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ABSTRACT: We present the compatible CO2 emissions from fossil fuel (FF) burning and industry, calculated from the

historical and Shared Socioeconomic Pathway (SSP) experiments of nine Earth system models (ESMs) participating in

phase 6 of the Coupled Model Intercomparison Project (CMIP6). The multimodel mean FF emissions match the historical

record well and are close to the data-based estimate of cumulative emissions (3946 59 GtC vs 4006 20 GtC, respectively).

Only two models fall inside the observed uncertainty range; while two exceed the upper bound, five fall slightly below the

lower bound, due primarily to the plateau in CO2 concentration in the 1940s. The ESMs’ diagnosed FF emission rates are

consistent with those generated by the integrated assessment models (IAMs) from which the SSPs’ CO2 concentration

pathwayswere constructed; the simpler IAMs’ emissions lie within theESMs’ spread for seven of the eight SSP experiments,

the other being only marginally lower, providing confidence in the relationship between the IAMs’ FF emission rates and

concentration pathways. The ESMs require fossil fuel emissions to reduce to zero and subsequently become negative in

SSP1-1.9, SSP1-2.6, SSP4-3.4, and SSP5-3.4over. We also present the ocean and land carbon cycle responses of the ESMs in

the historical and SSP scenarios. Themodels’ ocean carbon cycle responses are in close agreement, but there is considerable

spread in their land carbon cycle responses. Land-use and land-cover change emissions have a strong influence over the

magnitude of diagnosed fossil fuel emissions, with the suggestion of an inverse relationship between the two.
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1. Introduction

The release of carbon dioxide and other greenhouse gases

since the onset of the industrial era has warmed the planet by

around1 18C (Stocker et al. 2013). The changing climate is already

affecting natural terrestrial and marine ecosystems, thawing

permafrost, and altering the hydrological cycle, with implications

for drought, flooding, and wildfires. Human systems are being

impacted increasingly, with reductions in crop yields, disruption

to infrastructure, water supply and food production, and increased

mortality due to high and low temperature extremes (IPCC 2014).

With global emissions of CO2 continuing to rise (Friedlingstein

et al. 2019), the 2015 Paris Agreement of the United Nations

Framework Convention on Climate Change (UNFCCC) saw

196 governments around the world agree to a commitment to

constrain greenhouse gas (GHG) emissions to a level that would

limit long-term warming, relative to the preindustrial level, to

well below 28C, ideally to below 1.58C, with emissions peaking

as soon as possible and then reducing to zero within decades

(UNFCCC 2015).

In its FifthAssessment Report, the Intergovernmental Panel

on Climate Change (Collins et al. 2013) reported for the first

time that the change in global mean temperature relative to

the preindustrial is proportional to the cumulative total CO2

emissions released, albeit with significant uncertainty.

Whether warming is limited to 1.58 or 28C above preindustrial

levels is therefore greatly dependent on how CO2 emissions

proceed over the coming century. How society evolves in the

future, how the global population will change, and the extent to
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which countries and communities will cooperate to reduce

emissions from the energy sector, transport, and agriculture can-

not be knownwith any certainty. However, integrated assessment

models (IAMs), computer models of intermediate complexity,

can be used to estimate how societal changes such as population

growth, economic development, investment priorities, and degree

of international cooperation will impact future greenhouse gas

emission rates and concentrations (Gidden et al. 2019).

Phase 6 of the Coupled Model Intercomparison Project

(CMIP6) is divided into several individual model intercom-

parison projects (MIPs), each with a particular science focus

(Eyring et al. 2016), undertaking experiments with full-

complexity Earth system models (ESMs) and general cli-

mate models. ScenarioMIP (O’Neill et al. 2016) is designed to

compare ESMs’ responses to eight new forcing scenarios out

to 2100 built around five Shared Socioeconomic Pathway

(SSP) scenarios of potential future social and economic de-

velopment (Riahi et al. 2017).

The current generation of Earth system models typically

contain fully process-based representations of the terrestrial

and ocean carbon cycles, allowing uptake of carbon by land

and the oceans in response to changes in atmospheric CO2

concentration to be quantified. These fluxes can be used in

conjunction with the prescribed changes in atmospheric CO2

burden to determine the rate of fossil fuel emissions that are

compatible with the prescribed CO2 concentration pathway

(see section 2a). When an ESM is forced with observed his-

torical CO2 concentration, the compatible fossil fuel (FF)

emissions can be compared with historical anthropogenic FF

emissions as a test of the model’s ability to reproduce various

components of the historical carbon budget realistically. For

future scenarios, compatible emissions from ESMs can be used

to evaluate the much less complex integrated assessment

models; a good correlation between IAM emissions and ESM

emissions provides evidence that the IAM’s carbon cycle–

climate submodel, which generates the CO2 concentration

pathway from its emissions, is broadly consistent with the

ESM’s much more sophisticated carbon cycle. While an IAM

provides one ‘‘realization’’ of future emissions compatible

with a CO2 pathway, with the different responses of their land

and ocean carbon cycle components, ESMs provide a range of

emissions that are compatible with a given CO2 pathway. This

range highlights the uncertainty in our understanding of the

response of the coupled climate–carbon cycle system. It pro-

vides, therefore, an estimate of uncertainty in the compatible

emissions rate, cumulative emissions, and the FF contribution

to associated carbon budgets; for example, emissions remain-

ing before 1.58 or 2.08C of warming are reached.

In section 2, we discuss in more detail the way in which the

compatible emissions are diagnosed, as well as the SSP sce-

narios. We present the compatible emissions from the nine

ESMs’ historical and SSP experiments in section 3 and examine

which scenarios require emissions to reduce to below zero, and

the timing at which this occurs. We show the ESMs’ land and

ocean carbon cycle responses, as well as the cumulative air-

borne fraction of emissions. The nine CMIP6 ESMs included in

this study are summarized in Tables 1–3 and are described in

further detail in section 1 of the online supplemental material.

2. Methods

a. Calculation of compatible fossil emissions

Although the current generation of Earth system models

typically contain a fully interactive carbon cycle in which the

model can simulate the atmospheric CO2 concentration in re-

sponse to a scenario of CO2 emissions, when taking part in

model intercomparison projects, such models typically use

TABLE 1. Summary of ACCESS-ESM1.5, CanESM5, and CESM2. See supplementary information for detailed model descriptions and

explanation of acronyms used in the table.

ACCESS-ESM1.5 CanESM5 CESM2

Atmosphere UM7.3 CanAM5 CAM6

Resolution, vertical levels 1.8758 3 1.258, 38 T63, 2.88, 49 0.98 3 1.258, 32

Land CABLE2.4 (CASA-CNP) CLASS and CTEM CLM5

Dynamic vegetation No No No

Natural vegetation PFTs 4 trees, 2 grasses, 1 shrub, wetlands, tundra 5 trees, 2 grasses 8 trees, 3 shrubs, 4 grasses

Soil carbon pools 3 1 3

Litter carbon pools 3 1 4

Net or gross transitions Net Net Net

Land-use PFTs 1 crop 2 crops 6 crops

Harvest No No Crop and wood harvest

Grazing No No No

Fire–carbon interactions No No Yes

Nitrogen cycle Yes, and phosphorus No Yes

Nitrogen limitation of

carbon uptake

Yes Downregulation of photosynthesis

as CO2 rises

FUN model simulates

carbon cost of N uptake

Ocean MOM5 NEMO 3.4.1 POP2

Resolution 18 18 18
Ocean biogeochemistry WOMBAT CMOC MARBL
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prescribed CO2. This makes it simpler to ensure that the re-

sulting spread of climate projections are in response to iden-

tical CO2 forcing. However, since the atmospheric CO2 is

prescribed, and the land and ocean carbon cycle submodels

calculate howmuch CO2 is taken up by land and by the oceans,

it is possible to infer the rate at which additional CO2 must be

emitted to maintain the evolving atmospheric CO2 pathway,

offsetting that taken up by the land and ocean sinks.

TABLE 2. Summary of CNRM-ESM2.1, IPSL-CM6A-LR, and MIROC-ES2L. See supplementary information for detailed model de-

scriptions and explanation of acronyms used in the table.

CNRM-ESM2.1 IPSL-CM6A-LR MIROC-ES2L

Atmosphere ARPEGE-Climat v6.3 CCSR-NIES CCSR-NIES AGCM

Resolution, vertical levels 1.48, 91 2.58 3 1.38, 79 2.818, 40

Land ISBA-CTRIP ORCHIDEE v2.0 MATSIRO 1 VISIT-e

Dynamic vegetation No No No

Natural vegetation PFTs 8 trees, 3 grasses, shrub, wetlands 8 trees, 4 grasses 11 vegetation types (primary and

secondary)

Soil carbon pools 3 3 3

Litter carbon pools 4 4 3

Land-use PFTs 3 crops 2 crops 1 crop, 1 pasture

Net or gross transitions Net Net Gross

Harvest No Wood harvest Crop and wood harvest

Grazing No No Yes, on pasture and

rangeland

Fire–carbon interactions Yes No No

Nitrogen cycle No No Yes

Nitrogen limitation of

carbon uptake

Implicit N limitation: LAI reduces

as CO2 increases, along with

downregulation of photosynthesis

Downregulation of

photosynthetic capacity

Downregulation of

photosynthetic capacity

Ocean NEMO v3.6 NEMO v3.6 COCO

Resolution 18 up to 1/38 in the tropics 18 up to 1/38 in the tropics 18, finer at the equator and in

the Arctic

Ocean biogeochemistry PISCESv2-gas PISCES-v2 OECO2

TABLE 3. Summary of MPI-ESM1.2-LR, NorESM2-LM, and UKESM1-0-LL. See supplementary information for detailed model de-

scriptions and explanation of acronyms used in the table.

MPI-ESM1.2-LR NorESM2-LM UKESM1-0-LL

Atmosphere ECHAM6.3 CAM6-Nor UM11.2

Resolution, vertical levels 1.88 3 1.88, 47 1.98 3 2.58, 32 1.8758 3 1.258, 85

Land JSBACH3.2 CLM5 JULES-ES v1.0

Dynamic vegetation Yes No Yes

Natural vegetation PFTs 4 trees, 2 shrubs, 2 grasses 8 trees, 3 shrubs, 4 grasses 5 trees, 2 shrubs, 2 grasses

Soil carbon pools 10 3 4

Litter carbon pools 8 4 None, litter flux from

vegetation to soil

Land-use PFTs 2 crop, 2 pasture 6 crop types 2 crop, 2 pasture

Net or gross transitions Gross Net Net

Harvest Crop and wood harvest Crop and wood harvest Crop harvest

Grazing Yes No No

Fire–carbon interactions Yes Yes No

Nitrogen cycle Yes Yes Yes

Nitrogen limitation of

carbon uptake

Yes FUN model simulates

carbon cost of N uptake

NPP is downregulated

Ocean MPIOM1.6 BLOM NEMO v3.6

Resolution 1.58, finer close to Antarctica

and Greenland, L408
18, refined at equator 18

Ocean biogeochemistry HAMOCC6 iHAMOCC MEDUSA2.1
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As described in appendix 1 of Jones et al. (2013), any in-

crease to the combined atmosphere, land and ocean carbon

store over time must be equal to the flux of ‘‘new’’ carbon

added to the system by the combustion of fossil fuels and other

processes that release to the atmosphere carbon that was

previously locked away on geological time scales, such as gas

flaring and cement manufacture (when using the term ‘‘fossil

fuel,’’ we include all of these sources). By contrast, anthropo-

genic emissions from land-use practices release to the atmo-

sphere CO2 that is continually cycling through the land, ocean,

and atmosphere carbon stores, on time scales from weeks to

centuries, and so represent no net increase to the combined

global carbon stores.

Equation (1), below, adapted from Eq. (1) of Friedlingstein

et al. (2019) shows the relation between growth of the atmo-

spheric carbon store (GATM), the gross land carbon sink before

accounting for emissions due to land-use change (SLAND), the

ocean carbon sink (SOCEAN), and anthropogenic emissions of

CO2 from fossil sources (EFF), and from land-use change (ELUC):

E
FF

1E
LUC

5G
ATM

1S
OCEAN

1 S
LAND

. (1)

The budget imbalance term of Eq. (1) of Friedlingstein et al.

(2019) is a residual term required to close the budget since

all other terms are based on observations, and are therefore

inexact. In the context of an individual model’s simulated

carbon stores and the fluxes between them, all terms are

known exactly, so an imbalance term is not necessary.

Rearranging Eq. (1) gives

E
FF

5G
ATM

1S
OCEAN

1 (S
LAND

2E
LUC

) . (2)

We calculate the annual atmospheric CO2 growth rate (GATM)

in gigatons of carbon (1GtC5 1 PgC5 1015 gC) per year, from

the prescribed CO2 concentration in parts per million (ppm) us-

ing the equivalence 1 part permillion of CO2 in the atmosphere is

equal to 2.124 GtC (Ballantyne et al. 2015). The annual mean

ocean carbon sink (SOCEAN) is calculated from the global total of

the air-to-sea flux of CO2. The annual mean net land sink after

accounting for emissions from land use (SLAND2 ELUC) is equal

to the global total of the net biosphere production: the gross land

carbon sink (SLAND) reduced by emissions due to land-use

change, harvest, grazing, and fire (ELUC). The net biosphere

production (NBP) diagnostic, nbp, and the air-to-sea CO2 flux

diagnostic, fgco2, are two of the variables submitted to the Earth

System Grid Federation (ESGF) CMIP6 data archive.2 Thus,

substituting the annual mean growth rate of the prescribed CO2

burden, fgco2, and nbp into (2) we calculate the annual mean

fossil fuel emissions rate (EFF) shown in section 3.

b. Calculation of emissions due to land-use and land-cover
change

Emissions of CO2 associated with wood harvesting and land-

use and land-cover changes (LULCC) represent the greatest

source of uncertainty in the global carbon cycle (Friedlingstein

et al. 2019). These emissions cannot be measured directly;

observations can be made only of the net flux of CO2 between

the land and the atmosphere, that is, the natural land carbon

sink minus carbon lost due to LULCC emissions. Isolating the

latter and its associated uncertainty has been the focus of

enormous effort for many years (Pongratz et al. 2014). The last

twoGlobal Carbon Budget estimates of LULCC emissions (Le

Quéré et al. 2018; Friedlingstein et al. 2019) have been calcu-

lated as the mean of the results from two bookkeeping models

(Houghton and Nassikas 2017; Hansis et al. 2015). Bookkeeping

models first consider literature-derived estimates of the changes

in soil and vegetation carbon stores, before and after a change in

land use such as replacement of forest with crops. They then

distribute the resulting carbon stock changes in time according to

observation-based curves of decay of plant and soil carbon in the

field or in products, and regrowth following agricultural aban-

donment or wood harvesting.

A multitude of terms has been used in the literature to refer

to emissions from land use, with contributions from a great

range of constituent processes. The scope of processes that can

be simulated depends on the nature of the type of model in

question, with bookkeeping models, dynamic vegetation models

and fully coupled Earth systemmodels differing in their capacity

to include them (Pongratz et al. 2014). In the experiments con-

sidered here, since the atmospheric CO2 concentration is pre-

scribed, the CO2 emitted by LULCC is not added to the

atmosphere store.

The nine ESMs considered in the present study all include

some representation of land-use change, of varying degrees of

complexity, with associated CO2 emissions. Land management

processes, such as crop harvest, wood harvest, and grazing of

pasture, are included in some models but not others, as sum-

marized in Tables 1–3. The land-use emissions in a single ex-

periment will include the contribution from the processes specific

to each model, output by the appropriate combination of diag-

nostics; this approach to quantifying LULCC emissions is de-

scribed as method S (single simulation) in Pongratz et al. (2014).

A more accurate method of determining the LULCC

emissions ELUC is to calculate the difference in net biosphere

production between a pair of simulations, one with land use

changing over time, and the other with fixed land use [the ex-

perimental design denoted E2 in Pongratz et al. (2014)]. For

the historical period, this is given in Eq. (3), where the two

experiments are the standard CMIP6 historical, and the fixed,

preindustrial land-use variant, ‘‘hist-noLu’’, included in the

Land Use Model Intercomparison Project (LUMIP; Lawrence

et al. 2016):

E
LUC

5NBP
hist2noLu

2NBP
historical

. (3)

This approach identifies the total difference in land carbon

store due solely to land-use change and associated processes in

the historical experiment. It takes into account the additional

carbon uptake as natural vegetation is allowed to regrow on

abandoned agricultural land, which is neglected by the online

diagnosis of land-use emissions within a single simulation. It

also accounts for the loss of the additional sink capacity

(LASC) that natural vegetationwould have provided had it not2 https://esgf-node.llnl.gov/search/cmip6/.
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been replaced by managed land. The inclusion of the loss of

additional sink capacity constitutes a key difference to esti-

mates from the bookkeeping approach, which does not con-

sider transient changes in environmental conditions (Pongratz

et al. 2014). By using only the diagnostic of net biosphere

production nbp, the ‘‘E2’’ approach does not rely on identi-

fying the combination of diagnostics specific to each model

that constitute its total LULCC emissions. However, it does

require the additional computational expense of performing

the no-land-use change noLu variant of experiments with land-

use change.

c. Scenarios

Under the CMIP5 modeling framework (Taylor et al. 2012),

the response of the Earth system to realistic scenarios of future

forcing was explored via the representative concentration

pathways (RCPs; Vuuren et al. 2011). These consist of four

distinct pathways leading to radiative forcing at 2100 of ap-

proximately 2.6, 4.5, 6.0, and 8.5Wm22, known as RCP2.6,

RCP4.5, RCP6.0, and RCP8.5, respectively. Each pathway

provides the greenhouse gas concentration and land-use sce-

narios, such as the area of land devoted to crop and pasture,

required as forcing by Earth system models.

For CMIP6, there are eight future scenario experiments that

make up ScenarioMIP (O’Neill et al. 2016); four share similar

2100 forcing levels with the RCPs, while four more lead to

complementary radiative forcing levels of 1.9, 3.4 (two sce-

narios), and 7.0Wm22. The basis for each scenario is one of

five SSPs, numbered 1 to 5 (Riahi et al. 2017). The SSPs de-

scribe five future narratives of economic development (Dellink

et al. 2017), population change (Samir and Lutz 2017), and

urbanization (Jiang and O’Neill 2017). They are designed to

encompass a range of potential futures characterized by how

challenging themitigation of climate change, and adaptation to

it, will be in those futures.

The scenarios are generated by intermediate-complexity

integrated assessment models, which often comprise many

individual submodel components (Riahi et al. 2017). They take

as their inputs a wide range of variables such as scenarios of

economic development, population growth, the degree of in-

ternational cooperation, policy decisions on the importance of

investing in education, reducing inequality, sustainability of

energy resources and many other complex traits of modern

society. The models are run into the future to determine how

energy use and emissions of CO2 and other greenhouse gases

evolve in response to these input scenarios. For ScenarioMIP,

the emissions of different greenhouse gases from the IAMs

were converted into their respective concentrations using

version 7.0 of MAGICC, a carbon cycle–climate model of in-

termediate complexity (Meinshausen et al. 2020, 2011).

The ScenarioMIP experiments are labeled SSPx-y.z where x

is the SSP number from 1 to 5, and y.z is the forcing level in

Wm22, as was the case with the RCPs. The CMIP6 experiment

identifier for each of the SSP experiments is sspxyz, for ex-

ample, ssp370, with the exception of ssp534-over, which is an

overshoot scenario, branching from ssp585 in 2040. The ex-

periments are ordered by priority into tier 1 (ssp126, ssp245,

ssp370, ssp585) and tier 2 (ssp119, ssp434, ssp460, ssp534-over).

We present results from all eight SSP experiments, whose CO2

concentration pathways are shown in Fig. 1a, with the global

population in Fig. 1b. The crop and pasture fractions of the

land-use scenarios are shown in Fig. 1c, with forest area

in Fig. 1d.

d. Earth system models

The nine Earth systemmodels included in the present study,

with the abbreviated form by which they will be referred in the

text in parentheses where necessary, are ACCESS-ESM1.5

(ACCESS), CanESM5, CESM2, CNRM-ESM2.1 (CNRM), IPSL-

CM6A-LR (IPSL), MIROC-ES2L (MIROC), MPI-ESM1.2-

LR (MPI), NorESM2-LM (NorESM), and UKESM1-0-LL

(UKESM). The models are described in detail in supple-

mentary section 1 and summarized in Tables 1–3. All nine

ESMs ran the historical experiment, which is a requisite for all

models participating in CMIP6, and the four tier 1 SSP ex-

periments. The tier 2 SSP experiments were performed by 3,

4, or 5 ESMs, as summarized in Table 4.

e. Reference data

Where possible, the historical plots and tables include ref-

erence data from the Global Carbon Budget, 2019 (GCB2019;

Friedlingstein et al. 2019). The global fossil emissions rate

(from fossil carbonates as well as fossil fuels) EFF are from

Gilfillan et al. (2019). The ELUC emissions from GCB2019 are

the average of updated versions of the data from Houghton

and Nassikas (2017) and Hansis et al. (2015). The terrestrial

and ocean carbon sinks, SLAND and SOCEAN, respectively,

come directly from the GCB2019. The EFF is based on his-

torical records of fossil emissions, but the ELUC, SOCEAN, and

SLAND are all derived from models constrained by observa-

tions where possible.

3. Results and discussion

The results have been divided into a historical section from

1850 to 2014 (section 3a) and a future section covering all SSP

experiments from 2015 to 2100 (section 3b). The time series

shownwere constructed from ensemblemeans, where possible,

of the nbp, fgco2, cVeg, cSoil, cLitter (vegetation, soil, and litter

carbon store), fharvest (harvest flux), and tas (surface air

temperature) diagnostics submitted to ESGF. The models’

individual responses to the SSPs for each variable are shown in

the online supplemental material, which also contains tables

summarizing ocean and land carbon uptake historically and

under the SSPs.

a. Historical

1) COMPATIBLE FOSSIL FUEL EMISSIONS

Equation (2) has been used to calculate time series of

compatible fossil fuel CO2 emissions for the ESMs’ historical

experiment (Fig. 2). For comparison, the data-based estimates

of historical emissions from fossil fuel burning and cement

production (Gilfillan et al. 2019) are shown (black dashed

lines). The multimodel mean follows very closely the observed

historical emission rate, except for a period of around 15 years,
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from the early 1940s. After decades of rising, in 1941 CO2

began to stabilize and remained between 310 and 312 ppm

from 1941 to 1951 before rising again [Etheridge et al. (1996),

confirmed more recently by MacFarling Meure et al. (2006)

and Rubino et al. (2013)]. Hence, during this period of the

historical experiment, GATM reduced to almost zero, leading

the ESMs to simulate a reduction in EFF, in the absence of any

compensating factor to increase the ocean or land sinks. In

reality, the data-based fossil fuel emissions rate showed no such

lull during the observed plateau in concentration at this time,

increasing from 1.33 to 1.76 GtC yr21 from 1941 to 1951. This

implies the existence in the real world of an enhanced carbon

sink during this period that has not yet been explained fully by

the observational datasets available (Bastos et al. 2016). The

ocean is likely to have played a role, with enhanced uptake by

the Southern and tropical Pacific Oceans associated with the

strong El Niño of the early 1940s (Joos et al. 1999). There could
have been additional uptake on land due to land-use processes

and changes not accounted for in the LUC datasets, nor

therefore in estimates of land uptake of the time. Due to the

FIG. 1. Scenarios of (a) atmospheric CO2 concentration (parts per million), (b) global population (billions of

people), and area (millions of hectares) of the land surface covered by (c) crop and pasture and (d) forest, of the

eight SSPs. Historical CO2 concentration is shown in the inset in (a).

TABLE 4. Summary of the ScenarioMIP SSP experiments performed by each model.

SSP

1-1.9 1-2.6 2-4.5 3-7.0 4-3.4 4-6.0 5-3.4over 5-8.5

ACCESS-ESM1.5 — ✔ ✔ ✔ — — — ✔

CanESM5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CESM2 — ✔ ✔ ✔ — — — ✔

CNRM-ESM2.1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

IPSL-CM6A-LR ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

MIROC-ES2L ✔ ✔ ✔ ✔ — — — ✔

MPI-ESM1.2-LR — ✔ ✔ ✔ — — — ✔

NorESM2-LM — ✔ ✔ ✔ — — — ✔

UKESM1-0-LL ✔ ✔ ✔ ✔ ✔ — ✔ ✔

Total 5 9 9 9 4 3 4 9
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SecondWorldWar, the 1940s were characterized by enormous

socioeconomic upheaval with changes to land management,

food production, and relocation of population; not all changes

contributing to LUC emissions were recorded accurately, such

as abandonment of land and changes to wood harvest (Bastos

et al. 2016). It should also be noted that this era predates direct

measurement of atmospheric CO2 concentration, and esti-

mates of fossil fuel emissions were less accurate than they are

today. So our understanding of the 1940s CO2 plateau and of

the fluxes potentially contributing to the implied sink remains

incomplete (Bastos et al. 2016). It would be wrong to conclude,

therefore, that because the ESM’s fossil emissions fall short of

the observations-based emissions during this period, the models

systematically underestimate FF emissions during periods of

constant or very slowly changing CO2, as occur in some of the

SSP scenarios discussed in section 3b.

The ESMs’ temperature response to the historical forcing is

shown in Fig. S1 in the online supplemental material.

2) CUMULATIVE FOSSIL FUEL EMISSIONS

Figure 2b shows the cumulative fossil fuel emissions from

the ESMs, with the data-based estimate shown for comparison

(Gilfillan et al. 2019). The mean and standard deviation of the

total FF emissions from 1850 to 2014 was 394 6 59 GtC,

compared to observations-based estimate of 4006 20 GtC for

the same period (Gilfillan et al. 2019). The model mean is

therefore very close to the observed estimate, lying well within

its uncertainty range (Table 5); however, exclusion of the

highest two model values results in a model mean of 367 GtC,

below the lower limit (380 GtC) of the observed range. The

ESMs’ underestimate of emissions during the period of CO2

plateau is largely responsible for this; cumulative totals of

FIG. 2. (a) Time series of compatible fossil fuel emissions (GtC yr21) from 1850 to 2014 simulated by the nine

ESMs. Solid black line is themodel mean. The dashed black andwhite line is the data-based fossil fuel rate from the

Gilfillian et al. (2019) as cited in the GCB2019 (Friedlingstein et al. 2019), with decadal mean emission rates from

the 1960s to the 2010s and associated uncertainty, indicated by the white error bars, fromGCB2019. (b) Cumulative

fossil fuel emissions (GtC) for the same period.

TABLE 5. Cumulative compatible fossil fuel CO2 emissions (GtC) simulated by the ESMs for the historical period (1850–2014) and for

all SSPs (from 1850 to 2100, including the historical emissions). The Obs/IAM row contains the cumulative emissions from 1850 to 2100,

incorporating the observed historical emissions from 1850 to 2014 (Gilfillan et al. 2019); uncertainty range (6SD) in the historical figure

comes from Friedlingstein et al. (2019)

1850–2014

SSP

1-1.9 1-2.6 2-4.5 3-7.0 4-3.4 4-6.0 5-3.4over 5-8.5

ACCESS-ESM1.5 489 — 814 1238 1841 — — — 2515

CanESM5 349 526 766 1309 2054 706 1493 911 2875

CESM2 339 — 794 1240 1870 — — — 2609

CNRM-ESM2.1 506 735 950 1450 2083 978 1598 1188 2798

IPSL-CM6A-LR 393 614 822 1261 1878 797 1403 987 2538

MIROC-ES2L 406 581 800 1325 2085 — — — 2745

MPI-ESM1.2-LR 352 — 782 1226 1885 — — — 2574

NorESM2-LM 346 — 817 1266 1894 — — — 2646

UKESM1.0-LL 364 507 701 1145 1753 673 — 844 2432

Mean 6 SD 394 6 59 593 6 81 805 6 62 1273 6 79 1927 6 111 789 6 118 1498 6 80 983 6 129 2637 6 136

Obs/IAM 400 6 20 524 726 1212 1909 779 1366 906 2580

15 APRIL 2021 L I DD ICOAT ET AL . 2859

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 04/15/21 07:26 AM UTC



several of the ESMs diverge from the observations-based total

at this time and remain so until 2014 (Fig. 2b). Only two of the

nine ESMs (IPSL and MIROC) lie within the observed cu-

mulative 1850–2014 range (Table 5).

Before looking at how the land and ocean sinks contribute to

the historical FF emission rate for the nine ESMs in detail, it is

worth examining a subset of simulations with fixed land use, to

see the extent towhich land-use change influences themagnitude

of, and model spread in, compatible fossil fuel emissions.

3) INFLUENCE OF HISTORICAL LAND-USE EMISSIONS ON

FOSSIL FUEL EMISSIONS

Of the nine ESMs included in this study, seven have sub-

mitted output from both historical and hist-noLu experiments

to the CMIP6 archive. The LULCC emissions rate, calculated

using Eq. (3), is shown in Fig. 3c, with the cumulative total in

Fig. 3d, for comparison with the equivalent FF emissions

(Figs. 3a,b, respectively) from the historical, with GCB2019 ref-

erence values for comparison. Note that the GCB2019 LULCC

emission estimate is based on the bookkeeping approach, which

does not include loss of additional sink capacity. The LASC adds

approximately another 20% to the LULCC emissions estimate

[GCB2019 states 10%, but this was revised in Gasser et al.

(2020)]. For clarity, larger versions of the individual panels of

Fig. 3 appear in the supplemental material as Figs. S13–S15.

The spread in the magnitude of the LULCC emissions among

the sevenmodels is immediately apparent, with CESM2’s, which

are very close to the observed estimates, being more than eight

times those fromCNRM.However, it is noticeable that all ESMs

exhibit lower cumulative ELUC than GCB2019, with the excep-

tion of the last few years of MPI, despite their accounting for the

loss of additional sink capacity. This hints toward LUC processes

missing from the ESMs that are included in the GCB2019 esti-

mate due to the construction of the bookkeeping models, which

use observed carbon densities for various managed and un-

managed vegetation types.

The model spread in LULCC emissions is mirrored ap-

proximately by the spread in FF emissions, cumulatively

(Figs. 3d,b, respectively); greater LULCC emissions are paired

with lesser FF emissions, as is seen most clearly with those

ESMs at the edges of the model spread, CNRM, MPI, and

CESM2. Broadly speaking, the greater the extent to which a

model’s land carbon uptake is limited by land use, the lesser the

amount of fossil CO2 can be emitted for a given CO2 concen-

tration pathway. Combining the FF and LULCC emissions

(Fig. 3e) significantly reduces the model spread (Fig. 3f) as the

influence of land use on both LULCC and FF emissions cancels

out, so differences only in the models’ natural carbon sink are

in evidence; the model spread at 2013 for FF 1 LULCC is 77

GtC, compared to 168 GtC for FF and 173 GtC for LULCC.

The differences in the models’ natural carbon sink are there-

fore dwarfed by the differences between the net land carbon

sink after accounting for land-use practices (as will be seen in

Fig. 5b). For the seven models included in Fig. 3, the presence of

land use is therefore the greatest source of uncertainty in future

FF emissions, and on future carbon budgets utilizing these.

Similar analysis cannot be done for the SSP experiments

since the noLu variant of the experiments have not been

requested under CMIP6 protocols for ScenarioMIP, C4MIP

or LUMIP.

The magnitude of LULCC emissions calculated from the E2

paired experiments depends on several factors, including the

spatial extent and dynamics of the land-use forcing dataset

used in the historical; the carbon density of the vegetation

being cleared; the land-use practices such as irrigation, fertil-

ization, harvesting, and grazing, which impact the agricultural

vegetation; and the responses of both the natural and agricul-

tural vegetation to the changing climate and CO2 concentra-

tion. The response of natural vegetation to future climate and

CO2 will depend on whether the vegetation distribution is

fixed, or a dynamic vegetation model is utilized that allows the

vegetation cover to migrate to latitudes and regions that be-

come habitable as the climate changes. Land management

practices that transfer living biomass to product pools, such as

wood harvest and crop harvest, also play a role. For the his-

torical experiment, although the spatial land-use forcing is

provided in each case by the Land Use Harmonization 2

(LUH2) dataset (Hurtt et al. 2020), the combination of land-

use states from LUH2 used is model dependent. So too is the

method by which vegetation types within a grid cell change.

‘‘Net transitions,’’ considering only the net differences of each

vegetation type’s fractional coverage following a land-cover

change, can underestimate the impact on carbon stores com-

pared to the ‘‘gross transitions’’ approach. Under gross tran-

sitions, the localized carbon impact at subgrid scale of each

individual transition between neighboring vegetation types is

considered explicitly; for example, primary forest of a young

age structure replaces abandoned cropland, which is distinct

from older, secondary forest already present elsewhere in the

gridbox (Yue et al. 2018). Of the nine ESMs in the present

study, two (MIROC, MPI) consider gross transitions; these,

along with CESM2, get closest to the GCB2019 cumula-

tive ELUC.

4) LAND CARBON RESPONSE

The simulated historical nbp, the land carbon uptake after

accounting for carbon lost due to land-use change, is shown in

Fig. 4. The GCB2019 provides observationally constrained

multimodel estimates of the land carbon sink in each of the

decades from the 1960s onward; these are included in Fig. 4 and

are compared to the model’s means for the same time periods

in Table S2. The model mean sits well within the uncertainty

range of the decadal mean estimates. The GCB2019s SLAND

and ELUC estimates of 185 6 50 GtC and 195 6 75 GtC, re-

spectively, result in net land carbon uptake from 1850 to 2014

of 210 6 125 GtC. The ESMs’ net uptake ranges from 235

to 1142 GtC over this period, with a mean of 120 GtC, as

summarized in Table S3.

The nine ESMs’ preindustrial (1850) land carbon stores,

with partitioning between soil, litter, and vegetation, are shown

in Fig. 5a. The change in land carbon (cumulative nbp) relative

to 1850 is shown in Fig. 5b, with changes in vegetation carbon

(cVeg) and soil carbon (cSoil 1 cLitter) in Figs. 5c and 5d,

respectively. Broadly, the models’ historical land carbon up-

take is dominated by the change in vegetation carbon, with the

initial reduction due to deforestation offset in later decades by
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FIG. 3. (left) Time series and (right) cumulative totals of CO2 emissions from seven ESMs with observational fossil

fuel emissions from Gilfillan et al. (2019) and land-use emissions from the GCB2019, which also provides the uncer-

tainty range in cumulative totals at 2014 (Friedlingstein et al. 2019). (a) Compatible fossil fuel emissions (GtC yr21)

calculated for the historical experiment. (b) Cumulative fossil fuel emissions from the historical experiment. (c) Land-

use emissions calculated as land carbon uptake (cumulative NBP) in hist-noLuminus that in historical. (d) Cumulative

land-use emissions. (e) Combined fossil fuel and land-use emissions. (f) Cumulative total of combined fossil fuel and

land-use emissions.Note that (c) to (f) contain two data-based estimates ofELUC. The thickblack curve is the dataset of

land-use emissions provided under theC4MIPprotocols for driving the emissions-driven historical esm-hist experiment

for models that do not have the ability to simulate LUC emissions interactively with the atmosphere (Jones 2016).

These are derived from Hansis et al. (2015) and Houghton et al. (2012). The thin black curve is ELUC from

Friedlingstein et al. (2019), the cumulative total calculated using Table 8 therein.
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the increase due to enhanced uptake by CO2 fertilization and

agricultural use of nitrogenous fertilizer. ACCESS is the only

model with continued increase in both vegetation and soil

carbon. Although ACCESS does include land-use change, its

vegetation carbon is approximately constant until the 1960s

when it begins to rise in common with the other ESMs. This is

because crops mostly replace natural grasses, with some

cleared forest in the tropics balanced by growth of new forest at

northern mid- to high latitudes, resulting in little change in

vegetation carbon overall until the latter half of the century.

The multimodel mean change in soil carbon shows a very

gradual increase throughout the historical period. By contrast,

MIROC’s soil carbon reduces until the final few decades, when

it begins to increase. In MIROC, replacement of primary/

secondary vegetation by crop and pasture of lower productivity

reduces the soil and litter carbon until they are balanced by the

lower litter inputs. In the latter half of the twentieth century,

due to the effects of CO2 fertilization and nitrogen fertilizer

application, vegetation, litter, and soil carbon increase.

Considering MIROC’s intermediate CO2 concentration–carbon

feedback strength (Arora et al. 2020), the relatively steep in-

crease of land carbon in this period is likely induced by accu-

mulation in cropland, as suggested in Hajima et al. (2020).

The presence of a crop harvest flux can impact the vegeta-

tion carbon and/or soil carbon stores significantly. The crop

harvest from five ESMs’ historical simulations relative to their

piControl is shown in Fig. 6, as a rate and cumulatively. The

cumulative total at 2014 ranges from 60 to 246 GtC, so

represents a fairly large impact on vegetation, litter, or soil

carbon stores depending on how harvest is configured in each

model. In UKESM, for example, 30% of the litter flux from

crops to soil is intercepted to represent harvest, so UKESM’s

increase in historical soil carbon is not as great as it would

otherwise be, but its living vegetation carbon store is not di-

rectly affected by the harvest.

Of the three ESMs that do not include a crop harvest, two

(ACCESS, CNRM) exhibit the two greatest increases in his-

torical soil and land carbon, contributing to the two greatest

fossil fuel emission rates of all nine ESMs. Conversely, the

third ESM in which crop harvest is not represented, CanESM5,

sees a downward trend in soil carbon throughout the historical

period that steepens in the final few decades. This is because in

CanESM5 the soil decomposition rate over croplands is higher

and the fraction of humified litter that is transferred to the soil

carbon, as opposed to respired to the atmosphere, is lower than

over natural vegetation. Consequently, as natural vegetation is

replaced by croplands over the historical period, a decrease in

global soil carbon is obtained, as is also seen in empirical

measurements (Wei et al. 2014).

During harvest in CESM2 and NorESM2 (in both of which

the land component is CLM5), even though crop grain carbon

is removed, the increased productivity of crops due to fertil-

ization, irrigation, and higher productivity plants actually leads

to increases in soil carbon where crops are grown. This re-

sponse is the opposite to what is observed in the real world,

which is possibly due to lack of a representation of tillage in the

model; tillage would likely lead to increased respiration,

resulting in soil carbon losses. Further, what happens with soil

carbon will depend on how much plant matter is removed

during harvest; CLM5 assumes only grain is removed, but in

reality, usually more than just grain is removed during the

harvest process (Lombardozzi et al. 2020).

CESM2 and NorESM2 also simulate a wood harvest flux,

which can result in a greater loss of vegetation carbon than

deforestation. The wood harvest flux has a greater effect on

vegetation carbon store as the regrowth of the harvested trees

occurs on a much longer time scale than is the case with crops.

This also impacts the soil carbon evolution in CESM2.

MIROC and MPI include an additional carbon loss due to

grazing of pasture, which in MIROC results in a reduction in

leaf area and reduces productivity.

5) OCEAN CARBON RESPONSE

The air-to-sea CO2 fluxes are very similar in all nine ESMs

(Fig. 7a) throughout the historical period. The model mean lies

slightly lower than the six decadal mean values fromGCB2019,

but well within their uncertainty range, as is true for all indi-

vidual models; these are compared with the GCB2019 refer-

ence values in Table S4. The models sit at (ACCESS) or below

the GCB2019 change in ocean carbon store of 150 GtC from

1850 to 2014 (Table S4). IPSL and CNRM fall just below the

lower end of the uncertainty range of the reference values from

GCB2019.

6) AIRBORNE FRACTION

The rate of growth of atmospheric CO2 concentration is

dependent on the airborne fraction (AF) of emitted CO2, the

proportion of emissions that remains in the atmosphere rather

than being absorbed by the oceans or land. The AF varies with

the rate of emissions; if uptake by the sinks is outpaced by

emissions, the emitted CO2 will begin to accumulate in the

atmosphere, resulting in a higher AF and greater radiative

forcing. Whether the airborne fraction of emissions has begun

FIG. 4. Time series of net biosphere production (GtC yr21) from

1850 to 2014 calculated by the ESMs. Data-based estimates of

decadal mean net land carbon uptake for the 1960s, 1970s, 1980s,

1990s, and 2000s and from 2009 to 2018 are overlaid as squares with

uncertainty range, from Table 6 of Friedlingstein et al (2019).

2862 JOURNAL OF CL IMATE VOLUME 34

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 04/15/21 07:26 AM UTC



FIG. 5. (a) Initial land carbon stores in all ESMs at 1850, partitioned into vegetation, litter, and soil carbon.

(b) Change in land carbon from 1850 to 2014 calculated as the cumulative nbp diagnostic. (c) Change in vegetation

carbon and (d) change in1litter carbon over the same period. The values in (c) and (d) are calculated from the cVeg

and cSoil 1 cLitter diagnostics, respectively.
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to increase in recent history and whether it will do so over the

coming century are therefore important questions.

Several studies in recent years have attempted to find evi-

dence for a trend in AF from observations taken over the last

50 years or so. The airborne fraction is typically determined

as a fraction of total anthropogenic emissions, from fossil fuel

as well as land-use change (Canadell et al. 2007; Denman et al.

2007; Le Quéré et al. 2009; Raupach et al. 2008; Rayner et al.

2010; Bennedsen et al. 2019), though it has also been estimated

from fossil fuels and other industrial sources alone, for exam-

ple, from observations by Keeling et al. (1995) and for the

CMIP5 models by Jones et al. (2013) and Ciais et al. (2013).

These studies have suggested a weak increase in the airborne

fraction of emitted carbon since the 1960s, although the ro-

bustness of this finding has been questioned (Knorr 2009;

Raupach et al. 2014; Ballantyne et al. 2015). Since the focus of

this paper is on compatible fossil fuel emissions, and due to the

range of approaches to land-use emissions in the CMIP6ESMs,

we calculate the AF from the fossil fuel emissions alone, and

the cumulative airborne fraction (CAF) rather than the in-

stantaneous annual mean AF. The annual mean AF is a quo-

tient constructed from three potentially small fluxes (rise in

atmospheric CO2, nbp, and fgco2 for a particular year) and can

vary widely from year to year, whereas the cumulative AF is

calculated as the total amount by which the atmospheric bur-

den has increased since the preindustrial, expressed as a frac-

tion of the cumulative fossil fuel emissions. The cumulative AF

has a much stronger signal-to-noise ratio after several decades

of emissions and will change over time to reflect the ability of

the land and ocean sink to keep pace with the emissions.

The time series of cumulative airborne fraction for the ESMs

in the historical period is shown in Fig. 8. There is little

FIG. 7. (a) Time series of air-to-sea flux of CO2 from the nine ESM’s historical experiments. Data-based estimates

of decadal mean fluxes for the 1960s, 1970s, 1980s, 1990s, and 2000s and from 2009 to 2018 are overlaid as squares

with an uncertainty range. (b) Change in ocean carbon store calculated as the cumulative total of the air-to-sea flux

shown in (a). The square at 2014 indicates the data-based estimate of cumulative carbon uptake from 1850 to 2014.

All observations are from Table 6 of Friedlingstein et al. (2019).

FIG. 6. (a) Harvest carbon flux from the historical simulation of five ESMs. The data are annual means calculated

from one ensemble member, with the average fHarvest from at least a 10-yr section of the piControl subtracted. (b)

Cumulative totals of harvest fluxes shown in (a).
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agreement between models in the trend and magnitude of the

CAF historically. Four models’ FF emissions are exceeded by

the increment in atmospheric CO2 resulting in a CAF ex-

ceeding unity, until the final few decades of the twentieth

century; as a result, the same is true of the model mean CAF

until 1940. By the end of the twentieth century, all models are

converging toward a CAF of between 0.6 and 0.7, with the

exception of the two ESMs in which the land carbon store in-

creases throughout the historical period (ACCESS andCNRM).

The IPCC Fifth Assessment Report gives estimates of the air-

borne fraction of fossil fuel emissions for the 1980s, 1990s, and

two decadal periods of the present century, which also exhibit a

reducing trend, from0.62 in the 1980s to 0.51 in the first decade of

this century (black boxes with uncertainty range on Fig. 8).

7) POTENTIAL ROLE OF NON-CO2 GHGS AND

AEROSOLS ON LAND AND OCEAN CARBON UPTAKE

Carbon uptake by the biosphere can be influenced directly

by forcings other than CO2 (Gasser et al. 2017). Aerosol-

induced cooling can impact land carbon uptake directly. Zhang

et al. (2019) showed that aerosol cooling increased historical

land carbon uptake by 11.6 to 41.8 GtC, due primarily to in-

creases in net biosphere production in the mid- to high lati-

tudes; at lower latitudes, aerosol cooling reduced gross primary

production (GPP) by more than total ecosystem respiration,

reducing NBP.

Complex aerosol–cloud interactions are expected to lead to

changes in precipitation, with implications for land carbon

uptake (e.g., Fig. S11 of Zhang et al. 2019). Unger et al. (2017)

used a coupled aerosol–carbon cycle–climate model to simu-

late the period 1996 to 2005 with and without historical aerosol

levels and found that the inclusion of aerosols led to a global

precipitation reduction of 0.08mmday21 with regional in-

creases and decreases in NPP.

A further influence of aerosols on land carbon uptake is via

their increased scattering of light, increasing the proportion of

diffuse to direct light and allowing it to penetrate further into

the canopy, enhancing photosynthetic capacity and increasing

GPP (Mercado et al. 2009).

ESMs differ markedly in their representation of aerosols

and atmospheric chemistry of aerosol precursor species (e.g.,

Thornhill et al. 2021). It is beyond the scope of this paper to

examine in depth these differences and the resulting aerosol

concentrations, but the effective radiative forcing (ERF)3 from

1850 to 2014 due to the presence of aerosols (ERFaer) has been

calculated by Smith et al. (2020) for 6 ESMs in the present

study. The ERFaer ranges from 20.63Wm22 (IPSL), to

21.37Wm22 (CESM2), a span of 0.74Wm22. This illustrates

that aerosol-induced climate cooling and associated changes to

precipitation could vary quite strongly between models, with

the land carbon uptake, and therefore the compatible fossil

emissions, influenced accordingly.

The AerChemMIP (Collins et al. 2017) experimental design

allows calculation of the ERF at 2014 due to well-mixed green-

house gases (CO2, CH4, N2O, and halocarbons, ERFwmghg), CO2

only (ERFCO2), and, therefore, well-mixedGHGs excluding CO2

(ERFnonCO2ghg). The range of ERFnonCO2ghg is smaller than

ERFaer, from 0.71 to 1.15Wm22, a span of 0.44Wm22; this is

smaller than the spread in ERFaer but shows that differences in

the models’ responses to the non-CO2 greenhouse gas forcing

also plays a nontrivial role in the evolution of the ESMs’ climate

and therefore of the carbon cycle and compatible emissions.

Ozone can also affect land carbon sinks directly, through its im-

pact on leaf health (Sitch et al. 2007).

Aerosol-induced cooling also increases solubility of gaseous

CO2 in seawater, and to some extent alters ocean circulation

and biological production, all of which potentially impact

ocean carbon sinks, albeit to a lesser extent than that expected

FIG. 8. Time series of airborne fraction of fossil fuel emissions from the 9 ESM’s historical

simulation. Black squares and uncertainty ranges are observations-based estimates from Table

6.1 of Ciais et al. (2013).

3 ERF is the radiative forcing (RF) after allowing for the ad-

justment of all tropospheric and land surface properties on a range

of time scales (though typically referred to as ‘‘rapid adjust-

ments’’), including changes to vegetation and land ice cover, and is

evaluated after these have regained equilibrium following a per-

turbation in forcing such as a change in CO2 or aerosol. By contrast,

RF is defined as the change in downward radiative flux at the

tropopause after allowing only stratospheric temperatures to adjust

to radiative equilibrium, with all other state variables held constant

at the unperturbed state. The ERF represents a better indicator

than RF of the eventual global mean temperature in response to a

perturbation in forcing. For aerosols, in particular, ERF can be

quite different from RF (Smith et al. 2020).
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from the land biosphere (Tjiputra et al. 2016; Lauvset et al.

2017). Several ESMs (MIROC, NorESM2, and UKESM)

further simulate oceanic dimethyl sulfide (DMS) emissions,

which is the largest natural source of atmospheric sulfur and

contributes to aerosol formation and can therefore feed back

to the oceanic carbon sink.

b. Future

1) COMPATIBLE FOSSIL FUEL EMISSIONS

For the SSP experiments, the ESM FF emissions are com-

pared with the emission rates from the IAMs in Fig. 9a. There

is generally strong agreement between the IAM and the ESMs;

the IAM FF emission rates lie within the spread of the

ESMs, with the exception of SSP4-6.0, which falls slightly

below the ESMs’ range. The SSP4-6.0 was performed by

fewer ESMs (three) than any other SSP experiment; these

include CNRM and CanESM, which simulate two of the

three largest cumulative FF emissions for SSP2-4.5, the

scenario with emissions closest to those of SSP4-6.0. Had

more ESMs performed SSP4-6.0, the range of ESM emis-

sions might well have encompassed those of the IAM. (The

fossil fuel emission rates are shown for the models individ-

ually in Fig. S3.)

Three of the SSPs require the emissions to reduce to below

zero by 2100 to adhere to the CO2 pathway, in at least one

ESM. In all ESMs, SSP1-2.6 emissions become negative,

though only very slightly in NorESM2, and the same is true of

the five models that performed SSP1-1.9 and SSP4-3.4. The

interannual variability of compatible emissions varies a lot

between ESMs; some have very little (CanESM5, CNRM,

CESM2), others more so (ACCESS, MIROC). MIROC’s

emissions are characterized by a fairly cyclical variability with

a period of about 10 years and an amplitude of 5GtC yr21. This

is likely due to the unrealistically large El Niño–Southern
Oscillation amplitude exhibited by MIROC that causes similar

variability in global temperature (Hajima et al. 2020) as can be

seen in Fig. S2.

Of interest to policymakers, particularly in the case of

overshoot scenarios, is the point at which emission rates peak

and start to decline. Figure 10 shows the peak emissions rate

versus the year in which this occurs for all nine ESMs and the

IAMs. For the lower emissions scenarios, the IAM and ESMs

are in close agreement for the magnitude of maximum emis-

sions, but the timing is more uncertain, with a range of 18 years

for SSP1–2.6 (2015–32) and 15 years for SSP2-4.5 (2043–57);

this is due in part to the broader peak and decline of the CO2

curve in the lower concentration scenarios. For the higher

emissions scenarios, SSP5-8.5 and SSP3-7.0 particularly, there

is a greater spread in themaximum emissions rate; for SSP3-7.0

emissions climb right through to 2100, so the year of highest

emissions occurs uniformly in the last few years of the simu-

lation, whereas in SSP5-8.5 emissions peak and decline, so

there is inevitably uncertainty in the year in which the peak

occurs, from 2086 to 2100.

2) CUMULATIVE FOSSIL FUEL EMISSIONS

The cumulative ESM FF emissions are compared with the

emission rates from the IAMs (dashed colored lines) in Fig. 9b,

with their cumulative totals from 1850 to 2100 in Table 5. The

ESMs’ cumulative fossil fuel emission rates are depicted indi-

vidually in Fig. S4. The IAMs’ cumulative totals were con-

structed with the FF emissions data from 1850 to 2014 (Gilfillan

et al. 2019).

For the two higher emission scenarios, SSP5-8.5 and SSP3-

7.0, although the IAMs’ FF emission rates increasingly drop

below the ESMs’ mean toward the end of the century, periods

of higher emissions earlier mean that their cumulative totals

are in very close agreement. The IAMs also slightly underes-

timate the FF rates of the lower emission scenarios compared

to the ESMs, but the IAM cumulative total lies within the ESM

spread for all scenarios, except SSP4-6.0 for the reasons de-

scribed above. The ESMmean cumulative emissions for SSP4-

3.4 match almost exactly those constructed from historical

data-based values and the IAM and are almost identical to the

those from SSP1-2.6, although all nine ESMs performed the

FIG. 9. (a) Time series of compatible fossil fuel emissions (GtC yr21) for the eight SSP scenarios simulated by the

nine ESMs. Solid lines are the model mean, the dashed lines are the fossil fuel rate generated by the IAMs that

provided the CO2 concentration pathways used to drive the ESMs. Shaded areas indicate model spread for each

scenario. (b) Cumulative totals of fossil fuel emissions (GtC) shown in (a).
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latter while only four performed SSP4-3.4. The atmospheric

CO2 is slightly higher in SSP4-3.4 than SSP1-2.6, but the former

has much higher crop and pasture area (Fig. 1c), so the impact

of land use brings its compatible emissions down in line with

those of SSP1-2.6. Generally, where the ESMs disagree with

the IAMs, the cumulative emissions from ESMs are higher,

although UKESM is the exception; for SSP3-7.0 and SSP5-8.5

UKESM’s cumulative emissions are lower than the emissions

from IAMs by a small amount.

3) TIMING OF NET-ZERO EMISSIONS REQUIRED FOR 1.58
AND 2.08C OF WARMING

SSP1-1.9 has lower radiative forcing than all of the RCPs of

CMIP5 and was introduced as a result of the Paris Agreement

of 2015 to explore the potential for limiting warming to 1.58C
above the preindustrial level (Rogelj et al. 2018). Based on

RCP2.6, SSP1-2.6 was designed to be consistent with warming

of the order of 2.08C or lower. The assumptions underlying

both of these low warming scenarios include extensive

investment in sustainability and a reduction in fossil fuel use,

leading to net zero fossil fuel emissions during the second half of

the twenty-first century, and negative emissions subsequently.

Once such an ambitious warming limit has been decided upon, a

further decision to make is the target year by which emissions

should reduce to zero to achieve this. We will now examine the

time frame within which the models predict fossil fuel emissions

must drop to zero to adhere to the CO2 pathway, and the change

in global mean temperature the models exhibit under each.

Figure 9a shows that in all ESMs, the emission rate drops to

below zero for SSP1-1.9, SSP1-2.6, and SSP4-3.4, the three SSPs

with the lowest CO2 forcing, as well as SSP5-3.4over, the overshoot

scenario branching from SSP5-8.5 at 2040with intensivemitigation.

Table 6 shows the year in which the fossil fuel emissions rate first

reduced to zero, when smoothed by an 11-yr running mean.

For SSP1-1.9, emissions first become zero in 2056 for the

IAM; the five ESMs that ran that scenario all require emissions

to become negative, starting in 2056 (UKESM) through to

2071 (CNRM). In the case of SSP1-2.6, all nine ESMs see

emissions becoming negative during the period 2076–86, com-

pared to 2076 for the IAM. Only four ESMs ran SSP4-3.4, all

requiring a reduction to zero from 2080 to 2091, enclosing the

IAM’s value of 2084. The overshoot scenario, SSP5-3.4over, sees

emissions in the ESMs becoming zero in 2068, as is true of the

IAM, through to 2078.

The temperature response of the ESMs to the SSPs is shown

as a model mean in Fig. 11, and individually in Fig. S2. The

multimodel-mean warming at 2100 relative to the 1850–99 av-

erage ranges from 1.58 to 2.28C for the five models that per-

formed SSP1-1.9, with a mean of 1.98C (Table S1). Themean of

the nine ESMs’ warming at 2100 under SSP1-2.6 is 2.08C, with a

range of 1.18C (NorESM2) to 2.88C (CanESM5 and UKESM);

five ESMs exhibit warming at 2100 of 2.08C or less under this

scenario.

4) LAND CARBON RESPONSE

The ESMs’ land carbon response to the scenarios is the net

result of a combination of their natural carbon cycle behavior

as the CO2 and climate change, and the extent to which this is

perturbed by the prescribed land-use forcing, and the land

management practices implemented within the ESM. In the

FIG. 10. Maximum rate of FF emissions (GtC yr21) experienced

during each SSP by each ESM vs year in which this occurred.

Symbols denote SSP and ESMs are distinguished by color, with

IAM in black.

TABLE 6. Year at which compatible fossil fuel emissions reduce to zero, where applicable, calculated from the fossil fuel emission rate

smoothed with a Savitzky–Golay filter with an 11-yr window.

SSP

1-1.9 1-2.6 2-4.5 3-7.0 4-3.4 4-6.0 5-3.4over 5-8.5

IAM 2056 2076 — — 2084 — 2068 —

ACCESS-ESM1.5 — 2076 — — — — — —

CanESM5 2063 2080 — — 2083 — 2068 —

CESM2 — 2082 — — — — — —

CNRM-ESM2.1 2071 2083 — — 2091 — 2078 —

IPSL-CM6A-LR 2070 2082 — — 2087 — 2073 —

MIROC-ES2L 2060 2076 — — — — — —

MPI-ESM1.2-LR — 2084 — — — — — —

NorESM2-LM — 2086 — — — — — —

UKESM-0-LL 2056 2077 — — 2080 — 2068 —
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cases of CESM2, CNRM, IPSL, MPI, and NorESM2, land

carbon storage is also impacted by fire.

The multimodel mean land carbon uptake rates (Fig. 12)

increase broadly in line with increasing atmospheric CO2

(Fig. 1a), although the differing extents to which natural land is

replaced by crop and pasture across the scenarios (Figs. 1c,d)

counteract this in some cases. The high CO2 scenario SSP5-8.5

has the greatest NBP. The SSP3-7.0, however, with second

highest CO2 has the greatest loss of forest that is replaced by

the greatest pasture area and the second largest crop area of all

SSPs. Additionally, SSP3-7.0 has larger contributions from

non-CO2 greenhouse gases, which do not stimulate land car-

bon uptake, but reduce terrestrial carbon via positive climate

feedback. These factors contribute to the lowering of model

mean NBP under SSP3-7.0 to below that of SSP4-6.0 (although

only three ESMs performed the latter, compared to all nine for

SSP3-7.0). The lowest NBP is simulated in response to SSP4-

3.4; it has the third lowest CO2 pathway, but also features the

highest crop area of all scenarios, as well as fourth highest

pasture area, which brings its FF emissions down approxi-

mately in line with SSP1-2.6 [section 3b(2)].

Although the model mean exhibits some interscenario

spread in the time series of NBP, there is very little evidence of

this in some models (ACCESS, IPSL, UKESM), while NBP in

other models is very scenario dependent (CanESM5, MIROC)

(Fig. S4). Figures 13b and 13c resolve the change in land carbon

store (Fig. 13a) into change in vegetation carbon, and soil plus

litter carbon, respectively. Figures S6–S9 show the individual

ESMs’ changes in land, vegetation, soil, and litter carbon, re-

spectively. The change in vegetation carbon is responsible,

primarily, for the evolution of land carbon throughout the

twenty-first century, with model mean change in soil carbon

differing by less than 100GtC across scenarios, as is true for the

ESMs individually with the exception of CanESM5 (Fig. S7).

The ESMs’ natural carbon cycle behavior can be charac-

terized by the feedback parameters introduced by the original

Coupled Climate–CarbonCycleModel Intercomparison Project

(C4MIP) of the mid-2000s (Friedlingstein et al. 2006). The

C4MIP project is ongoing and forms one of the model inter-

comparison projects of CMIP6; it includes a set of idealized ex-

periments designed to allow quantification of carbon–climate

and carbon–concentration feedbacks. The idealized 1pctCO2

experiments, in which CO2 rises at 1% annually to 4 times the

preindustrial level, have been performed by fully coupled, bio-

geochemically coupled, and radiatively coupled variants of 11

CMIP6 ESMs, including all 9 in the present study. This combi-

nation of experiments allows the carbon–concentration feedback

(denoted bL and bO for land and ocean, respectively, in units of

GtCppm21) and the carbon–climate feedback (gL and gO, GtC

8C21) to be quantified. The feedback parameters help to explain

the differences in themodels’ responses to the SSPs forcings. The

greater the bL, the greater the land uptake of carbon per unit

increase in atmospheric CO2, representing a negative feedback

of the carbon cycle–climate system, slowing the accumulation of

CO2 in the atmosphere. A larger, negative gL results in a greater

loss of carbon from land per unit warming (a positive feedback,

increasing atmospheric CO2). The carbon–climate and carbon–

concentration feedbacks of the nine ESMs included in the

present study are included in Table A1 of Arora et al. (2020) at 2

times and 4 times preindustrial CO2.

Among all models, CanESM5 yields the highest land carbon

uptake under SSP5-8.5, leading to higher diagnosed FF emis-

sions than all other ESMs for that scenario. The reason for this

is an increase in the strength of CO2 fertilization effect in

CanESM5 compared to its predecessor CanESM2; it has the

third highest bL (1.28 GtC ppm21 at 4 times CO2) of the 11

models in Arora et al. (2020), for which the mean is 0.97

GtC ppm21. CanESM5 does not contain an explicit represen-

tation of nutrient constraints on land photosynthesis; the

strength of the CO2 fertilization effect over land is determined

by a photosynthesis downregulation parameterization. Arora

and Scinocca (2016) attempt to constrain the model parameter

that determines photosynthesis downregulation, using the his-

torical carbon budget, the amplitude of the annual cycle of globally

averaged CO2 and its trend over the historical period. Yet despite

this exercise, the response of land carbon uptake in CanESM5 to

increasing CO2 is larger than other models at high CO2. Further, of

FIG. 12. Multimodel mean net biosphere production (GtC yr21)

under the eight SSPs.

FIG. 11. Model mean change in global mean temperature for all

SSP experiments relative to the 1850–99 mean of the historical

mean. Dashed horizontal lines indicate 1.58 and 2.08C change.
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the 11ESMs inArora et al. (2020),CanESM5 is unusual in having a

positive carbon–climate feedback parameter, representing a

negative feedback, promoting further land carbon uptake in

response to warming as well as in response to rising CO2.

CNRM has a carbon–concentration feedback comparable

to CanESM5 (1.36 GtC ppm21 at 4 times CO2), contributing to

its strong land carbon uptake. It differs from CanESM5 in

having a fairly strong carbon–climate feedback (283.11GtCK21

compared with CanESM5’s 115.95 GtC 8C21 and the multi-

model mean of245.07 GtC 8C21 at 4 times CO2). As the planet

gets progressively warmer under the high CO2 scenarios,

CNRM’s positive carbon–climate feedback dampens carbon

uptake in a way that does not happen in CanESM5. MIROC

also features strong gains in land carbon under SSP5–8.5 and

SSP3–7.0, 406, and 368 GtC, respectively, consistent with it

having the third strongest carbon–concentration feedbacks

(1.12GtCppm21 compared with the ESMmean of 0.97). It also

has a stronger than average climate–carbon feedback, of

269.57GtC 8C21, compared with theESMmean of245.07, but

MIROC has a lower than average climate sensitivity (Arora

et al. 2020) leading to warming in SSP5-8.5 of only around

4.58C. Of the nine ESMs in this study, MIROC, CNRM, and

CanESM5 are the three with the largest fraction of emissions

taken up by land in Fig. 4b of Arora et al. (2020).

UKESM and IPSL exhibit comparatively weak land carbon

uptake, with little dependence on CO2 pathway due to their

relatively weak carbon–climate feedbacks (238.4 and 28.67

GtC 8C21, respectively) and carbon–concentration feedbacks

of 0.7 and 0.62 GtC ppm21.

Since both NorESM2 and CESM2 employ the land carbon

cycle model CLM5, their responses in the scenarios are very

similar (Fig. S6). They see, respectively, a rise in land carbon of

323 and 305 GtC for SSP5-8.5, and, at the lower end, 189 and

203 GtC for SSP1-2.6. This is consistent with their below av-

erage land carbon–concentration feedback. Thesemodels have

different atmospheric components, and CESM2 sees greater

warming than NorESM2, but with much lower than average

climate–carbon feedbacks, there is little additional loss of

carbon in CESM2 compared to NorESM2, even for SSP5-8.5

(Figs. S6–S9).

Arora et al. (2020) discuss some of the differences between

models that affect their feedback parameters. The CO2 fertil-

ization effect, defined as the change in GPP per unit change in

atmospheric CO2 concentration (GtC yr21 ppm21) contributes

to the carbon–concentration feedback; this is higher in the

three ESMs in Arora et al. (2020), which include dynamic

vegetation, including MPI, and UKESM. However, in both of

these models, the turnover time of soil and vegetation carbon

are lower than average. CNRM on the other hand, features

strong land carbon uptake due to its relatively high turnover

times, rather than a particularly strong CO2 fertilization effect.

Another differentiator is the fraction of the change in GPP

(relative to the preindustrial) that gets converted to net pri-

mary production (NPP); this is a form of carbon use efficiency

FIG. 13. Net change (GtC) in (a) land carbon store, (b) vegetation carbon, and (c) soil1 litter carbon for the SSPs.

Thick lines are the multimodel means; individual models are indicated by the thin lines. Calculated from the

cumulative nbp, and change in cVeg, and change in cSoil1 cLitter diagnostics, respectively.
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denoted DCUE to highlight that it is the change in GPP above

the preindustrial that is under consideration. CanESM5 has a

higher DCUE than all other models, which contributes to its

relatively high land carbon uptake. ACCESS sees the lowest

gain in land carbon throughout the scenarios because it has the

lowest DCUE as well as a weak CO2 fertilization effect. These

combine to give it the lowest carbon–concentration feedback

of the nine ESMs in this study.

The idealized experiments used to determine the carbon

feedback parameters featured fixed, preindustrial nitrogen

deposition and fertilizer. The SSP experiments use time-

varying nitrogen deposition, providing an additional driver of

land carbon uptake in those ESMs that feature explicit carbon–

nitrogen interactions, limiting carbon uptake when plant-

available nitrogen is scarce; this is parameterized in others

(Tables 1–3 and supplemental section 1). Some models have

the ability to diagnose the reduction in land carbon uptake due

to the scarcity of nitrogen and other nutrients within a simu-

lation; for example, in UKESM, NPP is calculated before and

after N limitation is taken into account, each time step. In the

FUN model used in CLM5 within CESM2 and NorESM2, the

‘‘carbon cost’’ of nitrogen uptake in units of assimilable carbon

is calculated; the higher the carbon cost of nitrogen, the greater

the nitrogen limitation (Fisher et al. 2019). However, assessing

the full impact of nitrogen limitation on land carbon stores

would require spinning up the carbon–nitrogen and carbon-

only ecosystems in separate simulations, followed by parallel

piControl, historical, and scenario experiments, which is pro-

hibitively expensive.

The SSPs’ land-use trajectories, forcing the myriad land-use

schemes within the ESMs, superimpose another layer of

complexity upon the models’ biophysical and biological pro-

cesses, contributing to the changes in land, soil and vegetation

carbon stores seen in Figs. S6–S8. The discussion on the ESMs’

representation of crop harvest in section 3a(4) is instructive

when considering these changes. However, as discussed in

section 3a(3), having the no-Lu variants of each SSP scenario

would be invaluable in determining the exact role of land use

on the land carbon sink by comparing the net change in land

carbon storage between the two.

5) OCEAN CARBON RESPONSE

There is much more agreement between ESMs in their

ocean carbon response to the scenarios than is the case for land

carbon, as shown in Figs. 14a and 14b, depicting the air-to-sea

flux and change in ocean carbon store, respectively; the same

are shown for the models individually in Figs. S10 and S11,

respectively. The air-to-sea flux averaged across a portion of

the piControl was subtracted from that of the scenarios for all

ESMs as in some cases the piControl ocean was not fully in

equilibrium, with a small, but not negligible, flux to or from the

atmosphere. The separation between scenarios is significant in

all ESMs, and their cumulative uptake totals are in close

agreement (Table S5). ACCESS gains slightly more carbon

than all other ESMs over the historical period, which continues

throughout the SSP scenarios leading to the greatest uptake at

2100, relative to 1850, of all ESMs for its four scenarios. This is

consistent with it having the largest carbon–concentration

feedback (0.9 GtC ppm21) of all the ESMs included in this

study for which it is known [the other eight range from 0.70 to

0.78 GtC ppm21; Table A1 in Arora et al. (2020)]. However, its

negative climate–carbon feedback (223.75 GtC 8C21) is also

largest in magnitude of all ESMs, the others ranging from29.38

to 222.25 GtC 8C21, promoting greater carbon loss per 18C of

warming than other ESMs, offsetting partly the gain in carbon.

All models exhibit either a stabilization or a decline in ocean

carbon uptake toward the end of the twenty-first century in all sce-

narios except for SSP3–7.0, where carbon uptake continues to in-

crease. The reason for this is that the transient trend in ocean carbon

uptake stronglydependson the trendofatmosphericCO2ordCO2/dt

(Tjiputra et al. 2014). The CO2 trend in SSP3–7.0 continues to in-

crease by 2100, whereas it stabilizes or declines in other SSPs.

The ESMs’ ocean carbon response to the scenarios is

therefore much less diverse than is true for land carbon, as was

FIG. 14. (a) Air-to-sea flux of CO2 for the eight SSPs. Multimodel mean for each SSP is shown as the solid line,

with model spread indicated by the shaded region around it. (b) Change in ocean carbon store for the SSPs. Thick

lines are model means; thin lines are individual models.
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the caseCMIP5 (Jones et al. 2013).Although there is diversity in

the nature and complexity of ecosystems included in the ocean

carbon cycle models, and to an extent the same is true of the

carbonate chemistry and air-to-sea flux parameterizations, they

are less conflicted than the terrestrial carbon components, which

need to incorporate the effects of human interaction with land.

6) AIRBORNE FRACTION

The cumulative airborne fraction of fossil fuel emissions for

the SSPs are shown in Fig. 15 and individually in Fig. S12.

From the initial large model differences at the end of the

historical simulation (Fig. 7), there is quite strong agreement

among ESMs that by the second half of the twenty-first century

the airborne fraction will increase for the higher emission

scenarios, SSP5-8.5 and SSP3-7.0, and reduce for the lower

emission SSP1-1.9 and SSP1-2.6. Indeed, for the latter two, the

models are in extremely close agreement, with themodel mean

CAF reducing by 0.11 over the last half of the century in both

scenarios. In the higher emissions scenarios, the sinks cannot

keep pace with the amount of CO2 being released, and the

fraction left in the atmosphere increases. For the lower emis-

sion scenarios, the emission rate is lower than the combined

sink strength, and therefore the fraction of emissions left in the

atmosphere reduces.

For the intermediate scenarios, SSP4-3.4, SSP4-6.0, and

SSP5-3.4over, the CAF tends to reduce, but at a lower rate than

is the case for SSP1-1.9 and SSP1-2.6, with some individual

models being almost constant over the last few decades. The

overshoot scenario, SSP5-3.4over, sees a slightly greater decline

in CAF than SSP1-1.9 and SSP1-2.6, at 0.14 over the last 50 years.

The intermodel spread is such that the highest CAF is typically

around 0.15 to 0.20 greater than the lowest CAF at 2100. CNRM

has the lowest CAFs almost for the duration of all scenarios.

4. Conclusions

For nine state-of-the-art, comprehensive Earth systemmodels,

we present the fossil fuel CO2 emission rates compatible with

the CO2 concentration pathway used to drive them over the

historical period, and under the eight Shared Socioeconomic

Pathway scenarios out to 2100.

The model-mean time series of simulated historical fossil

fuel CO2 emissions compares very well with data-based esti-

mates; the mean cumulative total from 1850 to 2014 (394 6 59

GtC) is extremely close to the estimate from the global carbon

budget 2019 (400 6 20 GtC); only two models, however, lie

within the observed estimate’s uncertainty range. With the

exception of CNRM andACCESS, themodels that are outside

of the observed uncertainty range underestimate cumulative

historical emissions. A major contributing factor to this is the

stabilization of observed CO2 concentration in the 1940s that

led to lower diagnosed FF emissions in the ESMs compared to

reality, which saw emissions continue to rise.

Good agreement between the observed rate of historical

fossil emissions and those from ESMs provides confidence in

their ability to simulate the net carbon uptake by land and

ocean reliably over the historical period. Good agreement

between fossil emissions diagnosed from the immensely

complex, process-based ESMs and the emissions calculated by

the much simpler IAMs for the future scenarios provides

confidence in our understanding of the coupled carbon cycle

and climate system. Indeed, agreement between the two for the

SSP experiments is quite strong, when looking at both time

series and the cumulative totals of compatible fossil fuel CO2

emissions. If this were not the case it would undermine credi-

bility in the sequence of influence from the scenarios of pop-

ulation change and socioeconomic variables driving the IAM,

the resulting CO2 concentration pathway, and the physical and

biogeochemical changes simulated by the ESM in response to

it, as well as associated climate impacts. However, they are

sufficiently close that we can have confidence that the CO2

scenarios forcing the complex models are a realistic expression

of the evolving worlds described by the Shared Socioeconomic

Pathway scenarios. The fact that the IAM emissions are

slightly lower than the ESMs’ average would imply that the

land and ocean uptake in those models is perhaps lower than

that of the ESMs.

The compatible emissions time series presented here pro-

vide an uncertainty range as well as context to the single CO2

emissions rate generated by the IAM for each SSP. Further,

with the year by which society should aspire to reduce global

emissions to zero gaining ever more attention, the ESMs pro-

vide an uncertainty range around this event.

As with CMIP5, the contrast between the land and the

ocean carbon responses to future forcing is marked; both

generations of models exhibit a strong lack of agreement in the

response of the land carbon sink to the diverse range of CO2

scenarios, with much greater agreement for ocean carbon.

One primary reason land models diverge more than ocean

models in terms of their future projections of carbon uptake is

that ocean carbon uptake is determined almost entirely by

well understood physical and chemical processes; over land,

carbon uptake is determined exclusively by biological pro-

cesses that are not as well understood. In addition, uncertainty

over land is contributed to by several other processes includ-

ing land-use change and land management practices (e.g.,

treatment of changing crop and pasture area, fertilizer appli-

cation, irrigation, harvesting of biomass), as well as differences

in nutrient cycling (nitrogen, phosphorus), all of which affect

the land carbon sink.

ESMs are ever-evolving, with some already including the

land carbon impact of fire–vegetation interactions. The release

of CO2 and methane from thawing permafrost (as already

occurs in CESM2) as well as methane from wetlands will likely

be included in future ESMs, and the development of interac-

tive methane emissions with a 3D atmospheric CH4 tracer, in

parallel with the CO2 equivalent, offers further opportunities

to investigate feedbacks between the carbon cycle, the climate

and the wider Earth system. A continuing goal in the coming

decade should be to better constrain the land carbon response,

despite these myriad differences.

The ‘‘E2’’ paired historical and hist-noLu experiments pro-

vide the best estimate of land-use and land-cover change

emissions,ELUC, in the historical experiment. The seven ESMs

that have provided output from both experiments to the CMIP6

archive all underestimate land-use emissions compared to the
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two reference datasets from the global carbon budget 2019 used

in Fig. 3, to a greater or lesser extent, despite the GCB2019 data

not accounting for the loss of additional sink capacity included in

the ESMs. The ESMs at the edges of the model spread in EFF

and ELUC (Figs. 3b,d) suggest an inverse relationship between

the two; greater land-use emissions are paired with fewer fossil

fuel emissions. This relationship suggests that in the absence of

the -noLu variant of the SSP scenarios, the magnitude of an

FIG. 15. Cumulative airborne fraction of emitted fossil fuel CO2 from 2015 to 2100 for the eight SSPs simulated by

the ESMs. Colored lines depict individual models, with the multimodel mean as the black line.
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ESM’s historical LULCC emissions from paired experiments

could potentially be used, with caution, to provide a way of

qualitatively interpreting its FF emissions. If, for example, an

ESM yields very high (low) historical paired-experiment

LULCC emissions, its fossil fuel emissions diagnosed from fu-

ture scenarios could be considered excessively low (high).

Using the E2 experimental design to allow comparison of

FF, LULCC and FF 1 LULCC emissions between models for

future scenarios, as well as for the historical period, would allowus

to examine how future land use, accounting for loss of additional

sink capacity and regrowth on abandoned agricultural land, im-

pact FF emissions. It would also allow comparison between

models of the response of the natural carbon cycle to realistic,

rather than idealized scenarios, due primarily to changing envi-

ronmental conditions rather than to the direct effects of land use

on land carbon, as discussed in section 3a(3) in relation to Fig. 3f.

Aerosols, well-mixed greenhouse gases and ozone all influ-

ence the evolving climate and, therefore, land and ocean car-

bon uptake, and fossil emissions. The role of non-CO2 forcings

on the carbon cycle, future carbon budgets, and on the spread

of the land carbon response among ESMs in particular, is an

area that would benefit from further attention in the coming

years. As models incorporate new processes such as interactive

diffuse:direct fraction of photosynthetically active radiation,

online calculation of atmospheric methane concentration from

emissions, interactive nitrogen deposition as a product of at-

mospheric chemistry processes, as well as downgrading of

carbon uptake by plants due to ozone damage, this will likely

become increasingly important.

ESMs can be driven with prescribed atmospheric CO2 con-

centration (C driven), as in the experiments described here, or

providedwith time varying fossil fuel CO2 emissions (E driven)

from which the model calculates the atmospheric CO2 concen-

tration. In C-driven mode, the diagnosed fossil fuel flux is the

residual of the top-level carbon fluxes between the atmosphere

and the land and the ocean, so the uncertainty associated

with every physical, biological, and biogeochemical process that

contributes to the partitioning of carbon between land and

ocean accumulates in the residual FF emissions. Conversely,

in E-driven mode with prescribed fossil fuel CO2 emissions,

the same uncertainties that affect the partitioning between

land and ocean feed into the changing atmospheric CO2

burden. The diagnosed fossil fuel emissions, or the changing

atmospheric CO2 burden, therefore, tend to act as integrators

of model spread when comparing multiple ESMs. A useful

complement to the present paper would be a similar study

examining the emissions-driven experiments of the CMIP6

Earth system models.

Acknowledgments. SKL, CDJ, and AJW were supported by

the Joint U.K. BEIS/Defra Met Office Hadley Centre Climate

Programme (GA01101). This project has received funding

from the European Union’s Horizon 2020 Research and

Innovation Programme under Grant Agreement 641816

(CRESCENDO). DML is supported by the National Center for

Atmospheric Research, which is a major facility sponsored by

the NSF under Cooperative Agreement 1852977 and by the

RUBISCO Scientific Focus Area (SFA), which is sponsored by

the Regional and Global Climate Modeling (RGCM) Program

in the Climate and Environmental Sciences Division (CESD)

of the Office of Biological and Environmental Research in the

U.S.Department ofEnergyOffice of Science. THwas supported

by the Integrated Research Program for Advancing Climate

Models (Grant JPMXD0717935715), through the Ministry of

Education, Culture, Sports, Science, and Technology of Japan.

JS and JT acknowledge support from the Research Council of

Norway through projects INES (270061), KeyClim (295046),

IMPOSE (294930), and COLUMBIA (275268), as well as sup-

port from theBjerknes Centre for Climate Research through the

project LOES.RS thanksH2020CONSTRAINunder theGrant

Agreement 820829 and the support of the team in charge of the

CNRM-CM climate model. Supercomputing time was provided

by the Météo-France/DSI supercomputing center. RS thanks

Christophe Cassou for his fruitful discussion on the paper. We

thank two reviewers for their time and their constructive and

helpful comments.

REFERENCES

Arora, V. K., and J. F. Scinocca, 2016: Constraining the strength

of the terrestrial CO2 fertilization effect in the Canadian

Earth System Model version 4.2 (CanESM4.2). Geosci.

Model Dev., 9, 2357–2376, https://doi.org/10.5194/gmd-9-

2357-2016.

——, and Coauthors, 2020: Carbon–concentration and carbon–

climate feedbacks in CMIP6 models, and their comparison to

CMIP5models.Biogeosciences, 17, 4173–4222, https://doi.org/

10.5194/bg-17-4173-2020.

Ballantyne, A. P., and Coauthors, 2015: Audit of the global carbon

budget: Estimate errors and their impact on uptake uncer-

tainty. Biogeosciences, 12, 2565–2584, https://doi.org/10.5194/

bg-12-2565-2015.

Bastos, A., and Coauthors, 2016: Re-evaluating the 1940s CO2

plateau.Biogeosciences, 13, 4877–4897, https://doi.org/10.5194/bg-

13-4877-2016.

Bennedsen, M., E. Hillebrand, and S. J. Koopman, 2019: Trend

analysis of the airborne fraction and sink rate of anthro-

pogenically released CO2. Biogeosciences, 16, 3651–3663,

https://doi.org/10.5194/bg-16-3651-2019.

Canadell, J. G., and Coauthors, 2007: Contributions to accelerating

atmospheric CO2 growth from economic activity, carbon

intensity, and efficiency of natural sinks. Proc. Natl. Acad.

Sci. USA, 104, 18 866–18 870, https://doi.org/10.1073/pnas.

0702737104.

Ciais, P., and Coauthors, 2013: Carbon and other biogeochemical

cycles. Climate Change 2013: The Physical Science Basis, T. F.

Stocker et al., Eds., Cambridge University Press, 465–570.

Collins, M., and Coauthors, 2013: Long-term climate change:

Projections, commitments and irreversibility. Climate Change

2013: The Physical Science Basis, T. F. Stocker et al., Eds.,

Cambridge University Press, 1029–1136.

Collins, W. J., and Coauthors, 2017: Aerchemmip: Quantifying the

effects of chemistry and aerosols in CMIP6. Geosci. Model

Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017.

Dellink, R., J. Chateau, E. Lanzi, and B. Magné, 2017: Long-term
economic growth projections in the shared socioeconomic

pathways. Global Environ. Change, 42, 200–214, https://

doi.org/10.1016/j.gloenvcha.2015.06.004.

Denman, K., and Coauthors, 2007: Couplings between changes in

the climate system and biogeochemistry. Climate Change

15 APRIL 2021 L I DD ICOAT ET AL . 2873

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 04/15/21 07:26 AM UTC

https://doi.org/10.5194/gmd-9-2357-2016
https://doi.org/10.5194/gmd-9-2357-2016
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.5194/bg-12-2565-2015
https://doi.org/10.5194/bg-12-2565-2015
https://doi.org/10.5194/bg-13-4877-2016
https://doi.org/10.5194/bg-13-4877-2016
https://doi.org/10.5194/bg-16-3651-2019
https://doi.org/10.1073/pnas.0702737104
https://doi.org/10.1073/pnas.0702737104
https://doi.org/10.5194/gmd-10-585-2017
https://doi.org/10.1016/j.gloenvcha.2015.06.004
https://doi.org/10.1016/j.gloenvcha.2015.06.004


2007: The Physical Science Basis, S. Solomon et al., Eds.,

Cambridge University Press, 499–587.

Etheridge, D.M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M.

Barnola, and V. I. Morgan, 1996: Natural and anthropogenic

changes in atmospheric CO2 over the last 1000 years from air in

Antarctic ice and firn. J. Geophys. Res., 101, 4115–4128, https://

doi.org/10.1029/95JD03410.

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J.

Stouffer, and K. E. Taylor, 2016: Overview of the coupled

model intercomparison project phase 6 (CMIP6) experimen-

tal design and organization.Geosci. Model Dev., 9, 1937–1958,

https://doi.org/10.5194/gmd-9-1937-2016.

Fisher, R. A., and Coauthors, 2019: Parametric controls on vege-

tation responses to biogeochemical forcing in the CLM5.

J. Adv. Model. Earth Syst., 11, 2879–2895, https://doi.org/

10.1029/2019MS001609.

Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle

feedback analysis: Results from the C4MIP model intercom-

parison. J. Climate, 19, 3337–3353, https://doi.org/10.1175/

JCLI3800.1.

——, andCoauthors, 2019:Global carbon budget 2019.Earth Syst. Sci.

Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019.

Gasser, T., G. P. Peters, J. S. Fuglestvedt, W. J. Collins, D. T.

Shindell, and P. Ciais, 2017: Accounting for the climate–

carbon feedback in emission metrics. Earth Syst. Dyn., 8,

235–253, https://doi.org/10.5194/esd-8-235-2017.

——, L. Crepin, Y. Quilcaille, R. A. Houghton, P. Ciais, and

M. Obersteiner, 2020: Historical CO2 emissions from land use

and land cover change and their uncertainty. Biogeosciences,

17, 4075–4101, https://doi.org/10.5194/bg-17-4075-2020.

Gidden, M. J., and Coauthors, 2019: Global emissions pathways

under different socioeconomic scenarios for use in CMIP6: A

dataset of harmonized emissions trajectories through the end

of the century. Geosci. Model Dev., 12, 1443–1475, https://

doi.org/10.5194/gmd-12-1443-2019.

Gilfillan, D., G. Marland, T. Boden, and R. Andres, 2019: Global,

regional, and national fossil-fuel CO2 emissions. CDIAC at

AppState, accessed 12 May 2020, https://energy.appstate.edu/

research/work-areas/cdiac-appstate.

Hajima, T., and Coauthors, 2020: Development of the MIROC-

ES2L Earth System Model and the evaluation of biogeo-

chemical processes and feedbacks. Geosci. Model Dev., 13,

2197–2244, https://doi.org/10.5194/gmd-13-2197-2020.

Hansis, E., S. J. Davis, and J. Pongratz, 2015: Relevance of meth-

odological choices for accounting of land use change carbon

fluxes. Global Biogeochem. Cycles, 29, 1230–1246, https://

doi.org/10.1002/2014GB004997.

Haustein, K., M. R. Allen, P. M. Forster, F. E. L. Otto, D. M.

Mitchell, H. D. Matthews, and D. J. Frame, 2017: A real-time

global warming index. Sci. Rep., 7, 15417, https://doi.org/

10.1038/s41598-017-14828-5.

Houghton, R. A., and A. A. Nassikas, 2017: Global and regional

fluxes of carbon from land use and land cover change 1850–

2015.Global Biogeochem. Cycles, 31, 456–472, https://doi.org/

10.1002/2016GB005546.

——, J. I. House, J. Pongratz, G. R. van der Werf, R. S. DeFries,

M. C.Hansen, C. LeQuéré, andN. Ramankutty, 2012: Carbon

emissions from land use and land-cover change. Biogeosciences,

9, 5125–5142, https://doi.org/10.5194/bg-9-5125-2012.

Hurtt, G. C., and Coauthors, 2020: Harmonization of global land

use change and management for the period 850–2100 (LUH2)

for CMIP6.Geosci.ModelDev., 13, 5425–5464, https://doi.org/

10.5194/gmd-13-5425-2020.

IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and

Vulnerability. Part A: Global and Sectoral Aspects. C. B. Field

et al., Eds., Cambridge University Press, 1132 pp., http://

www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartA_

FINAL.pdf.

Jiang, L., and B. C. O’Neill, 2017: Global urbanization projections for

the shared socioeconomic pathways. Global Environ. Change,

42, 193–199, https://doi.org/10.1016/j.gloenvcha.2015.03.008.

Jones, C., and Coauthors, 2013: Twenty-first-century compatible

CO2 emissions and airborne fraction simulated by CMIP5

Earth system models under four representative concentration

pathways. J. Climate, 26, 4398–4413, https://doi.org/10.1175/

JCLI-D-12-00554.1.

——, and Coauthors, 2016: C4MIP—The Coupled Climate–Carbon

CycleModel Intercomparison Project: Experiments protocol for

CMIP6. Geosci. Model Dev., 9, 2853–2880, https://doi.org/

10.5194/gmd-9-2853-2016.

Joos, F., R. Meyer, M. Bruno, and M. Leuenberger, 1999: The

variability in the carbon sinks as reconstructed for the last 1000

years. Geophys. Res. Lett., 26, 1437–1440, https://doi.org/

10.1029/1999GL900250.

Keeling, C., T. Whorf, and M.Wahlen, 1995: Interannual extremes

in the rate of rise of atmospheric carbon dioxide since 1980.

Nature, 375, 666–670, https://doi.org/10.1038/375666a0.

Knorr, W., 2009: Is the airborne fraction of anthropogenic CO2

emissions increasing?Geophys. Res. Lett., 36, L21710, https://

doi.org/10.1029/2009GL040613.

Lauvset, S. K., J. Tjiputra, and H. Muri, 2017: Climate engineering

and the ocean: Effects on biogeochemistry and primary pro-

duction. Biogeosciences, 14, 5675–5691, https://doi.org/10.5194/

bg-14-5675-2017.

Lawrence, D. M., and Coauthors, 2016: The Land Use Model

Intercomparison Project (LUMIP) contribution to CMIP6:

Rationale and experimental design. Geosci. Model Dev., 9,

2973–2998, https://doi.org/10.5194/gmd-9-2973-2016.

Le Quéré, C., M. Raupach, and J. Canadell, 2009: Trends in the

sources and sinks of carbon dioxide. Nat. Geosci., 2, 831–836,

https://doi.org/10.1038/ngeo689.

——, and Coauthors, 2018: Global Carbon Budget 2018. Earth

Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-

2141-2018.

Lombardozzi, D. L., Y. Lu, P. J. Lawrence, D. M. Lawrence,

S. Swenson, K. W. Oleson, W. R. Wieder, and E. A.

Ainsworth, 2020: Simulating agriculture in the Community

Land Model version 5. J. Geophys. Res. Biogeosci., 125,

e2019JG005529, https://doi.org/10.1029/2019JG005529.

MacFarling Meure, C., D. Etheridge, C. Trudinger, P. Steele,

R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins, 2006: Law

DomeCO2,CH4andN2Oicecore recordsextended to2000yearsBP.

Geophys. Res. Lett., 33, L14810, https://doi.org/10.1029/2006GL026152.

Meinshausen, M., S. C. B. Raper, and T. M. L. Wigley, 2011:

Emulating coupled atmosphere-ocean and carbon cycle models

with a simpler model, MAGICC6—Part 1: Model description

and calibration. Atmos. Chem. Phys., 11, 1417–1456, https://

doi.org/10.5194/acp-11-1417-2011.

——, and Coauthors, 2020: The shared socio-economic pathway

(SSP) greenhouse gas concentrations and their extensions to

2500. Geosci. Model Dev., 13, 3571–3605, https://doi.org/

10.5194/gmd-13-3571-2020.

Mercado, L., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford,

M. Wild, and P. Cox, 2009: Impact of changes in diffuse ra-

diation on the global land carbon sink.Nature, 458, 1014–1017,

https://doi.org/10.1038/nature07949.

2874 JOURNAL OF CL IMATE VOLUME 34

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 04/15/21 07:26 AM UTC

https://doi.org/10.1029/95JD03410
https://doi.org/10.1029/95JD03410
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1029/2019MS001609
https://doi.org/10.1029/2019MS001609
https://doi.org/10.1175/JCLI3800.1
https://doi.org/10.1175/JCLI3800.1
https://doi.org/10.5194/essd-11-1783-2019
https://doi.org/10.5194/esd-8-235-2017
https://doi.org/10.5194/bg-17-4075-2020
https://doi.org/10.5194/gmd-12-1443-2019
https://doi.org/10.5194/gmd-12-1443-2019
https://energy.appstate.edu/research/work-areas/cdiac-appstate
https://energy.appstate.edu/research/work-areas/cdiac-appstate
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.1002/2014GB004997
https://doi.org/10.1002/2014GB004997
https://doi.org/10.1038/s41598-017-14828-5
https://doi.org/10.1038/s41598-017-14828-5
https://doi.org/10.1002/2016GB005546
https://doi.org/10.1002/2016GB005546
https://doi.org/10.5194/bg-9-5125-2012
https://doi.org/10.5194/gmd-13-5425-2020
https://doi.org/10.5194/gmd-13-5425-2020
http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartA_FINAL.pdf
http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartA_FINAL.pdf
http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartA_FINAL.pdf
https://doi.org/10.1016/j.gloenvcha.2015.03.008
https://doi.org/10.1175/JCLI-D-12-00554.1
https://doi.org/10.1175/JCLI-D-12-00554.1
https://doi.org/10.5194/gmd-9-2853-2016
https://doi.org/10.5194/gmd-9-2853-2016
https://doi.org/10.1029/1999GL900250
https://doi.org/10.1029/1999GL900250
https://doi.org/10.1038/375666a0
https://doi.org/10.1029/2009GL040613
https://doi.org/10.1029/2009GL040613
https://doi.org/10.5194/bg-14-5675-2017
https://doi.org/10.5194/bg-14-5675-2017
https://doi.org/10.5194/gmd-9-2973-2016
https://doi.org/10.1038/ngeo689
https://doi.org/10.5194/essd-10-2141-2018
https://doi.org/10.5194/essd-10-2141-2018
https://doi.org/10.1029/2019JG005529
https://doi.org/10.1029/2006GL026152
https://doi.org/10.5194/acp-11-1417-2011
https://doi.org/10.5194/acp-11-1417-2011
https://doi.org/10.5194/gmd-13-3571-2020
https://doi.org/10.5194/gmd-13-3571-2020
https://doi.org/10.1038/nature07949


O’Neill, B. C., and Coauthors, 2016: The scenario model inter-

comparison project (ScenarioMIP) for CMIP6.Geosci. Model

Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016.

Pongratz, J., C. H. Reick, R. A. Houghton, and J. I. House, 2014:

Terminology as a key uncertainty in net land use and land

cover change carbon flux estimates. Earth Syst. Dyn., 5, 177–

195, https://doi.org/10.5194/esd-5-177-2014.

Raupach,M. R., J. G. Canadell, and C. LeQuéré, 2008: Anthropogenic

and biophysical contributions to increasing atmospheric CO2

growth rate and airborne fraction. Biogeosciences, 5, 1601–

1613, https://doi.org/10.5194/bg-5-1601-2008.

——, and Coauthors, 2014: The declining uptake rate of atmo-

spheric CO2 by land and ocean sinks. Biogeosciences, 11,

3453–3475, https://doi.org/10.5194/bg-11-3453-2014.

Rayner, P. J., M. R. Raupach, M. Paget, P. Peylin, and E. Koffi,

2010: A new global gridded data set of CO2 emissions from

fossil fuel combustion:Methodology and evaluation. J. Geophys.

Res., 115, D19306, https://doi.org/10.1029/2009JD013439.

Riahi, K., and Coauthors, 2017: The shared socioeconomic path-

ways and their energy, land use, and greenhouse gas emissions

implications: An overview. Global Environ. Change, 42, 153–

168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

Rogelj, J., and Coauthors, 2018: Scenarios towards limiting global

mean temperature increase below 1.58C.Nat. Climate Change,

8, 325–332, https://doi.org/10.1038/s41558-018-0091-3.

Rubino,M., and Coauthors, 2013: A revised 1000 year atmospheric

d13C-CO2 record from Law Dome and South Pole,

Antarctica. J. Geophys. Res. Atmos., 118, 8482–8499, https://

doi.org/10.1002/jgrd.50668.

Samir, K., and W. Lutz, 2017: The human core of the shared socio-

economic pathways: Population scenarios by age, sex and level of

education for all countries to 2100. Global Environ. Change, 42,

181–192, https://doi.org/10.1016/j.gloenvcha.2014.06.004.

Sitch, S., P. Cox, W. J. Collins, and C. Huntingford, 2007: Indirect

radiative forcing of climate change through ozone effects on

the land-carbon sink. Nature, 448, 791–794, https://doi.org/

10.1038/nature06059.

Smith, C. J., and Coauthors, 2020: Effective radiative forcing and

adjustments in CMIP6 models.Atmos. Chem. Phys., 20, 9591–

9618, https://doi.org/10.5194/acp-20-9591-2020.

Stocker, T., and Coauthors, 2013: Technical summary. Climate

Change 2013: The Physical Science Basis, T. F. Stocker et al.,

Eds., Cambridge University Press, 33–115.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An over-

view of CMIP5 and the experiment design. Bull. Amer.

Meteor. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-

D-11-00094.1.

Thornhill, G. D., and Coauthors, 2021: Effective radiative forcing

from emissions of reactive gases and aerosols—A multimodel

comparison.Atmos. Chem. Phys., 21, 853–874, https://doi.org/

10.5194/acp-21-853-2021.

Tjiputra, J. F., and Coauthors, 2014: Long-term surface pCO2

trends from observations and models. Tellus, 66B, 23083,

https://doi.org/10.3402/tellusb.v66.23083.

——, A. Grini, and H. Lee, 2016: Impact of idealized future

stratospheric aerosol injection on the large-scale ocean and

land carbon cycles. J. Geophys. Res. Biogeosci., 121, 2–27,

https://doi.org/10.1002/2015JG003045.

UNFCCC, 2015: Adoption of the Paris Agreement. United

Nations, 32 pp., https://unfccc.int/resource/docs/2015/cop21/

eng/l09r01.pdf.

Unger, N., X. Yue, andK. L. Harper, 2017: Aerosol climate change

effects on land ecosystem services. FaradayDiscuss., 200, 121–
142, https://doi.org/10.1039/C7FD00033B.

Vuuren, D., and Coauthors, 2011: The representative concentra-

tion pathways: An overview. Climatic Change, 109, 5–31,

https://doi.org/10.1007/s10584-011-0148-z.

Wei, X., M. Shao, W. Gale, and L. Li, 2014: Global pattern of

soil carbon losses due to the conversion of forests to agri-

cultural land. Sci. Rep., 4, 4062, https://doi.org/10.1038/

srep04062.

Yue, C., P. Ciais, S. Luyssaert, W. Li, M. Mcgrath, J. Chang,

and S. Peng, 2018: Representing anthropogenic gross land

use change, wood harvest, and forest age dynamics in a

global vegetation model ORCHIDEE-MICT v8.4.2. Geosci.

Model Dev., 11, 409–428, https://doi.org/10.5194/gmd-11-409-

2018.

Zhang, Y., and Coauthors, 2019: Increased global land carbon sink

due to aerosol-induced cooling. Global Biogeochem. Cycles,

33, 439–457, https://doi.org/10.1029/2018GB006051.

15 APRIL 2021 L I DD ICOAT ET AL . 2875

Brought to you by MAX-PLANCK-INSTITUTE FOR METEOROLOGY | Unauthenticated | Downloaded 04/15/21 07:26 AM UTC

https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.5194/esd-5-177-2014
https://doi.org/10.5194/bg-5-1601-2008
https://doi.org/10.5194/bg-11-3453-2014
https://doi.org/10.1029/2009JD013439
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1038/s41558-018-0091-3
https://doi.org/10.1002/jgrd.50668
https://doi.org/10.1002/jgrd.50668
https://doi.org/10.1016/j.gloenvcha.2014.06.004
https://doi.org/10.1038/nature06059
https://doi.org/10.1038/nature06059
https://doi.org/10.5194/acp-20-9591-2020
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.5194/acp-21-853-2021
https://doi.org/10.5194/acp-21-853-2021
https://doi.org/10.3402/tellusb.v66.23083
https://doi.org/10.1002/2015JG003045
https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
https://doi.org/10.1039/C7FD00033B
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1038/srep04062
https://doi.org/10.1038/srep04062
https://doi.org/10.5194/gmd-11-409-2018
https://doi.org/10.5194/gmd-11-409-2018
https://doi.org/10.1029/2018GB006051

