transfer function without requiring a discretization of
the underlying PDE.

10-2 10-1 100 101

10-9

10-7

10-5

10-3
r=8 r=12 r=16 r=20

0 10 20 30 40 50
10-20

10-15

10-10

10-5

100

Approx BT HSV

Figure 10: The approximation error for different reduction orders (left) and the approximated Hankel

singular values (right) for H(s) = e
−
√
s
.

5 Time-domain formulation

Thus far, we have developed ideas that are central to QuadBT presuming access to frequency-domain
data, i.e., data resulting from transfer function sampling at selected points in the complex plane.
This formulation utilized a frequency domain description of P and Q, expressed in (3) and (4). In
this section, we establish an analogous framework in the time domain, sampling the system response
at selected instants in time and then using a time-domain representation of P and Q to derive a
realization corresponding to an approximate balanced truncation. There are elements in common with
time-domain Balanced POD [49,55,61], which uses time-domain state snapshots. What we show that,
as in the frequency domain version, those implementations can be performed without access to state
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(internal) data. In our presentation, we will adapt the notation from [49] to our formulation. We will
focus on the single-input/single-output case for simplicity. However, unlike in [49], we will include the
E term in our formulation to keep the paper consistent with the earlier frequency-domain framework
of QuadBT.

5.1 Time-domain QuadBT for continuous-time systems

As illustrated in [49,55,61], the Balanced POD approach can be applied in the time-domain by consid-
ering a numerical quadrature approximation to time-domain definitions of the Gramians, as given, e.g.,
in (2) for the reachability Gramian. We also note that in the seminal paper [38] where BT was orig-
inally introduced, Moore had already mentioned the potential of quadrature-based approximation to
Gramians, thus motivating time-domain Balanced POD via empirical Gramians. We refer to the recent
work [28] for a comparative study on BT-related methods employing empirical Gramians. Following
on to themes developed here, we will illustrate that the time-domain Balanced POD formulation can
be fully implemented using only input/output data and in particular, without access to state variables
or internally characterized state realizations.
Assume that the time domain formula (2) for P is approximated via a numerical quadrature on(0,∞):

P = ∫
∞

0

e
E

−1
At

E
−1
bb

T
E

−T
e
A

T
E

−T
t
dt ≈

Np

∑
j=1

ρje
E

−1
AtjE

−1
bb

T
E

−T
e
A

T
E

−T
tj , (40)

where (ρj , tj) for j = 1, . . . , Np denote quadrature weight/node pairs on (0,∞). Define

Ũ = [ ρ1eE−1
At1E

−1
b ⋯ ρNp

e
E

−1
AtNpE

−1
b] ∈ R

n×Np . (41)

Then, P̃ = ŨŨ
∗
is an approximation to P with Ũ as the (approximate) square-root factor. As

pointed out in [49], the columns of Ũ without the quadrature weights can be viewed as the snapshot
data obtained from simulating the system

Eẇ = Aw, w(0) = E
−1
b. (42)

One may form a time-domain quadrature approximation to Q in a similar fashion:

Q = ∫
∞

0

e
E

−T
A

T
t
E

−T
cc

T
E

−1
e
AE

−1
t
dt ≈

Nq

∑
i=1

φie
E

−T
A

T
τiE

−T
cc

T
E

−1
e
AE

−1
τi (43)

with (φi, τj) for i = 1, . . . , Nq being quadrature weight/node pairs on (0,∞).
Evidently, the corresponding square-root factor is

L̃
T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1c
T
E

−1
e
AE

−1
τ1

φ2c
T
E

−1
e
AE

−1
τ2

⋮

φNq
c
T
E

−1
e
AE

−1
τNq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

Nq×n, (44)

so that Q̃ = L̃L̃
∗
approximates Q. Similar to Ũ, the columns of L̃ without quadrature weights can be

viewed as the snapshot data from simulating the dual system given by

E
T
ż = A

T
z, z(0) = E

−T
c. (45)

The square-root implementation of time-domain Balanced POD [49] proceeds by using Ũ and L̃ in
place of U and L in the square-root implementation of BT in Algorithm 1. So far, this still reflects
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a realization-dependent implementation, i.e., we require access to state-space representation. We will
avoid this requirement below.

As we did with frequency-domain data, we inspect L̃ = L̃
T
EŨ ∈ R

Nq×Np . Using (41) and (44), the(i, j)th component of L̃ is obtained as

L̃ij = φiρjc
T
E

−1
e
AE

−1
τiEe

E
−1

AtjE
−1
b = φiρjh(τi + tj), (46)

where h ∶ R → R is the impulse response of the underlying dynamical system, as

h(t) = c
T
e
E

−1
At

E
−1
b. (47)

The last equality in (46) follows from the observation

(E−1
e
AE

−1
τi)Ee

E
−1

Atj
= (eE−1

AτiE
−1)Ee

E
−1

Atj
= e

E
−1

A(τi+tj), (48)

which directly follows from inspection of the partial sums of the series expansion of the parenthesized
expression.
Using similar ideas, one can also show that

L̃
T
b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1c
T
E

−1
e
AE

−1
τ1b

φ2c
T
E

−1
e
AE

−1
τ2b

⋮

φNq
c
T
E

−1
e
AE

−1
τNqb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1h(τ1)
φ2h(τ2)

⋮

φNq
h(τNq

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (49)

and

c
T
Ũ = [ ρ1cT eE−1

At1E
−1
b ⋯ c

T
ρNp

e
E

−1
AtNpE

−1
b]

= [ ρ1h(t1) ⋯ ρNp
h(tNp

)] . (50)

Now, let us consider the (i, j)th component of M̃:

M̃ij = φiρjc
T
E

−1
e
AE

−1
τiAe

E
−1

AtjE
−1
b = φiρjh

′(τi + tj) (51)

where

h
′(t) = d

dt
h(t) = c

T
e
E

−1
At

E
−1
AE

−1
b. (52)

As with the other quantities, M̃ can also be obtained from the impulse response samples; yet in this
case one will need to measure the derivative of h

′(t). Notice that both L̃ and M̃ are Hankel matrices.
We have just shown that Balanced POD can be obtained directly from sampling the impulse response

h(t) and its derivative h
′(t) without access to state-snapshots data. A time-domain version of QuadBT

in Algorithm 2 immediately follows, which we do not explicitly write here for brevity.

Remark 5.1. Opmeer in [41] established a connection between Balanced POD and interpolatory model
reduction when the state data from the simulations of (42) and (45) obtained via a numerical ODE
solver such as forward and backward Euler, and other multi-stage implicit methods. In [13], Bertram
and Faßbender have further generalized and solidified this connection, by giving explicit connections
between the Butcher tableau of the underlying Runge-Kutta method and the resulting interpolation
points.

Remark 5.2. We note that the impulse response measurements h(ti) and h
′(ti), needed to construct

the data matrices in (46), (49), (50), and (51), are assumed to be available. In practical scenarios, we
would need to rely on estimating such values from experimental data or from numerical simulations.
These issues will be investigated in a future work.

Remark 5.3. In related current work [46], impulse response sampling of h(t) and h
′(t) are employed

to extend the Eigenvalue Realization Algorithm [33] to continuous-time dynamical systems.
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5.2 Time-domain QuadBT for discrete-time systems

For the (SISO) discrete-time dynamical system

Exk+1 = Axk + buk, yk = c
T
xk, (53)

time-domain formulation simplifies drastically due to the uniform discrete time-stepping. The reach-
ability Gramian P for (53), in time-domain, is given by

P =

∞

∑
k=0

(E−1
A)kE−1

bb
T
E

−T (AT
E

−T )k. (54)

Time-domain Balanced POD for discrete-time systems [36] uses

Ũ = [E−1
b (E−1

A)E−1
b ⋯ (E−1

A)Np−1E
−1
b] ∈ R

n×Np

as an approximate square-root factor for P, i.e.,

P ≈ P̃ = ŨŨ
T
=

Np−1

∑
k=0

(E−1
A)kE−1

bb
T
E

−T (AT
E

−T )k.
One follows the same discussion for Q. For (53), Q is given by

Q =

∞

∑
k=0

(E−T
A

T )kE−T
cc

T
E

−1(AE
−1)k. (55)

Then, an approximate square-root factor for Q is

L̃
T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
T
E

−1

c
T
E

−1(AE
−1)

⋮

c
T
E

−1(AE
−1)Nq−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

Nq×n,

such that

Q ≈ Q̃ = L̃L̃
T
=

Nq−1

∑
k=0

(E−T
A

T )kE−T
cc

T
E

−1(AE
−1)k.

Note that these truncated sums are also the main tool in obtaining low-rank approximations to P and

Q (see, e.g., [25, 44, 56]). Then, [36] observes that L̃ = L̃
T
EŨ can be directly obtained from data:

Direct computation shows that

L̃ij = c
T (E−1

A)i+j−2E−1
b.

In other words, in time-domain Balanced POD for discrete-time systems L̃ is the Hankel matrix of

Markov parameters. Similarly, one can directly shows that M̃ = L̃
T
EŨ is the shfited Hankel matrix

of Markov parameters, i.e.,

M̃ij = c
T (E−1

A)i+j−1E−1
b.

Similarly, L̃
T
b and c

T
Ũ can also be directly obtained from Markov parameters. Therefore, [36] ob-

served that for the special case of discrete-time dynamical systems, time-domain Balanced POD can be
obtained from input-output data using the Markov parameters. For discrete-time dynamical systems,

the Markov parameters are the samples of the impulse response function h(k) = c
T (E−1

A)kE−1
b for
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k = 0, 1, 2, . . .. [36] have also pointed out that this formulation of the time-domain Balanced POD is
equivalent to Eigenvalue Realization Algorithm [33].
Our formulation in §5.1 generalizes these concepts from [36] to continuous-time dynamical systems

and unifies them under the umbrella of impulse-response sampling. Time-domain Balanced POD [49,61]
for continuous-time systems depends on state-space quantities; our framework in §5.1 removes that
requirement. Also note that continuous-time formulation gives the added flexibility that the time-
stepping scheme (quadrature node) need not be uniform.
This analysis and these connections in time-domain QuadBT formulation open up many interesting

venues to investigate: Can the ERA connection in the discrete-time be used for continuous-time system
with finite-frequency sampling? In the case of experimental noisy data, how do the frequency-domain
or time-domain QuadBT perform; is one preferable? Hankel matrices of Markov parameters are funda-
mental in classical realization algorithms, such as Silverman realization [53] and Ho-Kalman algorithm
[29], and in optimal Hankel norm approximation [22]. How do we interpret and exploit these con-
nections under the lenses of time-domain and frequency-domain numerical quadrature for data-driven
balanced truncation? These theoretical and numerical questions are beyond the focus of this work and
will be investigated in a future work. Here our goal was to set-up the basic theoretical framework for
the time-domain interpretation.

6 Conclusion

In this contribution, we introduce a novel reformulation of balanced truncation, which is among the most
important of system-theoretic model reduction tools in use today. The usual formulation of this method
requires access to the original system realization, i.e., matrices that describe the state evolution as well
as input and output. By way of contrast, the data-driven adaptation of balanced truncation that we
propose here requires only system response data (which could be either measured or computed). The
central theme that drives our development involves the approximation of Gramian-related quantities
by means of numerical quadratures in the frequency domain. Depending on the convergence behaviour
of the quadrature scheme and the number of nodes and weights that are used, the newly-proposed
method produces results that can be made as close as desired to those of classical BT. We also discussed
parallels with the interpolatory Loewner framework, since key intermediate quantities that we make
use of are indeed Loewner-structured matrices. We demonstrated the application of our approach to a
multitude of test cases, for both SISO and MIMO systems, and for both continuous-time and discrete-
time systems. Finally, we propose time-domain extensions of our method, connecting our approach
to existing methods. Future research themes will include fleshing out practical details of this time
domain extension, together with developments that include select classes of nonlinear systems.
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Appendix A: Two numerical quadrature rules

The approach to balanced truncation that we develop here makes central use of numerical quadrature
rules. We illustrate our approach using two particular quadrature rules, the exponential trapezoid
rule and a refinement of the Clenshaw–Curtis quadrature rule developed by Boyd. These approaches
are effective in approximating matrix-valued integrals which generically appear as: ∫∞

−∞
F(ζ)dζ where

we assume that, for ζ ∈ R, the integrand F(ζ) is continuously differentiable, F(−ζ) = F(ζ)T , and
limζ→±∞ ζ

2
F(ζ) = M = M

T
∈ R

n×n
(so that, in particular, ∥F(ζ)∥ = O ( 1

ζ2 ) as ζ → ±∞). This

assumed form covers the Gramian integrals, (3) and (4), which are the principal cases of interest for
us. The two quadrature rules that we describe below are typical of the possible choices though certainly
there will be many other refined approaches that one may consider (see especially [59]).
[ExpTrap]: The exponential trapezoid rule. Note first that

∫ ∞

−∞

F(ζ)dζ = ∫ ∞

0

F(ζ) + F(ζ)T dζ

= L∫ ∞

−∞

e
Lτ (F(eLτ) + F(eLτ)T ) dτ = ∫ ∞

−∞

G(τ) dτ
where G(τ) = L e

Lτ (F(eLτ) + F(eLτ)T ); the first equality has used the symmetry of F(⋅); and the

second equality has introduced a change-of-variable for ζ > 0 as ζ = e
Lτ

. For any h > 0 and t ∈ R,
∑∞

k=−∞ G(t + khL), viewed as a function of t, is well-defined, continuously differentiable, and hL-
periodic. In particular, it has a pointwise convergent Fourier series,

∞

∑
k=−∞

G(t + khL) = ∞

∑
ℓ=0

Cℓ e
ı̇ı 2πℓ

hL
t

with (matrix-valued) coefficients that may be evaluated as: Cℓ =
2π

hL
Ĝ ( 2πℓ

hL
), where Ĝ(ω) denotes the

Fourier transform of G(t). Evaluating at t = 0, this expression may be rearranged to

hL

∞

∑
k=−∞

G(khL) − ∫ ∞

−∞

G(τ) dτ = 2π
∞

∑
ℓ=1

Ĝ (2πℓ
hL

)
or equivalently,

hL

∞

∑
k=−∞

e
khL (F(ekhL) + F(ekhL)T ) − ∫ ∞

−∞

F(ζ) dτ = 2π
∞

∑
ℓ=1

Ĝ (2πℓ
hL

) .
Significantly, the right-hand side becomes exponentially close to zero as h → 0. The first sum on the
left-hand side manifests the trapezoid rule, which becomes computationally tractable with suitable
truncation of the sum: say, ν0 ≤ k ≤ ν0 +̟ This leads to a quadrature rule:

∫ ∞

−∞

F(ζ)dζ ≈ hLe
ν0hLF(0) + hLe

ν0hL
̟

∑
ℓ=0

e
ℓhL (F(e(ν0+ℓ)hL) + F(−e(ν0+ℓ)hL))

This includes a correction that weights the value of F at ζ = 0 as well.
[B/CC]: The Boyd/Clenshaw–Curtis rule. Boyd adapted the Clenshaw-Curtis quadrature rule to

infinite integration domains in [16]. We summarize the application of this rule to our setting. Starting
with the change-of-variable ζ = L cot(τ), we find:

∫ ∞

−∞

F(ζ)dζ = ∫ π

0

F(L cot(τ))L
sin2(τ) dτ (56)
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The right-hand integrand is evidently π-periodic. With the asymptotics assumed for F we have that
limits exist for the right-hand integrand both at 0 and π and they are real, symmetric, and equal:

lim
τ→0

F(L cot(τ))L
sin2(τ) =

1

L
lim
τ→0

(L cot(τ))2 F(L cot(τ)) = 1

L
lim
ζ→∞

ζ
2
F(ζ) = 1

L
M

lim
τ→π

F(L cot(τ))L
sin2(τ) =

1

L
lim
τ→π

(L cot(τ))2 F(L cot(τ)) = 1

L
lim

ζ→−∞
ζ
2
F(ζ) = 1

L
M.

The trapezoid rule for the right-hand integral in (56) becomes a compelling choice. Defining, h =
π

̟+1

for some ̟ ∈ N, and then we take equally spaced points τℓ = ℓh for ℓ = 0, 1, ..., ̟ + 1, giving

∫ ∞

−∞

F(ζ)dζ ≈

̟

∑
ℓ=1

hL
F(L cot(τℓ))

sin2(τℓ) +
h

L
M =

̟

∑
ℓ=1

ρ
2

ℓF(ωℓ) + ρ
2

∞M (57)

where ρ
2

ℓ =
Lπ(̟+1) sin2(τℓ) and ωℓ = L cot(τℓ)) for ℓ = 1, ..., ̟ and ρ

2

∞ =
π

L(̟+1) . The last term in (57)

is h

2
multiplying the combined evaluation of the periodicized integrand at the endpoints, 0 and π,

corresponding to the “nodes at infinity” for the original integral.
We note that a similar derivation was described in [20, §3.3] for the computation of the H2 norm

for LTI systems.

Appendix B: Proof of Proposition 3.2

The hypotheses imply that

∥Q − Q̃∥2 < σmin(Q) and ∥P − P̃∥2 < σmin(P).
We then use results from Sun [58, Thm. 1.4] (see also [26, Thm. 10.8]) to build isometries Ψp ∈ C

Np×n

and Ψq ∈ C
Nq×n and perturbations ∆L, ∆U ∈ C

n×n
such that

Ũ
∗
= Ψp(U +∆U)T and L̃

∗
= Ψq(L +∆L)T .

Defining εq =
∥Q−Q̃∥F∥Q∥2

and εp =
∥P−P̃∥F∥P∥2

, the hypotheses assure that both

cond(Q)εq ≤

δ

1 + δ
< 1 and cond(P)εp ≤

δ

1 + δ
< 1,

and then, referring again to [58, Thm. 1.4], we have further

∥∆U∥F∥U∥2

≤ ( 1√
2
) cond(P)εp
1 − cond(P)εp ≤

δ√
2

and
∥∆L∥F∥L∥2

≤ ( 1√
2
) cond(Q)εq
1 − cond(Q)εq ≤

δ√
2

Now observe

L̃
∗

EŨ = Ψq(L +∆L)TE(U +∆U)ΨT

p

=Ψq(LT
EU)ΨT

p +Ψq (∆L)T (EU)ΨT

p +Ψq(LT
E)(∆U)ΨT

p +Ψq (∆L)T E (∆U)ΨT

p

and as a result,

∥L̃∗
EŨ −Ψq(LT

EU)ΨT
p ∥F ≤ ∥Ψq ∆L

T (EU)ΨT
p ∥F +

∥Ψq(LT
E)(∆U)ΨT

p ∥F + ∥Ψq (∆L)T E (∆U)ΨT
p ∥F

≤ ∥∆L∥F ∥EU∥2 + ∥LT
E∥2 ∥∆U∥F + ∥∆L∥F ∥E∥2∥∆U∥F

≤
δ√
2
∥L∥2 ∥EU∥2 +

δ√
2
∥LT

E∥2 ∥U∥2 + ( δ√
2
)2 ∥L∥2 ∥E∥2∥U∥2

≤ (√2 δ + δ
2

2
)∥L∥2 ∥E∥2 ∥U∥2 < 2 δ ∥L∥2 ∥E∥2 ∥U∥2
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where the last inequality takes into account that 0 < δ < 1.
For the final assertion, note that the singular values of Ψq(LT

EU)Ψ∗
p are {σ1, σ2, ⋯, σn} aug-

mented with 0. A consequence of Lidskii’s Majorization Theorem (e.g., [15, Thm.III.4.4]) gives

n

∑
k=1

(σ̃k − σk)2 ≤ ∥L̃∗
EŨ −Ψq(LT

EU)Ψ∗

p∥2

F .

Then (20), the first assertion of Proposition 3.2, gives the conclusion. �
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