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Comparing the biology of humans to that of other primates, and notably

other hominids, is a useful path to learn more about what makes us

human. Some of the most interesting differences among hominids are clo-

sely related to brain development and function, for example behaviour and

cognition. This makes it particularly interesting to compare the hominid

neural cells of the neocortex, a part of the brain that plays central roles in

those processes. However, well-preserved tissue from great apes is usually

extremely difficult to obtain. A variety of new alternative tools, for exam-

ple brain organoids, are now beginning to make it possible to search for

such differences and analyse their potential biological and biomedical

meaning. Here, we present an overview of recent findings from compar-

isons of the neural stem and progenitor cells (NSPCs) and neurons of

hominids. In addition to differences in proliferation and differentiation of

NSPCs, and maturation of neurons, we highlight that the regulation of the

timing of these processes is emerging as a general foundational difference

in the development of the neocortex of hominids.

Introduction

The closest living relatives of humans are other pri-

mates, particularly those also in the hominid lineage,

the non-human great apes. Among them, the chim-

panzees and bonobos are the closest, with our ances-

tors probably splitting from theirs sometime in the

order of around 7 million years ago (mya), from goril-

las around 10 mya and from orangutans around

18 mya [1–3]. On an evolutionary scale, this makes us

all very close cousins, and we share many anatomical

and behavioural similarities. Non-human great apes

are, for example, typically considered among the most

intelligent animals. Despite our closeness, all non-

human great ape species are threatened with extinc-

tion, mostly by human activities such as habitat

destruction and poaching [4]. This not only threatens

those species, but it also severely limits what we could

learn from them, especially in their natural condition.

In addition, for sound ethical reasons, experimentation

with non-human great apes is typically under very

strict regulations. Samples are therefore extremely

scarce and, when available, usually come with degrees

of uncertainty regarding tissue, cell and molecular

integrity. In the case of extinct archaic hominids, no

samples containing neural tissue remnants have ever

Abbreviations

APs, apical progenitors; aRG, apical radial glia; BPs, basal progenitors; bIPs, basal intermediate progenitors; bRG, basal radial glia; iPSCs,

induced pluripotent stem cells; ISVZ and OSVZ, inner and outer SVZ; mya, million years ago; NE, neuroepithelial; NECs, neuroepithelial cells;

NSPCs, neural stem and progenitor cells; SVZ, subventricular zone; VZ, ventricular zone.

1The FEBS Journal (2021) ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0003-4143-7201
https://orcid.org/0000-0003-4143-7201
https://orcid.org/0000-0003-4143-7201
mailto:
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Ffebs.15793&domain=pdf&date_stamp=2021-03-19


been found, beyond the fascinating yet nonetheless

limited impressions of shape and texture that remain

on the inner side of old fossilized skulls, and from

which brain endocasts are made. Consequently, we

know very little about what neural cell differences may

exist among hominids, especially in the context of their

native tissue.

Humans have a threefold larger cerebral cortex than

chimpanzees [5], and it is estimated to contain twice as

many neurons [6] (Figure 1). It is therefore intuitive to

hypothesize the existence of certain differences in the

neural stem and progenitor cells (NSPCs) of hominids,

particularly regarding their capacity to proliferate in

tissue and generate a large neocortex. Due to the lack

of available samples, the search and analysis of such

potential differences has remained largely impossible.

One emerging solution has been the recent develop-

ment of in vitro neural tissue assemblies that go

beyond the typical 2D monolayer cell cultures and are

generated from embryonic stem cells or induced

pluripotent stem cells (iPSCs). Brain organoids in par-

ticular have opened ways to mimic more closely the

3D architecture and tissue environment, and how they

develop over time [7,8]. Organoids still show notorious

limitations in how closely they can mimic different

brain tissues. For example, reproducibility within and

between batches of organoids, and between laborato-

ries, remains challenging. Also, the architecture and

cellular composition of the neocortical germinal zones

located basally to the ventricular zone (VZ), as well as

of the neuronal layers, are still not faithfully repro-

duced in organoids. Nevertheless, they are progres-

sively becoming powerful tools to study neural cell

biology in species where neural tissue is scarce or

unavailable [9–12].
Here, we discuss studies that have begun to look for

differences between neural cells in the cerebral cortex

of hominids, from the proliferation and differentiation

characteristics of NSPCs to the maturation of neurons.

We suggest that differences in the timing and transi-

tions of cellular and developmental mechanisms consti-

tute a pivotal general aspect of neurogenesis that has

the potential to help explain the bases of many func-

tional neural differences observed among hominids.

Finally, we look at studies that are beginning to

address genomic differences that may play a role in

the neurobiology of modern and archaic humans.

Neural stem and progenitor cells in
cortical neurogenesis

Considered to be exclusively present in mammals, the

neocortex is the latest major type of cerebral tissue to

appear during evolution, and participates in diverse

neural functions, notably in higher cognitive abilities

such as abstract thought and language [13]. The neo-

cortex arises from highly proliferative neural stem cells

called neuroepithelial cells (NECs) in the dorsolateral

neuroepithelium of the developing forebrain. These

NECs have an apical process that contacts the ventri-

cle and a basal process that contacts the pia. NECs

gradually change and elongate to become mostly api-

cal radial glia (aRG, also called ventricular radial glia)

during early neurogenesis. Collectively, NECs and

aRG are called apical progenitors (APs) [14–16].
The progressive transition from NECs to aRG coin-

cides with the growth of the tissue and appearance of

additional layers basal to the original neuroepithelium.

The neuroepithelium then becomes the VZ of the

developing cortical wall and continues to harbour

aRG. Of these new layers, the subventricular zone

(SVZ) is germinal [17]. In many mammals, including

primates, the SVZ gets subdivided into an inner and

outer SVZ (ISVZ and OSVZ). These become particu-

larly important for large-brained mammals (Fig. 1),

with the OSVZ constituting the major site of embry-

onic neurogenesis [18,19], and has been proposed to

also be important for primate gliogenesis and the gyri-

fication associated with it [20]. Together, ISVZ and

OSVZ contain a variety of basal progenitors (BPs)

with diverse morphologies, proliferative capacities, and

neurogenic and gliogenic potentials (Fig. 1). Eventu-

ally, the germinal zones and their NSPCs become

almost fully consumed, having given rise to the six

neuronal layers of the adult mammalian neocortex

[16,21,22]. In the case of primates, neurons in the

supragranular layers (layers II and III) are considered

to play especially prominent roles in higher cognitive

functions [23].

Differences among hominid neural
stem and progenitor cells

Mitosis, cell cycle and the time for proliferation

vs differentiation

Recent studies have explored potential differences,

notably cell biological differences, among hominid

NSPCs that could underlie differences in brain size.

For example, spindle orientation has long been consid-

ered an important determinant of cell fate in NSPCs

[24–26] and is therefore a conspicuous candidate to

influence brain size and total neuron number among

hominids. However, no differences in spindle orienta-

tion dynamics were found among the APs in human

neocortical tissue ex vivo and human cerebral
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organoids vs chimpanzee cerebral organoids, neither in

metaphase nor in anaphase [27]. Spindle orientation

appears therefore unlikely to play a major role in

brain size evolution among hominids.

This ‘negative’ result nevertheless helped to uncover

an intriguing cell division difference among hominids.

In both human neocortical tissue ex vivo and human

cerebral organoids, metaphase duration of APs was
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Fig. 1. Illustration of key differences in neocortex development between humans and other great apes. Processes that are subject to a

different temporal regulation among these hominids are listed under ‘Time’, with reference to the cell types concerned (Neu, neuron).

Morphological features of the indicated cell types that differ among these hominids are listed under ‘Morphology’. Note the greater number

of APs, BPs and neurons, and the thicker SVZ and cortical plate (CP), in humans than in the other great apes. For the various cell types and

tissue features illustrated, see the key at the bottom; the total number of cortical neurons is indicated [37,60,61]. To illustrate the

progression from NECs to aRG to BPs to neurons (from left to right), the nuclei of the various NSPCs are first shown in full colour and then

in a pale version of the respective colour.
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~ 50% longer compared with chimpanzee and orangu-

tan cerebral organoid APs [27]. While a potential func-

tion for this AP metaphase prolongation awaits

elucidation, it was shown to be absent in the same cul-

tured human iPSCs used to generate the organoids. It

then appeared in day 30 (d30) only in the human cere-

bral organoids, but was then no longer present at d52.

This indicates that AP metaphase length is regulated

during human neural development and increases in rel-

atively early, more proliferative APs. Consistent with

these observations, mouse proliferating APs showed a

moderately longer metaphase than mouse neurogenic

APs [27]. A longer metaphase is therefore a likely

characteristic of early, more proliferative APs, with

human APs showing the strongest prolongation.

In macaques, which are ‘Old World’ monkeys clo-

sely related to hominids, the pool of proliferative

NSPCs is not only larger than in rodents, but it also

remains proliferative for longer. Also, in contrast to

rodents, a large AP pool can remain proliferative even

when other APs have switched to neurogenesis, by

generating mostly basal intermediate progenitors

(bIPs) [28–31]. In neural rosettes, the APs of hominids

(human and chimpanzee) were in turn shown to

remain proliferative for longer than those in macaque

rosettes [32], which may contribute to the larger homi-

nid brain. Could there also be differences in NSPC

proliferation among hominids? This is indeed sug-

gested by data from cerebral organoids during devel-

opment, where the proportion of proliferating APs

appeared to be depleted more slowly in human than

chimpanzee, while the proportion of neurogenic BPs

appeared to increase faster in chimpanzee than human.

In addition, single-cell transcriptomic data of these

organoids were consistent with a higher proliferative

potential of human APs than chimpanzee APs [27].

Consistent with this view, neurogenic potential

assessed by single-cell transcriptomics was found to

increase earlier in chimps than human progenitors

[27,33,34]. Taken together, these observations strongly

suggest that a longer persistence of proliferative

NSPCs in humans than chimpanzee developing neo-

cortex may underlie the larger brain of humans.

What could these time-related differences in NSPC

proliferation and neurogenesis mean? It is interesting

to note that, during neocortex development, the neuro-

genic period is different not only between rodents and

primates, but also among various primates including

humans. In fact, mathematical modelling has shown

that the neurogenic period is a likely candidate to suf-

ficiently explain differences in cortical neuron numbers

among hominids [35]. Consistent with this modelling,

which has received experimental support recently [36],

the increase in size among primate brains and neocor-

tices, from monkeys to humans, occurs in similar cor-

relation with the increase in neuron numbers [6,37].

Differences in the proliferation of NSPCs among

hominids found at specific stages of neocortex develop-

ment may therefore mostly reflect differences in the

onset, dynamics and end of the neurogenic period. It

will be key to identify what underlies the differences in

neurogenic period length among hominids that allow

NSPCs to proliferate for longer.

When deliberating on the different dynamics in neu-

rogenic period regulation, the length of the cell cycle

and its various phases are parameters that should be

considered. In developing mouse neocortex, the more

proliferative APs have a shorter cell cycle than BPs,

which are mostly neurogenic bIPs. This shorter cell

cycle is primarily due to a shorter G1 [38,39]. How-

ever, human and chimpanzee d52 cerebral organoid

APs, a stage where progenitor pool differences were

found, did not show a major difference in total cell

cycle length. Interestingly though, S-phase was found

to be longer in human d52 APs than chimpanzee d52

APs [27], raising the possibility that S-phase lengthen-

ing may be involved in the longer-lasting human AP

proliferation phase. Consistent with this view, S-phase

has been found to be longer in proliferative than neu-

rogenic mouse APs [39], and it is prolonged from early

to mid-neurogenesis in macaques, but shortens again

towards the end of neurogenesis [19,28]. Taken

together, these findings suggest that a longer S-phase

of APs is indicative of a greater proliferative potential.

By contrast, in APs of transgenic mice with the

human orthologue of human-accelerated regulatory

enhancer HARE5, both the total cell cycle and the S-

phase were reported to be shorter, compared to APs

of transgenic mice with the chimpanzee orthologue

[40]. In the former APs, human HARE5 increased

expression of FZD8, involved in the Wnt pathway,

and the transgenic mice with the human HARE5

orthologue also showed a radial extension of the dor-

solateral neocortex that included more FoxP1-positive

neurons [40]. While this further supports a role for cell

cycle regulation in hominid NSPC proliferation, it sug-

gests a complexity in regulation that will benefit from

further work, particularly in organoids.

Epithelial morphology and developmental timing

A recent preprint provides further evidence suggesting

a fundamental link between developmental timing and

NSPC proliferation potential among hominids. Specifi-

cally, very early forebrain organoid APs of human

remained longer in a more neuroepithelial (NE)-like
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state than those of gorilla, as suggested by morpholog-

ical features [41]. This NE-like morphology included

shorter apicobasal processes and a larger apical con-

tact with the surface of the ventricle-like structures of

the organoids. The switch to an aRG-like state

occurred earlier in gorilla than human organoid APs,

being accompanied by a downregulation of certain

epithelial features such as lower and more apically

restricted levels of the tight junction marker occludin.

The transcription factor ZEB2 was proposed as a dri-

ver of this switch, as it was expressed earlier in gorilla

than human organoid APs, and its overexpression in

human organoid APs mimicked the gorilla organoid

phenotype [41]. These findings are of interest in light

of the notion that NECs exhibit greater proliferative

capacity than aRG [14–16]. Another epithelial differ-

ence related to developmental timing between NECs

and aRG was reported in the mouse and other verte-

brates. NECs, but not aRG, can divide the entire

length of the cell, from the tip of the basal process to

the apical domain. This maintains the full epithelial

morphology throughout mitosis in these early prolifer-

ating cells [42]. It is conceivable that such transitional

differences may also occur among hominids.

These data further support a broad involvement of

epithelial components in the NSPC proliferation vs

differentiation decision, even among hominids. In this

context, the diversity of apicobasal morphologies has

been shown to be involved in NSPC proliferation vs

differentiation, by providing spatially modulated access

to various cell-extrinsic developmental signals dis-

tributed from the ventricle to the pia. For example, an

apical endfoot is required to access signals in the cere-

brospinal fluid, such as diverse growth factors like

sonic hedgehog. On the other side, a basal process

increases access to signals in more basal compart-

ments, such as extracellular matrix components in the

SVZ [16,19,43,44]. Interestingly, macaque BPs display

a higher morphological diversity than rodent BPs and

include basal radial glia (bRG, also called outer radial

glia) with all possible combinations of single apical

and/or basal processes, as well as exhibiting different

process lengths [30]. Some of this morphological diver-

sity of NSPCs has recently also been found in ferrets,

including variability in basal process length and the

presence of short processes called lamellate expansions

[45,46] and, in addition, BPs with bifurcated basal pro-

cesses [47]. Furthermore, the abundance of these more

complex BP morphotypes is higher in humans [47]. At

the cellular level, the expression of human PALMD-

Caax, an isoform of the morphoregulatory protein

PALMDELPHIN (or paralemmin-like protein), was

found to be required for the abundance of BP process

complexity and for their proliferative potential, and

partially reproduced these phenotypes in mouse and

ferret BPs [47].

Given the general relationship that seems to emerge

between abundance of complex basal process morpho-

types and BP proliferation [43], it is tempting to specu-

late that non-human great apes may possess a high

abundance of process diversity and complexity that is

intermediate between that of carnivores and monkeys

and that of humans. Also, it would be interesting to

investigate whether such BP morphotype abundance

differences are somehow related to developmental tim-

ing differences among hominids.

Ultimately, genomic differences are likely to pro-

vide a basis for the diversity in neocortex size, struc-

ture and function among hominids [48,49]. One

example of a gene variant specific to humans that

has been shown to increase BP proliferation in pri-

mate systems is ARHGAP11B [50]. Its expression in

the foetal marmoset neocortex was associated with an

increased number of BPs, notably bRG, and upper-

layer neurons, and also with an expanded neocortex

[51]. Furthermore, a recent preprint has proposed

that chimpanzee organoids forced to express ARH-

GAP11B had a higher number of BPs [52]. At the

cellular level, the observed increase in BPs was shown

to depend on higher mitochondrial glutaminolysis

[53]. This and other gene variants could help to sup-

port the extended metabolic requirements faced by

BPs that proliferate further during a longer neuro-

genic period. Combinations of such gene variants

involved in NSPC abundance [54–60] likely constitute

major genetic underpinnings of the cellular and

molecular changes that sustain the dynamics of

NSPC proliferation vs differentiation. Differences in

the timing and length of these developmental phases

appear to have in turn contributed decisively to the

changes in neocortex size and complexity among

hominids. In addition, specific patterns in the expres-

sion of genes that are common to all hominids could

also impact the proliferation vs differentiation of

NSPCs, as well as the maturation of neurons. Com-

parative transcriptomic analyses have therefore also

emerged as a source for the identification of relevant

candidates [27,33,34].

Differences among hominid neurons

In addition to the analysis of the cellular and molecu-

lar mechanisms influencing NSPCs in the developing

hominid neocortex, and the resulting numbers of corti-

cal neurons [37,61,62], increasing attention has been

devoted to the study of possible differences among
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hominids regarding (a) neuronal structure and (b) the

dynamics and timing of neuronal maturation.

Neuronal structure

Insight into differences in neuronal structure among

hominids has come from comparative analyses of vari-

ous brain areas. Originally, the analysis of the size and

organization of different brain areas has been tackled

in anatomical studies based on histology [63,64]. More

recently, the use of magnetic resonance imaging on a

high number of human and non-human individuals

revealed no obvious differences in the relative size of

the frontal lobe in hominids [65]. However, a closer

inspection and analysis revealed that specific areas of

the frontal lobe, in particular area 10 of the prefrontal

cortex, were proportionally bigger in humans com-

pared with other hominids [66]. This observation is

intriguing, as area 10 is functionally linked to higher

cognitive functions, working memory and planning of

future actions.

Area 10 in humans features a higher total neuron

number. However, in the supragranular layers, despite

their greater neuron number, the neuron density was

lower in humans compared with other hominids [66].

This lower density reflects a greater spacing between

neuronal cell bodies, which in turn suggests the pres-

ence of a greater amount of neuropil in humans com-

pared with hominids [66]. Besides glial cell processes,

neuropil comprises dendrites including dendritic

spines, axons and synapses. It has therefore been sug-

gested that the neurons in human area 10 might have

bigger – or longer – processes and, in general, ‘more

space available for connections with other higher-

order association areas’ [66]. In line with these obser-

vations, human pyramidal neurons were reported to

have (a) longer and more complex dendrites com-

pared with the ones of chimpanzee [67–69] and (b) a

higher number of – and longer – dendritic spines

[70,71].

In the genomic era, we are witnessing the hunt for

gene variants setting human neurons apart from the

ones of other hominids. SRGAP2 variants were identi-

fied as candidates driving such a difference. The

expression of human-specific SRGAP2C in rodent neu-

rons increased dendritic spine density. In addition, a

major difference was found to be the timing of matu-

ration, as the ‘humanized’ spines matured at a slower

pace [72,73]. As discussed above for NSPCs, this

report elegantly shows that a critical feature setting

human neurons apart from those of other hominids

might be their behaviour with regard to temporal

aspects. Specifically, existing evidence indicates delayed

dynamics of neuronal maturation (also called neoteny)

at a structural and functional levels.

Dynamics and timing of neuronal maturation

The advent of the iPSC technology and the use of

iPSC-derived neurons from human and primates have

made it possible to take a closer and more direct look

at the dynamics of neuronal maturation in hominids.

Human iPSC-derived pyramidal neurons have been

found to mature more slowly than their chimpanzee

counterparts with regard to both structural and func-

tional aspects [74]. Mature IPSC-derived human neu-

rons had longer dendrites than chimpanzee ones, as

revealed upon transplantation into the rodent brain.

Also, once fully mature, human IPSC-derived neurons

tended to be electrophysiologically more active than

chimpanzee ones, although they matured at a slower

pace [74]. A slower maturation rate of human neurons

was also observed in a recent study when using a

direct conversion approach, in which induced cortical

and sensory neurons were obtained via forced expres-

sion of Ngn2 in iPSCs, bypassing the neural progeni-

tor stage [75]. Induced human neurons were found to

mature more slowly in terms of both morphology and

function. As to the latter, this was found to be the

case especially regarding the sEPSCs (spontaneous

excitatory postsynaptic currents), a measure of sponta-

neous synaptic activity. Interestingly, the delayed

synaptic communication was paralleled by a delayed

expression of genes encoding synaptic proteins [75].

This experimental pipeline allowed to uncouple the

generation of neurons from NPCs (developmental pro-

cess) from the neuronal maturation processes per se,

minimized the effects of the local environment, and

suggested that neoteny is an intrinsic feature of human

excitatory neurons and is not limited to pyramidal

neurons.

In line with the slow maturation of human neurons,

neoteny appears to also be characteristic of their den-

dritic spines. When human iPSC-derived neurons were

transplanted into the mouse brain, they were reported

to retain juvenile-like dendritic spine dynamics and to

mature over a wider time window [76]. These findings

are in line with previous studies that suggest that the

human brain develops and matures more slowly than

that of closely related primates.

Several questions are still open: what are the reasons

for human neoteny, and what are its possible conse-

quences? Is there a causative relation between time

and the complexity of neuronal structure, or is it sim-

ply that the growth of neurons to a given size scales

with time? If the latter were to be the case, then one
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would expect the duration of neuronal maturation in

humans to last for longer, and/or the actual rate of

maturation to be slower, as described for human neu-

ronal neoteny. One can then ask: what may be the

advantage of human neurons maturing at a slower

pace? One possibility is related to cellular energetics

and metabolism. It is known that the exo- and endocy-

tosis cycles of synaptic vesicles are an energetically

very expensive process. Hence, a delayed neuronal and

synaptic maturation in humans may provide an ener-

getic and/or metabolic advantage, as it would allow

the neuron to save energy per unit time that can be

invested into other cellular activities.

As for the consequences of human neuronal neo-

teny, one should consider that synaptic maturation in

humans spans a wide time window and extends to

childhood. A fascinating hypothesis is that a pro-

longed neuronal maturation might result in enhanced

social learning and therefore substantially contribute

to the evolution of cultural behaviours. In line with

this, synaptic maturation was found to be faster in

macaque compared with chimpanzee and humans [71].

However, a prolonged neuronal maturation could be a

two-sided coin, as on the one hand it would provide

the cellular basis for a more plastic, adaptable brain,

but on the other hand would keep the brain vulnerable

to external damage during the longer critical periods

of development and maturation. It would also be

interesting to understand whether the prolonged win-

dow of maturation is making the human brain more

prone to mental illness.

Differences within the human lineage

In addition to differences between modern humans

and other living hominids, it is also interesting to con-

sider potential neural cell differences between modern

and extinct archaic humans, for example Neanderthals

and Denisovans, and the role such differences may

play in brain development and function. Regarding

brain expansion, the modern human brain is not con-

sidered to be larger than that of Neanderthals [77].

However, analysis of fossil skull endocasts has shown

that the brain of Neanderthals was more elongated,

that is less globular, than the one of modern humans,

suggesting differences in their respective developmental

pathways [78–80]. Interestingly, the level of brain glob-

ularity in modern humans was found to be associated

with introgressed archaic haplotypes related to myeli-

nation and neurogenesis [81], suggesting that these two

processes have influenced the evolution of human

brain shape and function.

Regarding the genetic makeup of different humans,

the sequencing of complete Neanderthal [2,82–85] and
Denisovan [86] genomes has helped to identify geno-

mic changes that may be mostly specific to either mod-

ern or archaic humans and that are potentially

involved in brain development and other processes

[87]. In vitro studies have begun to probe the potential

neurobiological impact of small differences in genomic

loci between modern and archaic humans, for example

in regulating the binding and activity of a transcription

factor potentially involved in speech development

[88,89], and in the activity of a sodium channel

involved in pain sensitivity [90]. Recently, cortical

organoids were used to probe the effects of a single

amino acid difference in the gene NOVA1 (neuro-on-

cological ventral antigen 1) between archaic and mod-

ern humans. Organoids with the ancestral amino acid

variant were reported to have a more uneven surface

and be smaller, possibly related to the observed higher

apoptosis, and differences in protein expression were

also seen, including in synaptic marker levels [91].

In addition, other studies have begun to investigate

the potential impact of remnants of archaic DNA

introgression into modern human genomes [92–95], for
example in altitude adaptation [96]; cognitive abilities

and craniofacial morphology related to William-Beu-

ren syndrome [97], brain connectivity [98] and even

COVID-19 susceptibility [99], a zoonotic disease were

neurological consequences are being closely investi-

gated, and which can affect not only humans but also

other great apes [100–102]

Outlook

Notable cell biological differences among hominid neo-

cortical NSPCs identified so far not only pertain to

key proliferation vs differentiation mechanisms, such

as mitosis [27], and regulation of epithelial morphol-

ogy [41], but they also share a dependence on time.

Intriguingly, similar developmental/maturation timing

differences have also been found among hominid neo-

cortical neurons [74,75] (Fig. 1). This suggests that a

comprehensive characterization of neural cell differ-

ences among hominids, and perhaps across broader

taxa, requires taking into account the timing of each

characteristic process throughout development. With

the advent of brain organoids, a need has emerged to

not only compare equal times of in vitro development

(e.g. ‘organoid days’), but also include more develop-

mentally equivalent stages whenever possible, and even

explore stages that may be a priori considered differ-

ent. This has the potential to reveal that features
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previously thought to be unique for a given organism

or taxon can also be observed in others.

In addition to this variety of exciting advances in

the comparison of humans to other living great apes,

it is likely that emerging studies focused on compar-

isons with extinct archaic hominins will support a new

direction of research, the comparative experimental

neurobiology of modern and archaic brains, or experi-

mental palaeoneurobiology.
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