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Time-delay interferometry (TDI) is a post-processing technique used to reduce laser noise in
heterodyne interferometric measurements with unequal armlengths, a situation characteristic of
space gravitational detectors such as the Laser Interferometer Space Antenna (LISA). This technique
consists in properly time-shifting and linearly combining the interferometric measurements in order
to reduce the laser noise by several orders of magnitude and to detect gravitational waves. In this
communication, we show that the Doppler shift due to the time evolution of the armlengths leads to
an unacceptably large residual noise when using interferometric measurements expressed in units of
frequency and standard expressions of the TDI variables. We also present a technique to mitigate
this effect by including a scaling of the interferometric measurements in addition to the usual time-
shifting operation when constructing the TDI variables. We demonstrate analytically and using
numerical simulations that this technique allows one to recover standard laser noise suppression
which is necessary to measure gravitational waves.

I. INTRODUCTION

The first observation of gravitational waves (GWs) by
the LIGO and Virgo collaborations [1] marked the begin-
ning of GW astronomy. It was quickly followed by many
more detections [2]. However, inherent sources of noise
in ground-based detectors limit the observed frequency
band to above 10 Hz, excluding many interesting sources,
among which super-massive black hole binaries, extreme
mass-ratio inspirals, or hypothetical cosmic strings. Sev-
eral projects of space-borne detectors are put forward in
the hope to detect GWs in the mHz band.

One such project is the ESA-led LISA mission [3].
LISA aims to fly three spacecraft in a 2.5-million-
kilometer triangular formation, each of which exchanges
laser beams with the others. The phases are monitored
using sub-pm precision heterodyne interferometry, such
that phase shifts induced by passing GWs can be de-
tected.

Laser frequency fluctuations will be the dominant
source of noise, many order of magnitude above the ex-
pected level of GWs signals [3]. TDI is an offline tech-
nique proposed to reduce, among others, laser noise to ac-
ceptable levels [4–7]. It is based on the idea that the same
noise affects different measurements at different times; by
time-shifting and recombining these measurements, it is
possible to reconstruct laser noise-free virtual interfero-
metric signals in the case of a static constellation. We call
these laser noise-free combinations the first-generation
TDI variables [8, 9]. The algorithm has been extended to
account for a breathing constellation to first order, giving
rise to the so-called second-generation TDI variables [10].
Several laboratory optical bench experiments and numer-
ical studies have confirmed that second-generation com-
binations can suppress laser noise down to sufficient level

to detect and exploit GWs [11–17].
In LISA, the physical units used to deliver data remain

to be chosen and several studies are ongoing to determine
the pros and cons of using either phase, frequency, or
even chirpiness1. Most TDI studies indifferently assume
that the measurements are expressed in terms of inter-
ferometric beatnote phases or frequencies [7], but these
studies disregard the Doppler shifts which arise when us-
ing units of frequency [7, 15–17]. Indeed, the relative
motion of the spacecraft induces time-varying frequency
shifts in the beatnote frequencies that reduce the perfor-
mance of standard TDI algorithms. In fact, as we show
below, in the presence of the Doppler effect, the standard
formulation of TDI applied to data in units of frequency
no longer suppresses laser-noise to the level required. We
however demonstrate that TDI algorithms can be easily
modified to account for Doppler shifts when using units
of frequency. Ultimately, we recover the same laser noise-
reduction performance as one obtains when using units
of phase.

The paper is structured as follows: in section II, we de-
rive the expression of the interferometric measurements
in terms of frequency and show how Doppler shifts cou-
ple. Then, in section III, we evaluate the additional noise
due to these Doppler shifts in the TDI variables and show
that it does not meet the requirements. A procedure to
mitigate this effect is presented in section IV. We show
that the Doppler couplings can be reduced to levels be-
low the requirements, and confirm the analytical study
by numerical simulations in section V. Finally, we con-
clude in section VI.

1 Chirpiness is defined as the derivative of frequency.
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Figure 1. Labelling conventions used for spacecraft, light TTs,
lasers, optical benches, and interferometric measurements.

II. INTERFEROMETRIC MEASUREMENTS

In this paper, we follow the latest recommendations
on conventions and notations established by the LISA
Consortium. Since these conventions are relatively new,
we provide in appendix A a mapping between the various
existing conventions.

We label the spacecraft as presented in fig. 1. The op-
tical benches are labelled with two indices ij. The former
matches the index i of the spacecraft hosting the optical
bench, while the second index is that of the spacecraft j
exchanging light with the optical bench. Any subsystem
or measurement uniquely attached to an optical bench
share the same indices.

As an example, the light travel time (TT) measured
on optical bench ij represents the time of flight of a pho-
ton received by spacecraft i and emitted from spacecraft
j. Note the unusual ordering of the indices (receiver,
emitter); while this choice may seem peculiar at first, it
will turn out most useful when writing TDI equations in
section III and later.

We assume that the spacecraft follow perfectly the test
masses they host; therefore, their orbits are described as
geodesics around the Sun. Accounting for the sole influ-
ence of the Sun, the computation of their positions and
velocities reduces to a two-body problem, which can be
solved semi-analytically [18, 19]. A more realistic ap-
proach uses a set of orbits computed using numerical in-
tegration (which includes the influence of the more mas-
sive objects in the Solar System) optimized for a given
set of constraints, such as minimizing the motion of the
spacecraft relative to one another[19–21].

From these orbits, one can compute the light TT, de-
noted by dij , of a photon received by spacecraft i and
emitted from spacecraft j. Because no sets of orbits en-
sures a static constellation, we say that the constellation

breathes. A direct consequence of this is that the light
TTs changes with time, and we write, e.g., dij(t).

Each spacecraft contains, among others, two laser
sources and two optical benches, labelled according
to fig. 1. Three interferometric signals, namely the
inter-spacecraft2 iscij(t), test-mass tmij(t), and reference
refij(t) beatnotes, are measured on each optical bench
ij [3]. In addition, a pseudo-random code is used to
modulate the laser beams exchanged by the spacecraft
[22, 23]. The signal is then correlated with a local ver-
sion to provide an estimate of the light TTs, called mea-
sured pseudo-ranges. Various errors entering the mea-
sured pseudo-ranges and their impact on data processing
and analysis are the focus of ongoing studies [24]. We
shall assume here that the measured pseudo-ranges fur-
nish perfect measurements of the light TTs, and there-
fore, we shall use indifferently pseudo-ranges or light TTs,
both denoted dij(t).

Moreover, we will assume here that each spacecraft
contains only one laser, which is used in both optical
benches. This is without loss of generality, since this
situation can be achieved in practice either by locking the
two lasers on board each spacecraft3 or by constructing
the intermediary variables η [7, 8].

On board spacecraft i, the phase of the local laser
beam in units of cycles is denoted Φi(t). It contains the
phase ramp due to the average laser frequency (around
281 THz), as well as small in-band phase fluctuations,
dominated by the instability of the reference cavity used
for stabilization (around 30 Hz/

√
Hz when expressed as

a frequency noise [3]).
The phase of the beam emitted by spacecraft j and

received on i at time t reads

Φi←j(t) = Φj(t− dij(t)−Hij(t)) , (1)

where dij(t) is the light TT between j and i without
any GWs. The effect of passing GWs are modelled by
an additional delay Hij(t). Because this quantity is very
small with respect to dij(t), we Taylor-expand the phase
to write Hij(t) as an independent term, and get

Φi←j(t) = Φj(t− dij(t))− νj(t− dij(t))Hij(t) . (2)

For more the sake of clarity, we drop the time depen-
dence and introduce the delay operator Dij , defined by

Dijx(t) = x(t− dij(t)) , (3)

for any signal x(t). We shall also use the compact nota-
tion for chained delay operators, formally defined by

Di1i2...in = Di1i2Di2i3 . . .Din−1in , (4)

2 Formerly known as the science or long-arm interferometer.
3 The precise locking configuration is still under study.
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such that we have, e.g., in the case of two delay operators,

Dijkx(t) = DijDjkx(t) = Dijx(t− djk(t))

= x
(
t− dij(t)− djk

(
t− dij(t)

))
.

(5)

Using these conventions, eq. (2) becomes

Φi←j = DijΦj − (Dijνj)Hij . (6)

The frequency of the local laser beam on optical
bench ij is simply the derivative of the total phase
νi = Φ̇i. Similarly, the frequency of the distant beam
is obtained by Taylor-expanding the derivative of eq. (1),

νi←j(t) = Φ̇i←j(t) = [1− ḋij(t)− Ḣij(t)]

× [νj(t− dij(t))− ν̇j(t− dij(t))Hij(t)] .
(7)

In the following, we neglect all terms in ν̇jHij . Indeed,
the rate of change of νj is driven by laser noise4. Using
the expected level of laser noise and integrating it over
the LISA frequency band, ν̇j ≈ 102 Hz s−1. Therefore,
ν̇jHij ≈ 10−18 Hz � νjḢij ≈ 10−7 Hz. Dropping the
time dependence and using our delay operator,

νi←j = (1− ḋij)Dijνj − (Dijνj)Ḣij . (8)

The factor ḋij(t)Dijνj is often referred to as the Doppler
shift, and is proportional to the time derivative of the
light TT. Figure 2 show the time variations of such quan-
tities for realistic orbits [20, 21], of the order of 10−8 (or
3 m s−1).

The inter-spacecraft interferometer mixes the local and
distant beams. The beatnote phase Φisc

ij can easily be
expressed as the difference of the beam phases,

Φisc
ij = Φi←j − Φi = DijΦj − Φi − (Dijνj)Hij . (9)

In units of frequency, we have

νisc
ij = (1− ḋij)Dijνj − νi − (Dijνj)Ḣij , (10)

where the term ḋijDijνj is the Doppler shift.
In eq. (10), the main in-band contribution is laser

noise, which does not cancel out5 and remains or-
ders of magnitude above the gravitational-wave signal
(Dijνj)Ḣij ≈ 10−7 Hz. In order to detect and extract
gravitational information from the measurements, laser
noise must be reduced by at least 8 orders of magnitude.

4 We expect that laser frequencies also vary due to the frequency
plan, by MHz over the timescale of months. This yields terms of
the same order of magnitude, so that our reasoning holds.

5 Even if lasers are locked such that there is only one laser noise,
it is not sufficiently suppressed due to the large delays.

III. RESIDUAL NOISE DUE TO DOPPLER
SHIFTS IN TDI

TDI is a technique proposed to reduce instrumental
noises, including laser noise, to acceptable levels. The
starting point for the main TDI algorithm is usually to
compute the so-called intermediary variables ξ and η,
which are used to remove spacecraft jitter noise and re-
duce the number of lasers to three. While we already
consider only one laser per spacecraft, we will further
neglect spacecraft jitter noise, such that we can directly
write ηij = Φisc

ij in phase, or ηij = νisc
ij in frequency.

The next step is to reduce laser noise. Several laser
noise-reducing combinations have been proposed. E.g.,
the second-generation Michelson variable X2 reads [7]

X2 = (1−D121 −D12131 + D1312121)(η13 + D13η31)

− (1−D131 −D13121 + D1213131)(η12 + D12η21) .
(11)

The two other Michelson variables Y2, Z2 are obtained by
circular permutation of the indices 1→ 2→ 3→ 1.

In the following, we shall ignore any technical rea-
sons for imperfect laser noise reduction, such as flexing-
filtering coupling [17], interpolation errors or ranging er-
rors, and only consider the maximum theoretical laser
noise reduction achievable.

In case of phase, we know that the residual laser noise
in this variable is given by the non-commutation of delay
operators [17],

XΦ
2 = [[D131,D121],D12131]Φ1 . (12)

Expanding this expression to second order in the average
TT derivatives ḋ’s and first order in average TT second
derivatives d̈’s, and assuming that these quantities are
symmetric in i, j, the difference of the delays applied to
the phase Φ1 in the two terms from eq. (12) reads

∆d = 8d̄
(

¯̇
d2

12 −
¯̇
d2

31

)
− 16d̄2

(
¯̈
d12 − ¯̈

d31

)
, (13)

where the first term matches the results of [17]. In terms
of power spectral density (PSD), we have

SXΦ
2

(ω) = ω2∆d2SΦ(ω) , (14)

where SΦ(ω) is dominated by the PSD of the laser noise
expressed in cycles.

Now, let us assess the impact of Doppler shifts if one
uses naively the traditional second generation TDI algo-
rithm using measurements in units of frequency. For this,
we can insert eq. (10) in eq. (11). The only structural
difference between eq. (10) and eq. (9) is the additional
Doppler term ḋijDijνj . Because TDI is a linear opera-
tion, we can immediately give the residual laser noise in
terms of frequency when applying the same algorithm,

Xν
2 = [[D131,D121],D12131]ν1 + δXν

2 , (15)
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Figure 2. Light travel time derivatives for realistic orbits.

where δXν
2 is a function of the Doppler shifts,

δXν
2 = (1−D131 −D13121 + D1213131)

× (ḋ12D12ν2 + ḋ21D121ν1)

− (1−D121 −D12131 + D1312121)

× (ḋ13D13ν3 + ḋ31D131ν1) .

(16)

A rough estimation of this Doppler coupling can be
computed from δXν

2 ≈
¯̇
dν. Plugging orders of magni-

tudes for the TTs derivatives and laser noise yields a
Doppler coupling at 10−6 Hz, above the expected level
for our GW signals (10−7 Hz). It is also above the level
of the traditional residuals of TDI, given by the first term
of eq. (15) and shown in fig. 3. As a consequence, the PSD
of the residual noise for theXν

2 TDI variable is dominated
by the Doppler coupling,

SXν2 (ω) ≈ SδXν2 (ω) . (17)

Assuming that all laser frequencies are uncorrelated, a
more precise computation yields the PSD of this extra
residual noise,

SδXν2 (ω) ≈ 16Sν sin2
(
ωd̄
)

sin2
(
2ωd̄

)
×
(

¯̇
d2

12 +
¯̇
d2

31 + (
¯̇
d12 − ¯̇

d31)2
)
.

(18)

This is to be compared with the residual laser noise in
terms of frequency when one disregards Doppler effects.
It is given by replacing SΦ with Sν in eq. (14),

S[Xν2 ](ω) = ω2∆d2Sν(ω) . (19)

In fig. 3, we show those analytical curves alongside the
usual LISA Performance Model’s 1 pm-noise allocation
curve, given by

SXalloc
2

(ω) = 64ω2 sin2
(
ωd̄
)

sin2
(
2ωd̄

)
×
(

1 pmHz−1/2

λ

)2
[

1 +

(
2× 10−3 Hz

ω/2π

)4
]
.

(20)
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Figure 3. Amplitude spectral density of the second genera-
tion TDI combination when using measurements expressed in
units of frequency. The blue curve shows the amplitude of
Doppler-related terms, c.f. eq. (18), the orange curve shows
the amplitude of the delay commutators, c.f. eq. (19), while
the red curve presents the usual LISA 1 pm-noise allocation,
c.f. eq. (20). The light travel times used in this simulation are
presented in fig. 2.

The extra residual laser noise due to Doppler terms is
above or at the same level as the GW signal, and far
above the usual laser noise residual when one disregards
the Doppler effect. Therefore, a procedure to mitigate
this effect is required if one wishes to use frequency mea-
surements.

IV. ADAPTING TIME-DELAY
INTERFEROMETRY FOR DOPPLER SHIFTS

As mentioned in the previous section, accounting for
the Doppler effect in the inter-spacecraft beatnote fre-
quency comes down to replacing the delay operator Dij
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in eq. (9) by (1− ḋij)Dij . We can formalize it by intro-
ducing the Doppler-delay operator,

Ḋij = (1− ḋij)Dij , (21)

such that laser noise entering eq. (10) takes the same
algebraic form as its phase counterpart eq. (9),

νisc
ij = Ḋijνj − νi + (Dijνj)Ḣij . (22)

We now introduce a new type of second generation
TDI combination by considering the standard expression
from eq. (11) but using the Doppler-delay operators in-
troduced in eq. (21). The new TDI variable writes

Ẋ2 = (1− Ḋ121 − Ḋ12131 + Ḋ1312121)(η13 + Ḋ13η31)

− (1− Ḋ131 − Ḋ13121 + Ḋ1213131)(η12 + Ḋ12η21) .
(23)

The algebraic form of this expression is now identical
in phase and frequency, and we immediately recover the
residual noise given in eq. (14),

Ẋν
2 =

[[
Ḋ131, Ḋ121

]
, Ḋ12131

]
ν1 . (24)

A direct comparison with eq. (15) demonstrates that the
new TDI variable introduced in eq. (23) is not impacted
by the Doppler noise δXν

2 .
To compute the PSD of the Ẋν

2 residual laser noise, we
study the commutator of Doppler-delay operators

y =
[
Ḋi1j1 . . . Ḋinjn , Ḋk1l1 . . . Ḋknln

]
. (25)

As one can observe in fig. 2, the light TT derivatives
evolve slowly with time, with d̈∆t ∼ 10−14 � ḋ ∼ 10−8

if ∆t ∼ 10 s is the timescale of the TTs considered here.
Therefore, we can assume that ḋ’s are constant when
computing y. Equation (25) can then be factored as

y =

(
n∏

m=1

(1− ḋimjm)

)(
n∏

m=1

(1− ḋkmlm)

)
×

[Di1j1 . . .Dinjn ,Dk1l1 . . .Dknln ] .

(26)

The factor that contains the TT derivatives is a con-
stant, which, to first order, deviates from 1 by 2

¯̇
dn ≈

10−7. We can therefore neglect it when estimating the
PSD. For this reason, the PSD of the laser noise residual
for the new TDI variable introduced in eq. (23) is then
given by

SẊν2
(ω) = S[Xν2 ](ω) , (27)

whose expression is explicitly given in eq. (19). A direct
comparison with eq. (17) shows that the PSD of the new
Ẋν

2 TDI variable is not impacted by the unacceptably
large contribution from δXν

2 .
The method presented in this section which consists in

replacing Dij by Ḋij in the usual TDI combinations in
order to remove the effect of Doppler shift is very general
and can be applied to any TDI combination.

V. SIMULATION RESULTS

Using LISANode [25] and lisainstrument, a Python
simulator based on LISANode, we simulated the interfer-
ometric measurements as frequency deviations from the
average beatnote frequencies. These frequency deviations
include only laser noise, which is Doppler-shifted during
propagation. We assumed 3 free-running lasers for this
study, and used a high sampling rate, such that effects of
onboard filtering appear off band. We used the same re-
alistic orbits and light travel times as presented in fig. 2,
and simulated 107 samples, i.e., a bit less than 12 days.

The TDI processing was performed using PyTDI. In
fig. 4, we compare 2 different scenarios using the same
input data. The blue curve shows the amplitude spec-
tral density (ASD) of the residual laser noise when
the standard second-generation Michelson Xν

2 variable
is used. We superimpose the model for the expected ex-
cess of noise δXν

2 due to Doppler effect given in eq. (18),
and check that it matches our simulated results. Al-
ternatively, the orange curve shows the ASD of the
residual laser noise when the Doppler-corrected second-
generation Michelson Ẋν

2 variable is used. It is superim-
posed with the analytical expectation given in eq. (27)
in most of the band, until we reach a noise floor around
2× 10−12 Hz/

√
Hz. This noise floor is in agreement with

the numerical accuracy typically achieved in our simula-
tions.

These simulations confirm the analytical results devel-
oped in the previous section. In particular, it shows that
the residual noise of the new TDI variable introduced in
eq. (23) is similar to the one obtained with the standard
TDI combinations when the Doppler effect is neglected.
Say in other words, the TDI variable corrects efficiently
for the Doppler contribution which otherwise induces an
unacceptably large noise.

VI. CONCLUSION

In this paper, we show that the TDI combinations
found in the literature [7] do not reduce laser noise to re-
quired levels when applied to data in units of frequency
and we provide an analytical formulation of the addi-
tional residual noise. We then propose a technique to
adapt existing TDI combinations to data in units of fre-
quency. We show through analytical studies, as well as
with numerical simulations that we recover the original
laser-noise reduction performance, compatible with re-
quirements to detect and exploit GWs signals.

TDI is required to suppress primary noises in the in-
terferometric measurements to levels below that of GW
signals. Existing formulations are based on the assump-
tion that these measurements are expressed in terms of
phase, or disregard the impact of Doppler shifts when
data in frequency are used [7]. However, applying these
TDI algorithms to data in units of frequency yields extra
noise residuals due to the Doppler shift induced by the
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Figure 4. Amplitude spectral density of the residual laser noise in Xν
2 obtained using data in units of frequency, with

the traditional algorithms (in blue) and Doppler correction (in orange). The theoretical models from Eqs. (18) and (19) are
superimposed as black dashed lines. These curves need to be compared with the 1 pm-noise allocation (in red).

time variation of the arm lengths. This extra noise resid-
uals are larger than GW signals. To account for Doppler
shifts we reformulate the TDI combinations by replacing
delay operators by their Doppler equivalent, which not
only shift measurement in time but also scale them by
the corresponding Doppler factor, see eq. (21). We show
that this general procedure yields new TDI combinations,
whose performance when applied to measurements in fre-
quency match that of the traditional combinations when
working in units of phase.

This is a major result to study the impact of different
physical units in LISA data processing. We show that
laser noise reduction can reach similar levels using phase
or frequency measurements. Nevertheless, computing the
TDI using frequency measurements require the knowl-
edge of both the TT and their time derivatives while
only the TT are needed in order to construct TDI vari-
ables using phase measurements. This might impact the
development of a Kalman filter whose goal is to provide
an estimate of the TT [24]. Finally, it is known that the
clocks from the various spacecraft will drift with respect
to each other because of relativistic effects [26] and be-
cause of clock noise. Therefore, the LISA pre-processing
will also include a synchronization of the clocks from the
3 spacecraft [7]. How this synchronization will impact
the construction of TDI variables is currently under ex-
ploration and might differ if one uses phase or frequency
units. A detailed study of the interplay of TDI with clock
synchronization is left for a dedicated study. Finally, let
us mention that using frequency units to perform the
data analysis of LISA may also impact the sources pa-
rameters inference since the TDI response function used

in Bayesian algorithm may have to include the currently
neglected Doppler correction.
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Appendix A: Mapping between conventions

The following table gives the mapping between the
double-index conventions used in the article, and historic
ones using primed indices, used in, e.g., [12, 16, 17, 25].
We give the correspondence for optical bench and asso-
ciated subsystems and quantities, and that for light TTs
and their derivatives.

Double-index Primed indices
for optical benches

Primed indices
for light TTs

12 (e.g., νisc
12 or d12) 1 (e.g., νisc

1 ) 3 (e.g., d3)
23 (e.g., νisc

23 or d23) 2 (e.g., νisc
2 ) 1 (e.g., d1)

31 (e.g., νisc
31 or d31) 3 (e.g., νisc

3 ) 2 (e.g., d2)
13 (e.g., νisc

13 or d13) 1′ (e.g., νisc
1′ ) 2′ (e.g., d2′)

32 (e.g., νisc
32 or d32) 3′ (e.g., νisc

3′ ) 1′ (e.g., d1′)
21 (e.g., νisc

21 or d21) 2′ (e.g., νisc
2′ ) 3′ (e.g., d3′)
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