
 
 

 

Prioritisation of requests, bugs and 

enhancements pertaining to apps for remedial 

actions 
 

 

Towards solving the problem of which app 

concerns to address initially for app developers 
 
 
 
 
 
 
 
 

 

Saurabh 

Malgaonkar 
 
 
 
 
 
 
 
 
 
 

 

 

 

A thesis submitted for the degree of 
 
 

                  Doctor of Philosophy 
 
 

at the University of Otago, Dunedin, 

 New Zealand 

           11th September 2020 

  



 

ii 

 

Abstract 

 

Background: Useful app reviews contain information related to the bugs reported by the app’s end-

users along with the requests or enhancements (i.e., suggestions for improvement) pertaining to the app. 

App developers expend exhaustive manual efforts towards the identification of numerous useful 

reviews from a vast pool of reviews and converting such useful reviews into actionable knowledge by 

means of prioritisation. By doing so, app developers can resolve the critical bugs and simultaneously 

address the prominent requests or enhancements in short intervals of apps’ maintenance and evolution 

cycles.  

Research Problem: That said, the manual efforts towards the identification and prioritisation of useful 

reviews have limitations. The most common limitations are: high cognitive load required to perform 

manual analysis, lack of scalability associated with limited human resources to process voluminous 

reviews, extensive time requirements and error-proneness related to the manual efforts. While prior 

work from the app domain have proposed prioritisation approaches to convert reviews pertaining to an 

app into actionable knowledge, these studies have limitations and lack benchmarking of the 

prioritisation performance. Thus, the problem to prioritise numerous useful reviews still persists.  

Research Method: In this study, initially, we conducted a systematic mapping study of the 

requirements prioritisation domain to explore the knowledge on prioritisation that exists and seek 

inspiration from the eminent empirical studies to solve the problem related to the prioritisation of 

numerous useful reviews. Findings of the systematic mapping study inspired us to develop automated 

approaches for filtering useful reviews, and then to facilitate their subsequent prioritisation. To filter 

useful reviews, this work developed six variants of the Multinomial Naïve Bayes method. Next, to 

prioritise the order in which useful reviews should be addressed, we proposed a group-based 

prioritisation method which initially classified the useful reviews into specific groups using an 

automatically generated taxonomy, and later prioritised these reviews using a multi-criteria heuristic 

function. Subsequently, we developed an individual prioritisation method that directly prioritised the 

useful reviews after filtering using the same multi-criteria heuristic function.  

Results: Some of the findings of the conducted systematic mapping study not only provided the 

necessary inspiration towards the development of automated filtering and prioritisation approaches but 

also revealed crucial dimensions such as accuracy and time that could be utilised to benchmark the 

performance of a prioritisation method. With regards to the proposed automated filtering approach, we 

observed that the performance of the Multinomial Naïve Bayes variants varied based on their 

algorithmic structure and the nature of labelled reviews (i.e., balanced or imbalanced) that were made 
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available for training purposes. The outcome related to the automated taxonomy generation approach 

for classifying useful review into specific groups showed a substantial match with the manual taxonomy 

generated from domain knowledge. Finally, we validated the performance of the group-based 

prioritisation and individual prioritisation methods, where we found that the performance of the 

individual prioritisation method was superior to that of the group-based prioritisation method when 

outcomes were assessed for the accuracy and time dimensions. In addition, we performed a full-scale 

evaluation of the individual prioritisation method which showed promising results.  

Conclusion: Given the outcomes, it is anticipated that our individual prioritisation method could assist 

app developers in filtering and prioritising numerous useful reviews to support app maintenance and 

evolution cycles. Beyond app reviews, the utility of our proposed prioritisation solution can be 

evaluated on software repositories tracking bugs and requests such as Jira, GitHub and so on.                
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1 Introduction 

An app is a software product that is the outcome of software engineering and undergoes several re-

engineering phases for its maintenance and evolution (Goul et al., 2012; Maalej et al., 2016a). The app 

market has become a multibillion dollar industry1 with millions of apps hosted on commonly known 

app distribution platforms such as Google Play Store2 or Apple App Store3. This suggests that the 

modern society is strongly reliant on apps to fulfil their application specific requirements (Pagano & 

Maalej, 2013). The prospective end-users of these apps download and install the apps on their app 

compatible devices such as smartphones, tablets, notebooks, and so on. As the app distribution 

platforms facilitate the provision of end-users’ feedback regarding their experience with an app, usually 

the majority of the end-users log their feedback in the form of reviews (Pagano & Maalej, 2013). Apart 

from a star rating that is expressed on a scale of 1-5, or a general compliment or criticism, the reviews 

usually indicate the request for features, bugs present in the app, or enhancements (i.e., suggestions for 

improvements) (Maalej et al., 2016a; Pagano & Maalej, 2013). Figure 1 illustrates an example depicting 

a star rating of 3 and a review indicating a bug related to My Tracks4 app made available on Google 

Play Store. My Tracks app allows its end-users to set and track possible travelling routes. The app also 

allows its end-users to check statistics of their travelling activities with regards to the distance travelled, 

speed attained, ground elevation levels, exercise routines, and so on. 

 

Figure 1. Example of end-user rating and review for My Tracks app 

                                                      
1 https://www.businessofapps.com/data/app-revenues/ 
2 https://play.google.com/store 
3 https://www.apple.com/ios/app-store/ 
4 https://play.google.com/store/apps/details?id=com.zihua.android.mytracks 



 

2 

 

Table 1.1 shows review examples that reflect a request, a bug and an enhancement pertaining to the My 

Tracks app. In the request example, a feature is requested that would allow the end-user to save the 

travelled routes for comparison purpose and find the shortest route among them. The bug example 

indicates a flaw in the tracking functionality of the app that generates inaccurate distance statistics. On 

the other hand, an end-user suggests an enhancement that would probably motivate end-users for regular 

exercising.  

Table 1.1 Examples indicating a request, bug or enhancement review 

Review Type Example 

Request  I go walk from one place to one destination, From different routes, I want to 

save and COMPARE and find shortest route….please add this option.  

Bug Tracking is inaccurate...known 3 mile walk tracked at over 5 miles. 2 out of 4 

tracks were inaccurate. Frustrating... can't rely on the data. 

Enhancement I would suggest that a reward system for regular exercising would be an 

awesome addon to this app.. 

 

From the above-mentioned examples, it is evident that the reviews indicate aspects related to the app 

that are significant to the end-users. Thus, addressing reviews indicating key requests, bugs or 

enhancements logged by the end-users is of foremost importance to app developers as it allows the app 

developers to launch a new version of the app reflecting the addressed requests, bugs or enhancements 

in the form of app updates (Licorish et al., 2017). Simultaneously, this supports the app maintenance 

and evolution cycles and improves the quality of the app (Maalej et al., 2016a; Pagano & Maalej, 2013). 

Furthermore, this contributes towards the app enterprise’s monetary gains and potentially increases the 

popularity of the app in the competitive app market (Goul et al., 2012; Maalej et al., 2016b). Throughout 

this study, the reviews that indicate requests, bugs or enhancements are termed as ‘useful reviews’ as 

these reviews indicate the useful information for app developers which is necessary towards improving 

the quality and market performance of the app (Panichella et al., 2015; Roma & Ragaglia, 2016).  

1.1 Problem Statement 

Several studies on app reviews mining have been conducted such as understanding end-users’ 

sentiments regarding app usage, and identification of keywords of interest from reviews (Fu et al., 2013; 

Iacob & Harrison, 2013). As such studies only attempt to draw out application specific meaningful 

insights from the reviews, and app developers are constantly on the lookout for reliable automated 

approaches that convert the innumerable useful reviews into actionable knowledge as they endlessly 

face the dilemma of ‘Which useful reviews to address initially during the short intervals of app 

maintenance and evolution cycle?’ (Maalej et al., 2016a; Pagano & Maalej, 2013). App developers 

usually prefer automated approaches over manual ones to lessen errors, reduce the overall processing 

time, avert the need for high levels of cognitive load, and to establish scalability (Pagano & Maalej, 
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2013). Thus, classification is a popular approach utilised towards the resolution of the dilemma 

(Ciurumelea et al., 2018; Maalej et al. 2016a). However, the outcome of classification tends to provide 

only a generalised view of the actionable knowledge, and hence, is suited only when the reviews are in 

manageable numbers (Yang & Liang, 2015). In case of numerous reviews, classification fails to answer 

the question ‘Which are the important reviews to address and in what order they need to be addressed?’, 

and in most scenarios does not resolve the redundant information issue occurring as a result of duplicate 

instances of similar reviews being classified into multiple groups (or classes) of interests (Aly, 2005; 

Ciurumelea et al., 2018; Maalej et al., 2016a). On the contrary, prioritisation approaches have shown 

promise towards the conversion of numerous reviews into actionable knowledge, as they perform 

ranking of certain aspects (e.g., app features) mentioned in the reviews, or reviews themselves based on 

their importance or severity through the use of particular method(s) (Chen et al., 2014; Licorish et al., 

2017). However, the methods that are used for prioritisation are far from perfect, and the problem to 

prioritise numerous reviews still persists which is the primary research gap that this study aims to 

address (Licorish et al., 2017).     

1.2 Research Aim  

The problem to prioritise numerous useful reviews is similar to the NRP (Next Release Problem) 

encountered by software developers (Bagnall et al., 2001; Sureka, 2014). The NRP states that the 

software developers are unable to decide on which software requirements to address for the next release 

version of the software during the requirements engineering phase. For instance, the order in which the 

end-users’ requirements need to be addressed to release the next version of the software (Sureka, 2014). 

Therefore, the overall aim of this research is to engineer a prioritisation method to generate actionable 

knowledge for app developers through the prioritisation of numerous useful reviews and simultaneously 

provide understandings for the software engineering community in terms of how a method can be 

developed to prioritise requests, bugs or enhancements pertaining to a software product logged by users. 

Table 1.2 provides an example of actionable knowledge generated in the form of prioritisation that this 

study aims to provide for the app developers.   

Table 1.2 Example of prioritised useful reviews 

Review Priority 

I go walk from one place to one destination, from different routes, I want to save and 

COMPARE and find shortest route…please add this option 

Medium 

Tracking is inaccurate...known 3 mile walk tracked at over 5 miles. 2 out of 4 tracks 

were inaccurate. Frustrating... can't rely on the data. 

High 

I would suggest that a reward system for regular exercising would be an awesome 

addon to this app.. 

Low 
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In Table 1.2 the Priority column indicates the order in which the app developers can address the 

concerns related to the app conveyed through useful reviews. Based on the computed priorities, the app 

developers can initially fix the bug related to the tracking functionality of the app that displays 

inaccurate distance, and then later can add the option in the app that allows the end-user to save and 

compare the travelled routes and find the shortest route among them. Finally, the app developers can 

work towards the reward system. We believe that the app developers with the assistance of such 

actionable knowledge can decide on which useful reviews to address first during the limited intervals 

of app maintenance and evolution cycle given the constraints (e.g., budget, technical, time, resource, 

feasibility, and so on) that are imposed on the app developers.   

1.3 Research Outline  

To our best knowledge there are limited prior studies in the app domain that deal with prioritisation. As 

we could not inherit essential guidelines towards developing an automated prioritisation method for 

useful reviews from the limited prior studies in the app domain, we reviewed studies from the 

requirements prioritisation domain in different disciplines that address the prioritisation problem. Next, 

based on our findings from the conducted assessments we accordingly framed the relevant initial 

research question to drive our research. The research question lead to the initiation of the first phase of 

the study. In the first phase we conducted a comprehensive systematic mapping study of the 

requirements prioritisation domain to explore and critique prioritisation studies belonging to various 

disciplines such as software engineering, product manufacturing, education, finance, real estate and law 

to seek inspiration and derive essential guidelines towards the development and empirical evaluation of 

our proposed prioritisation method. The outcome of the systematic mapping study lead to the initiation 

of the next subsequent three phases guided by appropriate research questions. In the second phase we 

carried out a pilot study which deals with the filtering of useful reviews and benchmarked the 

performance of six different variants of the same filtering method. The motive behind the filtering 

approach was to avoid non-useful reviews that did not convey significant information necessary towards 

the remedial actions for the particular app. Phase three presents a pilot study that experimented with a 

classification approach which comprised of automatically generating a taxonomy to classify useful 

reviews into groups of interest. Phase four presents a pilot study in which we experimented with a 

group-based prioritisation method and an individual prioritisation method. The group-based 

prioritisation method utilised the outcome generated by our proposed classification approach (i.e., 

classified useful reviews) from phase 3 to compute priorities of the useful reviews and their associated 

groups. However, the method did not produce promising results in the internal validation stage because 

of which we had to develop the individual prioritisation method. Thus, we developed the individual 

prioritisation method that outperformed the group-based prioritisation method based on the generated 

results. Next, we performed a full-scale evaluation of the individual prioritisation method. As the results 
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generated by the individual prioritisation method showed promise in the interval validation stage, we 

subjected the same subset of results for external validation and found similar reassuring outcomes.   

1.4 Research Questions 

Based on the research outline mentioned above, Figure 2 illustrates the research questions (RQs) 

addressed in this thesis and the relationship shared among the overarching RQs (Dillon, 1984; Potts, 

1993). The brief elaboration of the RQs portrayed in Figure 2 is as follows; in this study, RQ1 (What is 

the state-of-the art of requirements prioritisation?) is concerned with obtaining a comprehensive 

understanding of the requirements prioritisation domain and we answered RQ1 through the means of a 

systematic mapping study (Petersen et al., 2008). Because of the systematic mapping study, we were 

able to perform a critical evaluation of studies that have provided requirements prioritisation methods 

across all disciplines. We found out that the current methods from the software engineering discipline 

do not consider the strengths of the requirements prioritisation methods available from other disciplines 

(e.g., product manufacturing) or vice-versa, a gap that opens new research opportunities. Among the 

other findings, we observed that while many prioritisation methods are targeted, often researchers have 

proposed prioritisation methods that were not evaluated. Most prioritisation methods were only 

validated as being operational, and the attributes studied had limited effects on performance outcomes. 

In addition, performance trade-offs are to be expected of such methods, depending on their performance 

targets. Overall, the evidence obtained from the systematic mapping study suggests that emerging 

methods may address the requirements prioritisation challenge if they are inspired by hybrid 

prioritisation methods. The explicit details of our mapping study with regards to RQ1.1 to RQ1.6 are 

presented from Chapter 3 onwards. That said, we found one empirical study in phase 1 that proposed a 

prioritisation method which prioritised numerous requirements assuring its scalability (Peng et al., 

2012). Even though the prioritisation method performed the prioritisation of requirements at a group 

level (i.e., generating only the priorities of the pre-defined groups (or classes) in which the requirements 

were classified into) and was dependent on the availability of the domain knowledge along with the 

priority preferences of stakeholders to generate the priorities of the groups, the model followed by the 

method for prioritisation provided the essential inspiration and shaped RQ2, RQ3 and RQ4 respectively. 



 

6 

 

 

Figure 2. Research questions  

To answer RQ2 (How can useful reviews be filtered?), we explored the information retrieval approaches 

that provided insights towards the filtering (or extraction) of useful reviews from a vast pool of reviews. 

Our investigation led to the discovery and empirical evaluation of six Multinomial Naïve Bayes variants 

specialised in filtering of useful reviews based on predefined rules. As an outcome of this we could 
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conclude that the selection of a specific Multinomial Naïve Bayes variant for useful reviews filtering is 

dependent on the nature of the information retrieval application (i.e., number of reviews and the ratio 

of useful to non-useful reviews that are made available for learning purpose) (Nigam et al., 2003). We 

cover all the details revolving around RQ2 from Chapters 3 onwards. To answer RQ3 (How can the 

useful reviews be classified into groups of interest?), we went beyond the utilisation of a manual 

taxonomy to classify useful reviews into groups of interest by developing a preliminary approach that 

automatically generates a taxonomy independent of the availability of domain knowledge. Finally, to 

answer RQ4 (How can an automated prioritisation method be developed to prioritise numerous useful 

reviews?) we took inspiration from studies from domains such as feature engineering, information 

theory, information retrieval and marketing to identify prominent methods specialised in prioritisation 

and develop a hybrid automated prioritisation methods (i.e., group-based prioritisation method and 

individual prioritisation method) to prioritise useful reviews (Chea et al., 2009; Fang & Zhan, 2015; 

Filcek et al., 2017; Htay & Lynn, 2013; Ko et al., 2000; Sundaram et al., 2005). We benchmarked the 

performance of the developed prioritisation methods using the two dimensions (accuracy and time) 

identified in phase 1. Similar to RQ1 and RQ2 all the evidence related to the answering of RQ3 and 

RQ4 is explicitly elaborated from Chapter 3 onwards.          

1.5 Thesis Structure 

The further chapters of this thesis are organised as follows. Chapter 2 (Background) presents a review 

highlighting a brief assessment of the existing prioritisation studies that provide the foundation related 

to the problem investigated in this thesis, and describes the basics related to the actionable knowledge 

generated in terms of prioritisation. In Chapter 3, we present the undertaken systematic mapping study 

on requirements prioritisation corresponding to RQ1 and its associated decomposed RQs (i.e., RQs 1.1 

to RQ1.6). Chapter 4 presents the phase which deals with filtering of useful reviews (i.e., phase 2) 

corresponding to RQ2 and its associated decomposed RQ2.1. Chapters 5 and 6 present the phases that 

deal with classification of useful reviews (i.e., phase 3) and prioritisation of useful reviews (i.e., phase 

4), respectively. RQ3 and RQ4 and their associated decomposed RQs (i.e., RQ3.1, RQ4.1 to RQ4.2) 

are covered in Chapters 5 and 6 accordingly. The results pertaining to each decomposed RQs are 

covered within the relevant chapters, and Chapter 6 mentions a link to the web tool that shows the 

operational demonstration of phases 2, 3 and 4 of the research project. Furthermore, the discussions and 

implications related to the RQs are documented within the relevant chapters along with the threats to 

validity associated with the respective phase. Finally, we provide the summary of the outcomes 

corresponding to the RQs, contributions and potential future work in Chapter 7 (Conclusions).       

In the next chapter, we present the background related to the undertaken study.  
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2 Background 

A successful app thriving in the competitive market constantly demands software maintenance and 

evolution cycles as the usefulness of the app to its end-users depends on the features the app provides 

and the quality it aims to assure by addressing the end-users’ requests, bugs or enhancements (Bennett 

& Rajlich, 2000; Maalej et al., 2016a; Pagano & Maalej, 2013). Thus, the app’s maintenance and 

evolution cycles are initiated after the app is released in the market, and the cycles typically involve the 

addressing of end-users’ requests, bugs or enhancements. This leads to the relevant transformations in 

the app’s software architecture which causes a new release version of the app in the form of an update 

(Bennett & Rajlich, 2000; Maalej et al., 2016a; Pagano & Maalej, 2013). Similar to the traditional 

software repositories such as logs comprising of bug reports or requests that are often seen beneficial 

for software maintenance, app developers primarily rely on the app’s reviews as most of these are seen 

as trusted source of insights and provide the necessary information to drive the app’s maintenance and 

evolution cycles (Goul et al., 2012; Iacob et al., 2014; Tian et al., 2004). Furthermore, as app developers 

are aware that end-users’ satisfaction is central to the app gaining positive popularity to guarantee 

prolong usage of the app, app developers find it necessary to address reviews reflecting end-users’ 

requests, bugs or enhancements to provide substantial contribution towards the app’s market value 

(Fabio et al., 2015; Roma & Ragaglia, 2016). As the stream of reviews are logged by the end-users at 

regular intervals (i.e., after app or update release), the app developers are constantly engaged in the 

app’s post-delivery activities to identify the necessary information (i.e., useful reviews) from the 

reviews and later convert the information into actionable knowledge to address the end-users’ requests, 

bugs or enhancements pertaining to the app and expedite the necessary app updates (Pagano & Maalej, 

2013).  

As the reviews logged by the end-users usually tend to be voluminous, app developers face limitations 

when utilising manual efforts towards the identification and conversion of the useful reviews into 

actionable knowledge (Pagano & Maalej, 2013). Some of the serious limitations point towards the 

demand for high cognitive loads for manual analysis, error-proneness, time constraints and lack of 

scalability of the manual efforts due to limited human resources (Maalej et al., 2016a). Therefore, the 

app developers are on the lookout for automated approaches that allow them to accomplish the same 

objective by incurring less overheads but at the same time providing a substantial level of precise 

information because of which they can work towards the essential updates required for the app 

(Ciurumelea et al., 2017; Maalej et al., 2016a).  

We review the studies from the app domain in section 2.1 that utilise different research approaches to 

examine app reviews to gain meaningful insights, and those that attempt to transfer such insights into 

actionable knowledge, along with the limitations of these studies. This is followed by a brief 
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introduction of the NRP in section 2.2 and studies from the requirements prioritisation domain in section 

2.3, which ultimately lead towards the generation of RQ1.   

2.1 App Domain Studies 

Many studies have made attempts towards obtaining meaningful insights from reviews through the 

means of app reviews mining. For instance, Kim et al. (2012) have studied the relationship between 

app’s ratings assigned by several end-users and the market price of the app to investigate if the price of 

the app was suitable according to its market performance. This involved investigating the end-users’ 

satisfaction of purchasing the app based on the number of properly functioning app features. Similarly, 

Fu et al. (2013) study the variations in the number of reviews logged over time and have attempted to 

uncover the reasons behind the sudden logging of a large set of reviews at specific intervals (e.g., after 

app update release). The authors also perform sentiment analysis of the reviews to understand the end-

users satisfaction levels associated with the app usage and found out that such analysis assisted in 

identifying the crucial aspects (i.e., requests, bugs or enhancements) of the app that needed immediate 

attention. In another study, Iacob and Harrison (2013) have developed a prototype tool named MARA 

(Mobile App Repository Analyser) that uses text mining for automatically identifying and extracting 

app features from reviews. However, these existing studies mainly focus on gaining meaningful insights 

from the app reviews (i.e., restricted only towards certain semantics of the app reviews) and ignore the 

aspect that the uncovered insights must be converted into some form of actionable knowledge so that 

app developers can initiate the necessary remedial actions for the app. For example, a prior study 

developed a method to identify the critical app features and indicated the order in which they need to 

be addressed by the app developers, but did not offer a tool to bring the undertaken research at 

application level nor benchmarked the performance of the prioritisation method to determine its 

suitability (Licorish et al., 2017).  

Classification approaches have been widely used by researchers with the intent to automatically convert 

the reviews into actionable knowledge. For instance, Pagano and Maalej (2013) have classified reviews 

into four categories; rating, requirements, community reviews and user experience. Reviews referencing 

other reviews or apps are classified into the community reviews category, whereas the requirements 

category covers end-user requests, bugs related to the apps or suggestions for improvements (i.e., 

enhancements). Reviews expressing end-user sentiments (e.g., happy) are classified into rating category 

and end-user experiences indicating helpful information aiding towards increasing the quality of the 

app are classified into the user experience category. Maalej et al. (2016a) have extended the scope of a 

study conducted earlier to utilise and empirically evaluate the performance of several classification 

methods that classify reviews into four categories; user experience, bug reports, end-user requests and 

ratings. Reviews reflecting end-user experience regarding the app usage are classified into the user 

experience category, reviews indicating issues associated with the apps are contained in the bug reports 
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category while requests pertaining to the apps are classified into the end-user requests category, and 

reviews expressing the end-user sentiments are classified into ratings category. McIlroy et al. (2016) 

have classified reviews into the following categories; user interface problem, crash report, cost, update 

issue, optimization problem, removal requests, functionality problem, privacy concern, compatibility 

issue, network issue  and uninteresting content. In another study, Di Sorbo et al. (2017) have performed 

the summarisation of app reviews by initially classifying the reviews into manually derived topics from 

domain knowledge such as App, GUI, Contents, Pricing, Feature or Functionality, Improvement, 

Updates/Versions, Resources, Security, Download, Model and Company. Similarly, Ciurumelea et al. 

(2018) have classified reviews restricted to Android apps into the following self-explanatory categories; 

Price, Performance, Complaint, Device, Hardware, Licensing, Privacy, UI, Security, App Usability, 

Android Version, Memory and Battery. That said, Vu et al. (2019) have utilised the manual taxonomy 

developed by Di Sorbo et al. (2017) to classify app reviews and respond to these reviews automatically 

using system generated responses. While such studies summarise the information conveyed by the 

reviews into specific categories of interest through classification approaches, these approaches fail to 

identify the important categories or reviews that reside in those categories and does not indicate the 

order in which they need to be addressed as a part of app maintenance and evolution. Moreover, the 

majority of the approaches do not eliminate the duplicate instances of the same reviews getting 

classified into multiple categories constituting towards unwanted redundant information (Maalej et al., 

2016a; McIlroy et al., 2016). Both these limitations of the works employing a classification approach 

are of concern as app developers have to eventually traverse through numerous classified reviews to 

uncover their specifics (e.g., which important app feature has problem or is being requested), which 

requires time and demands strenuous efforts from the app developers for performing manual analysis. 

Such a scenario demonstrates the need for a prioritisation approach.   

That said, to our best knowledge, only few preliminary prior studies (with various limitations) from the 

app domain have researched on prioritisation approach for converting reviews into actionable 

knowledge. For instance, a study specific to app reviews mining has classified numerous reviews using 

topic modelling and an unsupervised algorithm (i.e., LDA - Latent Dirichlet Allocation) into various 

categories. Later, the study generates priorities of the categories and the reviews present in those 

categories using a prioritisation method that was developed as a result of the incorporation of multiple 

unjustified criteria (Chen et al., 2014). However, the study does not thoroughly assess the performance 

of the prioritisation method (i.e., study did not conduct the validation of the generated priorities of all 

the categories and its reviews). Furthermore, to generate the priorities of each category the method 

considers criteria such as the number of reviews present inside a category, the priorities computed for 

a category over time and the average rating of the reviews within a category. Subsequently, the priority 

of each review is computed based on criteria such as the proportion of a review with reference to the 

other reviews within a category, the similar types of reviews within a category (i.e., duplicate reviews), 
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the posterior probability of the review, the rating and timestamp of a review (i.e., the time and date the 

review was logged). Thus, as observed from the above-mentioned criteria, it is obvious that the method 

tends to generate higher priorities of the categories that hold more reviews than the others but certain 

categories holding lesser reviews might be equally or more important. For instance, consider a category 

holding 100 unique reviews and another category holding 25 unique reviews. Based on the category-

based prioritisation criteria, the prioritisation method would always generate a higher priority of the 

first category than the second category as it holds greater number of reviews. Secondly, the method 

does not eliminate the duplicate instances of the same reviews classified into different categories (due 

to unsupervised classification) creating redundant information to act upon that leads to the question 

‘what is the correct priority of a review having different priorities across multiple prioritised 

categories?’ More to this, studies show that there are discrepancies between the ratings assigned and 

the reviews logged by the end-users, thus questioning the judgement to utilise rating as a criteria to 

prioritise reviews or categories in the way it was used (Aral, 2014; Fu et al., 2013; Ganu et al., 2009; 

Rodrigues et al., 2017). For instance, Pagano and Maalej (2013) have found out that the reviews falling 

under different ratings categories (i.e., 1-5) highlighted feature requests, shortcomings of the app or 

provided helpful information towards improving the quality of the app. In addition, based on the 

timestamp criteria Chen et al.’s (2014) method assigns higher priorities to the reviews that are the latest 

ones, thus making the method bias towards new incoming reviews. This suggests that there might be 

scenarios where the old reviews and their respective categories of actual importance might never be 

brought to the notice of the app developers. In another study, Licorish et al. (2017) have filtered reviews 

that had ratings less than or equal to three to identify and prioritise app features (e.g., interface) present 

in those reviews that might need attention. However, as the reviews were filtered using the unreliable 

rating criteria, some of the useful reviews could have been potentially left out which could cause a loss 

of significant information required towards app improvement. Furthermore, as the generalised priorities 

of the app features (i.e., an average priority score of each app feature) are computed, the details 

regarding requests, bugs or enhancements associated with the app features (e.g., “the interface fails to 

load properly on my Samsung s7”) stay hidden and their importance for planning the necessary remedial 

actions remains undetermined. Similarly, Gao et al., (2018) have developed an approach that prioritises 

app reviews using different criteria. However, this approach was validated based on its usefulness i.e., 

how useful did the app developers find the approach towards its utilisation for app maintenance and 

evolution tasks, but the authors did not benchmark the performance of the approach based on standard 

metrics such as accuracy and time.   

That said, both studies (Chen et al., 2014; Licorish et al., 2017) lacked the vital and standard dimensions 

(e.g., time required for prioritisation, accuracy of the generated priorities, and so on (refer to Chapter 4, 

sub-section 4.1.5) based on which the performance of the prioritisation method could be benchmarked. 

Benchmarking the performance of a prioritisation method is crucial as it helps to determine the 
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effectiveness of the method and allows the researchers to investigate the method so that it can be 

optimised or tuned for an improved performance (Achimugu et al. 2014b).    

In addition, Gao et al., (2015) have developed a tool that prioritises app reviews based on semantics and 

sentiment of those reviews. However, this tool attempts to identify and prioritise bugs (issues) 

associated with the app and does cover the requests or enhancements pertaining to the app. Similarly, 

Jiang et al., (2019) have proposed a new prioritisation approach that identifies new feature requests 

mentioned in app reviews and later prioritises these feature requests. However, this approach is 

restricted to new feature requests and does not cover prioritisation of existing features, bugs or 

enhancements.   

2.2 Next Release Problem (NRP) 

As the studies from the app domain suffer from several limitations as discussed above and did not 

provide adequate guidelines towards the solving of the problem related to the prioritisation of numerous 

reviews reflecting end-users’ requests, bugs or enhancement, our further investigation lead towards the 

NRP. NRP in some cases is termed an NP-hard problem and in the software engineering community is 

commonly known as the problem to determine the optimal next release of a software product as the 

enterprise creating and maintaining a software product faces a steady stream of incoming requirements 

over software product evolution (Bagnall et al., 2001; Sureka, 2014). The cases in which NRP is termed 

as NP-hard is when the number of feasible prioritisation solutions increase exponentially with the 

increase in the number of requirements to prioritise (Sureka, 2014). In such cases, the number of 

potential prioritisation solutions for ‘N’ requirements is ‘2N’ and as the number of requirements increase 

it becomes practically extensive or unlikely for software developers to conduct an exact search to 

compute or identify an optimal prioritisation solution (Sureka, 2014).   

As the enterprises face the challenge of deciding which requirements to address considering the imposed 

constraints (e.g., feasibility, time, budget, etc.) for the next release of the software product towards 

meeting the needs of their stakeholders, this makes prioritisation of the requirements inevitable and 

there has been a demand for requirements prioritisation methods (Bagnall et al., 2001; Sureka, 2014). 

It should be noted that the NRP problem is similar to the problem to prioritise numerous useful reviews 

pertaining to an app i.e., ‘which end-users’ requests, bugs or enhancements to address before launching 

the next release version of the app?’ (Bagnall et al., 2001; McIlroy et al., 2015). Figure 3 visualises the 

generally observed relationship between the stakeholders (i.e., end-users and software team) and the 

software product development, maintenance and evolution process from the software product 

enterprise’s perspective (Wnuk et al., 2009). The end-users state their requirements and often provide 

feedback which indicates their experience regarding the software product’s access or usage. It is then 

the primary task of the software team to address the prominent requirements or crucial pointers (i.e., to 
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software feature requests, reported bugs or enhancements) present in the feedback. Software 

development, maintenance and evolution cycles typically follow the requirements engineering phase 

before software testing is done towards the product or its update release. During such cycles, the 

question most often at the forefront of the software team is ‘which requirements or feedback should be 

addressed and in what order?’ End-users may answer this question during development or post release 

of the product, especially when there is limited information (i.e., requirements or feedback) to convey. 

However, as the information scales upwards in abundance because of voluminous feedback from end-

users, the software developers face challenges in manually processing and deciding which aspects of 

the information need to be actioned before the next release of the product. Hence, prioritisation becomes 

an important component in the requirements engineering phase, as it plays a crucial part in significantly 

assisting the software product enterprise to deliver continuous value to the end-users (Lehtola & 

Kauppinen, 2006).     

 

Figure 3. Relationship between an end-user and the software product development, maintenance and evolution process 

2.3 Requirements Prioritisation 

Requirements prioritisation is a domain that has diverse studies dedicated towards solving of the NRP, 

and is often scrutinised by researchers in the requirements engineering phase of the software 

engineering discipline (Berander & Andrews, 2005). Requirements prioritisation deals with the ranking 

or classification of software product requirements based on their severity or importance. This is because, 

identifying and addressing prioritised requirements assists valuably in releasing the software product 

with most prominent features in the market or launching essential software updates. Irrespective of the 

software development model followed by the software team (e.g., Waterfall, Agile, Spiral, and so on), 

a suitable requirements prioritisation method helps with the identification and fulfilment of the 

requirements. This in general contributes towards enhancing the performance and quality of the 

software product with regards to the changing market conditions (Achimugu et al., 2014b). 

Prioritisation is particularly crucial when there are numerous requirements and feedback in the form of 

crowdsourced information such as useful reviews, and we believe that methods from the requirements 

prioritisation domain may influence the development of a reliable prioritisation approach for app 
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reviews (i.e., to determine which reviews are important and indicate the order in which they could be 

addressed) (Hosseini et al., 2015; Licorish et al., 2017; Maalej et al., 2016a; Pagano & Maalej, 2013). 

Several requirements prioritisation methods have been developed to prioritise requirements. The 

common ones are AHP (Analytical Hierarchical Process), MoSCoW (Must, Should, Could, Won’t), 

CV (Cost Value), QFD (Quality Function Deployment), CVA (Cost Value Analysis) and NA 

(Numerical Assignment) (Achimugu et al., 2014b). Among these, the AHP method is the most popular 

and is commonly used to perform requirements prioritisation (Achimugu et al., 2014b). In fact, we 

noticed that most of the prioritisation methods have some methodological concepts inherited from the 

AHP method. The AHP method is a mathematical framework augmented by components that support 

decision making aspects of human beings required towards the prioritisation of requirements. Figure 4 

presents the structure of the AHP method where the alternatives are a set of possible priorities that can 

be generated based on the specific criteria to achieve a particular goal. Alternatives are set to certain 

values such as low, medium, or high. Criteria would determine the various factors that influence the 

prioritisation process such as cost, risk, feasibility, scope, importance, complexity, and so on. The goal 

is based on alternatives and criteria which are then used to generate the final outcome such as setting 

the priority of a requirement.  

 

Figure 4. AHP working network 

While AHP computes the priorities of each requirement, the MoSCoW method is one of those 

requirements prioritisation methods that determines the priority of a requirement based on the category 

the requirements gets classified into (i.e., classification based requirement priority generation). This 

method classifies each requirement in any one of the following four categories; MUST – points towards 

a requirement which is of utmost important and should be addressed first. SHOULD – indicates a 

requirement of a high priority and needs to be addressed on a regular basis. COULD – suggests a 

requirement of less importance in comparison to MUST and can be addressed later. WON’T – 

highlights a requirement which can be addressed last or may not be addressed at all as it does not have 

importance. In the requirements engineering phase, all the requirements from the MUST category are 

given attention by product developers followed by the requirements of the SHOULD, COULD and 
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WON’T categories. Despite of being a classification-based prioritisation method, the application of 

MoSCoW is best suited when the number of requirements are limited. For instance, Kravchenko and 

Sergey (2017) have used the MoSCoW method to prioritise eighteen requirements of six stakeholders 

that played a crucial role in a bank’ communication management process. Other traditional methods 

such as QFD, PG (Planning Game), BST (Binary Search Tree), HCV (Hierarchical Cumulative Voting), 

Weiger’s method and Win-Win method also attempt to address the requirements prioritisation problem 

(Achimugu et al., 2014b). Reviewing these methods, it was concluded that the utilisation of the 

particular requirements prioritisation method is dependent on the type of requirements prioritisation 

problem that is to be solved and these methods have their individual advantages and disadvantages 

(Achimugu et al., 2014b). In addition, software teams often use an appropriate prioritisation method 

that suits their prioritisation application requirement (Ryan & Karlsson, 1997). For instance, the AHP 

method performs well in accurately prioritising a small set of requirements but suffers from scalability 

issue (i.e., takes more time to prioritise with extensive use of computing resources) when dealing with 

numerous requirements due to its pairwise comparison mechanism, especially if the number of 

stakeholders’ inputs increase (Achimugu et al., 2014b). On the other hand, the EVOLVE prioritisation 

method through means of machine learning approaches along with the stakeholders’ priority 

preferences of requirements overcomes the scalability issue when prioritising numerous requirements 

but does not perform well when dealing with the dynamically changing priorities of the same set of 

requirements over time (Greer & Ruhe, 2004).  

Furthermore, more recent efforts from researchers have focussed on merging different methods together 

(Abou-Elseoud et al., 2016; Ahmad et al., 2011). For instance, Ahmad et al. (2011) have combined CV 

and BST to prioritise a small set of requirements belonging to a mobile application whose end-users 

were geographically distributed. In another study, Abou-Elseoud et al. (2016) merged AHP, CV and 

QFD to prioritise a few illustrated requirements belonging to a software development company. This 

method dynamically computed the hierarchical levels (Alternatives, Criteria and Goal) and created two 

separate levels to prioritise the requirements. The CV method was used to rank the requirements at the 

lower level while the QFD operated at the upper level to generate the list of prioritised requirements. 

Similarly, Berander and Jonssen (2006) have addressed the weakness of CV and AHP, and combined 

their strengths to develop HCV that partitions complex requirements into smaller low-level 

requirements to create a hierarchical structure of all the requirements and later generates the priorities 

of these requirements based on the priority preferences of the product’s stakeholders. However, the 

application of HCV was found to be restricted to only a small set of requirements. From the above-

mentioned studies it was concluded that, to achieve the objective of prioritisation in the most optimal 

way researchers or software teams often aim to use a method that requires less time to reliably prioritise 

the given set of requirements with the assurance of optimal utilisation of allocated resources (e.g., 

manpower, time, computing power and so on) (Achimugu et al., 2014b).    
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The examples of the requirements prioritisation methods mentioned above assist with requirements 

prioritisation and there exist a plethora of promising requirements prioritisation methods across several 

disciplines that may influence the development of a prioritisation method to prioritise numerous useful 

reviews (Achimuguet al., 2014b). For instance, for many years the product manufacturing discipline is 

facing the requirements prioritisation challenge and the researchers from that discipline have explored 

the utility of several prioritisation methods for addressing the challenge (Chen & Yu, 2014; Nepal et 

al., 2010). Similarly, the researchers from software engineering discipline have explored prioritisation 

methods confined to the same discipline (Pergher & Rossi, 2013). Thus, there exists an opportunity to 

comprehensively and systematically survey the literature available on requirements prioritisation from 

different disciplines that may influence the development of new prioritisation method(s). In addition, 

the findings of such survey may inspire a discipline (e.g. software engineering) to consider the strengths 

or address the weakness of requirements prioritisation method(s) from other disciplines or vice-versa. 

Moreover, challenges appear for prioritisation when there are numerous requirements to deal with, 

especially in the case of crowdsourced requirements logged by large number of end-users (Iacob & 

Harrison, 2013; Maalej et al., 2016b) (e.g., as evident for app reviews (Iacob et al., 2014; Licorish et 

al., 2017)). These challenges occur mainly due to the conventional prioritisation methods constantly 

demanding the involvement of humans to ensure the reliability of the prioritisation outcome which in 

turn increases the overall time required for prioritisation and simultaneously compromise the scalability 

of the prioritisation method (Achimugu, et al., 2014b; Licorish et al., 2017). For instance, Licorish et 

al. (2017) were unable to discover uniform markers that could potentially remove the need for human 

involvement when utilising multiple regression for prioritising app features.   

Hence, the first phase of this study deals with the detailed investigation of the requirements prioritisation 

domain by performing a comprehensive systematic mapping study of the same. The objective of this 

mapping study is to understand what has been done in the requirements prioritisation domain across all 

disciplines, and later conduct a critical evaluation of empirical studies that have provided knowledge 

towards the understanding of requirements prioritisation methods that are spread across different 

disciplines. This will assist in understanding and evaluating the various prioritisation methods that 

might provide the inspiration and essential guidelines towards solving the problem of prioritising 

numerous useful reviews.  

In the next chapter, we provide the details regarding the conducted systematic mapping study on 

requirements prioritisation.   
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3 Systematic Mapping Study on Requirements Prioritisation 

This chapter provides the details of the systematic mapping study on requirements prioritisation that 

was carried out to uncover what exists across the requirements prioritisation domain to seek inspiration 

from the prominent studies existing in this domain towards solving the problem of prioritising numerous 

useful reviews. That said, the four phases reported in this chapter follow an empirical research 

methodology since such a methodology is extensively followed in academia as well as industrial 

software engineering research. This is mainly due to the methodology being based on data and 

observations rather than general theories (Abran et al., 2004). As noted from the previous chapters, in 

phase 1 we conducted a comprehensive systematic mapping study of the requirements prioritisation 

domain and performed a critical evaluation of the empirical studies that provided implementations of 

the requirements prioritisation methods across multiple disciplines. The overarching RQ driving this 

study is: 

RQ1. What is the state-of-the art of requirements prioritisation? 

To conduct the necessary investigations, RQ1 was decomposed into six RQs aimed towards 

understanding the interest in requirements prioritisation across multiple disciplines (RQ1.1), 

approaches followed by researchers to conduct research on requirements prioritisation (RQ1.2), the 

form of requirements prioritisation contributions provided by the researchers (RQ1.3), the various 

requirements prioritisation methods (RQ1.4), the dimensions that were evaluated for empirical 

requirements prioritisation methods (RQ1.5) and the performance outcomes of the evaluations along 

with the investigation of any existing evidence regarding the relationship between attributes of the 

empirically evaluated requirements prioritisation methods and their performance outcomes (RQ1.6).  

The detailed elaboration of the above-mentioned systematic mapping study is provided in the relevant 

sections (i.e., sections 3.1 to 3.4) below.            

3.1 Introduction 

By means of this systematic mapping study, we identify requirements prioritisation methods proposed 

by researchers and later consider those empirical methods that are noteworthy for further evaluation. 

This allows us to generate a knowledge base for software engineering researchers to understand the 

different problem specific solutions generated via requirements prioritisation methods that are available 

for use from disciplines other than software engineering. In this way, researchers from a discipline can 

become aware of the ways in which other disciplines have addressed the requirements prioritisation 

problem and may seek inspiration from them towards addressing the encountered requirements 

prioritisation problem. The critical evaluations present the previously unexplored knowledge and 

potential limitations in a discipline that could be central to steering research on requirements 
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prioritisation. To our best knowledge, the findings from the systematic mapping study have not been 

discovered by previous review studies on requirements prioritisation.    

3.2 Background and Related Studies 

The ultimate success of a software product is determined by the proper execution of its requirements 

engineering phase which deals with the elicitation and addressing of the stakeholders’ requirements 

pertaining to the product (Nuseibeh & Easterbrook, 2000). Most often written or graphical methods, 

and in certain cases, a combination of both is used to elicit requirements from stakeholders 

(Sommervile, 2009). User stories is the most popular written method whereas UML (Unified Modelling 

Language) is the most commonly followed graphical method (Sommervile, 2009). Furthermore, under 

the traditional software development models like Waterfall, the stakeholders usually approve their 

requirements identified by the software team and simultaneously resolve any conflicts related to the 

requirements by means of negotiations. After the requirements engineering phase is completed, the 

software team models the software product design and develops the software product. Sometimes the 

software product design and development is done incrementally where agile models such as SCRUM 

are followed. Thus, the requirements engineering phase lays the important foundations towards software 

product design and development (Zowghi & Coulin, 2005).  That said, sometimes challenges are 

encountered during the requirements engineering phase that may compromise the development and 

release of a software product. For instance, Wnuk et al. (2009) while investigating the requirements 

engineering phase of a software product at Sony Ericsson enterprise uncovered that the software team 

faced challenges that were severe and needed immediate attention. One of the challenges was to address 

the complex requirements and dependencies that existed among those requirements that made the 

software team to question the feasibility of addressing those requirements. The second challenge was 

associated with the ineffective communication that took place between the stakeholders and software 

team. Another critical and notable challenge was to constantly address the numerous requirements (and 

software product bugs) logged by the stakeholders of the software product after the software product 

was released in the market. This challenge in particular has been the centre of attention as the software 

engineering community still lacks a reliable and efficient solution to address the challenge (Licorish et 

al., 2017).  

Requirements prioritisation is an effective solution that is initiated at regular intervals as it guides the 

decisions regarding the order in which the requirements should be addressed. However, challenge 

remains for the software engineering community in terms of prioritising numerous requirements, 

especially those that exist in crowdsourced information (Groen et al., 2015; Khalid et al., 2015; Licorish 

et al., 2017; Maalej et al., 2016b). This is because researchers are still unable to attain satisfactory 

performance of requirements prioritisation methods when the number of requirements to prioritise 

increase significantly (Achimugu et al., 2014b; Babar et al., 2011; Licorish et al., 2017). Some survey 
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studies have reviewed requirements prioritisation methods from the software engineering discipline 

(Achimugu et al., 2014b; Pergher & Rossi, 2013; Sher et al., 2014). We examine such studies towards 

identifying gaps to justify our research agenda of undertaking the systematic mapping study on 

requirements prioritisation.  

Achimugu et al. (2014b) have published a literature review on requirements prioritisation that highlights 

various methods which have been used in the software engineering discipline until 2014. The key 

finding of this study was that the existing requirements prioritisation methods suffered from 

performance issues which were found to be associated with the scalability of the methods, and pointed 

towards the need for requirements prioritisation methods that could prioritise numerous requirements 

reliably and efficiently. In a similar study conducted in 2013, Pergher and Rossi (2013) have reviewed 

only certain requirements prioritisation methods used in academic software engineering research and 

these methods were from studies extracted from four knowledge databases which were IEEE Xplore, 

ACM Digital Library, Science Direct and Springer. The authors reported that the majority of the 

methods focussed only on the prioritisation of functional requirements and side-tracked the non-

functional ones. Moreover, accuracy was often used as a dimension to evaluate the performance of the 

requirements prioritisation methods. Accuracy indicated the percentage of correctly prioritised 

requirements based on specific ground truth data. Finally, it was suggested by the authors that 

researchers should emphasise on the prioritisation of non-functional requirements as they reflect 

important business values. In another study, Sher et al. (2014) carried out a systematic mapping study 

of requirements prioritisation in 2014 that was restricted to the requirements prioritisation studies of the 

software engineering discipline. The authors found out that most of the requirements prioritisation 

methods did not support business or stakeholders’ goals and lacked empirical validation.       

3.3 Research Questions   

The previously mentioned studies have focused on obtaining the knowledge on how the research on 

requirements prioritisation is carried out in the software engineering discipline. However, there is scope 

to understand the research on requirements prioritisation across multiple disciplines with the intent of 

developing a possible interdisciplinary prioritisation method towards addressing the requirements 

prioritisation challenge. Novel and reliable requirements prioritisation methods are especially required 

to prioritise large scale requirements and feedback such as those existing in useful reviews (Groen et 

al., 2015; Licorish et al., 2017; Maalej et al., 2016b; Pagano & Maalej, 2013). Hence, we aim towards 

conducting a comprehensive systematic mapping study and critical evaluation for understanding the 

research on requirements prioritisation that is available across multiple disciplines. To achieve this, we 

formulate six RQs listed as follows:  
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RQ1.1 What has been the interest in requirements prioritisation over time, what are the 

different publication venues, and what are the various disciplines in which the application 

of requirements prioritisation exist?  

RQ1.2 What approaches have been used to study requirements prioritisation? 

RQ1.3 What form did the contributions of the requirements prioritisation studies take? 

RQ1.4 What prioritisation methods have been studied or developed? 

RQ1.5 What are the dimensions that were evaluated for requirements prioritisation 

methods? 

RQ1.6 What are the performance outcomes of the evaluations, and is there evidence of 

relationship between attributes of requirements prioritisation methods and their 

performance outcomes? 

The objective of RQ1.1 is to uncover the interest in requirements prioritisation over time and the venues 

(e.g., journals or conferences) where the studies on requirements prioritisation from multiple disciplines 

(e.g., software engineering or product manufacturing) have been published. RQ1.2 helps to understand 

the nature (e.g., surveys, proposed or empirically evaluated prioritisation method) of the studies 

conducted on requirements prioritisation. RQ1.3 aims towards analysing the type of contributions (e.g., 

taxonomy or tool) that are provided by researchers to solve the requirements prioritisation problem. 

This will assist in distinguishing theoretical postulations from the empirical requirements prioritisation 

methods used for solving real world requirements prioritisation problems. RQ1.4 assists in identifying 

the various requirements prioritisation methods (e.g., AHP or CV) existing across multiple disciplines, 

while RQ1.5 examines the dimensions (i.e., focus of evaluation - e.g., accuracy or time) that were 

evaluated while conducting research on requirements prioritisation. RQ1.6 analyses the performance 

outcomes (i.e., the requirements prioritisation performance that is benchmarked when a method is 

evaluated - e.g., 84 % accurate in prioritising requirements) of the suitable empirically evaluated 

requirements prioritisation methods, and aims to uncover any relationship between the performance 

outcomes and the attributes (i.e., criteria within a study that affects the performance outcomes - e.g., 

number of requirements) used by researchers for meaningful insights.   

3.4 Methodology 

To answer the RQs mentioned in the previous sub-section we conduct a systematic mapping study 

which is suitable for exploring research published on a particular topic of interest using different facets. 

For instance, one facet is visualising how many studies published in a particular year were empirical 

(Petersen et al., 2008). Figure 5 provides the visualisation of the systematic mapping study process that 

was followed. Figure 5 portrays that initially we scoped the requirements prioritisation problem which 

lead to the formulation of the RQs. Next, we developed the appropriate keywords that were used to 

search and find studies on requirements prioritisation from various knowledge databases. The identified 
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studies were subjected to an exclusion and inclusion filtering criteria which removed irrelevant studies 

and retained the pertinent ones. The filtered studies were subjected to reliability checks before being 

classified according to the developed classification schemes. Additional reliability checks were 

performed to assure the reliability of the results. Finally, the RQs were answered based on the obtained 

results of the study and the results were meaningfully visualised.       

 

Figure 5. Systematic mapping study process related to requirements prioritisation 

To find keywords that were used to search and extract studies on requirements prioritisation on a global 

scale we used Google’s search engine (Mccallum & Bury, 2013). This was undertaken to explore the 

keywords related to requirements prioritisation. We followed the navigation and information search 

strategies that are commonly used by researchers to narrow down the keywords related to a topic of 

interest (Lorigo et al., 2008). Initially, requirements prioritization was used as a search keyword on the 

Google search engine and the search results from the first three pages were analysed using the guideline 

towards the relevance of the search results (Broder, 2002). The guideline suggests the use of an 

information retrieval model that is driven by humans to distinguish relevant search results pertaining to 
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a particular topic of interest from the non-relevant ones retrieved via the search engine. This outcome 

is achieved when the retrieved results are manually analysed based on human judgements and 

understanding of each result. That is, verifying if the contents of the retrieved search results are highly 

relevant to the topic of interest by means of thorough examination of the contents. Next, using the 

navigation and information search strategies, we uncovered the three additional most frequent keywords 

(along with requirements prioritization) related to requirements prioritisation and these were; 

requirements prioritization techniques, requirements prioritization methods and requirements 

prioritization strategies. The navigational strategy assists humans in visiting the web links that point 

towards webpages that hold the relevant contents related to the topic of interest. For instance, the 

retrieved web link via search engine ‘https://ieeexplore.ieee.org/document/6615215’ contains the study 

on ‘requirements prioritisation’. In addition, the information search strategy initiated via navigation 

strategy assists in identifying the markers such as additional keywords to search for supplementary 

contents of the topic of interest. Finally, we adapted Kitchenham’s approach for utilising the shortlisted 

search keywords on knowledge databases (Kitchenham, 2007). Following the mentioned approach, we 

expressed the keywords in the form of Boolean searches and used the right combination of ‘AND’ / 

‘OR’ operators to inform accurate searches for the topic of interest. This process also helps to simplify 

the search, and reduce time. In executing our targeted searches, the following Boolean search strings 

were developed from the set of keywords that were finalized through the wider Google pilot search 

mentioned above. Thus, we developed the following Boolean search keywords from the set of 

shortlisted keywords: 

1. (‘requirements’) AND (‘prioritization’) 

2 (‘requirements’) AND (‘prioritization’) AND (‘methods’ OR ‘techniques’ OR 

‘strategies’)  

The two Boolean search keywords were developed so that the studies on requirements prioritisation 

could be extensively searched.  

We used the developed Boolean search keywords to search for studies on requirements prioritisation 

from eight recommended knowledge databases: ScienceDirect, IEEE Xplore, Springer, ACM Digital 

Library, Inspec, EI Compendex, Web of Science and Scopus (Kitchenham, 2007; Rowley & Slack, 

2004). These knowledge databases cover most of the disciplines given our objective to uncover studies 

from multiple disciplines. We had initially included Google Scholar5 as part of the knowledge database. 

However, after going through the first ten pages of the search results on Google scholar we noticed that 

even though few relevant studies that were already captured by the performed searches on the 

knowledge databases mentioned earlier were evident, there were many irrelevant studies that were 

                                                      
5 https://scholar.google.com/ 
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captured (e.g., studies in which words requirements and prioritisation appeared separately but the 

studies were not about requirements prioritisation). Thus, we removed Google Scholar from our 

knowledge database list. The searches were conducted in December 2017 and the summary of the search 

results from the knowledge databases is provided in Table 3.1. Table 3.1 shows that Scopus had the 

highest number of studies on requirements prioritisation (3,325) followed by IEEE Xplore (795), ACM 

(499), ScienceDirect (407) and Inspec (7). It was also observed that all the search results of the second 

Boolean search keywords were a subset of the first Boolean search keywords. All the results of the 

conducted search were exported to a Microsoft Excel file for further analysis.  

Table 3.1 Search results 

Knowledge 

Database 

Keywords 

 

Total 
Requirements 

Prioritisation 

Requirements 

Prioritisation 

Methods 

 

Requirements 

Prioritisation 

Techniques 

Requirements 

Prioritisation 

Strategies 

ScienceDirect 236 82 41 48 407 

IEEE Xplore 478 135 139 43 795 

Springer 35 1 0 1 37 

ACM 325 67 78 29 499 

Inspec 2 2 1 2 7 

EI 

Compendex 

6 5 2 3 16 

Web of 

Science 

118 4 16 1 139 

Scopus 1964 644 457 260 3325 

∑ 3164 940 734 387 5225 

 

After conducting the necessary searches, we followed the guidelines provided by Petersen et al. (2008) 

to develop an exclusion and inclusion criteria to filter studies. The criteria used is as follows: 

Exclusion: 

1. Study that is not available in English language. 

2. Duplicate instances of the same study. 

3. Studies which just mention the summaries. 

4. Studies that highlight only extended abstracts or proposals. 

5. Studies which are not peer-reviewed. 

Inclusion: 

1. Study in which the abstract clearly mentions requirements prioritisation and the study 

goes beyond the extended abstract. 
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2. Study that investigates the methods related to requirements prioritisation. 

3. Studies which propose and develop methods related to requirements prioritisation.  

While performing the screening of the studies, we first applied the exclusion criteria to remove the 

irrelevant and unwanted studies, and then applied the inclusion criteria to shortlist the pertinent ones. 

As all the search entries of the second Boolean search keywords were subsets of the primary Boolean 

search keywords, 2,061 studies were discarded. The remaining 3,164 were checked for duplicates and 

a total of 844 duplicate studies were detected which were then discarded. Out of the remaining entries, 

72 studies were found to be just summaries and 7 studies were not documented in English language 

along with 6 studies that had unwanted characters. With the assistance of the exclusion criteria 2,990 

studies were eliminated and the remaining 2,235 studies were subjected to inclusion criteria which 

removed 2024 unwanted studies with the final set of 211 studies left for further analysis. The 

distribution of the shortlisted studies is highlighted in Table 3.2.  

Table 3.2 Final entries from knowledge databases 

Knowledge Database 

 

Total 

 

ScienceDirect 18 

IEEE Xplore 66 

Springer 24 

ACM 12 

Web of Science 24 

Scopus 67 

∑ 211 

 

To ensure that we conducted proper filtering of the studies based on the exclusion and inclusion criteria, 

we conducted reliability assessments using Fleiss’ Kappa which is the extension of Cohen’s Kappa to 

support the independent evaluations of three or more human evaluators (Fleiss & Cohen, 1973). To 

ensure that no study was discarded or included by mistake, the mentioned reliability assessment was 

performed. Three of us (i.e., two supervisors and the PhD candidate) independently performed a 

screening of the total number of studies towards exclusion and inclusion. The convergence or 

divergence between the three was mapped to the relevant yes or no flag (i.e., study to be shortlisted or 

not) for each analysed study. The Fleiss coefficient was found to be 0.85 which indicated a near perfect 

agreement (Landis & Koch, 1977). Further discussions were held accordingly to resolve any 

disagreements and establish consensus (i.e., 100% agreement).  

3.4.1 Classification Schemes (RQ1.2 and RQ1.3)  

To answer RQ1.2 and RQ1.3 we first had to develop the relevant classification schemes related to the 

respective RQs. To develop a classification scheme to answer RQ1.2 we adapted Wieringa et al.’s 
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(2005) classification guidelines which were developed to classify studies based on the approaches6 

presented in the studies on requirements engineering. The authors state that the studies reflect 

approaches such as Proposal of Solution, Validation Research, Evaluation Research, Philosophical, 

Opinion or Experience, and hence the studies can be classified into the relevant research approach. The 

authors also mention that studies may cover multiple approaches. For requirements prioritisation studies 

we merged Opinion and Philosophical approaches to form a new approach Opinion/Philosophical as 

some of the shortlisted studies provided views or opinions of the authors, reports or surveys pertaining 

to requirements prioritisation. Secondary Evaluation/Categorisation was created as some of the studies 

revealed that there were a number of secondary studies. The three approaches Proposal of Solution, 

Validation Research and Evaluated Research were redefined into Proposed Solution, Simulated 

Solution and Evaluated Solution. Proposed Solution highlights studies that present requirements 

prioritisation solutions proposed by authors and these solutions are yet to be evaluated. Simulated 

Solution highlights studies that provide solutions to the requirements prioritisation problems that were 

evaluated only at experimental level, whereas Evaluated Solution highlights the studies that provide 

solutions which were empirically evaluated. The retained Experience approach presents the studies 

which describe the authors experience regarding utilised requirements prioritisation methods. The 

classification scheme for approaches followed in requirements prioritisation studies is presented in 

Table 3.3. The final list of approaches that are developed for classifying approaches is listed in the first 

column, the description of the approaches is provided in the second column followed by the suitable 

example in the third column.  

Similarly, to answer RQ1.3 we first developed a classification scheme for classifying contributions 

provided by the researchers working on requirements prioritisation. Petersen et al. (2008) have provided 

a set of guidelines to classify studies according to the contributions provided by those studies. Following 

these guidelines and reviewing each shortlisted study we came up with six types of contributions; 

Taxonomy, Single Method, Multiple Methods, Hybrid Method, Tool and Process. The majority of the 

shortlisted studies covered most of the contributions, however, few studies did not provide any type of 

contribution. Hence, we assessed the six types of contributions against those provided by other studies. 

Lehtola (2017) have used a manually derived framework to classify the type of contributions into 

Activities, Techniques, Methods and Process. After cross checking our six types of contributions with 

those developed by these authors, we noticed that Methods and Process were covered with Technique 

being an abstraction of Method. Activities was found to be granular for adaption (i.e., activities was 

found to be a subset of Taxonomy or Process), and hence was discarded. Next, we cross checked the 

six types of contributions against those developed by Pergher and Rossi (2013) and noted that the 

authors have Framework as a type of contribution, however, this type of contribution was already 

                                                      
6 Type of approach followed by authors for conducting research such as evaluated solution or proposed solution.  
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captured under our Taxonomy type of contribution, and hence, we did not include this as a separate 

type of contribution. Studies that did not provide any type of contribution were classified as Others. 

Table 3.3 Classification scheme for evaluating research approaches 

Approach Description Example 

 

Proposed Solution For solving a requirements prioritisation 

problem, a particular solution is 

proposed in the study which could be 

existing or new, however, the solution is 

not practically implemented and 

evaluated. 

Cleland-Huang and Mobasher 

(2008) proposed a new solution 

that is built on data mining and 

recommender systems concepts. 

Simulated Solution Similar to proposed solution mentioned 

above, however, simulated solution is 

validated only at the experimental level 

mostly in the form of a solved example 

or simulation. 

Shao (2008) have presented the 

simulation results of a proposed 

requirements prioritisation 

method.   

Evaluated Solution Study presents a developed empirical 

solution to solve a requirements 

prioritisation problem which may be 

already existing or new.  

Carod and Cechich  (2010) 

provide an empirical 

requirements prioritisation 

solution that is thoroughly 

evaluated beyond the 

experimental level.  

Opinion/Philosophy A study that presents concepts, opinions, 

ideas or views expressed by the surveyed 

participants or authors. 

Babar et al.  (2011) provide their 

opinions on the different 

challenges and future trends in 

requirements prioritisation. 

Secondary 

Evaluation/ 

Categorisation 

Studies present a literature review or 

systematic mapping study on 

requirements prioritisation. 

Achimugu et al.  (2014b) provide 

a systematic literature review of 

studies on requirements 

prioritisation from the software 

engineering discipline. 

Experience Studies that highlight authors’ 

experience regarding the application of 

requirements prioritisation method(s) on 

a requirements prioritisation problem.  

Berander and Svahnberg  (2009) 

have experimented with HCV and 

have worked on different ways 

towards generating the priorities 

of requirements. 

 

Table 3.4 highlights the type of contributions, provides the description of these contributions and 

mentions an appropriate example of the same. The final list of contributions that are developed for 

classifying contributions is listed in the first column, the description of the contributions is provided in 

the second column followed by the suitable example in the third column.   
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Table 3.4 Classification scheme for evaluating research contributions 

Contribution Description Example 

Taxonomy  Studies that provide a taxonomy 

describing methods, challenges, future 

trends and so on.  

Babar et al. (2011) described the 

limitations of the requirements 

prioritisation methods and pointed 

towards the need for an automated 

requirements prioritisation that could 

process numerous requirements.  

Single 

Method 

Study that presents a single method to 

perform prioritisation of requirements.  

Sadiq et al. (2009)  used AHP to prioritise 

a small set of requirements.  

Multiple 

Methods 

Two or more requirements 

prioritisation methods are presented in a 

study 

Felfernig and Ninaus (2012)  have 

evaluated multiple heuristic methods 

(least distance, standard deviation, 

random selection, average value, median 

based, majority voting and ensemble) to 

prioritise requirements.  

Hybrid 

Method 

A study presents a hybrid method that 

combines and synthesises aspects (e.g., 

prioritisation mechanism) from two or 

more methods.  

Abou-Elseoud et al. (2016) developed a 

hybrid requirements prioritisation 

method that combines decision matrix 

method with CV method.  

Tool Tool based contributions represent 

software artefacts or prototypes that 

prioritise a given set of requirements. 

The tool can be in the form of an app, 

website and so on.   

Ryan and Karlsson (1997) have 

implemented a prototype requirements 

prioritisation tool for the Ericson Radio 

Systems.  

Process Studies provide an elaborate description 

of the various steps involved in the 

prioritisation of requirements. These 

steps could be planning and executing 

the activities related to requirements 

prioritisation, participation of 

stakeholders and product teams in those 

activities and the evaluation of the 

outcomes associated with those 

activities.  

Lehtola and Kauppinen  (2006) have 

documented all the practices and their 

associated challenges while carrying out 

the prioritisation of requirements in a 

software company. The authors initially 

gather information on requirements from 

the participants of different companies 

and later evaluated the outcome of the 

conducted requirements prioritisation 

process.   

Others Studies did not provide any type of the 

above-mentioned contributions. 

Forouzani et al. (2012) developed a tool 

that provides teaching regarding 

requirements prioritisation and not an 

actual tool to prioritise requirements.  

 

It is to be noted that there is no specific methodology associated with RQ 1.1, RQ1.4, RQ1.5 and RQ1.6, 

as answering these would require reviewing the studies individually and noting the findings, and later 

performing reliability assessments to validate those findings. For instance, RQ1.1 deals with identifying 

the number of studies on requirements prioritisation published each year, the different publication 

venues where the studies were published and the different disciplines the studies belonged to. 

Answering such research question would require a manual review of each study to identify its year of 

publication, the study’s publication venue and discipline of the study. For answering RQ 1.4, each study 

needs to be reviewed to identify the requirements prioritisation methods examined in the study. 
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Similarly, for answering RQ 1.5, each empirical study out of those which were shortlisted as an outcome 

of the systematic mapping study on requirements prioritisation needs to be reviewed to identify the 

dimensions that were evaluated for requirements prioritisation method. The analysis of the outcome 

achieved through means of RQ1.5 would finally assist us to answer RQ1.6.       

While developing the classification schemes to answer RQ1.2 and RQ1.3, the two supervisors and PhD 

candidate performed reliability assessments where each one of us independently assessed the shortlisted 

211 studies to manually classify each study into the particular approach or contribution of the above-

mentioned classification schemes. That said, Fleiss coefficients 0.78 and 0.82 were returned 

respectively indicating substantial agreement and a near perfect agreement (Landis & Koch, 1977). 

Follow up discussions were held among us to resolve any disagreements and establish consensus (100% 

agreement) to answer RQ1.2 and RQ1.3.   

We repeated the same reliability assessment procedure after answering the remaining RQs (i.e., to 

validate the authenticity of the generated results) where the respective outcomes answering RQ1.1, 

RQ1.4, RQ1.5 and RQ1.6 from the 211 studies were subjected to reliability assessments. We noted a 

Fleiss coefficient of 0.83 indicating a near perfect agreement (Landis & Koch, 1977). Follow up 

discussions were held accordingly to resolve any disagreements and establish consensus to achieve 

100% agreement after performing all the reliability assessments.  

That said, the full list of the shortlisted studies from which the necessary information was extracted for 

answering RQ1.1 to RQ1.6 is made available in the Appendices (refer to section A). The results from 

answering RQ1.1 to RQ1.6 are presented in section below. 

3.5 Results  

In this section, we report the results of the systematic mapping study on requirements prioritisation. 

These findings provide insights on the research interest, publication venues and disciplines pertaining 

to requirements prioritisation (RQ1.1), the approaches followed by researchers to conduct research on 

requirements prioritisation (RQ1.2), the different types of contributions provided by the researchers 

towards requirements prioritisation (RQ1.3), the various proposed requirements prioritisation methods 

(RQ1.4), the distinct dimensions evaluated in empirical requirements prioritisation studies by 

researchers (RQ1.5) and the requirements prioritisation performance outcomes reported in empirical 

studies and the relationship between the identified attributes and those outcomes (RQ1.6). In addition,  

these results also provide triangulations for RQ1. 

3.5.1 Interest, Publication Venues and Disciplines (RQ1.1) 

Figure 6 provides a summary of the requirements prioritisation studies that were published over the past 

years. Out of the shortlisted 211 studies, the first study appeared in 1993 and in the subsequent years 
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the publication of at least one paper up to 1998 is observed. As no studies were published between 1999 

and 2003, a reduced interest in requirements prioritisation research can be concluded. On the contrary, 

there has been an increase in publications on requirements prioritisation since 2004, with 2017 showing 

the highest number of studies published.  

 

Figure 6. Requirements prioritisation publications summary over the past years 

Next, we report the venues targeted by researchers for publishing the studies on requirements 

prioritisation. From Figure 7 it is evident that majority of the studies were published in conferences 

(48.8% or 103 studies), followed by journals (35.5% or 75 studies). Of the total studies, 16 studies were 

published in workshops (7.6%), 9 were published as book chapters (4.3%), 7 were published in 

symposiums (3.3%) and 1 was published in a world forum.    

 

Figure 7. Requirements prioritisation publication venues 

Next, we examine the disciplines for the publications on requirements prioritisation in Figure 8. Figure 

8 shows that the majority of the studies were from the software engineering discipline (82.9% or 175 

studies), and 22 studies (10.4%) were from the product manufacturing discipline. The remaining studies 
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were from education (5 studies), finance (4 studies), real estate (3 studies), law (1 study) and transport 

(1 study) disciplines respectively.   

 

Figure 8. Requirements prioritisation publication disciplines 

To gain further insights into the disciplines and publication venues, we plot a bubble chart as shown in 

Figure 9. Such type of visualisation is common in systematic mapping studies as it helps to analyse the 

findings from multiple facets (Petersen et al., 2008). We have utilised such visualisations in the 

remaining sections of the systematic mapping study on requirements prioritisation. Figure 9 shows that 

software engineering discipline had the highest number of studies published in conferences, journals, 

workshops, book chapters and symposiums in comparison to product manufacturing (175 versus 36 

studies) and other disciplines. Although few studies were published across the other disciplines, we can 

observe a similar pattern for education, finance, and real estate disciplines in Figure 9.   
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Figure 9. Requirements prioritisation publication disciplines and venues 

3.5.2 Requirements Prioritisation Approaches (RQ1.2) 

We report the approaches provided in the 211 studies on requirements prioritisation and plot a summary 

of it in Figure 10. Figure 10 shows that 91 studies (43.1%) proposed and empirically evaluated a 

requirements prioritisation solution, 32 studies (15.2%) proposed a requirements prioritisation solution 

but the solution was not evaluated, 31 (14.7%) studies highlighted authors’ experience with 

requirements prioritisation, 28 (13.3%) studies presented a simulated solution, 17 studies (8.1%) were 

found to be secondary evaluation or categorisation, and 13 studies (6.2%) stated authors’ 

opinion/philosophy. Overall, the number of studies reported in Figure 10 add up to 212 as one study 

provided experiences as well as a proposed solution. 
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Figure 10. Requirements prioritisation approaches 

Next, we plotted approaches across the various disciplines in Figure 11, where it can be observed that 

of all the approaches followed in the software engineering discipline, evaluated solutions were provided 

by a large number of studies (37.1% or 65 studies). The higher number of studies reflecting evaluated 

solution were also observed in cases of product manufacturing, education, law and real estate 

disciplines. Interestingly, it is to be noted that only software engineering discipline has reviewed the 

secondary evaluation/categorisation studies. However, such studies were not undertaken in other 

disciplines. In Figure 11, studies classified into various approaches under the software engineering 

discipline add up to 176 (instead of 175), since one study provided experiences as well as a proposed 

solution. 
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Figure 11. Requirements prioritisation publication disciplines and approaches 

3.5.3 Requirements Prioritisation Contributions (RQ1.3) 

We visualise the requirements prioritisation contributions provided by researchers in Figure 12. From 

Figure 12 it can be observed that most studies contributed a single method (32.7% or 69 studies), 

followed by 58 studies (27.5%) contributing hybrid methods. Researchers also experimented with 

multiple methods (17.5% or 37 studies) and developed taxonomies (12.8% or 27 studies). Other 

contributions were provided in the form of processes (7.1% or 15 studies), tools (4.7% or 10 studies), 

and 5 studies (2.4%) were classified under the ‘Other’ category. Some studies were classified under 

multiple contributions, and hence, a total of 221 studies (instead of 211) is observed in Figure 12. For 

instance, while 52 studies were classified under hybrid method, 6 were classified under hybrid method 

as well as multiple methods, resulting in 58 studies being classified under hybrid method. A similar 

pattern was observed for the other types of contributions.  
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Figure 12. Requirements prioritisation contributions 

Next, we plot the contributions against the approaches in Figure 13. From Figure 13 it can be observed 

that the single and hybrid method contributions are dominant, with frequent classification being 

evaluated and proposed solution. Additionally, a convergence between taxonomy contribution and 

secondary evaluation/categorisation, opinion/philosophy is observed. This is because, most papers have 

conducted secondary evaluation, have proposed a taxonomy (14 out of 17). In addition, papers that 

belong to opinion/philosophy, proposed a taxonomy (9 out of 13). The tools on requirements 

prioritisation were largely evaluated by researchers. The number of studies in Figure 13 add up to 223 

(instead of 211) due to multiple classifications. For instance, one study was classified as proposed 

solution and experience when being reviewed to answer RQ1.2 that emphasised on requirements 

prioritisation approaches and the same study was also classified under taxonomy and single method 

when reviewed in terms of requirements prioritisation contributions to answer RQ1.3. 
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Figure 13. Requirements prioritisation publication approaches and contributions 

3.5.4 Requirements Prioritisation Methods (RQ1.4) 

We identified 157 different requirements prioritisation methods from the 211 shortlisted studies, with 

90 of these methods researched only once and 31 methods were researched two times. The remaining 

37 methods were researched three or more times. We show the top 10 frequently utilised requirements 

prioritisation methods in Figure 14 where it is observed that Analytical Hierarchical Process (42 

studies), Cumulative Voting (13 studies) and Quality Function Deployment (12 studies) were most 

frequently researched. Specifically, AHP was researched across all the disciplines with contributions 

ranging from hybrid method to tools as observed from Figure 15. From Figure 15 it is evident that many 

methods were presented in different taxonomy studies and researchers frequently researched multiple 

methods but often did not merge multiple methods into a hybrid method.  
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Figure 14. Top 10 requirements prioritisation methods 

 

Figure 15. Requirements prioritisation methods and contributions 

The full list of the requirements prioritisation methods has been made available in the Appendices (refer 

to section E).  
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3.5.5 Dimensions of evaluated requirement prioritisation solutions (RQ1.5) 

To answer RQ1.5 we reviewed the 91 studies that presented an empirically evaluated solution. Out of 

the 91 studies, we noticed that 15 studies were the extended versions of their previous studies. For 

instance, Carod and Cechich (2010) have published the extended version of a previous study with 

additional contents such as literature, methodology, experimental results and discussions. Such 

predecessor studies were excluded from further review. The remaining 76 studies were thoroughly 

reviewed and it was observed that the solutions provided by the empirical studies were evaluated along 

eight dimensions; operational demonstration, accuracy, stakeholders preferences, scalability, time, 

requirements dependencies, requirements updates and computational complexity. Table 3.5 explains 

the identified dimensions with the support of a relevant example.  

Table 3.5 Requirements prioritisation evaluated dimensions 

Dimension Description Example 

Operational 

demonstration 

Requirements prioritisation method is 

applied to a set of requirements and 

only a list of prioritised requirements 

is returned as an outcome with no 

specific measure reported. 

Popli et al. (2014) have proposed a 

requirements prioritisation method that 

prioritises a small set of user stores of an 

online Quiz system.  

Accuracy Requirements prioritisation method is 

applied to a set of requirements and its 

accuracy is reported (i.e., correct vs 

incorrect priorities of the 

requirements) 

Bebensee et al. (2010) have reported that 

Binary priority list method was 70.0% 

accurate in prioritising 114 requirements 

while Wieger’s method exhibited 45.0% 

accuracy while prioritising the same set 

of requirements.   

Time Requirements prioritisation method is 

utilised and the time required by the 

method to perform prioritisation is 

reported.  

Nidhra et al. (2012) have reported the 

time required by NAcAHP and AHP to 

prioritise 40 requirements.  

Stakeholders’ 

preferences 

Requirements prioritisation method is 

able to accommodate stakeholders’ 

preferences (i.e., requirements’ 

priorities assigned by each 

stakeholder) when utilised for 

prioritisation.  

Zhaoling et al. (2009) proposed a 

requirements prioritisation method that 

is able to accommodate stakeholders’ 

preferences and resolve any conflicts 

pertaining to those preferences when 

prioritising 4 requirements from 7 

stakeholders.  

Requirements 

dependencies 

Requirements prioritisation method is 

able to discover dependencies among 

the requirements and utilise the 

knowledge of dependencies for 

prioritisation.  

Yutao Ma et al. (2012) have identified 

dependencies among requirements and 

represented them in the form of a 

network graph to filter insignificant 

requirements and optimise the 

prioritisation process. 

Requirements 

updates 

The requirements prioritisation 

method is capable of dynamically 

updating the priorities of the same set 

of requirements over time based on 

certain changing conditions (e.g., 

business value of the requirements).  

Peng et al.  (2012) have demonstrated 

that in a cohort of 1878 requirements, the 

updated priorities of the same set of 

requirement groups were captured which 

informed the undertaken requirements 

prioritisation process.  
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Dimension Description Example 

Scalability Requirements prioritisation method is 

capable of handling and prioritising an 

increasing number of requirements.  

Elsood et al. (2014) have determined the 

scalability of two requirements 

prioritisation methods while prioritising 

7 requirements using the particular 

method’s operational cycle.  

Computational 

Complexity 

Requirements prioritisation method 

aims to investigate or attempts to 

optimise the utilisation of system 

resources (e.g., memory) 

Voola and Babu (2017) have utilised the 

Big - O notation to investigate the 

computational complexity of three 

requirements prioritisation methods 

while prioritising 15 requirements.   

 

Next, we analyse the number of studies in which requirements prioritisation methods were empirically 

evaluated using the above-mentioned dimensions in Figure 16. It is observed that the majority of the 

studies provided operational demonstrations (67.1% or 51 studies). Accuracy was found to be another 

popular dimension used for evaluation (26.7% or 19 studies) followed by stakeholders’ preferences and 

time (17 and 13 studies respectively). The remaining studies (31.5% or 24 studies) evaluated 

requirements updates, scalability, requirements dependencies and computational complexity. The 

number of studies reported in Figure 16 add up to 124 (instead of 76) as certain studies utilised multiple 

dimensions.  

 

Figure 16. Requirements prioritisation dimensions 

Next, we examine how these identified dimensions evaluated by the researchers conducting research 

on requirements prioritisation are distributed across the empirically evaluated studies and how they are 

linked. Figure 17 shows an undirected network graph where each node in the graph represents a 

dimension. The node CC indicates computational complexity, OD indicates operational demonstration, 

SI indicates stakeholders’ preferences, ACC indicates accuracy, T indicates time, RD indicates 

requirements dependencies, RU indicates requirements updates and SCA indicates scalability. These 

dimensions are connected by a set of links and the weights on the links represent the number of studies 
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that contain the two connecting dimensions. The weights on self-looping links indicate the number of 

studies solely focusing on one particular dimension. In Figure 17 we can observe a wide spread of 

dimensions, where the spread of certain connected dimensions is dense while for others it is sparse. As 

observed from Figure 17, 33 studies solely focused on operational demonstration of a particular 

requirements prioritisation method, five studies worked towards the handling of stakeholders’ 

preferences, four studies focused solely on accuracy and one study exclusively investigated the 

scalability dimension. Other remaining studies have evaluated multiple dimensions. 

 

Figure 17. Representation of dimensions based on their occurrence in empirical studies 

3.5.6 Performance Outcomes and Relationship between Attributes and Outcomes 

(RQ1.6)  

Out of the eight dimensions reported in sub-section 3.5.5, accuracy was utilised to evaluate the 

correctness of a requirements prioritisation method to benchmark its performance. We report the studies 

that reported outcomes based on accuracy dimension in Table 3.6 wherein we report the number of 

requirements prioritised by the particular requirements prioritisation method along with the criteria (i.e., 

ground truth) used to validate the accuracy of the requirements prioritisation method and the assessment 

procedure used to evaluate the accuracy. It can be observed that accuracy was found to be in the range 

of 16% to 99% with varying number of requirements and the majority of the requirements prioritisation 

methods were evaluated for accuracy using the stakeholders’ preferences as the ground truth.    
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Table 3.6 Requirements prioritisation accuracy dimension outcomes 

Study Number of 

requirements 

Criteria Assessment Method Result  

(%) 

Asghar et al. 

(2013) 

36 Stakeholders’ 

preferences 

Predicted 

priority vs 

actual priority 

Maintainability 

Based Approach 

16.7 

Chopra et al. 

(2016) 

103 Dataset 

consisting of 

prioritised 

requirements 

Predicted 

priority vs 

actual priority 

AHP - A1 

AHP - A2 

AHP - A3 

35.0 

68.0 

90.0 

Bebensee et 

al. (2010) 

114 Stakeholders’ 

preferences 

Predicted 

priority vs 

actual priority 

BPL 

Weiger 

70.0 

45.0 

Achimugu et 

al. (2016) 

1820 Stakeholders’ 

preferences 

Predicted 

priority vs 

actual priority 

ReproTizer 98.9 

Gärtner and  

Schneider 

(2012) 

8 Stakeholders’ 

preferences 

Predicted 

priority vs 

actual priority 

ConTexter 87.5 

McZara et al. 

(2015) 

100 Stakeholders’ 

preferences 

Predicted 

priority vs 

actual priority 

WSM 

SNIPR 

74.9 

82.0 

Kukreja et 

al. (2012) 

31 Stakeholders’ 

preferences 

Predicted 

priority vs 

actual priority 

TOPSIS 85.0 

Laurent et al. 

(2007) 

202 List of prioritised 

requirements  

List of 

prioritised 

requirements 

Automated 

Requirements 

Triage 

82.2 

 

Next, we report our findings related to the stakeholders’ preferences dimension that was evaluated by 

nine studies as shown in Table 3.7, where four studies resolved uncertain stakeholders’ preferences 

along with the conflicting ones, three studies resolved only uncertain stakeholders’ preferences and two 

provided a solution to resolve conflicting stakeholders’ preferences.    

Table 3.7 Requirements prioritisation stakeholders' preferences dimension outcomes 

Study Number of 

requirements 

Number of 

stakeholders 

Method Resolve 

uncertain 

preferences 

Resolve 

conflicting 

preferences 

Bajaj and 

Arora (2013) 

3 3 Fuzzy alpha 

cut 

0 1 

Zhaoling et 

al. (2009) 

4 7 Grey and 

weighted 

average 

method 

1 1 

Achimugu et 

al. (2014) 

262 76 Metric 

distance 

0 1 

Achimugu, 

et al.  2014a) 

4 9 Fuzzy logic 1 0 
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Study Number of 

requirements 

Number of 

stakeholders 

Method Resolve 

uncertain 

preferences 

Resolve 

conflicting 

preferences 

McZara et 

al. (2015) 

100 45 AHP 1 1 

Philip 

Achimugu 

(2014) 

4 4 Fuzzy logic 1 1 

Chen and Yu 

(2014) 

4 5 Fuzzy logic 

and game 

theory 

1 0 

Xuemei et 

al. (2008) 

5 5 Fuzzy 

weighted 

1 1 

Voola and 

Babu (2013) 

20 8 Uncertainty 

modelling 

1 0 

(Legend: 0 - absent, 1 - present) 

Requirements dependency dimension was evaluated by studies mentioned in Table 3.8 where it is 

observed that majority of the requirements prioritisation methods utilise a graph-based approach to 

uncover the dependencies that exist among the requirements. However, these studies have not provided 

any specific evaluation outcomes.   

Table 3.8 Requirements prioritisation requirements dependency dimension 

Study Number of 

requirements 

Method Prioritisation Dependency 

type 

Peng et al. 

(2012) 

1878 Ontology modelling X 1 

Delia Ilie et 

al. (2009) 

52 Cross linking degree Y 1 

Atukorala et 

al. (2016) 

18 Situation transition framework Y 1 

Sharma 

(2007) 

10 Integration of requirements 

weights with correlation triangle 

values (QFD method specific 

only) 

Y 0 

Thakurta 

(2013) 

7 Hierarchical structure Y 1 

Yutao Ma et 

al. (2012) 

34 Network analysis Y 1 

Sureka 

(2014) 

100 Value analysis Y 1 

(Legend: Y - Individual, X - Group-based; 1 - Graph, 0 - Matrix) 

Next, we report the studies that investigated the time dimension in Table 3.9. Researchers have 

benchmarked the performance of the particular requirements prioritisation method by noting the time 

required by the method to prioritise a given set of requirements. Table 3.9 indicates the particular 

requirements prioritisation method that was evaluated in the study along with the measure of time 

utilised by the method to prioritise a given set of requirements. For simplicity of understanding, we 
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provide an additional column indicating the number of requirements prioritised per minute by the 

particular method. ReproTizer, SMT and IGA were found to be the top three best performing 

requirements prioritisation methods with regards to the time dimension.    

Table 3.9 Requirements prioritisation time dimension outcomes 

Study Number of 

requirements 

Measurement Method Metric 

(minutes) 

Requirements 

prioritised per 

minute 

Voola and 

Babu (2013) 

20 Average time 

(minutes) 

NA 

AHP 

ENA 

11.0 

36.0 

7.0 

1.8 

0.6 

2.9 

Bebensee et 

al. (2010) 

114 Average time 

(minutes) 

BPL 

Weiger 

25.0 

87.5 

4.6 

1.3 

Achimugu et 

al. (2016) 

1820 Average time 

(milliseconds) 

ReproTizer 0.3 7280.0 

Misaghian 

and Motameni 

(2016) 

11 Average time 

(seconds) 

Tensor 

AHP 

5.7 

311.0 

2.0 

<0.1 

McZara et al. 

(2015) 

100 Average time 

(minutes) 

SNIPR 

WSM 

41.4 

51.3 

2.4 

2.0 

Yutao Ma et 

al. (2012) 

34 Total time 

(minutes) 

Hybrid 

AHP 

Bubblesort 

82.0 

2083.0 

1074.0 

0.4 

<0.1 

<0.1 

Nidhra et al. 

(2012) 

40 Average time 

(minutes) 

AHP 

NAcAHP 

326.5 

272.3 

0.1 

0.2 

Palma et al. 

(2011) 

109 Average time 

(minutes) 

SMT 

IGA 

IAHP 

0.8 

0.8 

14.2 

145.3 

132.9 

7.7 

 

It is to be noted that the information presented in Tables 3.6 - 3.9 is a summary of the relevant data 

presented in the studies mentioned in the respective tables. As the studies mentioned in the specific 

table (e.g., Table 3.9) follow different experimental settings (e.g., research methodology, data for 

experimentation or validation criteria and procedures) we are not performing any comparison analysis.   

Furthermore, two noteworthy studies focused on the requirements updates dimension. Asghar et al.  

(2013) observed that their proposed requirements prioritisation method was capable of generating 

updated priorities of the same set of requirements according to the evolving software architecture of the 

system. Achimugu et al. (2016) have developed ‘ReproTizer’ which computes new priorities of 

requirements when a particular requirement or a stakeholder’s preference is excluded from or included 

in the system.  

Next, we observed that three studies investigated the scalability dimension of a particular requirements 

prioritisation method. Nidhra et al. (2012) have compared the scalability of NAcAHP with AHP and 

found out that the former method was more scalable than the later one as it reduced the time complexity 
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involved in performing pairwise comparisons. Achimugu et al. (2016) proposed requirements 

prioritisation method is claimed to accommodate new requirements at runtime. Elsood et al. (2014) 

through the means of operational cycles (i.e., number of iterations required for prioritising 

requirements) found out that their proposed goal based requirements prioritisation method was more 

scalable than AHP.  

With regards to the computational complexity dimension, Bajaj and Arora  (2013) have utilised the Big 

- O notation to investigate the computational complexity of the different stages of their proposed 

requirements prioritisation method. Thakurta  (2013) through means of Big-O notation found out that 

AHP suffered from scalability issues as the number of requirements to prioritise increased whereas their 

proposed requirements prioritisation method (i.e., quantitative framework) was found to be linear.       

Finally, we report the findings related to the relationship between the attributes and performance 

outcomes. Due to the subjective nature of some of the evaluations performed by the researchers (e.g., 

scalability) and the few studies under certain dimensions (e.g., requirements updates), we were able to 

include only two dimensions (i.e., accuracy and time) in the statistical significance analysis. We 

performed the Spearman correlation test to examine the relationship between the number of 

requirements and the accuracy of the requirements prioritisation method (refer to Table 3.6) as we had 

the appropriate number of studies from accuracy and time dimensions to perform the test (Myers & 

Sirois, 2004). The correlation coefficient was found to be 0.1 (p-value < 0.05) indicating that the 

accuracy of the requirements prioritisation methods increased as the number of requirements to 

prioritise increased. It is to be noted that the correlation reported is weak but it is statistically significant. 

Next, we examined the correlation between the number of requirements and the time taken by the 

requirements prioritisation methods to prioritise requirements. We recorded a weak statistically 

significant correlation coefficient of -0.27 indicating an inverse relationship (i.e., time required for 

prioritisation decreased with the increase in number of requirements). In addition, on average, 

requirements prioritisation methods researched in education discipline required less time to prioritise 

requirements than the methods from the software engineering and product manufacturing disciplines 

(average time: education = 18 minutes, software engineering = 303 minutes and product manufacturing 

= 158 minutes).           

We discuss the results of the undertaken systematic mapping study on requirements prioritisation and 

the considerations of their implications for theory and practice in the Discussion section (refer to section 

3.7). In the next section, we present the remaining overarching RQs.  
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3.6 Remaining Overarching RQs 

We present the remaining overarching RQs of the subsequent phases (i.e., 2-4) in this sub-section as 

these phases are inspired and influenced from the outcomes of the systematic mapping study. We 

provide a detailed elaboration of the motivation for the same in this sub-section.  

As not all the reviews of an app logged by its end-users on app distribution platforms are useful reviews, 

we had to investigate a filtering approach that identified and extracted useful reviews to prevent the 

performance (i.e., accuracy and time) of the particular prioritisation method from being hampered by 

the presence of non-useful reviews (Achimugu et al., 2014b; Maalej et al., 2016a; Panichella et al., 

2015). The filtering approach came into consideration and the idea towards a filtering approach was 

inspired by several requirements elicitation methods and the requirements prioritisation method 

proposed by Peng et al. (2012) that acted upon a set of elicited requirements made available by domain 

experts and such methods suggested the avoidance of information that did not reflect stakeholders 

requirements to generate reliable prioritisation results (Garg et al., 2017; Thew & Sutcliffe, 2017; 

Zowghi & Coulin, 2005). Moreover, app developers are always on the lookout for efficient and 

automated information retrieval approaches that are able to filter (or extract) useful reviews logged 

about their apps given the vast amount of reviews that are provided online (Maalej et al., 2016a). The 

knowledge obtained from the useful reviews significantly assists the app developers in their software 

quality evaluations, and software maintenance and evolution cycles (Ghose & Ipeirotis, 2011; Maalej 

et al., 2016a). However, as online apps distribution platforms hold numerous reviews which are open 

to public access, manually extracting these useful reviews from a vast pool of numerous reviews is 

potentially challenging as it would be an error-prone and arduous task for the app developers. Such 

situation demands a reliable approach to filter useful reviews.  This leads towards the next RQ which is  

RQ2. How can useful reviews be filtered? 

The objective of RQ2 is to identify an approach that will allow us to filter useful reviews for 

classification or prioritisation purpose. After developing a filtering approach to distinguish useful 

reviews from non-useful ones and extract the useful reviews from a vast pool of reviews, we had to 

develop a method that could prioritise the numerous useful reviews for remedial actions to support the 

app’s maintenance and evolution cycles. Among the empirical studies reviewed during the systematic 

mapping study of requirements prioritisation, the requirements prioritisation method proposed by Peng 

et al.  (2012) targeted the highest number of requirements (i.e., total - 1878) for prioritisation, and thus 

assured its scalability. Scalability is of prime importance in this study as the prioritisation of numerous 

useful reviews is the aim of the work. Moreover, the authors’ requirements prioritisation method was a 

hybrid method i.e., it combined several methods for requirements prioritisation purpose and through 

means of the systematic mapping study on requirements prioritisation we observed that researchers 
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often developed hybrid methods as these methods have shown more promise towards generating 

reliable and efficient requirements prioritisation solutions than the other types of methods (i.e., single 

methods or multiple methods) (Abou-Elseoud et al., 2016; Achimugu & Selamat, 2015; Santos et al., 

2016; Yutao Ma et al., 2012). This proposed hybrid method initially classified a set of elicited 

requirements into manually predefined groups of interest using the domain knowledge made available 

by domain experts. Later, using a combination of methods such as SemanticVOC, Domain Semantic 

Model, SELRank algorithm and a query processing module along with the priority preferences of the 

stakeholders, the method generated the priorities of the predefined groups of interest. This method 

provided us the inspiration (i.e., following the steps of this method) to come up with the three steps in 

our proposed prioritisation approach i.e., filtering useful reviews (Phase 2), classification of the useful 

reviews into groups of interest (Phase 3) and prioritisation of useful reviews and the groups using a 

hybrid method (Phase 4). However, all the empirical studies identified and reviewed via the systematic 

mapping study presented requirements prioritisation methods whose designs and developments were 

based on the availability of domain knowledge or priority preferences of the stakeholders. For instance, 

Ninaus (2012) utilised a specific heuristic method which with the support of varied priority preferences 

of the stakeholders operated on the same set of requirements to generate compatible priorities of the 

requirements (i.e., converting the dissimilar priority preferences into universal requirements’ priorities). 

Franceschini et al. (2015) have used domain knowledge made available from domain experts to develop 

and accordingly customise QFD method for prioritising the requirements of a pencil product, trekking 

products and office products based on the priority preferences of the stakeholders. Hence, for 

prioritising useful reviews we cannot directly adapt such methods or inherit guidelines from them to 

develop our hybrid prioritisation method because: 1) millions of apps hosted on app distribution 

platforms belong to a wide spectrum of domains (e.g., games, entertainment, education, tools, 

communication, music, shopping, travel and so on), hence it is not practically possible to contact the 

app developers (i.e., domain experts) of these apps to gather and store the boundless domain knowledge 

required for prioritisation (or classification). 2) Moreover, it is practically impossible to request the 

priority preferences on useful reviews from the countless and geographically scattered end-users (i.e., 

presiding stakeholders) of the apps (Pagano & Maalej, 2013; Sorbo et al., 2016). In addition, it would 

be a challenging and intricate task to handle any missing priority preferences or resolve any conflicts 

related to different priority preferences on the same set of useful reviews to achieve consensus. 

Furthermore, the application of requirements prioritisation methods is confined to requirements whereas 

useful reviews are an extension of requirements as they contain bugs or enhancements along with the 

requests for features logged by the end-users (Maalej et al., 2016a; Panichella et al., 2015).Therefore, 

these reasons point towards the development of an automated prioritisation method that is not dependent 

on the availability of domain knowledge and is independent of the priority preferences of the end-users 

(i.e., end-users who are not available to provide priority preferences).  
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Before suitable prioritisation methods can be developed, we had to figure out an approach to 

automatically classify useful reviews into specific groups of interest as we had taken inspiration from 

the requirements prioritisation method proposed by Peng et al. (2012) which initially classified 

requirements into predefined groups of interest based on domain knowledge made available by domain 

experts. This leads to the RQ which is 

RQ3. How can the useful reviews be classified into groups of interest? 

After achieving the outcome of classifying useful reviews into specific groups of interests, our final 

objective was to prioritise the useful reviews and their associated groups which leads towards the final 

RQ of this study, that is  

RQ4. How can an automated prioritisation method be developed to prioritise numerous useful reviews? 

It is to be noted that the requirements prioritisation method proposed by Peng et al. (2012) generates 

only the priorities of the predefined groups based on the priority preferences of the individual 

requirements assigned by the stakeholders whereas in our study we have proposed to automatically 

generate the priorities of the useful reviews as well as the groups in which the useful reviews are 

classified into (i.e., our work proposes two prioritisation methods – one for grouped useful reviews and 

the other for individual useful reviews).  

That said, it is to be noted that considering the prime objective of this undertaken research is the 

prioritisation of numerous useful reviews, we followed the pilot study approach in the relevant phases 

of this research as a pilot study allows to perform preliminary investigations and experiments which 

aim to validate the feasibility of a proposed approach (e.g., approach to filter useful reviews, classify 

useful reviews based on an automatically generated taxonomy, and so on) and steers the research in the 

right direction through the outcomes of the pilot studies while optimising the utilisation of scarce 

resources (e.g., time, human evaluators, research funds, and so on) associated with the undertaken 

research (Allan et al., 1998; Thabane et al., 2010). Thus, the primary objective of these pilot studies 

was to examine the feasibility of the proposed approaches (e.g., filtering of useful reviews, automated 

taxonomy generation and so on) and quantifying evaluation of the outcomes generated by those 

approaches in the respective phases. This was due to the time and human resource constraints that were 

associated with the development of approaches and evaluations of the outcomes generated in the 

subsequent phases. Hence, based on the outcomes of the pilot studies from phase 2, 3 and 4 we were 

able to conduct a full-scale study on the prioritisation of numerous useful reviews in phase 4. 

In the next section, we highlight the discussions related to the systematic mapping study on 

requirements prioritisation. 
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3.7 Discussion 

By following the systematic mapping study process proposed by Petersen et al. (2008) we were able to 

derive relevant RQs (i.e., RQ1.1 to RQ1.6) piloting the systematic mapping study on requirements 

prioritisation. We developed several classification schemes to appropriately organise the studies on 

requirements prioritisation. The analysis of the findings primarily focused on answering the RQs. From 

a holistic viewpoint, the conducted systematic mapping on requirements prioritisation in phase 1 

provided a structure (i.e., roadmap to investigate a field of interest) that assisted us in identifying the 

type of research studies (i.e., proposed solution, evaluated solution, simulated solution, taxonomy, 

opinion/philosophy, hybrid method, secondary evaluation/categorisation, experience, single method, 

multiple methods, tool, and process) that have been published and classify those studies into suitable 

categories based on the relevant classification scheme. Because of this, we could generate visual 

summaries of the findings reported in the Results section (refer to section 3.5), thereby providing an 

overview of the comprehensive findings. Furthermore, as we were able to conduct the systematic 

mapping study on requirements prioritisation we were able to get an overview of the requirements 

prioritisation field, and along with this, filter empirical studies of this topic which were then reviewed 

in detail. The subsections below discuss the results and implications of RQ1.1 to RQ1.6.   

3.7.1 RQ1.1 What has been the interest in requirements prioritisation over time, what 

are the different publication venues and what are the various disciplines in which 

the application of requirements prioritisation exist? 

Results in the previous chapter reveal that there has been growing interest in requirements prioritisation 

over the years, with the highest interest observed for 2017. Most studies were found to be published in 

conference and journal venues. Such findings potentially point to the fact that requirements 

prioritisation is gaining the attention of the scientific community, with studies addressing the particular 

requirements prioritisation problem encountered by product developers. Beyond journal and conference 

venues, a breadth of requirements prioritisation studies across other venues is observed. That said, an 

interesting observation is that the proportion of journals to conferences in the product manufacturing 

discipline is higher (0.67) than that of software engineering discipline (0.39). This may be because of 

discipline specific publication norms (e.g., a larger number of publications in the software engineering 

discipline appear in conferences when compared to other disciplines). In addition, we performed an 

analysis of the publication locations of the 211 studies which shows that the studies have been 

contributed by researchers from several countries across the world. Figure 18 shows a heat map where 

the intensity of the colour corresponds to the frequency of publications presented on the colour scale. 

Looking at the top 10 countries, the majority of the publications were from India (43 studies), followed 

by USA (32 studies), Malaysia (24 studies), Italy (18 studies), Sweden (17 studies), Pakistan (11 

studies), Netherlands (11 studies), Germany (10 studies), China (9 studies), and Brazil (7 studies).    
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Figure 18. Representation of requirements prioritisation publications on the world map 

While the increase in studies on requirements prioritisation is evident in the software engineering 

discipline over the years, there was no initiative observed towards understanding how the requirements 

prioritisation problem is addressed in other disciplines or vice-versa. This may be due to studies from 

particular disciplines are not being considered or missing out on the repository of knowledge evident in 

other disciplines. For instance, from the product manufacturing discipline, Zhaoling et al. (2009) have 

utilised QFD integrated with grey relational analysis to examine the relationships between stakeholders’ 

preferences and product engineering characteristics. In this study, the authors have investigated the 

application of the weighted average method to resolve any conflicts related to the priority preferences 

of stakeholders. In another study, Nepal et al.  (2010) have evaluated the fuzzy analytical hierarchical 

process to prioritise the requirements pertaining to an automobile. The proposed prioritisation method 

considers customer satisfaction attributes along with the priority preferences of stakeholders while 

prioritising the requirements which in turn assists the automotive company to refine their vehicle design 

and its performance. The method developed by these authors initially identifies the aspects that 

influence the decision making process of the automobile’s requirements engineering phase, in 

promoting an organised view of requirements’ priorities. Fuzzy logic is used to compute the priorities 

of the requirements which are expressed in a hierarchical representation. Overall, requirements 

prioritisation methods developed in other disciplines have the potential to resolve stakeholders’ 

conflicts on priority preferences of requirements, address dependencies among requirements, handle 

updated priorities of requirements and enhance the outcome of requirements prioritisation (Li et al., 

2012; Nepal et al., 2010; Zhaoling et al., 2009). Therefore, such requirements prioritisation methods 

may be of utility to researchers working on the requirements prioritisation problem in the software 

engineering discipline.  
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3.7.2 RQ1.2. What approaches have been used to study requirements prioritisation? 

The findings in this work reveal that the majority of the requirements prioritisation studies targeted 

empirically evaluated solutions (43%). These findings are appropriate for the requirements prioritisation 

field, as the particular requirements prioritisation problem needs to be addressed with continuous 

experimentation and different types of case studies. That said, we observed the presence of proposed 

solutions that were not evaluated, or at times such solutions existed only in some form of simulation. 

Moreover, fewer studies have highlighted opinions and gathered evidence around various requirements 

prioritisation solutions that are provided through secondary evaluation/categorisation. While secondary 

evaluation/categorisation is performed, such evaluations have focused on analysing requirements 

prioritisation approaches in the software engineering discipline and especially targeted secondary 

studies. For instance, Aasem et al.  (2010) have published a secondary study which emphasises on the 

significance of requirements prioritisation towards launching essential software updates, and the merits 

and limitations of AHP, B-Tree, CV, Ranking, Top 10, NA, CV, and PG requirements prioritisation 

methods. Garg et al. (2017) states that the identification of requirements through means of a reliable 

requirements elicitation method is crucial as the outcome of prioritisation is dependent of the 

requirements elicitation process. This study also examines advancements related to requirements 

elicitation and prioritisation. In another study, Fadhl Hujainah et al. (2016) has mentioned that 

complexity, time, value, accuracy, risk, importance and benefit are crucial factors that drive the 

requirements prioritisation process. The author has evaluated several requirements prioritisation 

methods such as AHP, NA, Top Ten, Ranking, Priority Groups, CV, Hierarchical AHP, Planning Game, 

B-Tree, Minimal Spanning Tree, Benefit and Cost Prediction, PHandler, Case Based Ranking, 

Requirements Uncertainty Prioritisation Approach, Evolve, SERUM, Cost Benefit and Pairwise 

Comparison. That said, Fadzir et al. (2016) have provided a systematic literature review on 

requirements prioritisation practices evident in the software engineering discipline.  

Hence, our results suggest there is a need for studies that perform a more comprehensive investigation 

of the evidence and proposed solutions on the requirements prioritisation problem existing across 

different disciplines. Such evidence would probably inform the efforts directed towards developing the 

relevant requirements prioritisation solutions for software developers and particularly those addressing 

numerous requirements. For instance, Laurent et al. (2007) from the software engineering discipline 

have proposed a requirements prioritisation method that uses a classification approach to categorise 

requirements having similar characteristics into classes such as business goals, non-functional 

requirements, functional requirements and so on. Later, the requirements are prioritised with the 

assistance of priority preferences provided by the stakeholders and these priority preferences are utilised 

as weights to perform prioritisation. Such requirements prioritisation methods have been informally 

claimed to be scalable. That said, these authors can take inspiration from studies from other disciplines 

that provide effective mechanisms to generate reliable stakeholders’ preferences for prioritisation 
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purpose (Nepal et al., 2010; Zhaoling et al., 2009). On the contrary, the studies from other disciplines 

can seek inspiration from studies proposed by Laurent et al. (2007) for addressing scalability issues 

associated with prioritisation.    

Interestingly, beyond the software engineering discipline, other disciplines have not performed 

secondary evaluation/categorisation towards developing a repository of methods and evidences around 

requirements prioritisation. That said, some studies reflected authors’ opinions and experiences. 

Secondary evaluation/categorisation studies are essential for providing the key concepts of the field of 

interest, identifying different research trends, uncovering challenges and exploring the solutions 

proposed to address challenges in a discipline. In certain cases, secondary evaluation/categorisation 

studies classify details of the primary studies into categories of interest for meaningful interpretation, 

providing a plethora of evidence around a field. While the lack of studies reflecting secondary 

evaluation/categorisation in other disciplines besides software engineering demands attention of 

researchers, several contributions provided by these disciplines are noteworthy. This aspect is discussed 

further in the next sub-section.         

3.7.3  RQ1.3 What form did the contributions of the requirements prioritisation studies 

take? 

Overall, a wide spread of requirements prioritisation contributions is observed, ranging from 

taxonomies to tools. While some studies investigated multiple methods, these methods were evaluated 

for their individual merits and demerits. That said, hybrid methods potentially harness the strengths of 

multiple methods and attempt to avoid their weaknesses. While hybrid methods are an amalgamation 

of several requirements prioritisation methods, there has only been a small-scale effort (16%) observed 

towards a systematic evaluation of the single methods in view of developing reliable hybrid methods. 

In fact, around 63% of the hybrid methods have undergone empirical evaluations. This was one of the 

inspirations that lead to the development of our proposed prioritisation methods (group-based and 

individual) that are hybrid. That is, multiple prioritisation methods are incorporated as variables of a 

multi-criteria heuristic function. Moreover, other researchers could also pursue such undertakings 

related to hybrid methods in developing well-founded requirements prioritisation solutions.  

For instance, the advantages and disadvantages of AHP have been briefly examined by Nidhra et al.  

(2012) to develop a requirements prioritisation method which includes all the strengths of AHP but 

overcomes its weaknesses. To achieve this, the authors have combined NA with AHP and termed it as 

‘NAcAHP’. The NA method first classifies each requirement into groups and later AHP prioritises the 

requirements present in those groups. The performance of ‘NAcAHP’ was compared with AHP in terms 

of time. A set of forty requirements were prioritised by both methods with results showing ‘NAcAHP’ 

to be faster than AHP. In another study, Abou-Elseoud et al. (2016) have merged AHP, CV and QFD 
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to develop a new requirements prioritisation method named ‘EHRP’. Initially, the method generates 

three levels of hierarchical nodes (i.e., Goal, Criteria and Requirements). This generation approach is 

similar to AHP, however, the method utilises two non-identical prioritisation pathways instead of a 

matrix-based approach to prioritise requirements. CV is used to rank requirements residing at the lower 

levels of the hierarchy while QFD operates at the last level to generate the final priorities of the 

requirements. This hybrid method was empirically evaluated in an enterprise resource planning 

organisation to prioritise a set of small requirements where the method was validated to be efficient for 

prioritisation purpose.  

Similarly, Garg and Singhal (2017) have come up with an approach that establishes a relation between 

functional requirements and non-functional requirements. These functional requirements are prioritised 

on the basis of their degree of relationship with the non-functional requirements. The authors were able 

to achieve this by merging three requirements prioritisation methods together, which were the cost-

value approach, NA and matrix multiplication. The cost-value approach enables the pairwise 

comparison of stakeholders' preferences on non-functional requirements. This output is then used as 

input to the NA method, where values are assigned to functional requirements based on the operational 

outcome of the pairwise comparisons. The final priorities of the requirements are then calculated by 

matrix multiplication. This approach was used to prioritise the requirements of an article publishing 

software where it was assessed to be effective. In another study, Kamvysi et al.  (2014) have improved 

the performance of the QFD method in prioritising the requirements of students belonging to an 

educational institute. They were able to achieve this outcome by customising the internal structure of 

the QFD method. Fuzzy logic and linear programming concepts were integrated with the QFD method. 

It was claimed that the utilisation of fuzzy logic resolved the issue of incomplete, vague or conflicting 

priority preferences that were provided by the students. The utilised fuzzy linear programming approach 

operated on the priority preferences to generate the essential weights (i.e., compatible students’ priority 

preferences) required by the QFD method to generate the prioritised list of requirements. This hybrid 

method successfully prioritised the requirements of students which assisted the educational institute in 

updating teaching objectives and techniques according to the requirements of students. Sensitivity 

analysis was used to determine the accuracy of the method which showed that this hybrid method 

performed better than the traditional requirements prioritisation methods. 

Furthermore, the outcomes of the undertaken systematic mapping study are assessed in relation to the 

discipline of enquiry, and specifically in terms of hybrid methods in other disciplines apart from 

software engineering. In this regard, we found that other disciplines like product manufacturing have 

also developed hybrid requirements prioritisation methods that are novel. For instance, Fung et al.  

(1996) have combined AHP and QFD to prioritise requirements to improve the design of a product. 

Armacost et al. (1994) have also merged QFD and AHP to capture and prioritise the requirements of 
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the stakeholders. Such hybrid methods are particularly suitable for supporting stakeholders’ multi-

criteria decision making process related to requirements prioritisation. In addition, we observed that 

specific methods tend to gain attention across the identified disciplines. This aspect is examined further 

in the following sub-section. 

3.7.4 RQ1.4 What prioritisation methods have been studied or developed?    

We were able to identify 157 requirements prioritisation methods that were researched by those 

investigating a particular requirements prioritisation problem. We noticed an interest among the 

researchers to propose new requirements prioritisation solutions or perform replication studies. AHP, 

CV, QFD, NA and PG were the top five prominent requirements prioritisation methods that were given 

the most attention by researchers. These methods were involved in different types of research, ranging 

from taxonomies, processes to single methods. The merging of these methods to form hybrid 

requirements prioritisation methods is noteworthy as evidence points to the fact that many single 

methods do not perform satisfactorily on their own (Abou-Elseoud et al., 2016; Achimugu & Selamat, 

2015; Sadiq et al., 2017; Yutao Ma et al., 2012). Moreover, we observed that 26 hybrid requirements 

prioritisation methods were developed as variations of the top ten requirements prioritisation methods 

(refer to Results sub-section 3.5.4). That said, many of these methods were found to be evaluated on a 

small number of requirements, and these evaluations involved real world requirements prioritisation 

problems. However, researchers of these methods often encountered scalability issues or computational 

complexity challenges (Berander & Jonssen, 2006; Thakurta, 2013). From a discipline perspective, we 

observed that out of the twelve evaluated hybrid methods, seven were from software engineering, four 

were from product manufacturing and one was from the real estate discipline. Among these, hybrid 

variants of AHP dominated the entries. However, the hybrid variants of AHP prioritised only a few 

requirements and were not capable of handling dependencies among the requirements or requirements 

updates. Thus, such approaches were found to be non-scalable. Nonetheless, this method (i.e., AHP) 

was researched often as researchers aim to generate accurate prioritisation solutions for a small number 

of requirements. That said, there exists an opportunity to investigate and experiment with the 

combination of other single methods to validate their utility as hybrid methods.  

Interestingly, after reviewing the studies across all the disciplines that highlighted tools and taxonomies, 

we found out that only one study from the software engineering discipline indicated that the QFD 

method was operationalised in the form of a tool. Similarly, only one study from the product 

manufacturing discipline indicated that AHP was contributed as a tool. However, AHP, CV, NA, PG, 

HCV, ranking, and priority groups were commonly examined as a part of taxonomies. This shows that 

researchers often tend to conduct reviews or empirical studies of the same methods rather than 

developing new hybrid methods, which may be derived from other methods.   
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3.7.5 RQ1.5 What are the dimensions that were evaluated for requirements 

prioritisation methods?  

Our analysis of the dimensions that were evaluated for requirements prioritisation methods revealed 

that the majority of the studies have investigated the methods from a single dimension (e.g., time). Some 

dimensions (e.g., requirements update) are often neglected when methods are developed and evaluated 

in favour of the operational demonstration dimension. Accuracy is often utilised by researchers for 

validating correctness of the outcome (i.e., list of prioritised requirements) generated by a requirements 

prioritisation method (Achimugu et al., 2016; Asghar et al., 2013; Bebensee et al., 2010). Such studies 

ascertain stakeholders’ acceptability of the priorities generated by a requirements prioritisation method. 

Accordingly, this dimension is important in determining the effectiveness of a requirements 

prioritisation method. In addition, as a product is developed to satisfy the requirements of its 

stakeholders, their preferences (i.e., priorities of requirements) act as the ground truth for evaluating the 

outcomes of a particular requirements prioritisation method. Hence, this aspect is considered in our 

work wherein we utilise stakeholders’ priority preferences to validate the accuracy of the group-based 

and individual prioritisation methods.   

Next, we noticed that the scalability dimension was utilised by researchers to check for the 

accommodation of new requirements during the requirements prioritisation process. In general, 

scalability in requirements prioritisation points towards the ability of a requirements prioritisation 

method to accommodate a large number of requirements before performing the prioritisation 

(Achimugu et al., 2016). Furthermore, computational complexity considered by researchers quantifies 

the performance of the requirements prioritisation methods in terms of their space and time complexity. 

Studies covering this dimension show that researchers investigated the computational complexity of the 

particular requirements prioritisation method to record the requirements prioritisation method’s 

execution time and memory utilisation (Thakurta, 2013). The computed computational complexity may 

assist researchers to optimise the particular requirements prioritisation method for delivering efficient 

performance. However, only three out of the shortlisted seventy-six empirical studies covered the 

computational complexity dimension. This suggests that computational complexity is not often 

considered to address a requirements prioritisation challenge. This aspect needs the attention of 

researchers given that computational complexity influences other dimensions such as time or accuracy 

(Voola & Babu, 2017).       

As a product evolves after it is launched in the market, its requirements are often subjected to change 

(Oliveira & Almeida, 2015). This is particularly evident when certain stakeholders specify changes that 

may lead to a change in priorities around requirements or requirements themselves (e.g., the 

marketplace to sell or buy products on Facebook app was not initially part of the app’s features). 

Therefore, it is beneficial to consider prioritisation mechanisms that accommodate the evolving 
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requirements of a product. That said, only six studies covered the requirements update dimension while 

thirteen studies recorded the time required for prioritising a set of requirements. The inclusion of the 

time dimension in a requirements prioritisation study is important when the study is related to 

enterprises targeting the release of new versions of their products within limited time intervals. This is 

because as the amount of time the particular prioritisation method takes for prioritisation should be less 

than that of the release date of the new version since there should be enough time for the developers to 

address the top concerns that are recommended by the prioritisation methods (Oliveira & Almeida, 

2015). Hence, we have included this dimension in our study.     

Finally, we reviewed studies that have covered the requirements dependencies dimension with the intent 

of considering the discovered knowledge of dependencies among requirements or addressing the 

dependencies among the requirements in the process of prioritising those requirements. Such studies 

provide an understanding around the way requirements are nested and how such nesting influences 

product engineering processes such as impact analysis, planning, design, development, testing, and so 

on (Li et al., 2012). The studies covering the requirements dependencies dimension uncovered and 

visualised dependencies using graph-based mechanisms. The outcomes of the requirements dependency 

analysis are challenging to evaluate given that stakeholders often agree to an outcome, whereas in some 

scenarios the requirements dependencies are discovered by a mechanism and the stakeholders may have 

limited prior knowledge of the dependencies to evaluate its correctness. Thus, there exists an 

opportunity to develop new mechanisms to fulfil this objective where the effectiveness of dependency 

mechanisms could be evaluated.        

3.7.6 RQ1.6 What are the performance outcome of the evaluations, and is there 

evidence of relationships between attributes of requirements prioritisation 

methods and their performance outcomes? 

We observed that the majority of the studies that included the accuracy dimension had used 

stakeholders’ preferences to validate the accuracy of the requirements prioritisation methods. This 

assisted researchers to compare the priorities of the requirements generated by the particular 

requirements prioritisation method against those provided by the stakeholders to evaluate the method’s 

accuracy. Such practice of evaluating accuracy highlights the significance of stakeholders’ preferences 

in the requirements prioritisation process, and indicates that requirements prioritisation methods are 

developed towards the prioritisation driven by the preferences of stakeholders. This highlights the 

importance of addressing the requirements in the order preferred by the stakeholders. Accuracy 

measures in the results ranged from 16% to 99%, with ReproTizer tool reported to be most accurate 

while accommodating the stakeholders’ preferences (Achimugu et al., 2016). The overhead involved in 

getting priority preferences from stakeholders and resolving any conflicts among them is challenging 
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and thus it is conclusive that studies measuring the accuracy of a requirements prioritisation method 

tend to operate on limited set of requirements (Asghar et al., 2013; Bebensee et al., 2010; Sadiq, 2017).    

With regards to the studies that dealt with the handling of stakeholders’ preferences, we noticed that 

researchers had encountered two major challenges. The first challenge was the stakeholders’ 

preferences were often incomplete or vague, thus making them unsuitable for prioritisation (Inoki et al., 

2014; Voola & Babu, 2013). The second challenge being that the stakeholders had different priority 

preferences for the same set of requirements (Bajaj & Arora, 2013; Zhaoling et al., 2009). Initially, the 

conflicting preferences had to be transformed into a compatible priority preferences to satisfy the 

stakeholders when the requirements prioritisation method was initialised. Fuzzy logic was found to be 

an effective solution to achieve this, providing outcomes that were suitable in terms of generating a 

prioritised list of requirements that encompassed conflicts, vagueness or uncertainty (Achimugu et al., 

2014; Achimugu et al., 2014b; Bajaj & Arora, 2013). That said, when compared to the accuracy 

dimension, it is difficult to evaluate the utility of the outcomes of the stakeholders’ preferences 

dimension as there was no objective measure reported that could prove the correctness of processing 

the stakeholders’ preferences. Similar conclusions were drawn after reviewing the empirical studies that 

focussed on the scalability dimension, where it was observed that the researchers have developed their 

own practices to assess the scalability of the requirements prioritisation methods (Achimugu et al., 

2016; Nidhra et al., 2012). For instance, Achimugu et al. (2016) have measured scalability in terms of 

the number of requirements their requirements prioritisation tool (ReproTizer) could accommodate at 

runtime. Whereas, Nidhra et al. (2012) have utilised the time dimension to informally determine the 

scalability of the particular requirements prioritisation methods. Such practices are dissimilar in terms 

of how scalability was assessed, thus pointing towards the need for the establishment of a common 

practice to assess the scalability of requirements prioritisation method. That said, in our work we term 

the empirical requirements prioritisation method handling the highest number of requirements for 

prioritisation purpose as most scalable Peng et al. (2012). This is based on the ability of the requirements 

prioritisation method to handle the highest number of requirements at runtime (refer to results section, 

Table 3.8).   

Furthermore, the Big-O notation was most favoured by researchers for computing the computational 

complexity of the requirements prioritisation methods. This shows that the performance of any module 

(component) of a requirements prioritisation method or the method itself can be inspected and the results 

of such an inspection could prove beneficial towards analysing or fixing flaws or to further optimise 

the method for better performance. This is clearly evident in the work of Thakurta  (2013), where it was 

proved that AHP suffered scalability challenges as the number of requirements to prioritise increased 

linearly.  
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Only two studies out of the six covering the requirements updates dimension proposed mechanisms that 

allowed the particular requirements prioritisation method to handle dynamically changing priorities or 

incorporate new requirements during the requirements prioritisation process. These two studies may 

inspire the implementation of a requirements prioritisation method that adapts to evolving requirements. 

Another dimension that was covered in studies was requirements dependency where the proposed 

solutions varied. For instance, Peng et al. (2012) have performed ontology analysis to uncover 

dependencies among the classified textual requirements. Other studies that covered the requirements 

dependency dimension used matrix or graph-based mechanisms (refer to results section, Table 3.8). 

Such mechanism holds promise for discovering dependencies among large-scale requirements, 

especially those that are crowdsourced.  

With regards to the studies covering the time dimension, we observed that the time required for a 

particular requirements prioritisation method to prioritise different sets of requirements was nonlinear. 

For instance, several studies utilised AHP, and the time required for AHP to prioritise a given set of 

requirements differed (Misaghian & Motameni, 2016; Nidhra et al., 2012; Voola & Babu, 2013; Yutao 

Ma et al., 2012). This was because the dimensions accuracy, scalability and stakeholders’ preferences 

influenced the total time required for AHP to prioritise the requirements. This suggests that the 

requirements prioritisation process tends to influence the outcome measures (e.g., a customisation of 

AHP that makes it accurate may make the solution slower, or vice-versa). This in turn could affect the 

perception of the dimensions’ utilisation, effectiveness, and outcomes. We further consider this issue in 

sub-section 3.7.7.    

Finally, we examined the attributes of requirements prioritisation methods and their performance 

outcomes. As noted in the Results sub-section 3.5.6, due to the limited number of studies under certain 

dimensions such as scalability, requirements updates, requirements dependency and stakeholders’ 

preferences, and the subjective nature of some of the dimensions (e.g., stakeholders’ preferences), we 

were able to include only accuracy and time dimensions for statistical analysis. The statistical analysis 

results show that the number of requirements affect the accuracy that was reported marginally. A more 

detailed review of the studies covering the accuracy dimension shows that the accuracy of the 

requirements prioritisation method was dependent on the complexity of the requirements that were 

prioritised, along with the structure and operating mechanism of the particular requirements 

prioritisation method (Misaghian & Motameni, 2016; Nidhra et al., 2012; Palma et al., 2011; Voola & 

Babu, 2013). In addition, over the years, it was found that requirements prioritisation methods require 

less time to prioritise increasing number of requirements (Achimugu et al., 2016; Misaghian & 

Motameni, 2016; Voola & Babu, 2013). Such findings are central to the process of scoping a specific 

requirements prioritisation problem and developing a problem specific requirements prioritisation 
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solution. Moreover, these findings may inform researchers in terms of optimising the requirements 

prioritisation process to produce efficient methods and obtain beneficial results.   

3.7.7 Summary of the way evaluated requirements prioritisation dimensions influence 

each other 

In this sub-section, we summarise the dimensions that were studied by those that have examined 

requirements prioritisation to understand how they influence each other. These connections were 

revealed after an investigation of the empirical studies in our sample. For instance, Yutao Ma et al. 

(2012) study shows that as requirements are subjected to updates, dependencies among old and new 

requirements are constantly affected. In another study, McZara et al. (2015) convey that resolving vague 

preferences of stakeholders affect the accuracy of requirements prioritisation methods and this 

ultimately affected the time that is required for completing the requirements prioritisation process. 

Although we are not able to precisely measure the degree of influence the various evaluation dimensions 

have on each other, we review certain observed relationships below.  

Firstly, multiple studies show that the time dimension is influenced by all the other dimensions (Asghar 

et al., 2017; Kukreja et al., 2012; Voola & Babu, 2013; Yutao Ma et al., 2012). Therefore, it can be 

inferred that the overall time required for the requirements prioritisation process changes as researchers 

add other dimensions (e.g., requirements dependency) for evaluation in their study, or as the nature of 

the requirements prioritisation problem and the application of the requirements prioritisation method 

varies (Nidhra et al., 2012; Voola & Babu, 2013; Yutao Ma et al., 2012). While only one study 

investigated the accuracy of requirements prioritisation method along with its computational 

complexity, this investigation allowed the researchers to understand how accuracy and computational 

complexity were interrelated (Voola & Babu, 2017). Similarly, stakeholders’ preferences are known to 

play a major role in influencing the accuracy of a requirements prioritisation method, as in many 

scenarios it is used as the baseline for validating requirements prioritisation outcomes. In fact, given 

that stakeholders ultimately assess the outcomes of requirements prioritisation methods, this dimension 

also affect requirements updates, scalability and computational complexity dimensions (Achimugu et 

al., 2014a; Bajaj & Arora, 2013; Berander & Svahnberg, 2009; Ninaus, 2012).   

Furthermore, managing scalability is challenging, and this dimension has an impact on the 

computational complexity of a requirements prioritisation method (Bajaj & Arora, 2013; Kukreja et al., 

2012). Interestingly, it was also discovered that requirements updates affected accuracy, scalability, 

requirements dependencies, and computational complexity (Achimugu et al., 2016; Asghar et al., 2013; 

Perini et al., 2013; Yutao Ma et al., 2012). This is primarily due to the overhead associated with an 

increasing number of requirements or their associated updates. Only one study revealed that 

requirements updates are dependent on stakeholders’ preferences (Santos et al., 2016). That said, 
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requirements dependencies also impact scalability and computational complexity (Delia Ilie et al., 2009; 

Kukreja et al., 2012; Santos et al., 2016; Sharma, 2007). In addition, prior to evaluation, any empirical 

requirements prioritisation method is established to be operational. Such considerations are insightful 

for balancing the trade-offs in performance outcomes of requirements prioritisation methods.   

3.8 Threats to Validity 

In this section, we present the threats to validity that can potentially affect the outcomes reported in this 

systematic mapping study on requirements prioritisation. 

The selection of studies in the systematic mapping study can be seen as a threat as we have considered 

studies which were published in English language, and thus, we might have missed pertinent studies 

documented in other languages. Subsequently, we have not targeted studies that were not peer-reviewed 

(e.g., technical reports, proposals) or reports (e.g., thesis) which may contain relevant details for 

answering the research questions RQ1.1 to RQ1.6. The approach used to develop the search keywords 

could potentially pose a threat. However, we have conducted substantial searches to understand the 

keywords that are used for identifying studies on requirements prioritisation (Broder, 2002; Lorigo et 

al., 2008). In this regard, we have followed the guidelines provided by Kitchenham (2007) for piloting 

search keywords that are likely to uncover a substantial number studies rather than miss out on the 

pertinent studies. Hence, although posing a threat with regards to the large number of studies that were 

returned for shortlisting, broader search keywords were utilised to reduce or avoid the threat of missing 

studies, as specific keywords covering narrow search could have resulted in missing certain studies. To 

address this, formal reliability checks were performed to ensure agreement on the excluded and included 

studies. Furthermore, beyond using the broad search keywords to address the threat related to missing 

of relevant papers for answering RQ1.1 to RQ1.6, systematic searches were conducted in eight 

prominent digital knowledge databases as recommended by Kitchenham (2007). 

It is to be noted that, for the subsequent chapters, we have summarised the threats to validity associated 

with these Chapters into three relevant sub-sections: internal validity, external validity and construct 

validity. Internal validity reflects the confidence in results, and the factors that are attributed towards 

the results. In other words, internal validity rules out alternative explanations for a result. Due diligence 

towards minimising this threat involves the consideration of all possible factors associated with the 

suitable research activities to perform robust research. Such activities include developing a suitable 

research methodology, formulating appropriate research questions, extensive searches for literature, 

utilising the right protocol for performing literature searches, experiments, relevant rigorous 

assessments, standard reliability assessment procedures and so on that generate reliable research 

outcomes (Grafton et al., 2011). External validity highlights aspects related to the generalisability of 
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the outcomes and construct validity points towards the validity of the conclusions that are drawn from 

the results generated from the conducted experiments (Grafton et al., 2011). 

That said, we provide the concluding remarks of this phase, its research contributions and summary of 

implications in the Conclusion chapter (refer to Chapter 7). In the next chapter, we present the details 

of Phase 2 (i.e., filtering of useful reviews) 
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4 Filtering of Useful Reviews 

In this chapter, we present phase 2 of the undertaken research through a pilot study where we worked 

on an approach to filter useful reviews from a vast pool of reviews (RQ2) by answering RQ2.1 that 

dealt with the investigation of the performance of six Naïve Bayes variants by exploring their utility 

towards the automated filtering of useful reviews based on a set of rules that distinguished useful 

reviews from the non-useful ones. 

4.1 Introduction 

Manually identifying and extracting useful reviews from a vast pool of reviews is a challenging task as 

it requires high levels of cognitive load, time and effort from the app developers and this task may be 

compounded due to the presence of large numbers of non-useful reviews (Pagano & Maalej, 2013; 

Panichella et al., 2015). Moreover, as the group of app developers usually tend to be small, error 

proneness and lack of scalability may compromise the manual filtering task. Thus, in this phase we 

conducted a pilot study to review information retrieval studies in which the limitations of the filtering 

approaches proposed by these studies were observed (Fu et al., 2013; Keertipati et al., 2016). The most 

significant limitation was that the approaches often failed to filter most of the useful reviews. 

Furthermore, in studies from the software engineering disciplines it was found out that Multinomial 

Naïve Bayes method was proven to be most appropriate and reliable for automating the filtering 

approaches based on a set of predefined rules (i.e., classifying new information using previously 

classified information) (Caruana & Niculescu-Mizil, 2006; Wang et al., 2018). Therefore, we identified 

and empirically evaluated six variants of the Multinomial Naïve Bayes method and benchmarked their 

performances. We present the essential details associated with this phase for piloting and evaluating the 

proposed filtering approach to identify useful reviews in the next sub-sections. 

4.2 Related Studies 

Traditional filtering approaches cannot reliably filter useful reviews as they are unable to perform 

filtering based on the disambiguation of the information conveyed by the reviews (Pagano & Maalej, 

2013). For instance, Licorish et al.  (2017) have filtered reviews whose ratings were less than 3 and thus 

may have missed out on crucial reviews that had higher ratings that may reflect useful end-user feedback 

about improving an app. In another study, Fu et al.  (2013) have used sentiment analysis to filter reviews 

having negative end-users’ sentiments associated with them with the assumption that such reviews 

indicate app issues (bugs). Similarly, Shah et al. (2018) have evaluated the performance of BoW (Bag 

of Words) and CNN (Convolutional Neural Networks) towards the extraction of app features from 

reviews. It was reported by the authors that BoW performed better than CNN but suffered from 

overfitting of the learning data (Luo et al., 2014). These filtering approaches usually tend to miss some 

of the useful reviews or return non-useful reviews (Hoon et al., 2013). For instance, consider a review 



 

61 

 

that is filtered based on negative sentiment and lower rating filtering approach, ‘(a) Useless app, 

uninstalling it as it left me very disappointed  !!’,  and another review discarded because of its higher 

rating ‘(b) Fantastic app and works well but has a small problem with screen resolution and sometimes 

lags’. App developers may find review (a) to be of no use, and on the contrary, addressing review (b) 

allows the app developers to fix bugs related to screen resolution and optimisation of the app.  

Apart from the filtering approaches mentioned above, linguistic approach governed by a set of 

application specific filtering rules are seen promising by researchers. For instance, Iacob and Harrison  

(2013) have defined a set of linguistic rules to extract only feature requests (i.e., unigrams of interest) 

from reviews. Such an approach is often combined with an appropriate machine learning method for 

scalability purpose to identify useful features that require attention. For instance, Cleland-Huang et al. 

(2007) have developed a machine learning method (i.e., probabilistic classifier) to classify non-

functional requirements by predicting their appropriate labels (i.e., performance, availability, security, 

usability and so on). However, the machine learning method (like many others) used by the authors 

require a large amount of learning data (i.e., requirements with their associated labels) to attain the 

required level of accuracy needed for performing predictions (Michie et al., 1994). That said, 

Multinomial Naïve Bayes is the most popular and commonly utilised supervised machine learning 

method that has been empirically evaluated to be a reliable option for text related software engineering 

applications (i.e., information conveyed through English language and expressed in text) and was found 

to outperform other machine learning methods (Caruana & Niculescu-Mizil, 2006). For instance, Wang 

et al. (2018) have benchmarked the performance of Decision Trees, KNN (K Nearest Neighbours), 

Bagging and Multinomial Naïve Bayes towards the classification of functional and non-functional 

requirements, and discovered that Multinomial Naïve Bayes generated most reliable results. Moreover, 

Multinomial Naïve Bayes often prevents overfitting of the data made available for learning purpose due 

to its mechanism of generalisation towards predictions, further leading towards the requirement of less 

data for learning purpose (McCallum & Nigam, 2001). In addition, the semi-supervised variant of 

Multinomial Naïve Bayes method i.e., Expectation Maximisation for Multinomial Naïve Bayes further 

reduces the amount of data required for learning purpose (Collins, 2012; Nigam et al., 2000). Thus, 

Multinomial Naïve Bayes method is widely used in software engineering applications such as software 

bug predictions, predicting the labels of non-functional requirements, spam content filtering and so on 

(Bacchelli et al., 2012; Calders & Verwer, 2010). One study has developed a filtering approach to 

predict useful reviews using the Multinomial Naïve Bayes method, however the algorithmic and 

implementation details of the approach were not provided. In addition, even though the filtering 

approach was used to predict numerous useful reviews belonging to different apps, the approach’s 

filtering performance (F-Measure = 0.86) was reported for reviews of only one app, further questioning 

its generalisability (Chen et al., 2014). This also raises the question ‘Under what circumstances and 

settings does the Multinomial Naïve Bayes method deliver the reported performance?’. Hence, based 
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on the recommendations provided by the above-mentioned pertinent studies that show the Multinomial 

Naïve Bayes method to be superior in terms of performance than other algorithms for software 

engineering based application, we shortlisted and reviewed the method and its associated concepts for 

further investigation. Subsequently, this method is specialised in text based prediction applications, and 

further assisted us to identify and evaluate six variants of Multinomial Naïve Bayes methods towards 

their utility for information retrieval (i.e., filtering useful reviews) via text classification (Collins, 2012; 

Nigam et al., 2000; Yuan et al., 2012). The prime objective of investigating these variants is to assist 

app developers in filtering useful reviews to support the maintenance and evolution cycles of the apps. 

This leads to the RQ 

RQ2.1 What are the performances of the Multinomial Naïve Bayes variants when 

extracting useful reviews, and are there differences in the outcomes of these variants? 

It is to be noted that while Multinomial Naïve Bayes stands out as one of the most suitable for filtering 

of useful reviews, we have not observed published efforts aimed at designing its possible variants and 

evaluating the performances of those variants.   

4.3 Methods and Concepts 

We introduce the Multinomial Naïve Bayes method and concepts that assisted us in developing the six 

variants. The prime objective of these variants is to filter useful reviews by classifying useful and non-

useful reviews present in the vast pool of reviews through means of learning and predictions. The 

required set of useful and non-useful reviews for learning purpose can be manually labelled using a set 

of filtering rules proposed by Chen et al. (2014). The rules related to useful reviews indicate feature 

requests (e.g., “please add the feature to search for multiple routes”), bugs (e.g., “the map freezes after 

few minutes of loading”) or enhancements (e.g., “I suggest you also add the black theme for the layout 

to make it look better”). Subsequently, non-useful reviews indicate unwanted and irrelevant information 

(e.g., “stupid app is useless, uninstalling now!”). Thus, the objective of the respective variant is to assign 

each review to one of the two categories (C) (i.e., useful or non-useful) wherein each category would 

contain reviews with properties reflecting the relevant filtering rules. In the learning (training) stage the 

particular variant generates a classifier trained from a set of substantial manually labelled reviews that 

predicts the categories of unlabelled reviews in the classification stage (prediction or testing) and so the 

useful reviews can be distinguished from the non-useful ones for filtering purpose. In the following sub-

sections, we document the transformation of reviews into a suitable dictionary that is used as an input 

for the six variants. Then we provide the overview of the Multinomial Naïve Bayes method followed 

by the concepts of Complement, Laplace Smoothing and Expectation Maximisation.        
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4.3.1 Reviews Pre-Processing 

Text pre-processing allows the conversion of reviews into subsequent word vectors through a series of 

pre-processing operations (Aggarwal & Zhai, 2012). We pre-process the reviews by removing numbers, 

whitespaces, special characters (e.g., $, #) and punctuations (e.g., !, ?) before transforming them into 

lower case (Maalej et al., 2016a). Later, any stop words (e.g., is, and) present in the pre-processed 

reviews are removed and lemmatisation is performed to generate the original dictionary form of the 

words present in the pre-processed reviews (Maalej et al., 2016a). These mentioned steps are standard 

text pre-processing operations that are performed by researchers to have reliable features (words) for 

the specific research purpose (e.g., learning and prediction), and simultaneously prevent the generation 

of unreliable and noisy results (Maalej et al., 2016a). The final set of pre-processed reviews are used to 

form the dictionary (D) that provides the required word frequency information for the variants 

(McCallum & Nigam, 2001).      

4.3.2 Multinomial Naïve Bayes 

Multinomial Naïve Bayes is an extended version of the basic Naïve Bayes method and is specialised 

for text based machine learning classification applications (McCallum & Nigam, 2001). The foundation 

of this method is based on the principle of maximum likelihood estimates as the method uses word 

frequency information extracted from the reviews. Initially, Multinomial Naïve Bayes computes the 

probability of a review belonging to a particular category (C) which is given as 

P(C) = Nrs(r=C) / Nrs                                                                                                                               (1) 

Where, Nrs indicates the total number of reviews and Nrs(r=C) indicates the number of reviews 

belonging to a category C, and C = {useful, non-useful}. Subsequently, the maximum likelihood 

estimate is computed as 

P(wn|C) = freq(wn, C) / ∑w∊D freq(w, C)                                                                                                   (2) 

Where, P(wn|C) indicates the conditional probability of a word wn given that it belongs to  category C 

which is given as the ratio of the total number of occurrences of the word wn in category C to the total 

number of words w present in the reviews of category C. This is the fraction of the total number of 

times word wn appears among all words (D) in the reviews that belong to category C. The Multinomial 

Naïve Bayes method generates a word space for a category C by creating a dictionary of words 

belonging to the reviews of category C. This is achieved by identifying the frequency of occurrence of 

each word w. Using equations (1) and (2), the category of a review R can be predicted using 

CMAP(R) = argmaxc (P(C) * Πn P(wn|C))                                                                                                 (3) 
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CMAP indicates the most probable category defined as maximum a posteriori (MAP) which indicates the 

most likely category C for a review R given as the arguments of maxima over all the categories of the 

priori times the likelihood. The learning and prediction stage of Multinomial Naïve Bayes method is 

given in algorithm 1 (McCallum & Nigam, 2001)   

Algorithm 1: Learning and prediction stage of Multinomial Naïve Bayes  

Input: A set of reviews 

 

Processing: 

Begin  

 

1. From the manually labelled reviews, extract Dictionary (D) 

2. Calculate all the P(C) terms 

    2.1 For each C do: 

          2.1.1 reviewsC  all reviews in category C 

               2.1.2 P(C)  |reviewsC| / |Total reviews| 

3. For every word wn, given every category C 

    3.1 Calculate P(wn|C) (maximum likelihood estimates) 

          3.1.1 WordSpaceC  words belonging to reviewsC 

               3.1.2  For each word wn in the Dictionary (D) 

                    3.1.2.1 nn  Total occurrences of wn in WordSpaceC                               

                                         consisting of  a total of n words 

                    3.1.2.2   P(wn|C)  nn / n 

4. For every unlabelled review (R):   

    4.1 Compute CMAP(R)   
 

End 

 

Output: Each review categorised into one of two categories (useful and non-useful). 

 

4.3.3 Complement Naïve Bayes 

The Complement Naïve Bayes is the complement concept of Multinomial Naïve Bayes that computes 

the likelihood of a category C using the training data of all the other categories C̅ other than C. The 

Complement Naïve Bayes was developed to address a potential drawback of the Multinomial Naïve 

Bayes method which was its inability to generate accurate predictions if the method was trained with 

data (reviews) having imbalanced labels (categories), i.e., the reviews in the learning stage did not 

belong to approximately equal number of different types of categories (Rennie et al., 2003). Using 

equation (1), the Complement Naïve Bayes computes the prior probability. However, unlike the 

Multinomial Naïve Bayes method, the Complement Naïve Bayes computes the likelihood of a word wn 

by considering its occurrences in category(ies) C̅ other than C. Thus, the maximum likelihood is 

calculated as 

P(wn|C̅) = freq(wn, C̅) / ∑w∊D freq(w, C̅)                                                                                                      (4) 
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Where P(wn|C̅)  indicates the conditional probability of a word wn given that it belongs to category(ies) 

C̅ which is given as the ratio of the total number of occurrence of the wn in category(ies) C̅ to the total 

number of words w present in the reviews of category(ies) C̅. The Complement Naïve Bayes creates a 

word space for a category C by creating a dictionary of words belonging to the reviews of category(ies) 

C̅ by identifying the occurrences of w. Using equations (1) and (4), the category of a review R is 

predicted using     

CMAP (R) = argminC (P(C) * Πn (1/ (P(wn|C̅))))                                                                                                    (5) 

Where CMAP (R) indicates the most probable category given as the argument of the minimum of 

likelihood estimates of the category(ies) computed as priori times the inverse likelihood. The learning 

and prediction stage of Complement Naïve Bayes is given in algorithm 2 (Rennie et al., 2003). 

Algorithm 2: Learning and prediction stage of Complement Naïve Bayes  

Input: A set of reviews 

 

Processing: 

Begin  

 

1. From the manually labelled reviews, extract Dictionary (D) 

2. Calculate all the P(C) terms 

    2.1 For each C do: 

          2.1.1 reviewsC  all reviews in category C 

               2.1.2 P(C)  |reviewsC| / |Total reviews| 

3. For every word wn, given every category C 

    3.1 Calculate P(wn|C̅) (maximum likelihood estimates) 

          3.1.1 WordSpaceC  words belonging to reviews of category(ies) C̅ 

                3.1.2  For each word wn in the Dictionary (D) 

                    3.1.2.1 nn  Total occurrences of wn in WordSpaceC                               

                                         consisting of  a total of n words 

                    3.1.2.2   P(wn|C̅)  nn / n 

4. For every unlabelled review (R):   

    4.1 Compute CMAP(R)   
 

End 

 

Output: Each review categorised into one of two categories (useful and non-useful). 

 

4.3.4 Laplace Smoothing 

The parameters of equations (2) and (4) that compute the maximum likelihood estimates are unable to 

deal with zero probabilities (Lowd & Domingos, 2005). Multinomial Naïve Bayes and Complement 

Naïve Bayes would return zero probability of a word if the particular word is not present in the learning 

stage which in turn affects the accuracy of prediction. This problem is resolved by subjecting the 

parameters to Laplace Smoothing (Jung et al., 2016; Yuan et al., 2012). Laplace smoothing enables the 

particular Multinomial Naïve Bayes variant (e.g., Complement Naïve Bayes) to keep track of the 
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frequency of words in predicting the relevant category by adding 1 to parameters to manage the zero 

occurrences of a particular word efficiently. Utilisation of the Laplace Smoothing concept is of prime 

importance when the particular Multinomial Naïve Bayes variant comes across a word in the prediction 

stage (classification) whose information is not present in the learning (training) stage. Hence, we update 

equations (2) and (4) to incorporate the Laplace Smoothing concept to manage the information related 

to a particular missing word wn. For Multinomial Naïve Bayes using equation (2) the parameter that 

performs maximum likelihood estimation based on Laplace Smoothing is given as 

P(wn|C) = (freq(wn, C) + 1) / (∑w∊D freq(w, C) + |D|)                                                                                         (6) 

Similarly, for Complement Naïve Bayes using equation (4) the parameter that performs maximum 

likelihood estimation based on Laplace Smoothing is given as 

P(wn|C̅) = (freq(wn, C̅) + 1) / (∑w∊Dfreq(w, C̅) + |D|)                                                                                           (7) 

In equations (6) and (7), as the addition of 1 is considered in the numerator, the size of the dictionary 

(|D|) is added in the denominator indicating the addition of one for every dictionary word in the 

denominator. Based on equations (6) and (7) the learning stages of Multinomial Naïve Bayes and 

Complement Naïve Bayes can be updated accordingly.  

4.3.5 Expectation Maximisation 

Multinomial Naïve Bayes and Complement Naïve Bayes are supervised machine learning algorithms 

that require a substantial number of manually labelled reviews to learn a classifier that is capable of 

accurately predicting the category of an unlabelled review (McCallum & Nigam, 2001; Rennie et al., 

2003). Manually labelling the required number of reviews might become a time consuming task 

associated with potential errors. An appropriate semi-supervised learning concept addresses this 

drawback by reducing the labelling effort demanded from humans and Expectation Maximisation (EM) 

is a popular and commonly utilised semi-supervised concept (Collins, 2012; Nigam et al., 2000). EM 

comprises of two steps, Expectation (E) and Maximisation (M). The E step predicts and generates the 

unknown information based on the current maximum likelihood estimation parameters initiated by 

Multinomial Naïve Bayes method and the M step iteratively re-estimates the parameters which leads to 

the maximisation of the overall likelihood (Collins, 2012). EM allows the Multinomial Naïve Bayes 

method to run repeatedly until the maximum likelihood estimates become constant (Nigam et al., 2000). 

The goal of EM concept for this study is to create the respective semi-supervised variants of the 

Multinomial method and these variants were developed according to the algorithm mentioned in 

(Collins, 2012; Nigam et al., 2000). The initial stages of EM would consist of training the Multinomial 

Naïve Bayes method on the manually labelled categories of reviews and then later, using the learned 

information on categories related to the reviews to make predictions on the unlabelled reviews. Thus, 
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the predictions can be transformed into categories and can be utilised for subsequent iterative training 

of the Multinomial Naïve Bayes method using the unlabelled reviews with the previously predicted 

categories. The entire procedure needs to be repeated until the value generated by the maximum 

likelihood parameters becomes constant (likelihood is computed using the entire corpus of pre-

processed reviews). The above-mentioned details of the EM of Multinomial Naïve Bayes (Collins, 

2012;)Nigam et al., 2000) have been elaborated stepwise in algorithm 3. The detailed explanation of 

the mentioned algorithm is as follows; consider a reviews set RS containing reviews wherein each 

review is manually labelled with a category C (useful or non-useful). The prime objective of EM is to 

predict the categories of the unlabelled reviews based on the prediction mechanism of Multinomial 

Naïve Bayes. In every iteration, EM calculates the appropriate probabilistic category and assigns it to 

the particular unlabelled review, that is P(Cu|Ri) which is estimated to be 0 or 1. Here Cu denotes the 

particular category and Ri indicates the particular review. The labelled reviews having a specific 

category (a) is known prior, hence P(Ca|Ri) = 1 and P(Cb|Ri) = 0 for a ≠ b. Using the information of 

labelled reviews and P(Cu|Ri) an updated version of the Multinomial Naïve Bayes classifier is generated 

which works in a recursive manner until P(wn|C) and P(C) become constant. 

Algorithm 3: Expectation Maximisation of Multinomial Naïve Bayes 

Input: A set of reviews 

 

Processing: 

Begin  
 

1.  Train the Multinomial Naïve Bayes mNB from the manually labelled and pre-processed set of reviews R. 

2.  Expectation (E): 

     2.1 For each review Ri in the review set RS 

     2.1.1 Using the method mNB, calculate P(Cu|Ri) 

3. Maximization (M): 

    3.1 Train an updated version of mNB from R ∪ RS by calculating P(C)  and P(wn|C) 

4. Repeat steps 2 and 3 until mNB’s parameters (maximum likelihood estimators) become constant. 

5. Return mNB after completion of step 4. 

 

End 

 

Output: Each review categorised into one of two categories (useful and non-useful) 

 

That said, while EM integrates well with Multinomial Naïve Bayes, the Complement Naïve Bayes does 

not support any generative interpretations, and hence the creation of its EM variant is not possible 

(Rennie et al., 2003). 

4.4 Multinomial Naïve Bayes Variants 

The six Multinomial Naïve Bayes variants that were an outcome of the method and the concepts 

mentioned in section 4.3 are briefly elaborated in Table 4.1. Table 4.1 provides the name of the 
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particular variant along with its description. We first formulated the variants belonging to the 

Multinomial Naïve Bayes method. Based on the method mentioned in sub-section 4.3.2 and the 

concepts mentioned in sub-sections 4.3.4 and 4.3.5, there are four possible variants (I, II, III and IV) 

related to the Multinomial Naïve Bayes method. Similarly, based on the Complement concept 

mentioned in sub-section 4.3.3 and the concept mentioned in sub-sections 4.3.4 we formulated two 

possible variants (V and VI) of Complement Naïve Bayes.   

Table 4.1 Six Multinomial Naive Bayes variants 

Variant Name Description 

I Multinomial Naïve Bayes This variant is the Multinomial Naïve Bayes method 

introduced in sub-section 3.2.2.2 

II Expectation Maximisation 

of Multinomial Naïve 

Bayes 

The Expectation Maximisation concept described in sub-

section 3.2.2.5 has been integrated with I. Therefore, this 

variant is the semi-supervised version of I 

III Multinomial Naïve Bayes 

with Laplace Smoothing 

The Laplace Smoothing concept described in sub-section 

3.2.2.4 has been incorporated in I and therefore this variant 

is the post version of I.  

IV Expectation Maximisation 

of Multinomial Naïve 

Bayes with Laplace 

Smoothing 

The Multinomial Naïve Bayes method has been integrated 

with Expectation Maximisation concept and incorporated 

with Laplace Smoothing concept making this variant a 

semi-supervised version of III and a post version of II. 

V Complement Naïve Bayes This variant is the Complement concept of the Multinomial 

Naïve Bayes method described in sub-section 3.2.2.3. 

VI Complement Naïve Bayes 

with Laplace Smoothing 

Variant V has been incorporated with the concept of 

Laplace Smoothing making this variant a post version of V. 

 

4.5 Experimental Settings 

In this pilot study, the six variants described in Table 4.1 were implemented using Python7 with the 

support of suitable libraries provided by Natural Language Tool Kit8 (NLTK), numpy9 and scikit-learn10 

packages. In the remaining experiments conducted in the subsequent phases, all the necessary 

implementations were done using the same programming language and the supporting libraries. 

Moreover, we utilised R11 to perform the necessary statistical computing and analysis. That said, the 

performances of the six variants towards filtering of useful reviews were evaluated using the datasets 

provided by the app developers belonging to two different apps. In addition, the two supervisors of this 

PhD study had previously worked with some of the datasets while providing insights for the app 

developers, and hence, the supervisors have a thorough understanding and knowledge of the contents 

of these datasets that was later shared with the candidate of this PhD study (Keertipati et al., 2016; 

                                                      
7 https://www.python.org/ 
8 https://www.nltk.org/ 
9 https://numpy.org/ 
10 https://scikit-learn.org/ 
11 https://www.r-project.org/ 
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Licorish et al., 2017). The first dataset belonged to My Tracks app and the second dataset belonged to 

Flutter app (Keertipati et al., 2016; Licorish et al., 2017). My Tracks dataset consisted of 4003 reviews 

while Flutter dataset consisted of 3483 reviews. Using the set of filtering rules defined in (Chen et al., 

2014) we independently labelled the reviews of both datasets before reliability assessments were 

performed. The task of manual labelling was undertaken to empirically evaluate the performances of 

six variants based on the domain knowledge made available by humans (i.e., cross-validating the results 

generated from human decisions against those generated by the respective variant). Such cross 

validation approaches are deemed reliable and the provided domain knowledge acts as the ground truth 

(Stumpf et al., 2007). That said, after performing the reliability assessments the Fleiss coefficients were 

found to be 0.74 (substantial agreement) and 0.77 (substantial agreement) for My Tracks and Flutter 

datasets (Landis & Koch, 1977). Follow up discussions were held to resolve any disagreements and 

establish consensus leading to 100% agreement. Based on the manual labelling task, My Tracks dataset 

consisted of 1638 (41%) useful reviews and 2365 (59%) non-useful reviews. Flutter dataset consisted 

of 2433 (70%) of useful reviews and 1063 (30%) of non-useful reviews making it imbalanced (Rennie 

et al., 2003).  

The objective of classifying the reviews using the particular variant is to determine the category of each 

review by means of learning and prediction mechanism of the variant. The performance of each variant 

towards the binary classification of reviews present in the two datasets was evaluated using standard 

metrics such as accuracy, precision, recall, F-Measure and time (Michie et al., 1994; Sokolova & 

Lapalme, 2009). As app developers want to extract useful reviews in a timely manner due to the time 

constrained app maintenance and evolution cycles, we note the time (in seconds) required by each 

variant to perform learning and predictions (Michie et al., 1994). Accuracy determines the ability of a 

variant to correctly predict the category of the reviews given as the number of correctly classified 

reviews among the total number of classified reviews (Sokolova & Lapalme, 2009) and is given as  

Accuracy = (true positives + true negatives) / (true positives + true negatives + false positives + false 

negatives)                                                                                                                                                          (8) 

In (8), true positives term indicates the number of reviews correctly predicted as useful, true negatives 

indicates the number of reviews correctly predicted as non-useful, false positives indicates the number 

of reviews that were predicted as useful but were actually non-useful and false negatives indicates the 

number of reviews that were predicted as non-useful but were actually useful.  

Precision indicates the number of correctly predicted useful reviews among the total number of reviews 

predicted as useful and recall indicates the number of correctly predicted useful reviews to the total 

number of actual useful reviews (Sokolova & Lapalme, 2009), and both are given as 



 

70 

 

Precision = true positives / (true positives + false positives)                                                                            (9) 

Recall = true positives / (true positives + false negatives)                                                                     (10) 

F-Measure is the harmonic mean of precision and recall which determines the robustness of the variants 

(Sokolova & Lapalme, 2009), and is given as  

F-Measure = 2 * (Precision * Recall) / (Precision + Recall)                                                                    (11) 

The computer used for the conducting the experiments of this phase including those in the other phases 

had a CORE i5 CPU and 14GB RAM. For each experiment of this phase, we randomly split the 

respective dataset into a training set (90%) that is used to learn the relevant variant and a testing set 

(10%) which is used to evaluate the performance of the variant in predicting the categories of the 

nondisclosed reviews. Each experiment was run 100 times using ten-fold cross validation mechanism 

to obtain average results of the metrics mentioned above, and such evaluation approach is traditionally 

followed by researchers to ensure the stability of the machine learning methods (Arlot & Celisse, 2010; 

Kohavi, 1995). 

We present the results of the experiments conducted on the two datasets in the Results section.  

4.6 Results  

In this section, we present the results of the pilot study conducted towards the filtering of useful reviews. 

We report the average results of 100 times ten-fold cross validation operations conducted on My Tracks 

and Flutter datasets in Table 4.2 and Table 4.3 respectively.  These results provide context for answering 

RQ2.1 and provide triangulations for RQ2. 

4.6.1 My Tracks Dataset 

Initially, we evaluated the performance of the six Multinomial Naïve Bayes variants on the My Tracks 

dataset. Table 4.2 indicates average performances of the variants for the My Tracks dataset.   

Table 4.2 Multinomial Naive Bayes variants average performance on My Tracks dataset 

Variant Accuracy  

(%) 

Precision 

(0-1) 

Recall 

(0-1) 

F 

(0-1) 

Time 

(seconds) 

I 68.1 0.56 0.98 0.71 0.26 

II 80.4 0.73 0.88 0.80 0.30 

III 87.4 0.81 0.91 0.86 0.12 

IV 89.2 0.84 0.94 0.89 0.19 

V 84.6 0.76 0.90 0.82 0.15 

VI 86.5 0.78 0.91 0.84 0.10 
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Initially, we conducted the Shapiro-Wilk test to evaluate the distribution of the results generated by 

each variant (i.e., 100 results of each variant) (Sheskin, 2003). From the conducted test, we found no 

evidence regarding normal distribution of the results (p-value < 0.01). Hence, we conducted the 

Kruskal-Wallis non-parametric test to check for statistically significant differences between the results 

of the Multinomial Naïve Bayes variants (Sheskin, 2003). Result of the conducted test showed that there 

were statistically significant differences (p-value < 0.01) among all the results of the Multinomial Naïve 

Bayes variants for all performance metrics (i.e., accuracy, precision, recall, F-Measure and time). Thus, 

we performed the pairwise Wilcox test to evaluate pairwise comparisons between the results of the 

Multinomial Naïve Bayes variants with corrections for multiple testing (Wilcox, 2011). We observed 

statistically significant differences for all comparisons (p-value < 0.01) pertaining to the accuracy, 

precision, recall, F-Measure and time metrics.  

As observed from Table 4.2 variant I exhibited the lowest accuracy (68.1%) and F-Measure (0.71) 

compared to the other variants. On the contrary, variant IV exhibited the highest accuracy (89.2%) and 

F-Measure (0.89). In addition, variant VI required the least amount of time to perform learning and 

predictions (0.10 seconds) while variant II required the highest time (0.30 seconds). Moreover, the semi-

supervised variants II and IV performed better than their supervised variants I and II in terms of 

accuracy (80.4% versus 68.1%, 89.2% versus 80.4%) and F-Measure (0.80 versus 0.71, 0.89 versus 

0.80). However, these semi-supervised variants required more time than their predecessor variants. The 

supervised variants III, V and VI outperformed semi-supervised variant II in terms of accuracy (87.4%, 

84.6%, 86.5% versus 80.4%), F-Measure (0.86, 0.82, 0.84 versus 0.80) and time (0.12 seconds, 0.15 

seconds, 0.10 seconds versus 0.30 seconds). The variants V and VI derived from the Complement 

concept outperformed variants I and II in terms of accuracy (84.6%, 86.5% versus 68.1%, 80.4%), F-

Measure (0.82, 0.84 versus 0.71, 0.80) and time (0.15 seconds, 0.10 seconds versus 0.26 seconds, 0.30 

seconds). Similarly, variants III and IV outperformed variants I and II in terms of accuracy (87.4%, 

89.2% versus 68.1%, 80.4%), F-Measure (0.86, 0.89 versus 0.71 and 0.80) and time (0.26 seconds, 0.30 

seconds versus 0.12 seconds, 0.19 seconds). Furthermore, Laplace smoothing led towards an increase 

in accuracy of variants III, IV and VI when compared to their respective earlier versions I, II and V 

(87.4% versus 68.1%, 89.2% versus 80.4%, and 86.5% versus 84.6%) and F-Measure (0.86 versus 0.71, 

0.89 versus 0.80, and 0.84 versus 0.82). In addition, Laplace smoothing assisted in reducing the time 

required for performing learning and predictions in cases of the same variant pairs (III-I, IV-II, and VI-

V).  

4.6.2 Flutter Dataset 

Next, we evaluated the performances of the six variants on Flutter dataset. Table 4.3 indicates the 

average performances of the variants.  



 

72 

 

Table 4.3. Multinomial Naive Bayes average performance on Flutter dataset 

Variant Accuracy  

(%) 

Precision 

(0-1) 

Recall 

(0-1) 

F 

(0-1) 

Time 

(seconds) 

I 76.2 0.75 0.97 0.85 0.19 

II 80.3 0.82 0.91 0.86 0.23 

III 80.5 0.81 0.94 0.87 0.12 

IV 82.3 0.84 0.93 0.88 0.16 

V 80.4 0.83 0.87 0.85 0.10 

VI 84.4 0.87 0.91 0.89 0.08 

 

Firstly, we repeated the Shapiro-Wilk test to investigate the distribution of the results generated by each 

variant and observed no normal distribution (p-value < 0.01). Hence, we conducted the Kruskal-Wallis 

test followed by the pairwise Wilcox test to check for any statistically significant differences among all 

the results of the six variants in Table 4.3. Both tests returned statistically significant differences (p-

value < 0.01).  

That said, as observed from Table 4.3, variant I exhibited the lowest accuracy (76.2%), whereas VI had 

the highest accuracy (84.4%), F-Measure (0.89) with least time (0.08 seconds) required for performing 

learning and predictions. Variant II had the highest time requirements (0.23 seconds) and variant IV 

ranked second in terms of accuracy (82.3%) and F-Measure (0.88). Variants II, III and V did not exhibit 

large differences in magnitude of accuracy and F-Measure results despite these differences being 

significant statistically (p-value < 0.01). In addition, Laplace smoothing assisted in reducing the time 

required by variants III, IV and VI to perform learning and predictions in comparison to their respective 

earlier versions I, II and V (0.12 seconds versus 0.19 seconds, 0.16 seconds versus 0.23 seconds, and 

0.08 seconds versus 0.10 seconds). Laplace smoothing also assisted in increasing the accuracy (80.5% 

versus 76.2%, 82.3% versus 80.3%, and 84.4% versus 80.4%) and F-Measure (0.87 versus 0.85, 0.88 

versus 0.86, and 0.89 versus 0.85) in cases of the same variant pairs (III-I, IV-II, and VI-V). 

Furthermore, based on the evaluation results of My Tracks and Flutter datasets, in case of pure 

Multinomial Naïve Bayes variants (i.e., excluding the Complement concept) variant IV outperformed 

the other variants in terms of accuracy and F-Measure while variant III had the least time requirements 

to perform learning and predictions. In cases of variants belonging to the Complement concepts, variant 

VI outperformed its predecessor variant V in terms of accuracy, F-Measure and time.  

We discuss the results of the undertaken pilot study on useful reviews filtering and the considerations 

of their implications in the Discussion section.  
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4.7 Discussion 

As reviews pertaining to an app usually tend to be numerous, there was a necessity to develop an 

automated filtering approach to identify and extract useful reviews. Doing so would not only assist the 

app developers to analyse or visualise information within the filtered useful reviews which is beneficial 

but also generate accurate and timely classification or prioritisation results, as significant amount of 

noisy and unwanted information negatively affecting the accuracy and time metrics would be avoided. 

The studies on requirements elicitation identified from the systematic study on requirements 

prioritisation were the primary source of inspiration for such a filtering approach along with the need 

to process large numbers of reviews associated with apps which majorly consist of non-useful reviews 

(i.e., irrelevant information for app developers) (Chen et al., 2014; Garg et al., 2017; Sadiq et al., 2017). 

This guided us to review studies that specialised in automated filtering of information that was of 

interest to the researchers. In this regard, we identified several studies from the app reviews domain but 

these studies had several limitations in their proposed filtering approaches (refer to section 4.2). 

However, continuing our search further, we identified a study that showed the rule based Multinomial 

Naïve Bayes method is one of the most reliable and suitable approach to filter useful reviews (Chen et 

al., 2014). As the study did not provide the algorithmic and implementation details of the method, apart 

from the rules for filtering, we had to examine the Multinomial Naïve Bayes method which lead to the 

discovery of six variants pertaining to the same method whose utility towards filtering useful reviews 

was investigated in our pilot study. Such an empirical evaluation was never performed in any prior 

studies, which allowed us to provide a contribution to the software engineering discipline. The sub-

section below discusses the results and implications of RQ2.1.     

4.7.1 RQ2.1 What are the performances of Multinomial Naïve Bayes variants when 

extracting useful reviews, and are there differences in outcomes of the different 

implementations?   

When the results for the two datasets (i.e., My Tracks and Flutter) are observed, we notice varied 

performances exhibited by the six variants of Multinomial Naïve Bayes (Schaffer, 1993). This is 

inferred based on the results conveyed through accuracy, F-Measure and time metrics (Schaffer, 1993). 

We believe the features affiliated with each label (i.e., useful or non-useful) play a significant role in 

predicting the relevant label of a review (Yuan et al., 2012; Zhu et al., 2006). This may be the reason 

behind the variations in performances exhibited for the six variants when predicting useful and non-

useful reviews for the two datasets. Based on this observation, we are of the opinion that the variants 

may reliably predict the label of each review if the features associated with the label had substantial 

degree of distinctness (i.e., features related to a label are notably discrete in comparison to the features 

related to the other labels), an aspect that requires empirical examination (Yuan et al., 2012; Zhu et al., 

2006). In the experiments conducted related to the two datasets and the results presented in Tables 4.2 
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and 4.3, the readings related to precision indicate a particular variant’s ability to correctly identify useful 

reviews out of all the reviews that are actually useful. In such case, variant IV exhibits the highest 

precision for My Tracks dataset whereas, variant VI exhibits the highest precision for Flutter dataset. 

Subsequently, the readings related to recall indicate that for all the reviews that are useful, how many 

of such useful reviews did a particular variant correctly identified as useful. In such case, variant I 

exhibits the highest recall for both datasets. That said, app developers might utilise a particular variant 

towards filtering of useful reviews based on the application requirement. For instance, app developers 

might utilise variant I if the filtering of useful reviews is based only on recall metric. However, 

prominent app studies based on domain experts’ suggestions have considered results based on F-

Measure as a significant deciding factor towards determining the robustness of a machine learning 

method (i.e., based on combination of both - precision and recall) (Chen et al., 2014; Di Sorbo et al., 

2016; Jiang et al. 2019). Hence, we formulate the further discussion of results based on F-Measure that 

considers the metrics precision and recall. Figure 19 provides a visualisation of the performance results 

based on accuracy, F-Measure and time metrics of the six variants pertaining to the two datasets.  

 

Figure 19. Overall performance of Multinomial Naive Bayes variants based on accuracy, F-Measure and time. This is 

based on aggregate results for both datasets. 
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Figure 19 allows for meaningful interpretation of patterns observed in the generated results. From 

Figure 19, it can be observed that the Expectation Maximisation Multinomial Naïve Bayes variants (II 

and IV) significantly improved the performance (accuracy and F-Measure) of the primary Multinomial 

Naïve Bayes variants (I and III) respectively. The Expectation Maximisation customisations resulted in 

as much as 9.1% improvement in accuracy in retrieving useful reviews. On the contrary, the Expectation 

Maximisation variants (II and IV) required more time to perform learning and predictions (31.8% 

increase in time). The observed increase in accuracy and F-Measure as seen in Figure 19 is due to the 

EM mechanism of II and IV that allows these variants to gain maximum information about the words 

present in app reviews belonging to the same category (useful or non-useful) during the particular EM 

variant’s learning phase.  

This can be observed in sub-section 4.3.5 when unclassified and classified reviews are passed to the 

particular EM variant, which in turn allows the EM variant to gain insights about the different types of 

words pertaining to a specific category in the variant’s learning phase. This crucial information gained 

during the learning phase leads towards the increase in accuracy and F-Measure. Moreover, the 

algorithmic structure of Multinomial Naïve Bayes (I) and Multinomial Naïve Bayes with Laplace 

Smoothing (III) is based on closed form formulas, which enable these variants to generate results 

quickly (Ren et al., 2009). However, the Expectation Maximisation of Multinomial Naïve Bayes and 

Expectation Maximisation of Multinomial Naïve Bayes with Laplace smoothing generate results based 

on an iterative approach (EM computation continues until likelihood parameters become constant), thus 

needing more time for learning and making predictions.  

With regards to Laplace smoothing, results show that Laplace smoothing augmentation assisted 

significantly in increasing accuracy and F-Measure, and reduced the time required for learning and 

prediction purposes involving Multinomial Naïve Bayes, Expectation Maximisation of Multinomial 

Naïve Bayes and Complement Naïve Bayes. We note a 17.0% increase in accuracy, 0.1 improvement 

in F-Measure and 0.11 seconds reduction in time which were accounted for by Laplace smoothing. 

Laplace smoothing augmentation enhanced the retrieval of useful reviews. As observed from equations 

(6) and (7), Laplace smoothing prevents the zero counts of words whose information is not available 

during the learning phase, thus preserving the value of maximum likelihood estimates that are crucial 

towards the prediction of a category of a review. Hence, any maximum likelihood estimate being 0 

compromises a variant’s judgement towards determining the relevant category of a review. In addition, 

the Laplace smoothing variants (III, IV and VI) compute faster estimates of the parameters that generate 

the likelihood, hence improving Multinomial Naïve Bayes’s overall performance.  

From Figure 19 it is observed that, overall, Expectation Maximisation of Multinomial Naïve Bayes with 

Laplace smoothing (IV) performed well on both datasets in terms of accuracy and F-Measure. Thus, 

from an application perspective, Expectation Maximisation of Multinomial Naïve Bayes with Laplace 
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smoothing may be a suitable variant for the information retrieval task which involves limited number 

of reviews that are manually labelled (categorised) by app developers. Subsequently, Complement 

Naïve Bayes with Laplace Smoothing (VI) performed well on the Flutter dataset. This is because, the 

complement concept of Multinomial Naïve Bayes allows it to perform well when the dataset consists 

of reviews with imbalanced labels. That said, concerning both datasets, Complement Naïve Bayes with 

Laplace Smoothing had the least time requirements (average ~ 0.1 seconds). Therefore, the application 

of Complement Naïve Bayes with Laplace smoothing is potentially suited when app developers have a 

substantial number of labelled reviews whose categories (labels) are imbalanced and at the same 

instance are bounded by severe time constraints to extract useful reviews. 

Furthermore, it is to be noted that all the Multinomial Naïve Bayes variants operated on the assumption 

of independence. This indicates that each variant disregards the meaning of the words it processes 

relative to other words. This is a questionable assumption as it may compromise a variant’s ability to 

perform predictions when processing words belonging to real world learning and prediction applications 

(John & Langley, 1995). For instance, consider the review ‘the map pixelates every time I run’, the 

words ‘map’ and ‘pixelates’  are related as the word pair ‘map - pixelates’ indicates that the map 

becomes unclear to the app’s end-user when the end-user starts running. This is not modelled by the 

Multinomial Naïve Bayes method and hence, the method and its variant exhibit the independence 

assumption. That said, other machine learning methods such as logistic regression attempt to fit a 

normal curve or discretise the words (Ng & Jordan, 2002). With regards to this, each variant assumes 

that the word space is normally distributed with zero variance between the words present in all the 

categories. Because of this, in some scenarios the particular variant may be unable to generate a reliable 

discretisation of interrelated (continuous) words (features) which may compromise the performance of 

the particular variant. A potential solution to solve this would be to test for the independence of the 

words to get a tentative estimate of prediction errors to determine the suitability of a particular variant 

or generate a zero normal distribution towards generating more efficient results in terms of accuracy 

and F-Measure (Boullé, 2006).  

However, the results obtained from the conducted pilot study are promising (e.g., over 89% accuracy, 

0.87 precision, 0.98 recall, 0.89 F-Measure, and 0.08 seconds time). Thus, the six Multinomial Naïve 

Bayes variants (especially variants: IV - Expectation Maximisation of Multinomial Naïve Bayes with 

Laplace Smoothing and VI - Complement Naïve Bayes with Laplace Smoothing) investigated in this 

pilot study on their own hold promise for aiding useful reviews filtering and software maintenance 

cycles.   
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4.8 Threats to Validity 

In this section, we present the threats to validity that can potentially affect the outcomes reported in this 

Chapter.  

4.8.1 Internal Validity 

The prime objective of the pilot study conducted in this phase was to examine and compare the 

performance of the Multinomial Naïve Bayes variants against each other for their efficiency towards 

filtering of useful reviews. Hence, the performance of other machine learning approaches is not 

investigated in our study. However, potential future work aimed at conducting such an investigation 

could be planned. This investigation could involve the performance evaluation of popular machine 

learning algorithms such as BERT (Bidirectional Encoder Representations from Transformers), 

Decision Trees, Random Forests, Logistic Regression, SVM and so on, towards the filtering of useful 

reviews. In addition, addressing research aspects related to the distinct features (words) to be made 

available for learning and prediction purpose, and the independence assumptions made by the 

Multinomial Naïve Bayes variants were beyond the scope of this pilot study. That said, we have 

mitigated the threats related to the manual labelling of reviews for filtering purposes by: (a) using the 

feedback provided by app developers, (b) studying and becoming associated with the rules mentioned 

in (Chen et al., 2014) for labelling reviews, and (c) rigorously analysing the types of reviews that the 

app developers are concerned with. All the essential information including the rules were discussed 

among the three labellers for common understanding, before the reliability assessments were conducted 

which returned fair to substantial agreements. Follow up discussions were held to establish consensus 

before generating the appropriate results and finalising the particular outcomes.      

4.8.2 External Validity 

In this phase, we have used a computer with a particular hardware configuration (Core i5 CPU and 

14GB RAM) which may limit the generalisability of certain results, especially those involving the 

measurement of time. However, the pattern of results is consistent across the two datasets used for 

evaluations, and hence, these results do not possess a threat to validity. We have utilised two datasets 

in the pilot study conducted in phase 2 and hence, the generalisability of the outcomes of this pilot study 

might be affected. However, the primary objective of this pilot study was to examine the feasibility of 

the proposed filtering of useful reviews approach and quantifying evaluation of the outcomes generated 

by this approach. 

4.8.3 Construct Validity 

To construct the ground truth data to filter useful reviews we followed the well-established rules from 

the prominent study to label the app reviews and the recommended practices from the software 
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engineering discipline (consensus formation). However, another alternative to construct this ground 

truth data would be to approach the app developers of the respective apps to obtain the labelled set of 

reviews to evaluate the performance of the filtering approach.   

We provide the concluding remarks of this phase, its research contributions and summary of 

implications in the Conclusions chapter (refer to Chapter 7). In the next chapter, we present the details 

of Phase 3 (i.e., classification of useful reviews)  
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5 Classification of Useful Reviews  

After figuring out an approach to filter useful reviews (refer to Chapter 4), our next objective was to 

convert the useful reviews into actionable knowledge by means of classification (RQ3). Thus, in phase 

3 we developed and experimented with an automated taxonomy generation approach through means of 

a pilot study that answered one RQ. This RQ (RQ3.1) was aimed towards testing a preliminary approach 

to automatically generate a taxonomy for classifying useful reviews into groups of interest. In this 

chapter, we provide the details regarding phase 3 of the undertaken research work.  

5.1 Introduction 

In this phase, we conducted a pilot study which primarily deals with the classification of useful reviews 

into groups of interest. To achieve this, we first had to investigate the classification methods that 

classified reviews of apps where we identified a drawback. This drawback being, that all the 

classification methods were driven by manually derived taxonomy which is problematic when the 

domain knowledge is absent. Thus, we developed an approach that automatically creates a taxonomy 

from a corpus of useful reviews and later classifies them into specific groups of interests. The detailed 

elaboration towards the classification of useful reviews using the automatically generated taxonomy is 

presented in the following sections.   

5.2 Related Studies 

Beforehand, researchers have utilised classification as one of the approach to obtain actionable 

knowledge from reviews (Maalej et al., 2016a; Panichella et al., 2016). Such approach classifies reviews 

having common attributes into specific categories (groups) based on a taxonomy derived manually from 

domain knowledge, as a review of the literature shows that all the classification methods for classifying 

reviews are dependent on domain knowledge made available manually through means of extensive 

research or by domain experts. For instance, Panichella et al. (2015) have inherited a taxonomy from 

the taxonomy proposed by Pagano and Maalej (2013) and have evaluated the classification performance 

SVM (Support Vector Machines), Naïve Bayes, Decision Tress and Logistic Regression. Pagano and 

Maalej  (2013) have manually assigned categories that constitute a taxonomy for classifying reviews. 

Similarly, Maalej et al. (2016a))manually developed four categories to classify reviews using methods 

such as keyword lookup classifying mechanism, Decision Tress, Naïve Bayes and Maximum Entropy. 

Such studies have provided inspiration for others. For instance, Panichella et al.  (2016) developed a 

manual taxonomy that was inherited from the taxonomy created by Panichella et al. (2015) to 

automatically classify reviews using the J48 supervised machine learning method. In another study, 

Ciurumelea et al. (2018) have come up with five sets of categories by taking inspiration from (Panichella 

et al., 2015) and created a taxonomy to classify reviews using Gradient Boosting supervised machine 

learning method.  Similarly, Dhinakaran et al. (2018) developed an automated classification approach 
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that classifies reviews into categories using a previously proposed taxonomy (Maalej et al., 2016a). In 

this study, a domain expert assigns categories to a set of random reviews and this information is used 

to automatically classify the remaining set of reviews using a machine learning method. The 

performance of supervised machine learning methods such as SVM, Logistic Regression and Naïve 

Bayes was evaluated towards the automated classification task. Sorbo et al. (2016) have developed a 

fine-grained taxonomy from the taxonomy proposed by Panichella et al. (2015) which consists of 

additional categories over the study it is based on. It is to be noted that, with such classification 

approaches the need to manually analyse reviews is unavoidable. For instance, Maalej et al. (2016a) 

have classified reviews into one of the four categories; user experience, bug reports, ratings and feature 

requests. Of note here is that the manually derived taxonomy does not provide the specific details (e.g., 

which feature is requested by the end-user or what type of bug is reported), thus requiring the app 

developers to analyse each of the classified review to obtain the necessary information. This limitation 

is observed for the above reviewed studies on classification of reviews. Table 5.1 provides a summary 

of the above-mentioned studies in which the first column indicates the study, followed by the type of 

taxonomy utilised, number of categories, the name of those categories and the automated classification 

methods evaluated. 

Table 5.1 Summary of classification studies on reviews 

Study Taxonomy Number of 

categories in 

taxonomy 

Name of the 

categories 

Classification methods 

Pagano and 

Maalej (2013) 

Manually 

derived 

17 1. Recommendation 

2. Helpfulness 

3. Feature Information 

4. How to 

5. Praise 

6. Content Request 

7. Important Request 

8. Other App 

9. Feature Request 

10. Noise 

11. Other Feedback 

12. Question 

13. Promise 

14. Shortcoming 

15. Bug Report 

16. Dispraise 

17. Dissuasion 

Manual classification 

Panichella et 

al. (2015) 

Manually 

derived 

5 1. Information Seeking 

2. Information Giving 

3. Feature Request 

4. Problem Discovery 

5. Others 

1. Naïve Bayes 

2. SVM 

3. Logistic Regression 

4. Decision Tress 
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Study Taxonomy Number of 

categories in 

taxonomy 

Name of the 

categories 

Classification methods 

Maalej et al. 

(2016a) 

Manually  

derived 

4 1. Bug Reports 

2. Feature Requests 

3. User Experience 

4. Ratings 

1. Keyword lookup 

grouping mechanism 

2. Naïve Bayes 

3. Decision Tress 

4. Maximum Entropy 

Panichella et 

al. (2016) 

Manually  

derived 

5 1. Information Giving 

2. Information Seeking 

3. Feature Request 

4. Problem Discovery 

5. Other 

J48 

Ciurumelea et 

al. (2018) 

Manually 

derived 

13 1. Device 

2. Android Version 

3. Hardware 

4. App Usability 

5. UI 

6. Performance 

7. Battery 

8. Memory 

9. Licensing 

10. Price 

11. Security 

12. Privacy 

13. Complaint  

Gradient Boosted Tress 

Dhinakaran et 

al. (2018) 

Manually 

derived 

4 1. Feature Request 

2. Bug Report 

3. User Experience 

4. Rating 

1. SVM 

2. Naïve Bayes 

3. Logistic Regression 

Sorbo et al. 

(2016) 

Manually 

derived 

12 1. App 

2. GUI 

3. Contents 

4. Pricing 

5. Feature of 

Functionality 

6. Improvement 

7. Updates/Versions 

8. Resources 

9. Security 

10. Download 

11. Model  

12. Company 

Topic classification 

using WordNet and 

probabilistic classifier 

 

From the information present in Table 5.1 it is evident that while studies inherit categories from the 

predecessor studies, there is no universal manually derived taxonomy to classify reviews, which raises 

the question, are the taxonomies customised based on the types of reviews or the domain of the app(s)?, 

another challenge that needs to be addressed. Another drawback of utilising a manually created 

taxonomy is the necessity to update the domain knowledge to create a new version of the taxonomy 

when the app evolves and new reviews are logged by the end-users (Pagano & Maalej, 2013; Peng et 
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al., 2012). To address such drawbacks, we have taken inspiration from well-known studies from several 

domains to develop an automated taxonomy generation approach to classify useful reviews which leads 

to the following research question 

RQ3.1 How can an approach be developed to automatically generate a taxonomy for 

classifying useful reviews, and how will such taxonomy compare to a manually developed 

one? 

5.3 Classification Approach (RQ3.1) 

The initial objective is to automatically generate a taxonomy to classify useful reviews and in this 

section we provide the details of the concepts and method that lead to the generation of such taxonomy 

from useful reviews. The performed investigations in this section answers RQ3.1.  

5.3.1 Feature Engineering   

Feature engineering helps to identify the relationship between a particular product’s market 

characteristics and its features (Brunetti & Golob, 2000). However, performing feature engineering for 

app reviews is challenging because of the way in which the reviews are expressed by the end-users and 

thus, the presence of domain knowledge is required to identify the features (e.g., distance feature that 

indicates the possible distances between two routes that connect locations X and Y) and their associated 

market characteristics (e.g., requests, bugs or enhancements) (Ko et al., 2000; Licorish et al., 2017; Liu, 

2000). To achieve this, researchers have used parts of speech (POS) tagging method which uses 

grammar concepts to identify the essential markers that represent the product features and their market 

characteristics (Cysneiros & do Prado Leite, 2004; Ko et al., 2000; Licorish et al., 2017; Zhang & Liu, 

2011). For instance, Ko et al. (2000) have identified nouns as software product features and adjectives 

and verbs as the requests, bugs or enhancements in the domain knowledge provided by the domain 

experts to classify software product requirements expressed in natural language. Thus, we take 

inspiration and inherit guidelines from such studies to automatically generate a taxonomy to classify 

useful reviews and make an assumption that the nouns present in the useful reviews are app features, 

and adjectives and verbs are requests, bugs or enhancements related to the particular app feature (Ko et 

al., 2000; Licorish et al., 2017; Zhang & Liu, 2011). For example, consider the useful reviews, ‘Distance 

(noun - app feature) is inaccurate (adjective - bug) and needs to be resolved (verb - 

request/enhancement)’.  ‘Map (noun - app feature) pixelated (verb - bug) continuously!’. In both 

examples, Distance and Map represent the app features, while words such as inaccurate and pixelated 

reflect bugs, and resolved reflects request or enhancement pertaining to the app feature Distance. Such 

patterns form the core of a potential taxonomy highlighted in Figure 20 generated via feature 

engineering (Htay & Lynn, 2013; Ko et al., 2000) and this taxonomy would assist towards classification 

of similar useful reviews sharing common characteristics (i.e., based on the presence of app features or 

their associated requests, bugs or enhancements) into the relevant groups of interest.  
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Figure 20. Example of a generated taxonomy 

Given our objective to automatically generate a taxonomy independent of domain knowledge we utilise 

the POS tagging method from natural language processing to identify nouns, verbs and adjectives from 

the useful reviews (Hajič et al., 2009). Later, we identify adjectives and verbs which are semantically 

similar to the respective noun with regards to their contextual application to generate the taxonomy (Ko 

et al., 2000). Next, we report the investigation that lead towards the selection of a suitable semantic 

similarity method to assign similar useful reviews into groups.   

5.3.2 Semantic Similarity Methods 

There are several methods developed by researchers that determine semantic similarity between words 

which is quantified by a computed semantic score (Mihalcea et al., 2006). All these methods operate on 

the principle of word sense disambiguation that identifies the meaning of a word with reference to 

another based on its context of application measured via the computed semantic score (Karov & 

Edelman, 1998). Such methods may belong to multiple categories; (1) semantic similarity methods 

based on features, (2) semantic similarity methods based on graphical edges, (3) semantic similarity 

methods based on information theory and, (4) semantic similarity methods based on knowledge 

distribution (Sánchez et al., 2011). The methods from the first category determine the semantic 

similarity between words of interest by means of a dictionary (e.g., WordNet) (Petrakis et al., 2006) 

The methods falling in the second category, generate a graph based on the spread of word pairs 

according to a dictionary and later compute the semantic score of the word pairs based on the spread 

and distance values of the graph edges (Leacock & Chodorow, 1998). For the third category, methods 

utilise the knowledge of the distribution of words extracted from the information under scrutiny to 

determine the similarity between word pairs given an ontology derived from a dictionary (Jiang & 

Conrath, 1997). The methods from the fourth category use a common data source such as the world 

wide web (WWW), Wikipedia and so on as a dictionary to determine the semantic similarity between 

word pairs based on their co-occurrence (Bollegala et al., 2011). That said, as observed these methods 

use a dictionary which provides the formal descriptions of the words that can be compared for semantic 

similarity and hence, the suitable knowledge sources (e.g., dictionary) need to be obtained before the 
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methods compute semantic similarity scores. Thus, the prime disadvantage of such types of semantic 

similarity methods that are knowledge source based (e.g., dictionary, and online repository such as 

Wikipedia) is that they are entirely dependent on the existence of these knowledge sources (i.e., domain 

knowledge). In certain cases, it might not be possible to obtain the necessary domain knowledge or the 

domain knowledge from one domain may not be suitable for other domains. In fact, computing semantic 

scores between word pairs is far from perfect and is an ongoing challenge in the field of linguistics 

(Mihalcea et al., 2006). This is because of the variations in the way in which words are expressed by 

humans (Erk, 2010). This challenge lies at the heart of our proposed method to automatically generate 

a taxonomy from useful reviews. As mentioned in sub-section 3.6, we contend that the need to contact 

domain experts for gaining the necessary domain knowledge is problematic because of the differences 

in the way in which words are expressed by end-users of different types of apps that poses a challenge. 

For example, consider the word ‘draining’ whose meaning in a standard dictionary is ‘liquid running 

out of a space’ (Kozima & Furugori, 1993). On the contrary, in terms of useful reviews, ‘draining’ is 

related to the excessive consumption of a device’s battery power. Moreover, the useful reviews contain 

words that are not covered by dictionaries. For example, urban words (e.g., hog, kill, drain - which are 

related to device battery), domain specific end-user generated words (e.g., spotting, capture, scan – 

which are related to camera use) and so on.  

That said, given the nature of useful reviews, most often, the words in the useful reviews that are in 

close proximity of each other are contextually similar as the end-users who log the reviews often 

mention contextually semantically similar words in close vicinity of each other (Iacob & Harrison, 

2013; Rohde et al., 2006). For instance, consider the useful review; ‘not possible to accurately track 

route due to the wrong map’. This useful review indicates that the app is unable to accurately track the 

route because of the wrong map being loaded by the app. Of note here is that ‘accurately’, ‘track’, 

‘route’, ‘wrong’, and ‘map’ are in close proximity to each other indicating their contextual semantic 

similarities. Such pattern is often repeated for many useful reviews indicating that in a vector space 

representation of words, semantically similar words are often close to each other because of their 

contextual application, while the irrelevant words are distant (Iacob & Harrison, 2013; Reisinger & 

Mooney, 2010). This forms the basis for the automatic generation of taxonomy which identifies the 

verbs and adjectives (i.e., requests, bugs or enhancements) that are semantically similar to the relevant 

nouns (i.e., app features) based on their context of usage. Hence, we reviewed semantic similarity 

methods that computed semantic scores of word pairs independent of domain knowledge.  

To begin, the LSA (Latent Semantic Analysis) method initially constructs a word-document matrix, in 

which the words from a particular document d correspond to rows while the documents correspond to 

columns. Whenever a particular word w appears in a specific document, its frequency of occurrence is 

registered and updated in the respective word-document matrix’s cell Cw,d (Landauer & Dumais, 2008). 
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Thus, the matrix represents the dispersal of a word in the documents space. In the next stage, the rows 

of the matrix are normalised using an entropy-based normalisation method. Later, the semantic 

similarity between any two words existing in the word-document matrix is determined using the cosine 

distance measure. However, this method is often known to strongly depend on the learning data, thus 

causing substantial errors and further compromising its predictive judgments (overfitting) (Landauer & 

Dumais, 2008). More to this, in many cases the words, and documents represented by the word-

document matrix data structure are interconnected by the Gaussian model, which makes LSA bias 

towards commonly occurring words (Evangelopoulos et al., 2012).  

The probabilistic version of LSA tries to overcome the drawbacks of the LSA method (Hofmann, 1999). 

It achieves this by processing two conditional probabilities to determine the semantic similarity between 

two words. Firstly, it computes the probability of a word linked to a particular subject of interest, and 

secondly, it computes the probability of a document belonging to a given subject under a probabilistic 

model (e.g., Bayesian probability model). Finally, the occurrence of a word in a given document can be 

determined by the probability of the occurrence of a particular word related to the subject of interest, 

and the probability that the subject is related to the document under investigation. However, this model 

does not entirely solve the problem of overfitting (Leksin & Vorontsov, 2008). Furthermore, LSA 

operates with the assistance of the word-document matrix data structure that is only useful in 

determining the relevance of a word from the document’s perspective, and not in terms of its contextual 

semantic similarity with other words, as necessary in case of useful reviews (Deerwester et al., 1990).  

Another method named HAL (Hyperspace Analogue to Language) developed by Burgess (1998) 

measures the semantic similarities between two words based on their proximity in vector space. This 

method was developed based on the concept of representing each word in a vector space which assists 

in understanding the similarities between two words by calculating the pairwise distances between the 

points symbolised by the respective vectors. These vectors are created from the information on words’ 

co-occurrences within a text corpus. The vector space12 of words is a word-word matrix that indicates 

the semantic score of a particular word pair based on the vector distance of the two words from each 

other in a particular text corpus (Lund & Burgess, 1996). To achieve this, the authors first run a window 

of a size of ten words i.e., accommodating ten words in a single parsing operation, then moving from 

one word to another to repeat the same set of operations recursively. This mechanism is used to create 

a co-occurrence matrix of words present in the entire text corpus. For instance, for each word w1, the 

technique counts the number of times another word w2 occurs in close distance with w1. The counting 

is achieved using a weighted approach in which if w2 appears adjacent to w1, it assigns a weight of 10 

(parsing window size), it assigns a weight of 9 if w2 is distant from w1 by one word, weight of 8 if w2 

                                                      
12 Mathematical model for representing useful reviews as vectors wherein each dimension corresponds to a 

separate word. If a word occurs in the useful review, its value in the vector is non-zero. The dimensionality of the 

vector is the number of words in the useful reviews corpus. 
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is distant from w1 by two words, and so forth for a window of 10 word neighbours. When the entire 

corpus is traversed by the window, the word-word occurrence matrix’s cell Cw1,w2 holds the weighted 

sum of all the occurrences of w2 in closeness to w1. Once the matrix is formed with all the necessary 

data, all the vectors being represented by the matrix are normalised to a fixed size, and finally, the 

similarity between two words’ vector is determined using the Minkowski distance formula or Euclidean 

distance measure. However, it was found out that HAL was biased towards word pairs whose counts in 

the co-occurrence matrix were higher than the ones with rare or moderate counts (Rohde et al., 2006).  

The strengths and weaknesses of LSA and HAL were studied by Rohde et al. (2006) to develop a new 

method COALS (Correlated Occurrence Analogue to Lexical Semantics) that inherited the strengths of 

HAL and LSA, and discarded their weaknesses. Unlike HAL, this approach uses four word window 

parser to create the words co-occurrence matrix. Once, the matrix is created, the counts are converted 

to correlations using the Pearson correlation function. Once the normalisation operation is complete, 

the negative values in the normalised words co-occurrence matrix are set to 0 (discarded), and the 

positive values are square rooted and retained in the matrix. This is done to prevent the method from 

being biased towards word pairs that are inversely related in terms of semantic similarity to prevent 

inaccurate results. Furthermore, in extensive empirical evaluations COALS outperformed the other 

methods as the semantic scores of several word pairs calculated by the method matched with those 

assigned by the domain experts (Rohde et al., 2006). Thus, we shortlisted COALS as the candidate 

method to evaluate the contextual semantic similarity between words of the useful reviews pertaining 

to an app and generate the required taxonomy. We describe this method below. 

Initially, COALS creates a word-word co-occurrence matrix from the text corpus, using a window of 

size four. For each word w1, COALS counts the number of times every other word w2 occurs in 

proximity to w1, and stores the weighted count (i.e., total occurrences of a pair of words divided by 

total number of words) of the total occurrences of the relevant word pairs (w1 with w2) in the respective 

cell of the word-word (w1-w2) matrix. The ramped window of size four is responsible for generating 

the appropriate word counts. For instance, if w2 occurs adjacent to w1, the window assigns a count of 

four, if w2 is separated from w1 by one word, the window generates a count of three, and so forth, down 

to a count of one for a distance of three words. Finally, the word-word co-occurrence matrix portrays 

the weighted count of all occurrences of w2 in proximity to w1. In the next stage, the Pearson’s 

correlation coefficient is calculated between the weighted vector counts of the occurrence of words w1 

and w2, i.e., the word-word counts in the matrix are converted to correlations. This, in general, provides 

further insights into the vicinity of w2 with w1. Furthermore, with this context in the background, 

COALS converts all the negative correlation values in the matrix to zero and computes the square roots 

of the positive ones. The square root operation further normalises the matrix, thus making COALS 

unbiased towards larger positive values. The positive values of the matrix correspond to the word-word 
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pairs that convey a substantial amount of information. Finally, the semantic similarity score S of word 

pair (w1 and w2) is calculated using the data present in the normalised matrix as 

S(w1,w2)= ∑ (w1i −  w1̅̅ ̅̅ )(w2i −  w2̅̅ ̅̅ )/ (( ∑ (w1i −  w1̅̅ ̅̅ )n
i=1

2
∑ (w2i − w2̅̅ ̅̅ )n

i=1
2

 ))
1/2

𝑛
𝑖=1             (12) 

In equation (12), the value of i ranges from 1 to n and n indicates the maximum occurrence of the pair 

of words (i.e., w1i and w2i) together. Also, (w1̅̅ ̅̅ ) and (w2̅̅ ̅̅  ) indicate the average occurrence of words 

w1 and w2 in the calculated vector space. Since COALS operates only on positive values, the 

correlation distance measure is known to provide accurate results than the cosine measure, as 

correlations tend to be subtler than cosines (Rohde et al., 2006).  

5.3.3 Pareto Principle 

As COALS assisted in the automatic generation of the taxonomy based on feature engineering (refer to 

sub-section 5.3.1) we still faced the challenge of determining the number of categories for the 

taxonomy. The question encountered was, do we consider all the app features (nouns) and their 

associated semantically similar requests, bugs or enhancements (adjectives and verbs) as categories 

for the taxonomy? We address this challenge with the support of Pareto principle which gives the 80-

20 rule that states that 80% of the contribution towards an outcome is given by 20% of its participating 

entries (Kiremire, 2011). The application of this principle is common in the software engineering 

discipline. For instance, Archak et al. (2007) have used the Pareto principle to identify 20% of the 

important software product features that influenced 80% of the software product sales. We take 

inspiration from these studies and utilise the Pareto principle to shortlist the necessary categories to 

generate the required taxonomy in which we identify the required number of categories that reflect 80% 

of the app features along with their semantically similar requests, bugs or enhancements. All the other 

app features are then classified in an ‘Others’ category. The detailed elaboration of the above-mentioned 

process is as follows, initially we sort the app features and their associated requests, bugs or 

enhancements in the descending order of the frequency of occurrences of the app features in useful 

reviews. Next, we compute the cumulative frequency based on the frequency of occurrences of the app 

features to compute the cumulative percentage to set the cut-off threshold (i.e., 80%) of the required 

number of categories representing the app features and their associated requests, bugs or enhancements. 

Thus, the Pareto Principal is used as an inspiration to identify the most frequently mentioned app 

features and these app features were identified based on cumulative frequency percentage where the 

cut-off threshold was set to 80%.    

5.3.4 Keyword Lookup Classifying Mechanism 

After determining the number of categories we utilise the keyword lookup classifying mechanism (i.e., 

basic string matching) to classify useful reviews into the relevant groups (Maalej et al., 2016a). A useful 
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review from a pool of useful reviews gets classified into a particular group if a word from the useful 

review matches with any word of a particular group (category) present in the taxonomy comprising of 

app features, bugs, requests, or enhancements. That said, if any useful review that is not classified in 

any group, it is classified in an ‘Others’ group. It is to be noted that the particular app feature in the 

taxonomy represents the name of the specific group and thus, it becomes easier for app developers to 

seek requests, bugs or enhancements pertaining to the particular app feature. Figure 21 provides a 

graphical illustration of the proposed classification approach mentioned above. After obtaining the 

useful reviews, the nouns, adjectives and verbs present in those are tagged (using NLP approaches), and 

are modelled as the basis for representing the categories of the taxonomy. Finally, the categories of the 

taxonomy are used for classifying useful reviews into different groups of interests (using the keyword 

lookup classifying mechanism).  

 

Figure 21. Proposed classification approach for useful reviews using an automated generated taxonomy 

5.3.5 Generated Taxonomy Evaluation 

In this sub-section we mention the steps that were used to validate the automatically generated 

taxonomy which were based on a qualitative content analysis approach (Mayring, 2004). Initially, the 

first noun entry from the automatically generated taxonomy is selected. We then check for the presence 

of the noun in the pool of useful reviews. The useful reviews containing the noun entry are selected for 

further analysis. Next, we manually analyse each useful review to determine the set of adjectives and 

verbs that are associated with the noun under analysis. After every useful review is analysed, we extend 

the list of adjectives and verbs (in the useful reviews) that are relevant to the noun under scrutiny. 

Finally, the manually finalised adjectives and verbs pertaining to the specific noun entry are compared 

against those present in the automatically generated taxonomy, where the accuracy is computed. In this 

scenario, accuracy indicates the percentage of adjectives and verbs that are common to both the 

automatically generated taxonomy and manual outcomes. The entire process is repeated for all the noun 

entries present in the automatically generated taxonomy until no noun entry is left for evaluation. After 

the manual evaluation process is completed, an overall average accuracy percentage is computed. In 

addition, the two supervisors and the PhD candidate independently performed the manual evaluation of 
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the automatically generated taxonomy using the useful reviews by following the above-mentioned 

evaluation process. Later, reliability assessments were conducted to resolve any disagreements and 

establish consensus to compute average accuracy. The average accuracy percentage reflects the average 

accuracy percentage of all the evaluated noun entries which ultimately indicates the overall accuracy of 

the automatically generated taxonomy.  

5.4 Experimental Settings 

In this section, we provide the details regarding the procedures that were enacted to drive our experiment 

and validate the primary outcome of the automated taxonomy generation based on the useful reviews 

classification phase. First, we provide a brief description of the dataset that was used for the pilot 

experimentation purpose. We then provide the details of the pre-processing and POS tagging operations 

that were performed. Thereafter, we provide details regarding the evaluation procedure followed to 

validate the taxonomy generated by COALS.     

5.4.1 Dataset 

To demonstrate and evaluate the approach to automatically generate a taxonomy for classifying useful 

reviews we utilise the My Tracks dataset. In addition, the My Tracks dataset was selected in the pilot 

studies of taxonomy generation (Phase 3) as well as prioritisation (Phase 4) as the two supervisors of 

this undertaken PhD work have previously provided software maintenance insights for the developers 

of this app, and thus this software provides a good baseline for comparing our outcomes in the pilot 

studies. That said, a set of 855 useful reviews were identified and extracted from this dataset for further 

experimentation (refer to sub-section 4.5 for more details).        

5.4.2 Useful Reviews Pre-processing and POS Tagging 

Initially, we performed the basic useful reviews pre-processing operations mentioned in sub-section 

4.3.1. That said, the first task of this experiment was to identify nouns, adjectives, and verbs from the 

pre-processed useful reviews. To achieve this goal, we use the average perceptron POS tagger as it often 

outperforms the other types of POS taggers and is known to be scalable for domain specific text corpus 

(Hajič et al., 2009). After tagging the nouns, adjectives, and verbs in the pre-processed useful reviews, 

we provide the tagged useful reviews (e.g., GPS – NOUN, inaccurate – ADJECTIVE, drain – VERB) 

as input to COALS. Finally, the useful reviews were classified based on the generated taxonomy 

through COALS and evaluated the automatically generated taxonomy using the procedure mentioned 

in sub-section 5.3.5.  

We provide results of this pilot study in the Results section.   
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5.5 Results 

In this section, we report the results of the pilot study that reflects the evaluations related to the 

classification of useful reviews. We compare the automatically generated taxonomy against a manually 

developed taxonomy for the My Tracks dataset for evaluation. This outcome provides context for 

answering RQ3.1, and provides triangulations for RQ3. 

5.6 Automatically Generated Taxonomy Validity  

We evaluated the accuracy of the automatically generated taxonomy which consisted of 152 categories 

as mentioned in this Chapter (refer to sub-section 5.3.5). Prior to this, we had applied the Pareto 

principle on the result generated by COALS to identify the necessary categories constituting the 

automatically generated taxonomy required for classifying useful reviews. The Pareto principle returned 

152 categories that depicted respective nouns along with their associated adjectives and verbs. This 

outcome indicating the followed steps (refer to sub-section 5.3.3) to shortlist the required number of the 

categories that reflect 80% of the app features along with their semantically similar requests, bugs or 

enhancements is made available online13 where it can be observed that the top 152 categories are 

identified based on ‘Cumulative Percentage’ column (i.e., the application of Pareto Principle accounted 

for 152 app features out of 981 (15.49%)). A subset of the automatically generated taxonomy is 

visualised in Figure 22 where ten prominent app features sharing dependencies with each other via a 

common set of requests, bugs or enhancements are depicted. In the undirected graph, each node 

represents an app feature and the information on the links represent the requests, bugs or enhancements. 

For example, it seems that the travel or workout data provided by the ‘stats’ (statistics) feature of My 

Tracks app and the ‘map’ (app feature) selected for travel or workout are ‘unreadable’ to the app’s end-

users. Other conclusions of interest can be drawn from the visualisation. For instance, the relationship 

between GPS and signal (two nouns representing app features) was described using verbs such as 

fluctuate, drop, and lose.     

                                                      
13 https://tinyurl.com/y5bq3vrh 
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Figure 22. Visualisation of partial taxonomy consisting of ten prominent app features 

The overall accuracy of the automatically generated taxonomy was found to be 72% which indicates a 

substantial match between the manual taxonomy created by us and the automatically generated 

taxonomy (Košmerlj et al., 2015). The two supervisors and PhD candidate followed the taxonomy 

evaluation process mentioned in sub-section 5.3.5 of this Chapter. Each evaluator independently 

analysed the 855 useful reviews to identify the requests, bugs, and enhancements (adjectives and verbs) 

related to the app features (noun) to finalise the contents of the manual taxonomy. With regards to the 

reliability assessment practise followed in this study, a substantial agreement of 0.62 was observed 

between the evaluators. The reported Fleiss coefficient indicates the agreements on the adjectives or 

verbs associated with the particular nouns. Follow up discussions were held among the supervisors and 

the PhD candidate to resolve any disagreements to establish consensus. After the consensus were 

established, the finalised manual taxonomy was compared with the automatically generated one to 

compute the overall accuracy. Table 5.2 shows the partial manual taxonomy generated for the app 

features presented in Figure 22. 
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Table 5.2 Partial view of manually derived taxonomy 

App features Requests, bugs or enhancements 

GPS drop, recognise, loses, loose, fluctuate, anomaly, blame, picked, regain 

Map destroyed, unreadable, lagging, nonresponsive, offline, preloading 

Time pausing, recover, reconnect, unsync 

Battery eat, amoled, drain, kill, consume, wasting, flatten, lowered 

Phone accessible, heating, decrease, scrolling 

Distance travelled, jagged, counted, incorrect, wrong, measured, overestimated, 

increase, timekm, gradual  

Stats aggregate, leading, unreadable, grouped, overview 

Signal recognise, fluctuate, decrease, drop, lose, leading, loses, anomaly, blame, 

regain, recover, dotted 

Screen lock, scrolling, unresponsive, amoled,  heating, smaller, sliding, lag 

Speed increase, gradual, colorcode, jogging, calculated, traditional, kmh 

 

In addition, the accuracy of the keyword lookup classifying mechanism was found to be 98.3%, the 

slight imperfection was due to the presence of misspelled words in the useful reviews.  

In the next section, we provide the discussion related to the undertaken pilot study that deals with the 

automatic generation of a taxonomy for classifying useful reviews.  

5.7 Discussion 

The scalable requirements prioritisation method proposed by Peng et al. (2012) classified the 

requirements into groups of interest based on the domain knowledge (groups and their associated 

keywords of interest). The essential domain knowledge was provided by experts before the method 

prioritised the groups of interest using the stakeholders’ priority preferences on individual requirements. 

As stated earlier (refer to Chapter 3, section 3.6), this method was one of the inspiration sources towards 

our proposed group-based prioritisation method. However, as the app domain is vast, it is not possible 

for us to gather the required enormous domain knowledge needed for classification or prioritisation 

(refer to Chapter 3, section 3.6). Thus, we reviewed studies from the app domain that provided context 

regarding classification of reviews pertaining to the apps. Our investigation of these studies revealed 

that all the proposed classification approaches from the app domain were dependent on the domain 

knowledge made available by experts, and there was no universal taxonomy encountered for 

classification purpose (Ciurumelea et al., 2018; Maalej et al., 2016a;  Panichella et al., 2015). This was 

not suitable for our research and was identified as a critical research gap that lead us to propose an 

approach that automatically generates a taxonomy for classifying useful reviews with the intent of 

addressing the research gap. The sub-section below discusses the results and implications of RQ3.1.  
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5.7.1 RQ3.1 How can an approach be developed to automatically generate a taxonomy 

for classifying useful reviews, and how will such taxonomy compare to a manually 

developed one?   

The outcomes reported in the pilot study show that it is possible to develop an approach that 

automatically generates a taxonomy to classify useful reviews into dynamically created groups of 

interest. This approach is directly able to extract app features and their associated requests, bugs or 

enhancements from a corpus of useful reviews without the necessity of human involvement and domain 

knowledge. This has a potential implication for supporting software maintenance and evolution cycles 

where a small group of app developers have to manually analyse numerous useful reviews. We believe 

the key aspect towards the development of the automatically generated taxonomy is the selection and 

utilisation of suitable concepts and methods from multiple domains (Ko et al., 2000; Maedche & Staab, 

2000; Rohde et al., 2006; Turner et al., 1999). While natural language processing application involving 

POS is widely utilised, the level of human involvement in labelling large numbers of useful reviews in 

support of manually generating taxonomies for classification is a potential challenge (Maalej et al., 

2016a). Feature engineering assisted us in developing a suitable taxonomy framework for constituting 

the automatically extracted domain knowledge (i.e., app features and their associated requests, bugs or 

enhancements) from the corpus of useful reviews, thereby solving a significant research problem that 

is evident for manually generated taxonomies which is the need to develop categories. With regards to 

this, our primary objective was to determine the requests, bugs or enhancements (adjectives and verbs) 

that were semantically similar (contextually similar) to app features (nouns) for which we evaluated 

COALS, where COALS directly operated on the distances of vector data belonging to the respective 

word pairs. It is to be noted that, in our research the relationship between the words are determined 

based on the primary principle of word sense disambiguation (Karov & Edelman, 1998). The 

application of a reliable contextual semantic similarity method such as COALS addresses a limitation 

that is observed for manually generated taxonomies which is the appropriate data for the categories of 

a taxonomy (Walid Maalej & Haader Nabil, 2015). Taxonomies generated by experts provide a limited 

number of categories, and hence, classification results often provide a holistic view of grouped reviews 

which is inappropriate if there are numerous useful reviews. In addition, the application of the Pareto 

distribution law seems useful in determining the prominent categories for the taxonomy and at the same 

time, prioritising the most significant categories (i.e., app features and their associated requests, bugs 

or enhancements) while still retaining an ‘Others’ category (Archak et al., 2007). That said, the keyword 

lookup classifying mechanism provides a near perfect classification of useful reviews in completing the 

automatically generated taxonomy which may be used as an inspiration for other software engineering 

research that focus on app reviews.      
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Furthermore, the automatically generated taxonomy compared substantially to the one that was 

developed manually. There was an overlap of 72% observed in the two taxonomies which suggested 

that the combination of concepts and methods provided an intuitive automated solution that closely 

aligned with human thinking. This is noteworthy as our proposed approach is in its preliminary stage 

and the utilised methods have not been refined or tuned for optimisation (e.g., tuning the threshold 

settings of COALS) which could lead to potential improvements (Konkol et al., 2015). For instance, in 

a recent study, Konkol et al. (2015) have integrated COALS with singular value decomposition (SVD) 

and subjected COALS to specific SVD parameters (careful tuning) to generate optimal data required 

for performing named entity recognition using latent semantics. That said, we believe that the fine-

grained taxonomy that was generated automatically provides an explicit view of the prominent app 

features and their associated requests, bugs or enhancements for the app developers. Thus, app 

developers may directly utilise the generated taxonomy to identify app features that require immediate 

attention based on the requests, bugs or enhancements associated with these app features without the 

need to perform classification. Moreover, such a taxonomy indirectly represents the prioritised app 

features due to the application of the Pareto distribution law, as the app features (nouns) constituting 

the categories are arranged in descending order of prominence (based on frequency of nouns) (Licorish 

et al., 2017). In fact, the partial taxonomy presented in Figure 22 (refer to section 5.5) reveals that 

certain app features share common set of requests, bugs or enhancements. Such finding is crucial to app 

developers, as it would significantly assist them in uncovering dependencies among the app features. 

This in turn could assist in identifying the influence of one app feature on another based on the common 

characteristics (related requests, bugs or enhancements) that are shared among the app features (Li et 

al., 2012). Furthermore, based on the observed hierarchical dependencies among the app features, 

resolving certain requests, bugs or enhancements associated with specific app feature will reduce the 

burden of defects on the dependent app features. That said, the proposed approach of automatically 

generating a taxonomy to classify useful reviews requires limited human involvement and provides a 

wide spread of categories naturally. To conclude, the empirical evaluations conducted in the pilot study 

showed satisfactory result when the outcome (automatically generated taxonomy) of our proposed 

approach was compared against the one that is manually derived albeit we have used a single dataset. 

Therefore, our proposed automated taxonomy generation approach may be promising for the software 

engineering community.    

5.8   Threats to Validity 

In this section, we present the threats to validity that can potentially affect the outcomes reported in this 

Chapter. 
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5.8.1  Internal Validity 

The pilot study conducted in this phase is limited to the grouping of useful reviews based on an 

automatically generated taxonomy. However, we have performed evaluation of the automatically 

generated taxonomy for triangulation. That said, coming out of the text pre-processing and POS tagging 

pipeline, it was not feasible to evaluate the nouns, adjectives and verbs that do not reflect app features, 

issues, suggestions, or requests, or those that were misclassified. This was largely due to the high levels 

of overhead involved with other rigorous manual evaluations that were performed. Furthermore, our 

proposed automatic taxonomy generation approach may potentially leave out some important app 

features that are less frequently requested. In addition, there could be presence of synonyms (e.g., track, 

tracker and so on), and misspelled words with associated bugs, requests or enhancements that could 

point to the same app feature. Thus, the size of the automatically generated taxonomy might increase, 

and such taxonomy may hold redundant information expressed in different forms. Concerning these, 

there is scope for future research to address the issues related to the presence of synonyms in the 

taxonomy or missed out less frequent but prominent app features. One potential solution towards 

resolving these issues would be to involve domain experts (i.e., app developers) to select the prominent 

app features of interest. Finally, investigations done using manual analysis are always criticised for 

subjectivity. We have worked to remove this threat by performing reliability assessments where 

substantial agreements were observed.  

5.8.2 External Validity 

We have used one dataset in this study, which may affect the generalisability of this study. However, 

the accuracy of the generated taxonomy reported for the app is substantial in terms of the validation of 

the automated taxonomy generation approach. 

5.8.3 Construct Validity 

The Pareto distribution law returned a significant number of categories for the generated taxonomies, 

which may seem excessive. That said, our manual evaluation confirmed that these categories were 

largely relevant. One way to limit the number of categories in the taxonomy is to implement a cut-off 

mechanism (e.g., top 10). Concerning this, there is scope to research ‘How can the optimal categories 

for different apps be identified?’ Furthermore, an alternative to the validation of the automatically 

generated taxonomy would be to approach the app developers of the respective apps to evaluate the 

requests, bugs and enhancements associated with the features of the app. 

We provide the concluding remarks of this phase, research contributions and summary of implications 

in the Conclusions chapter (refer to Chapter 7). In the next chapter, we present the details of Phase 4 

(i.e., prioritisation of useful reviews).   
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6 Prioritisation of Useful Reviews 

This chapter describes phase 4 of the undertaken research work in which we developed and 

experimented with a group-based prioritisation method that utilised the outcome of phase 3 (i.e., 

classified useful reviews into specific groups of interest) before generating the priorities of the classified 

useful reviews and their respective groups. In the same phase, we also developed an individual 

prioritisation method where the priority of each useful review was computed without performing 

classification. This phase answered RQ4 which is comprised of two research questions. The formulated 

RQ 4.1 and RQ 4.2 benchmarked the performance of the group-based prioritisation method as well as 

the individual prioritisation method to validate the application of the respective methods. Based on our 

findings of the pilot study conducted in this phase, we performed a full-scale study of the individual 

prioritisation method in phase 4 to demonstrate its general suitability across a range of apps (i.e., to 

show the comprehensive application of the method). 

6.1 Automated Prioritisation Methods (RQ4)     

After developing the required classification approach, our next step was to prioritise the classified useful 

reviews and their groups for which we utilised an automated hybrid prioritisation method. The 

automated hybrid prioritisation method reflects a multi-criteria heuristic function comprising of four 

prominent methods incorporated as variables in the function to prioritise the classified useful reviews 

and their groups. We provide all the details regarding this prioritisation method in sub-section 6.1.1. 

That said, as we have highlighted several limitations of the prioritisation methods in Chapter 2 (refer to 

section 2.1) and in Chapter 3 (refer to section 3.6) we had to seek inspiration from other domains such 

as feature engineering, information theory, information retrieval, marketing and artificial intelligence 

to develop the automated hybrid prioritisation method and benchmark its performance (Chea et al., 

2009; Dasgupta et al., 2013; Fang & Zhan, 2015; Filcek et al., 2017; Htay & Lynn, 2013; Sundaram et 

al., 2005; Zhang & Tran, 2008). The RQ related to benchmarking the performance of the prioritisation 

method is 

RQ4.1 What is the performance of the developed group-based prioritisation method?      

6.1.1 Group-based Prioritisation Method  

As mentioned in Chapter 3, section 3.6, the group-based prioritisation method inspired by the 

requirements prioritisation method proposed by Peng et al. (2012) was to be developed in such a way 

that it would be independent of domain knowledge and priority preferences of the stakeholders. Given 

the numerous useful reviews, our objective is to generate the required priorities so that the useful 

reviews can be addressed accordingly. In this sub-section, we mention the key concepts and methods 

that lead towards the development of our proposed automated hybrid prioritisation method. 
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6.1.1.1 Keywords of Interest 

Referring to sub-section 5.3.1, the distinguishing nouns, adjectives and verbs identified from useful 

reviews are termed as keywords of interest (K) as these keywords of interest represent quantitative end-

user feedback properties that have significant impact on a product’s requirements engineering phase as 

such keywords of interest hold noteworthy meaning and eliminate the need for the availability of 

domain knowledge required for taxonomy generation or prioritisation (Chea et al., 2009; Htay & Lynn, 

2013; Ko et al., 2000). In the next sub-section, we mention the methods that utilise the knowledge of 

such keywords of interest to generate the priorities of the useful reviews and their groups. 

6.1.1.2 Methods 

Studies have shown that the complex problem to prioritise requirements can be appropriately solved 

using multiple criteria as considering a single criterion does not guarantee exact or approximate exact 

prioritisation solution (Achimugu et al., 2014b; Garg et al., 2017). For instance, Asghar et al.’s  (2013) 

prioritisation method on average was found to be 16% accurate when the method considered code 

metrics as a single criteria to prioritise requirements. On the contrary, AHP has proved to generate 

accurate prioritisation results because of its ability to incorporate multiple criteria along with the priority 

preferences of the stakeholders that significantly influence the priorities of the requirements. However, 

AHP is known to suffer from scalability and computational complexity issues due to its pairwise 

comparison mechanism (Achimugu et al., 2014b). Hence, taking inspiration from studies belonging to 

renowned domains such as information theory, information retrieval, marketing and artificial 

intelligence, we identify four prominent methods for prioritising useful reviews and represent them as 

criteria by encompassing them as variables in a multi-criteria heuristic function with the objective of 

generating the approximate exact solutions, i.e., priorities of the useful reviews. We provide a brief 

elaboration of each method in the next sub-sections.    

6.1.1.2.1 Entropy 

In information theory, entropy is a measure of information that is widely used to acquire knowledge 

about an entity of interest existing in vast information (Shannon, 1948). Knowledge gained through 

entropy indicates the product features of prime interest to its customers whose identification and 

weightage is essential to drive the development process of a product. For instance, Somprasertsri and 

Lalitrojwong (2008) have used entropy to automatically extract and prioritise product features from 

product reviews that required attention. Similarly, Zhang et al. (2008) have used the entropy to prioritise 

product reviews based on the helpful information conveyed by the reviews. In our study, the key 

objective of the entropy is to generate the priorities of the useful reviews based on the quantified 

measure of information conveyed by a useful review (R) in proportion to the information present in the 

entire corpus (C) of useful reviews. The priority ER of R through means of entropy is given as 
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ER = - ∑ P(𝐾𝑖 ) ∗ 𝑛
𝑖=1 log2P(Ki)                                                                                                                             (13) 

Where K (K ∈ R) denotes the keyword of interest contained in R (R ∊ C), and the proportion P(K) is 

given as the total occurrences of K in R to the total occurrences of K in C. Furthermore, entropy enables 

the characterisation of the information through the probability distribution of the keywords of interest 

drawn from C. The probability distribution of the keywords of interest associated with the information 

quantity of every K forms a random variable whose average estimate is the average amount of 

information generated by the probability distribution (Rényi, 1961).    

6.1.1.2.2 Frequency 

Most often, the requirements elicitation phase captures the frequently stated stakeholders’ requirements 

(Groen et al., 2015; Hosseini et al., 2015; Solemon et al., 2008). Similar is the case observed for useful 

reviews and researchers have exploited such knowledge for prioritisation purpose (Chen et al., 2014; 

Licorish et al., 2017). For instance, Licorish et al. (2017) have prioritised app features based on their 

frequency of occurrences in reviews with the assumption that end-users report buggy or most needed 

app features on a regular basis. Hence, taking inspiration from such studies, we utilise the keywords of 

interest frequency information to prioritise R belonging to C. We generate the priority of R as the 

summation of the frequency values associated with the respective keywords of interest contained in R 

(i.e., number of times each K in R appears in C). For example, consider keywords  k1, k2, k3, k4,…, kn 

present in C, and let fk1, fk2, fk3, fk4,…, fkn represent their respective frequency of occurrence values, 

then priority FR of R is generated as  

FR = ∑ 𝑓𝐾𝑖
𝑛
𝑖=1                                                                                                                                                        (14) 

Wherein K denotes the keyword of interest contained in R where K ∈ R and R ∊ C. Hence, in this study, 

the frequency method assists in prioritising R based on the frequently mentioned K that useful reviews 

captures from the end-users. 

6.1.1.2.3 TF-IDF 

TF-IDF (Term Frequency - Inverse Document Frequency) is a popular method that has a wide range of 

applications in the information retrieval field, especially to prioritise documents (e.g., sentences) present 

in a text corpus based on the importance of words that reside in those documents (Wu et al., 2008). 

Moreover, in the past TF-IDF method has been utilised for tracing and prioritising requirements present 

in a text corpus as well as to determine the significance of end-users’ reviews by prioritising the 

requirements (Kim et al., 2006; Sundaram et al., 2005). Based on these studies and considering the 

functioning mechanism of TF-IDF, this method seems fit to generate priorities of useful reviews. Thus, 

given the useful reviews, we utilise the TF-IDF method to determine the TF-IDF weights of all the 

keywords of interest present in R residing in C. Wherein, C exhibits the role of the entire useful reviews 
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corpus and R exhibits the role of a document. The keywords of interest (terms) present in each R are 

subjected to TF-IDF method to determine their respective TF-IDF weights. Initially, we compute the 

term frequency count of each K in every R present in C. Term frequency count is the ratio of the number 

of times the K appears in R to the total number of keywords of interest present in R. Hence, every R 

will maintain its own term frequency count data structure, which is given as  

KfK, R = nK,R/ ∑ nK,R                                                                                                                                          (15) 

where Kf K, R indicates the number of occurrences of the K in R. Next, we compute the inverse document 

frequency term, which generates the weight of keywords of interest based on their spread across all the 

useful reviews in C. The inverse document frequency equation is given as 

idf(K) = log10 (NR/dfK)                                                                                                                                   (16) 

where idf indicates the number of useful reviews containing K, NR indicates the number of useful 

reviews and dfK indicates the number of occurrences of K in those useful reviews. Next, we compute 

the TF-IDF score of K in R, which is given as 

TF-IDFK,R = KfK, R * idf(K)                                                                                                                            (17) 

Finally, the TF-IDF weights of all the keywords of interest present in R are summed up to determine 

the priority (TF-IDFR) of R given as 

TF-IDFR = ∑ K∈RTF-IDFK,R                                                                                                                                                                         (18) 

Therefore, the objective of TF-IDF method in this study is to determine the importance of keywords of 

interest in R, given the collection of useful reviews in C. As observed from equations (15) to (18), the 

logarithmic values of the inverse reviews frequencies are considered as the keywords of interest 

frequencies and are distributed exponentially, thus generating a suitable weight concerning K’s 

importance in R belonging to C (Wu et al., 2008). 

6.1.1.2.4 Sentiment Analysis 

In the marketing domain, the commercial value of a product is derived from the end users’ sentiments 

affiliated with the product reviews and sentiment analysis is a method that has been widely utilised by 

researchers to investigate this aspect (Fang & Zhan, 2015). Sentiment analysis aids in measuring the 

content or discontent of end-users regarding their usage of the product, and significantly assists in 

flagging the requirements that raise concerns such as end-users’ requests, suggestions or issues related 

to the product (Das et al., 2012; Galvis Carreño & Winbladh, 2013). For instance, Zha et al.(2014) have 

utilised sentiment analysis method to prioritise the concerns raised about a product by giving 

appropriate priority to the reviews that reflected a high level of negative end-users’ sentiments as the 
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authors found that majority of such reviews reflected the raised concerns related to the product. 

Similarly, sentiment analysis has been performed on the reviews present in the app domain to 

substantially support the requirements engineering cycle associated with the development of apps to 

launch long term market sustainable apps in the app market (Goul et al., 2012). In this study, we utilise 

VADER (Valence Aware Dictionary and sEntiment Reasoner) to calculate the sentiment associated 

with R, as this tool has been empirically evaluated to perform significantly better than other tools in 

estimating the sentiments of reviews present in crowdsourced information (Hutto & Gilbert, 2015). The 

foundations of VADER are built on a human-centric approach for determining sentiments by combining 

qualitative analysis and empirical validation. Hence, VADER’s sentiment analysis is sensitive towards 

polarity (positive or negative) and intensity of the particular emotion (i.e., anger, sad, happy, and so on) 

expressed in reviews.  

To elaborate further, VADER’s sentiment determining approach is based on lexicons14 of sentiment-

related words. To determine the polarity of these words, the developers of VADER utilised Amazon’s 

Mechanical Turk15 platform to get polarity (and optionally, to what degree) of the numerous words 

existing in crowdsourced information (such as reviews) from several human evaluators. Thus, VADER 

has a wide coverage of words and there is a substantial fit between the lexicon and the words mentioned 

in the reviews, and can return results of sentiment analysis faster than other sentiment analysis 

approaches (Hutto & Gilbert, 2015).  

We illustrate the working of VADER with an example. Consider the review ‘The product is good and 

it has nice features.’ Initially, when VADER analyses this review it performs a check to determine if 

any words in the review are present in its lexicon. In case of the review, the review has two words in 

the lexicon (good and nice) with the positive polarity of 1.9 and 1.8 strength respectively. After analysis, 

VADER generates three sentiment scores from these words’ polarities. For instance, assume that for 

the given review example, the review gets rated 45% positive, 55% neutral and 0% negative. Then, 

VADER computes a compound score16 that is the sum of all the lexicon polarities (i.e., 1.9 and 1.8 in 

this case) and normalises the final score in the range [-1, 1]. In the mentioned example, the review gets 

a compound score of 0.69 that is termed to be substantially positive.             

Based on this tool, we generate priority (SCR) of R to measure the sentiment intensity of R present in 

C. The VADER sentiment analysis tool generates sentiment scores in the range [-1, 1]; -1 for the review 

with the most negative sentiments attached to it, and 1 for the review with the most positive end-user 

sentiments embedded in it. The useful reviews having a higher degree of the negative score are crucial 

than the ones having a positive score, and need to be addressed prior as such app reviews raise serious 

                                                      
14 Vocabulary of language or a particular branch of knowledge 
15 https://tinyurl.com/8xzen9 
16 https://github.com/cjhutto/vaderSentiment 
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product concerns (Goul et al., 2012; Licorish et al., 2017). This consideration is modelled by -(SCR) in 

this study. 

Finally, to maintain the same range of the priority scores generated by the four methods and to prevent 

the prioritisation method from being bias towards the method generating larger range of priority values, 

we perform the min-max normalisation of the priority scores generated by ER, FR, TF-IDFR, and -(SCR) 

(Patro & Sahu, 2015).   

6.1.1.3 Multi-Criteria Heuristic Function      

Multi-criteria based heuristic functions are seen as cognitive tools that assist significantly in solving 

complex problems by generating approximate solution that is dependent on multiple criteria, and further 

assist in balancing the trade-off between the solution generation time, optimal nature of the solution, 

and the accuracy of the solution complemented by its completeness (Dasgupta et al., 2013; Filcek et al., 

2017). For instance, the heuristic based approach has been proved successful to generate an optimal 

solution (out of ‘n’ possible solutions) for the traveling salesperson problem (NP-hard) (Lin & 

Kernighan, 1973). Since our objective is to generate an approximate optimal priority of R using the 

prominent methods mentioned in the previous sub-sections, we incorporate all the methods into a multi-

criteria heuristic function f and represent those methods as variables of the function. Thus, the overall 

priority PR of R is given as 

PR = f:  αER + βFR + γTF-IDFR + δ(- (SCR))                                                                                                      (19) 

In (19), ER represents the priority of R generated by the entropy variable, FR indicates the priority of R 

generated by the frequency variable, TF-IDFR indicates the priority of R generated by the TF-IDF 

variable and -(SCR) indicates the priority generated by the sentiment variable. In addition, we introduce 

four constants α, β, γ, and δ in the multi-criteria heuristic function to support the future prospects of 

performing manual or automated optimisation of the function to improve its efficiency as required (i.e., 

reducing computation time, increasing accuracy of prioritisation, prioritising useful reviews based on 

business requirements, and so on) (Blot et al., 2017; Marler & Arora, 2004). However, while performing 

the optimisation, the values of α, β, γ, and δ should be set in such a way that it satisfies the constraint α 

+ β + γ + δ = 1. Currently, following the conventions of recommended settings, the individual values 

of α, β, γ, and δ are set to 0.25 as default (seed) values (Arcuri & Fraser, 2013). Figure 23 illustrates the 

computation of PR pertaining to useful reviews. Initially, the keywords of interest are identified from 

the corpus of useful reviews. For a particular useful review, ER is generated using equation (13), FR is 

generated using equation (14) and TF-IDFR is generated using equation (18). As noted earlier, these 

respective variables operate on the appropriate keywords information made available through the 

identified keywords of interest. To generate -(SCR) the entire non pre-processed useful review is 

processed by VADER. After ER, FR, TF-IDFR, and -(SCR) of all the useful reviews have been computed, 
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ER, FR, TF-IDFR, and -(SCR) are subjected to min-max normalisation respectively. That is, all the 

priority scores generated by ER are normalised followed by those generated by FR, TF-IDFR, and -(SCR). 

Next, the respective weights of α, β, γ, and δ are multiplied with the normalised ER, FR, TF-IDFR, and -

(SCR) of the useful reviews after which the final PR of each useful review is generated using equation 

(19).    

 

Figure 23. Diagrammatic representation of heuristic function f generating priorities of useful reviews 

6.1.1.4 Group Priority 

In statistics, weighted average method is utilised by researchers to measure the centre of a frequency 

distribution which is influenced by all the samples within a population and the result generated by the 

weighted average is termed as a reliable measure of central tendency when generating inferences from 

a general population (James et al., 2013). For instance, in Geology weighted average is considered as a 

significant statistical measure when determining the overall intensity of earthquake for a particular 

region based on the earthquake’s previous frequency of occurrences, and Richter scale readings (Allen, 

1986). In this study, we chose the weighted average method to generate the priority of a group (G). For 

instance, if a group has three useful reviews with individual PR of 0.80, 0.90 and 0.90, then the group 

priority will be 0.87. Doing so will enable the app developers to gain insights on the overall magnitude 

of the priorities that are generated for useful reviews residing within a group. In addition, the groups 

with higher weighted average priorities would reflect alarming useful reviews and this would aid 

towards the standardisation of addressing the useful reviews based on the computed group priority. For 
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example, a standard approach that can be followed by app developers is to give preference to addressing 

the useful reviews of a group that has the highest priority over the others (Peng et al., 2012). 

6.1.1.5 Elimination of Duplicate Useful Reviews 

It is to be noted that based on the taxonomy that is generated, a single useful review can be classified 

into multiple groups. This is due to the app features being interlinked through the means of common 

requests, bugs or enhancements (Li et al., 2012). For example, consider the useful review ‘map keeps 

blurring and generates inaccurate distance’, this particular useful review will be classified into two 

groups i.e., map and distance as the taxonomy generates map and distance as the groups and the 

classification of useful reviews is accomplished though the means of keyword lookup classifying 

mechanism.  

As mentioned earlier in Chapter 2 (refer to section 2.1) it becomes necessary to eliminate the duplicate 

instances of the useful reviews spread across multiple groups as they create confusion regarding the 

different priorities of the same useful reviews generated across different groups (Chen et al., 2014). 

Hence, we take our hybrid prioritisation method a step further to eliminate the duplicate useful reviews. 

Peng et al. (2012) suggest that the product developers address the requirement groups based on the 

descending order of their priorities. In addition, the NRP states that in every requirements addressing 

cycle, the product developers always tend to address the requirements with higher priorities (Bagnall et 

al., 2001). Based on these two studies, we develop the process to eliminate duplicate useful reviews 

which is as follows; the duplicate useful reviews spread across multiple groups are initially identified 

after which the priorities of their respective groups are compared. If a group has the highest priority 

over the other groups, then the duplicate instances of the particular useful review are eliminated from 

the groups having lower priorities. If the groups have equal priorities, then the useful review within a 

group with the highest priority is retained and the duplicate instances of the useful review are eliminated 

from the other groups. The listing of the elimination process is as follows; consider a useful review R 

being classified into groups G1, G2, and G3. After the prioritisation process is complete, let us assume 

that R has priority p1 in G1, p2 in G2, and p3 in G3. Then, if priority of G1 > priority of G2 > priority 

of G3 then R is eliminated from G2, and G3, and if priority of G1 = priority of G2 = priority of G3, and 

if p1 < p2 > p3, then the R is eliminated from G1, and G3. For example, consider the useful review ‘The 

signal drops and so no proper GPS that causes battery wastage’ being classified into groups ‘signal’, 

‘GPS’ and ‘battery’. Within the signal group having a priority Low, the priority of useful review is 

Medium, whereas within the GPS group having a priority Medium, the priority of useful review is Low 

and within the battery group having a priority High, the priority of useful review is High. In such case, 

the entry to the useful review would be eliminated from the signal and GPS groups and would be 

retained in the battery group for app developers’ to address. In addition, if all the groups have the same 
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priority, then the useful review would be retained in the battery group and eliminated from the others 

as the useful review holds the highest priority in the battery group in comparison to the others.    

6.1.2 Experimental Settings (Group-based Prioritisation Method) 

In this sub-section, we provide the details regarding the procedure that was followed to validate the 

primary outcome of the group-based prioritisation phase. First, we provide a brief description of the 

dataset that was used for the pilot experimentation purpose. We then provide the details of the pre-

processing and POS tagging operations that were performed. Thereafter, we provide details regarding 

the evaluation procedure followed to validate the performance of the group-based prioritisation method.     

6.1.2.1 Dataset 

To demonstrate and evaluate the proposed group-based prioritisation method we utilise the My Tracks 

dataset that was part of the taxonomy generation pilot study conducted in Phase 3 of this undertaken 

research.      

6.1.2.2 Useful Reviews Pre-processing and POS Tagging 

We performed the basic useful reviews pre-processing operations mentioned in sub-section 4.3.1. That 

said, the first objective was to identify nouns, adjectives, and verbs from the pre-processed useful 

reviews to identify the keywords of interest. To achieve this goal, we repeated the POS tagging 

operation as mentioned in sub-section 5.4.2. Finally, after the necessary keywords of interest were 

identified, the useful reviews were prioritised using the group-based prioritisation method. It is to be 

noted that the pre-processing operation is performed to obtain the necessary keywords of interest and 

compute the priorities based on ER, FR and TF-IDFR variables. We apply VADER on the original form 

of useful reviews to compute -(SCR).  

6.1.2.3 Group-based Prioritisation Method Evaluation 

After classifying the useful reviews into groups of interest using the automatically generated taxonomy, 

we initiated the group-based prioritisation method to generate the priorities of the useful reviews and 

their associated groups. We then benchmarked the performance of the proposed group-based 

prioritisation method using the commonly utilised time and accuracy dimensions (Bebensee et al., 2010; 

McZara et al., 2015). For the purpose of this thesis, we cover accuracy, time and operational 

demonstration dimensions. The other dimensions identified via the systematic mapping study such as 

requirements dependency, requirements updates and computational complexity are beyond the scope 

of this thesis and could be potentially part of the future work. It is to be noted that both proposed 

prioritisation methods i.e., group-based and individual are influenced by a requirements prioritisation 

method from a study from the systematic mapping phase (Peng et al., 2012) that addresses highest 
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number of requirements compared to the others, thus assuring the scalability dimension of prioritisation 

for both of our proposed methods. 

6.1.2.3.1 Time 

As useful reviews tend to be numerous, we compute the total time (seconds) required to prioritise a 

given set of useful reviews as time is of the essence when app developers have to address important 

useful reviews in the limited intervals of app maintenance and evolution cycles (Bebensee et al., 2010; 

Fabio et al., 2015; Pagano & Maalej, 2013). Benchmarking time required for prioritisation is also crucial 

when the app developers are driven by NRP as it helps them to determine the suitability of the utilisation 

of a particular prioritisation method based on the total time required for prioritisation (Bagnall et al., 

2001). Moreover, failing to do so, negatively affects the business value of the app in the app market as 

quickly responsive app updates addressing end-users’ requests, bugs or enhancements are crucial to 

keep the end-users engaged with the app or attract more end-users. For instance, app login problems 

should be fixed immediately as the end-users are unable to use the app. Thus, addressing critical bugs, 

requests or enhancements (accurately prioritised) on a timely basis allows the app to sustain in the 

competitive market. Hence, this thesis emphasises on the time dimension which is crucial for app 

developers towards fixing of prominent app concerns. Thus, it becomes necessary to benchmark the 

time required for prioritisation as it enables the app developers to determine the suitability of the 

utilisation of a particular prioritisation method based on the method’s total time required for 

prioritisation. 

6.1.2.3.2 Accuracy 

We evaluate the accuracy of the group-based prioritisation method based on the priorities assigned by 

the stakeholders i.e., cross-validating the priorities of useful reviews generated by the solution against 

those assigned by the stakeholders (Bebensee et al., 2010; McZara et al., 2015). The empirical studies 

on requirements prioritisation evaluating accuracy dimension show that stakeholders preferences (i.e., 

requirements priority preferences of humans) are the reliable source to validate the priorities of 

requirements generated by a method, as these preferences reflect the actual order in which the 

requirements need to be fulfilled from the stakeholders perspective (Achimugu et al., 2016; Bebensee 

et al., 2010; Laurent et al., 2007). 

Concerning useful reviews, the suitable candidates for stakeholders would be regular end-users of the 

app who are familiar with the day-to-day use of the apps and accordingly log the requests, bugs or 

enhancements related to the apps in the form of useful reviews (Maalej et al., 2016a; Pagano & Maalej, 

2013; Panichella et al., 2015). Hence, such end-users have a better knowledge of the logged contents. 

Moreover, addressing of prioritised useful reviews assists app developers in launching essential app 

updates with end-users solicited requests, enhancements or rectified app bugs (Maalej et al., 2016a; 
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Robillard et al., 2014). Therefore, it is crucial that the priorities of the useful reviews match with those 

of the app’s end-users.  

That said, we performed an internal evaluation of the accuracy of the prioritisation method where we 

assumed the role of the stakeholders (end-users) as we are familiar with apps’ experience (i.e., being 

regular app users and software developers ourselves) and are aware of the importance of a useful review 

from an end-user’s perspective (Licorish et al., 2017). To achieve this evaluation, we first had to convert 

the priorities generated in numerical range (0 to1) to three intervals (Low, Medium, High). This in turn 

leads towards the ease of simplifying the generation or assignment of the priorities, and allows us to 

measure the reliability of the prioritisation results in alignment with the widely followed software 

engineering convention (Boehm & Port, 2001; Diebold et al., 2018). Thus, we map the 10 numerical 

priorities (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) onto interval priorities (Low, Medium, High) 

using the class interval approach (Evans, 1977). Based on the computed class intervals, we map 

numerical priorities in range 0-0.3 onto Low priority interval, numerical priorities in range 0.4-0.6 as 

Medium priority interval and numerical priorities in range 0.7-1.0 are mapped onto High priority 

interval.  

After achieving the necessary conversion, our primary objective is to assist the stakeholders to assign 

priorities to the useful reviews based on the defined priority intervals, and for this we have developed a 

guideline inherited from the priority assignment codes mentioned in (Licorish et al., 2017). Following 

the guidelines proposed by Licorish et al. (2017), we were able to map the authors’ code 2 assignment 

guideline onto Low priority interval, code 3 assignment guideline onto Medium priority interval and 

code 4 assignment priority interval onto High priority interval. The authors’ code 1 assignment 

guideline was discarded as it indicated non-useful reviews and we have already figured out an approach 

to automatically filter useful reviews in phase 2. Our guideline regarding the priority generation and 

assignment towards useful reviews is provided in Table 6.1 where Low priority interval corresponding 

to code 2 assignment guideline indicates the contents within the useful reviews that are not essential 

towards the functionality or performance of the app. The code 3 assignment guideline mapped onto 

Medium priority interval indicates useful reviews that directly affect the functionality or performance 

of the app. Finally, High priority interval inferred from code 4 assignment guideline indicates severe 

app concerns within useful reviews that require immediate attention of the app developers. In Table 6.1 

along with the priority assignment guideline, we provide some examples of the useful reviews that fall 

under the Low, Medium, and High priority intervals. The priorities of the useful reviews generated by 

the group-based prioritisation method will be compared against those assigned by the stakeholders to 

determine the accuracy of the group-based prioritisation method.      



 

107 

 

Table 6.1 Priority assignment guideline 

Numerical 

range and 

priority 

Justification for the priority 

assignment 

Useful reviews examples 

0 - 0.3 

Low 

Useful reviews that reflect requests, bugs 

or enhancements pertaining to an app that 

seem optional (not obligatory) towards the 

app’s functionalities or performance. 

1. “Love the material design. Dark 

mode and Chromebook optimisation 

would be awesome.” 

2. “I like it when you can get free add-

ons sometimes on your Vodafone app 

but make it regular please.” 

0.4 - 0.6 

Medium 

Useful reviews that reflect requests, bugs 

or enhancements pertaining to an app that 

seem mandatory (imperative) towards the 

app’s functionalities or performance.  

1. “The first few times I turned it on 

the graphics were great but now the 

butterflies are just coloured squares 

along with the writing is messed up.” 

2. “It's okay, good for basic use but 

some options are not available on the 

app so sometimes I need to use the full 

website on a computer.”  

0.7 - 1.0 

High 

Useful reviews that reflect requests, bugs 

or enhancements pertaining to an app that 

seem severe (critical) towards the app’s 

functionalities or performance.  

1. “The only streaming app on my 

Samsung note that won't work. 

Crashes frequently. Always gives 

'unexpectedly stopped working' 

notice.” 

2. “I can't seem to download the app 

due to "Error: 941" and it says "My 

Vodafone can't be downloaded". 

Please fix this!” 

 

It is to be noted that in the previous study from which the priority assignment guideline mentioned in 

Table 6.1 was derived, the authors had filtered reviews from the My Tracks dataset using the ratings 

criteria (i.e., retaining reviews whose ratings were less than or equal to 3) and later manually labelled 

them according to their developed coding scheme, and thus, only 855 useful reviews labelled as High, 

Medium and Low based on the new guideline mentioned in Table 6.1 were retained for evaluation 

(Licorish et al., 2017). We use these useful reviews to evaluate the accuracy and time of the group-

based prioritisation method. 

We provide results of this pilot study in the Results section (refer to section 6.2) and present the details 

related to the individual prioritisation method in the next sub-section.     

6.1.3 Individual Prioritisation Method 

While the group-based prioritisation method classifies useful reviews into groups of interest, we noticed 

that within a group, different useful reviews might have different priorities. While some studies (Chen 

et al., 2014; Peng et al., 2012) have considered group-based priorities, others (Asghar et al., 2013; Voola 

& Babu, 2013; Chopra et al., 2016) have considered individual requirements for prioritisation. The 

individual requirement-based prioritisation is also a more fine-grained method. Therefore, our work 



 

108 

 

also considered the individual-based prioritisation method. In this approach we decided to discard the 

classification approach before prioritisation (i.e., directly prioritising useful reviews after filtering) 

(Asghar et al., 2013; Voola & Babu, 2013). This was mainly due to the group-based prioritisation 

method removing majority of group information associated with the useful reviews because of the 

elimination of the duplicate useful reviews; as we observed that only few groups and their related 

priorities were retained and thus, the method missed out on the other important groups of interest. In 

addition, based on pertinent studies we had an intuition that prioritising useful reviews directly after the 

filtering process would generate better results as it would avoid the complexities involved in 

classification approach that hampered the performance of the prioritisation method because of factors 

such as handling of redundant information, computational time, and so on (Asghar et al., 2017; Sadiq 

et al., 2009; Zhang et al., 2014).  

Thus, in this phase we conducted a pilot study in which we directly applied the multi-criteria heuristic 

function (refer to equation (19)) on the previously mentioned set of 855 useful reviews of the My Tracks 

dataset to prioritise them individually without classification. By doing so, we found out that such 

individual prioritisation method generated better results than the group-based prioritisation method 

(refer to sub-section 6.2.2). Hence, we conducted a full-scale experimentation of this method in this 

phase and we highlight the details regarding this experimentation below. The RQ related to 

benchmarking the performance of the prioritisation method during the pilot and full-scale study is 

similar to that of RQ4.1 and is 

RQ4.2 What is the performance of the developed individual prioritisation method?      

6.1.4 Experimental Settings (Individual Prioritisation Method) 

In this sub-section, we provide the details regarding the datasets, the pre-processing operations and the 

evaluation approach used to empirically validate the individual prioritisation method. 

6.1.4.1 Datasets 

To demonstrate general relevance of the individual prioritisation method we extracted the latest reviews 

(i.e., reviews logged up to November 2019) of four apps hosted on the public apps distribution platform 

Google Play Store using a web crawler (refer to Appendices, section B). These four apps belonged to 

Casual (App 1), Entertainment (App 2), Shopping (App 3) and Tool (App 4) categories, and comprised 

of 5044, 3683, 4559 and 6583 reviews respectively. The average length of these reviews from these 

four apps ranged from 112 to 137 words and the average ratings of these apps ranged from 1.5 to 4.2. 

For anonymity purpose, we do not reveal the names of the apps. We provide the summary of these 

extracted datasets in Table 6.2, where the first column corresponds to the identifier of the particular 

app, followed by the number of reviews logged for the app, the maximum length of a review pertaining 
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to the app, the minimum length of the review pertaining to the app, the average length of the total 

reviews of the app, the app’s average end-user rating and the app’s category. 

Table 6.2 Extracted datasets summary 

App 

ID 

Total 

number 

of 

reviews 

logged 

Maximum 

review length 

(characters) 

Minimum 

review length 

(characters) 

Average 

length of 

review 

Average 

app 

rating 

Category 

App 1 5044 2110 2 126 4.2 Casual 

App 2 3683 1483 2 137 1.5 Entertainment 

App 3 4559 1732 3 112 3.2 Shopping 

App 4 6583 1434 2 123 2.4 Tool 

 

These extracted reviews were then independently labelled as useful or non-useful by the two supervisors 

and the PhD candidate using the filtering rules mentioned in (Chen et al., 2014). Next, we utilised Fleiss 

Kappa to perform the reliability assessments to support our evaluations. The Fleiss co-efficient was 

found to be 0.78 (substantial agreement), 0.65 (substantial agreement), 0.68 (substantial agreement) and 

0.71 (substantial agreement) for App 1, App 2, App 3 and App 4 respectively (Landis & Koch, 1977). 

Follow up discussions were conducted among us to resolve any conflicts and establish consensus for 

achieving a reliable manual labelling process, where we converged on 100% agreement. After 

performing the necessary tasks (i.e., reliability assessments and manual filtering) App 1, App 2, App 3 

and App 4 indicated 1138, 1760, 1154 and 1120 useful reviews respectively. That said, we performed 

the basic useful reviews pre-processing operations and POS tagging to identify keywords of interest 

mentioned in sub-section 6.1.2.2. Furthermore, we make the datasets17 (i.e., both raw and labelled) used 

in this study publicly available for the research community.  

6.1.4.2 Individual Prioritisation Method Evaluation 

We followed the evaluation approach mentioned in sub-section 6.1.2.3 to benchmark the performance 

of the individual prioritisation method using the time and accuracy dimensions. In this phase, we 

evaluated the accuracy of the method at two levels. Initially, we performed internal evaluation of the 

method i.e., comparing the priorities of the useful reviews generated by the method against those 

assigned by us. Next, to perform the external evaluation of the individual prioritisation method we 

recruited 10 participants from the department of Information Science at the University of Otago. To 

conduct the external evaluation, we initially had to get an ethics application approved from the Human 

Ethics Committee of the University of Otago (refer to Appendices section C for its complete details). 

Furthermore, the participants of the external evaluation are regular apps’ users and have experience 

                                                      
17 https://tinyurl.com/yy6nsurh 
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with apps along with software development. For both evaluations i.e., internal and external, the 

stakeholders were made familiar with descriptions and usage of the four apps. 

That said, based on the number of useful reviews belonging to each app, there was a cognitive overhead 

associated with the limited human resources available for internal and external evaluation. Therefore, 

for internal evaluation, we used random sampling method (i.e., 95% confidence interval, 5% error 

margin) to determine the appropriate sample of useful reviews from each app that had to be evaluated 

(Morse, 2000). The random sampling method returned 288, 316, 289 and 287 useful reviews from App 

1, App 2, App 3 and App 4 respectively. Using the guidelines mentioned in Table 6.1, the two 

supervisors and the PhD candidate independently prioritised the randomly sampled useful reviews. 

Next, we performed the required reliability assessments and the Fleiss coefficients were found to be 

0.54 (moderate agreement), 0.45 (moderate agreement), 0.61 (substantial agreement) and 0.66 

(substantial agreement) for App 1, App 2, App 3 and App 4 respectively (Landis & Koch, 1977). Later, 

follow up discussions among the team were held to resolve any conflicts on the priorities of the app 

reviews and this lead to 100% convergence (i.e., establishment of consensus) essential towards the 

evaluation of accuracy.  

Finally, to perform the external evaluation, the 10 recruited participants were subjected to a 30 minute 

study designed based on the participant cognitive load limitation guideline (De Jong, 2010; Katsanos, 

et al., 2009). Katsanos et al. (2009) have shown that a sample size of 10 participants is reliable enough 

to evaluate the outcomes of software engineering research or application. Next, to address the 

requirement towards external evaluation, we performed stratified random sampling of the total useful 

reviews that were part of internal evaluation to get the necessary useful reviews for the participants to 

evaluate (Kadilar & Cingi, 2003). Stratified random sampling prevents the sampling process from being 

dominated by the useful reviews of a particular app(s) by returning the approximate equal number of 

useful reviews from each app. Out of the total 1,180 useful reviews (i.e., 288 - App 1, 316 - App 2, 289 

- App3 and 287 - App 4) which were the part of internal evaluation, the stratified random sampling 

returned 71, 73, 74, and 72 (total 290: 95 % confidence interval, 5% error margin) from App 1, App 2, 

App 3 and App 4 respectively (Kadilar & Cingi, 2003). During external evaluation, each participant 

evaluated a non-identical set of 29 useful reviews, wherein each set comprised of approximately equal 

number of app reviews from four apps. Initially, using the guideline from the cognitive load theory, we 

estimated an approximate set of 30 useful reviews would be adequate for evaluation for each participant 

who had requested a maximum participation time of 30 minutes (De Jong, 2010). Based on the 

guideline, each of the internal participants (i.e., two supervisors and the PhD candidate) initially had 

independently recorded the average time required to evaluate useful reviews (i.e., time required to 

analyse each review and assign it a priority). It was found out that, on average it takes around 1 minute 

to perform the evaluation of a single useful review. After establishing an informal agreement on the 
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average time required to evaluate a useful review, it seemed appropriate that each participant evaluate 

the non-identical set of 29 useful reviews (i.e., 290 useful reviews among 10 participants) in a span of 

30 minutes. The additional 1 minute would assist in getting the participant’s mind frame ready to 

perform manual evaluation after the necessary briefing on evaluation was conducted.  Furthermore, to 

establish a common understanding, the external participants were briefed in detail on the objective of 

the evaluation and priority assignment guideline mentioned in Table 6.1 prior to the conduct of the 

individual external evaluations. The details pertaining to the objective of external evaluation, the 

necessary briefings and an external participant evaluation sheet are provided in the Appendices (refer 

to section D).  

We provide results of the pilot and full-scale experimentation study performed in this phase in the 

Results section.   

6.2 Results  

In this section, we report the results of the pilot study pertaining to the group-based prioritisation method 

and the individual prioritisation method. Later, we report the results of the conducted full-scale study 

on the individual prioritisation method.   

6.2.1 Group-based Prioritisation Results 

Initially, we evaluated the performance of the group-based prioritisation method on My Tracks dataset. 

Table 6.3 indicates the overall performance of the group-based prioritisation method based on time and 

accuracy dimensions. 

Table 6.3. Performance of group-based prioritisation method on My Tracks dataset 

Number of useful reviews Time  

(seconds) 

Accuracy  

(%) 

855 347.6 58.0% 

 

The group-based prioritisation method required 347.6 seconds to prioritise 855 useful reviews of the 

My Tracks dataset and exhibited an accuracy of 58.0%. Furthermore, out of 152 app features, only 84 

app features were retained after prioritisation. This was because of the duplicate reviews elimination 

process. A useful review could get classified into several groups because of the keyword lookup 

classifying mechanism and thus, its duplicate instances might exist in several groups.  After the 

elimination process is initiated, the duplicate instances of useful reviews in the groups having low 

priorities are eliminated and is retained in the group having the highest priority. However, certain low 

priority groups do not retain any useful reviews and thus are discarded. Also, out of these 84 app features 

only 4 app features (i.e., accuracy, distance, download and package) were found common with those 
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reported in the previous study for priorities cross-validation purpose (Licorish et al., 2017). The 

priorities of these app features did not match with those presented in the previous study, further reducing 

the suitability of the group-based prioritisation method for useful reviews prioritisation. 

We discuss the results of the undertaken pilot study on the prioritisation of useful reviews using the 

group-based prioritisation method and the considerations of their implications in the Discussion section 

(refer to Section 6.3). In the next sub-section, we present the results related to the individual 

prioritisation method.     

6.2.2 Individual Prioritisation Method 

In this sub-section, we report the results of the pilot and full-scale study conducted using the individual 

prioritisation method. Firstly, we report the results of the pilot study in Table 6.4. 

Table 6.4. Performance of individual prioritisation method on My Tracks dataset 

Number of useful reviews Time  

(seconds) 

Accuracy  

(%) 

855 24.4 65.0% 

 

From Table 6.4 it is observed that the individual prioritisation method required 24.4 seconds to prioritise 

855 useful reviews of the My Tracks dataset and exhibited an accuracy of 65.0%. When the performance 

of the individual prioritisation method was compared with that of the group-based prioritisation method 

(refer to Table 4.9), a reduction of 92.98% was observed in case of the time required for prioritisation 

and an increase of 7% was observed in case of accuracy. This confirmed our intuition that stated the 

performance of the individual prioritisation method would be better than group-based prioritisation 

method (refer to sub-section 6.1.3).  

Secondly, we report the results of the full-scale study that dealt with the prioritisation of the useful 

reviews belonging to four apps: App 1, App 2, App 3 and App 4). Table 6.5 indicates the total time 

required by the individual prioritisation method to prioritise the useful reviews. The useful reviews of 

App 4 required the least time (17.1 seconds) for prioritisation whereas the useful reviews of App 2 

required the most time (24.6 seconds). The useful reviews of App 3 and App 1 required 17.80 seconds 

and 19.33 seconds for prioritisation respectively.  

Table 6.5 Total time required for prioritisation 

 App ID. Number of useful reviews  Time 

(seconds) 

App 1 1138 19.3 

App 2 1760 24.6 

App 3 1154 21.8 

App 4 1120 17.1 
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Thirdly, we present the accuracy of the individual prioritisation method after completing the full-scale 

internal evaluation in Table 6.6. Based on the priorities of useful reviews manually assigned by us 

against those generated by the individual prioritisation method, the method exhibited highest accuracy 

in prioritising the useful reviews of App 3 (81.3%) followed by App 1 (77.43%), App 4 (76.7%) and 

App 2 (73.3%). 

Table 6.6 Accuracy of individual prioritisation method (internal evaluation) 

App ID. Number of useful reviews  Accuracy  

(%) 

App 1 288 77.4 

App 2 316 73.3 

App 3 289 81.3 

App 4 287 76.7 

 

Finally, we report the results of the external evaluation. Table 6.7 indicates the accuracy results obtained 

from the external evaluation. Based on the priorities of useful reviews manually assigned by the 

participants against those generated by the individual prioritisation method, the method exhibited 

highest accuracy in prioritising the useful reviews of App 1 (85.9%) followed by App 4 (81.9%), App 

3 (74.3%) and App 2 (74.0%).   

Table 6.7. Accuracy of individual prioritisation method (external evaluation) 

App ID. Number of useful reviews  Accuracy  

(%) 

App 1 71 85.9 

App 2 73 74.0 

App 3 74 74.3 

App 4 72 81.9 

 

We had performed internal and external evaluation of the individual prioritisation method to determine 

its accuracy (as shown in Tables 6.6 and 6.7). To achieve this, we had involved humans based evaluation 

approach as such approach provides the necessary reliable ground truth for cross-validation purposes 

(Stumpf et al., 2007). That said, the Pearson correlation between the priority assignment judgments of 

us and the participants was found to be 0.8 (p-value < 0.01) which indicates that there was a substantial 

level of agreement between the internal and external participants on the subjectivity involved in 

assigning priorities to the useful reviews. The internal evaluation reported an average accuracy of 

77.17%, whereas an average accuracy of 79.04% was reported in external evaluation for all the four 

apps. Even though the sample selected for external evaluation was representative of the total population 

(i.e., useful reviews) that was a part of the internal evaluation, the average accuracy results are 

approximately similar with marginal difference (~1.9%) among them indicating promising results and 

show significant level of alignment among the priority assignment perception of humans.  
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We discuss the results of the undertaken studies on the prioritisation of useful reviews using the 

individual prioritisation method and the considerations of their implications in the Discussion section 

(refer to section 6.3).  

That said, the operational demonstration of the classification, group-based prioritisation and individual 

prioritisation methods comprising of the filtering of useful reviews using the best performing variant 

IV can be assessed by accessing the web tool18. A set of sample reviews have also been provided for 

demonstration purpose19. The walkthrough towards operational demonstration with the support of 

essential relevant screenshots are provided in the Appendices (refer to section F) of this thesis.  

In the next section, we present the discussion and implications along with the threats to validity related 

to the relevant phases.  

6.3 Discussion 

The research study that was conducted in this phase shows that it is possible to develop an automated 

prioritisation method that can prioritise numerous useful reviews. The two proposed prioritisation 

methods (i.e., group-based and individual) generate the required priorities by directly operating on the 

end-users’ requests, bugs or enhancements contained in the useful reviews, and is thus independent of 

domain knowledge and priority preferences of stakeholders. With regards to this, it is possible for the 

developed prioritisation methods to accommodate new useful reviews and generate updated priorities 

of useful reviews during the prioritisation process. Such methods hold promise in supporting software 

maintenance and evolution cycles of apps, where there is often a necessity to convert numerous useful 

reviews into actionable knowledge (i.e., classification or prioritisation) in regular short intervals (Fabio 

et al., 2015; Groen et al., 2015). That said, based on the findings presented in this study, our intuition is 

that the foremost aspect of developing an automated prioritisation method is the identification and 

assembly of relevant prominent prioritisation methods. The fulfilment of this aspect is dependent on the 

type of prioritisation research problem. For instance, if the prioritisation problem demanded to prioritise 

useful reviews based only on the frequency of occurrences of the keywords of interest present in those 

useful reviews, then frequency method would be appropriate in such case. For solving the problem 

related to the prioritisation of numerous useful reviews, we conducted an extensive search for the 

appropriate prioritisation methods and assessed their suitability when the four methods (i.e., ER, FR, TF-

IDFR and - (SCR)) were assembled by means of multi-criteria heuristic function. The multi-criteria 

heuristic function provides flexibility towards prioritisation of useful reviews based on specific 

objectives (del Campo et al., 2016). For instance, business manager of an app could set the value of δ 

(refer to equation (19)) to a larger value if the requirement for prioritisation is based on end-users 

                                                      
18 https://recptool.otagointeractive.nz 
19 https://f2h.io/buxdrhm7dnsf 
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satisfaction levels of app usage. Subsequently, app developers could perform prioritisation based on the 

level of information conveyed by useful reviews by increasing the value of α. Moreover, it would be 

easy to incorporate any additional methods, modify the existing ones or remove the unnecessary ones 

via the multi-criteria heuristic function depending upon the requirement of prioritisation research or 

application. For instance, app developers can develop a method that prioritises useful reviews based on 

the geographical location of the app’s end-users and incorporate this method as a variable of the multi-

criteria heuristic function. The sub-sections below discuss the results and implications of RQ4.1 and 

4.2   

6.3.1 RQ4.1 What is the performance of the developed group-based prioritisation 

method?      

On default seed values of α, β, γ, and δ (i.e., 0.25), the group-based prioritisation method exhibited 

accuracy of 58% and required 347.6 seconds to prioritise 855 useful reviews and their associated groups 

in the conducted pilot study. Concerning time, the method prioritised 147 useful reviews per minute 

given that the time dimension also considered the classification of useful reviews based on the 

automatically generated taxonomy and elimination of duplicate useful reviews for the group-based 

prioritisation method. The total time required for the classification phase (i.e., taxonomy generation and 

classifying useful reviews into the dynamically generated groups of interest) within the group-based 

prioritisation method was 323.10 seconds. The POS tagging operation required 20 seconds and the 

taxonomy generation along with the classification of useful reviews into groups of interest took 303.10 

seconds. That said, the actual time required to prioritise the useful reviews and their associated groups 

along with the elimination of duplicate useful reviews was 24.5 seconds. Thus, the proposed group-

based prioritisation method could benefit from a timely optimised POS technique, providing a scope 

for future research. However, given the number of useful reviews prioritised per minute, in terms of the 

time dimension, the proposed method performs better than most of the requirements prioritisation 

methods presented in Table 3.9 (refer to Chapter 3, sub-section 3.5.6) with only ReproTizer 

outperforming our proposed group-based prioritisation method.     

Concerning accuracy, the group-based prioritisation method performed fairly when compared to the 

requirements prioritisation methods mentioned in Table 3.6 (refer to Chapter 3, sub-section 3.5.6), but 

intuitively the result based on accuracy was not noteworthy. Moreover, the group-based prioritisation 

method was unable to retain the majority of groups (app features) after the duplicate review elimination 

process. With regards to this, only 4 app features matched with those present in the prioritised dataset 

that was used as ground truth to validate the outcome of the group-based prioritisation method (Licorish 

et al., 2017). Since the priorities of these app features did not match, an informal accuracy of 0% was 

noted for the prioritised group, making this group-based prioritisation method ineffective. Such findings 

open avenues for potential research whose primary objective would be to improve the accuracy of the 
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group-based prioritisation method by developing approaches specialised in efficient elimination of 

duplicate useful reviews and retaining the majority of prioritised groups.        

It is to be noted that in this and further sub-sections, we have compared the performances of the group-

based prioritisation method and the individual prioritisation method with those of other requirements 

prioritisation methods based on the accuracy and time dimensions (refer to Chapter 3, sub-section 

3.5.6). Even though the empirical studies on requirements prioritisation methods covering accuracy and 

time dimensions have non-identical experimental settings (i.e., research methodology, number of 

requirements, type of requirements - dependent or independent, validation procedures and so on) the 

comparisons made are fitting for general summarisations. In addition, as mentioned earlier, the 

empirical studies from the app domain did not benchmark the performance of their proposed 

prioritisation methods based on any dimension, hence, we are unable to make any general comparison 

with those studies. That said, the studies from the app domain focusing on prioritisation of app reviews 

or the empirical studies on requirements prioritisation lacking the dimensions could benefit from the 

utilisation of suitable dimensions that have been identified through means of our conducted systematic 

mapping study on requirements prioritisation.   

In addition, it is to be noted that both of our proposed prioritisation method (i.e., group-based and 

individual) are not dependent on domain knowledge and the priority preferences of the stakeholders to 

generate priorities of useful reviews. This contrasts with requirements prioritisation methods which 

utilise domain knowledge and priority preferences of the stakeholders to gain better prioritisation results 

in terms of accuracy. For instance, AHP or BPL are known to generate accurate priorities of the 

requirements when the priority preferences provided by the various stakeholders are closely related to 

each other and are in close proximity with the criteria used for validating accuracy of the particular 

requirements prioritisation method (Bebensee et al., 2010; Chopra et al., 2016). One common example 

of such criteria is a validation dataset consisting of already prioritised requirements. However, on 

default seed values of the parameters α, β, γ, and δ, both the proposed prioritisation methods have shown 

promising results and there is a potential scope to improve the methods performance based on parameter 

tuning in future. We discuss some of the parameter tuning concepts in sub-section 6.3.3.  

To conclude, albeit a pilot study, the results based on accuracy and time dimensions of group-based 

prioritisation method that was evaluated in phase 4 did not seem satisfactory (accuracy: 58.0% and time: 

347.6 seconds), we decided to discard the classification approach before prioritisation (i.e., directly 

prioritising useful reviews after filtering) (Asghar et al., 2013; Voola & Babu, 2013). This was mainly 

due to the group-based prioritisation method removing the majority of group information (i.e., only few 

groups and their related priorities were retained, and thus, missing out on the other important groups of 

interest) associated with the useful reviews. This was the result of the elimination process that removes 

duplicate (useful) reviews. In addition, based on pertinent studies we previously had an intuition that 
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prioritising useful reviews directly after the filtering process would generate better results as it would 

avoid the complexities involved (e.g. redundant information, computational time, and so on) in the 

classification approach that hampered the performance of the prioritisation method (Asghar et al., 2017; 

Sadiq et al., 2009; Zhang et al., 2014). The next sub-section addresses this issue. 

6.3.2 What is the performance of the developed individual prioritisation method?      

In the pilot study, the individual prioritisation method outperformed the group-based prioritisation 

method by exhibiting an accuracy of 65.0% and requiring only 24.4 seconds to prioritise the same set 

of 855 useful reviews. Concerning time, the individual prioritisation method prioritised 2085 useful 

reviews per minute. This is a significant improvement over the group-based prioritisation method that 

could only prioritise 147 useful reviews, albeit the group-based prioritisation method constituted the 

classification phase. It was observed that the POS tagging operation performed to identify the keywords 

of interest, which dominated the prioritisation time by 82% (20 seconds), whereas the actual time to 

prioritise the useful reviews was minimal at 4.4 seconds. In addition, given the number of useful reviews 

prioritised per minute, in terms of the time dimension, the proposed method performs better than most 

of the requirements prioritisation methods presented in Table 3.9 (refer to Chapter 3, sub-section 3.5.6), 

with only ReproTizer outperforming our proposed individual prioritisation method.        

Concerning accuracy, the individual prioritisation method performed satisfactorily when compared to 

the requirements prioritisation methods mentioned in Table 3.6 (refer to Chapter 3, sub-section 3.5.6). 

This confirmed our intuition to directly prioritise useful reviews after they were filtered from a pool of 

reviews as it prevented the complexities of the classification phase from hampering the performance of 

the multi-criteria heuristic function that is the core driving force of our proposed prioritisation methods. 

As the results of the individual prioritisation method based on accuracy and time dimensions were more 

promising than the group-based prioritisation method, in the conducted pilot study, we performed a full-

scale evaluation of the individual prioritisation method. The evaluation was performed on datasets 

pertaining to four new apps belonging to different categories and external participants were included to 

assure a rigorous validation of the proposed individual prioritisation method.  

In the pilot and full-scale evaluation study, it was observed that the individual prioritisation method 

took less than half a minute to prioritise 855 useful reviews, while the traditional manually driven 

requirements prioritisation methods like AHP, BPL, NA and Weiger took much longer time (i.e., 

measures in minutes or hours) to prioritise a small set of requirements (refer to Table 3.9). Concerning 

the time results reported in the full-scale evaluation study, we observed that the POS technique that 

identified the keywords of interest dominated the prioritisation time by 80-85% for App 1 (16.43 

seconds), App 2 (20.40 seconds), App 3 (14.24 seconds) and App 4 (14.24 seconds) respectively. This 

shows that the individual prioritisation method requires less time to perform prioritisation of numerous 
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useful reviews belonging to the four apps (App 1 - 2.9 seconds, App 2 - 4.18 seconds, App 3 - 3.56 

seconds and App 4 - 3.25 seconds). Similar to the group-based prioritisation method, these findings 

reveal that our proposed individual prioritisation method could benefit from a timely optimised POS 

technique.  

Concerning accuracy, during the full-scale evaluation study we performed external evaluation along 

with the internal evaluation of the individual prioritisation method’s prioritisation outcomes to 

determine its overall accuracy. The outcome sample selected for external evaluation was representative 

of the total number of reviews that were a part of the internal evaluation. Even though a representative 

sample, on average basis, the accuracy results (77.17 % and 79.04%) are approximately close, with 

marginal difference (~1.9%) indicating promising results. In addition, the significant Pearson 

correlation coefficient indicated that there was substantial level of agreement between the internal and 

external participants on the subjectivity involved in assigning priorities to the useful reviews. That said, 

while evaluating the accuracy of the group-based prioritisation method and individual prioritisation 

method we utilised human evaluators (internal and external evaluators) who had experience with apps 

and software development, and these human evaluators provided the necessary ground truth for cross-

validation purposes (Stumpf et al., 2007). Moreover, the utilisation of such evaluation practise was in 

alignment with the guidelines provided by requirements prioritisation studies that suggested 

stakeholders priority preferences are reliable source to validate the priorities of requirements generated 

by a particular requirements prioritisation method (Achimugu et al., 2016; Asghar et al., 2013; Bebensee 

et al., 2010; McZara et al., 2015).          

Furthermore, both of our proposed prioritisation methods are novel and they are in their elementary 

stage. We have not experimented with the fine tuning of α, β, γ, and δ parameters for useful reviews 

belonging to different apps. It is unclear what results of the proposed methods would be generated on 

different parameter settings, which in turn would assist in deciding the best, average and worst case 

scenario in terms of accuracy and time required to prioritise numerous useful reviews belonging to a 

particular app. However, researching this aspect is beyond of the scope of the current study and could 

be planned as potential future work. Nevertheless, some of the accuracy and time results related to the 

prioritisation of numerous useful reviews of the individual prioritisation method reported in this study 

are substantial (Accuracy: 65.0%, 85.9%, 81.9%, 81.3%, 74.0% and Time: 24.4 seconds, 19.33 seconds, 

24.58 seconds, 17.80 seconds, and 17.10 seconds). Thus, the proposed prioritisation methods, and 

specifically the individual prioritisation method, holds promise for prioritising useful reviews to support 

app maintenance and evolution cycles. In the next sub-section, we discuss some of the concepts that 

would assist with the automation process leading to fine tuning of parameters of the multi-criteria 

heuristic function.   
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6.3.3 Automated Parameter Fine Tuning 

In this sub-section, we propose and discuss abstracts of few preliminary concepts that would assist in 

performing automated fine tuning of the parameters (i.e., α, β, γ, and δ) pertaining to the multi-criteria 

heuristic function to potentially generate optimal prioritisation results. This in turn will potentially allow 

the proposed methods to exhibit better performance in terms of accuracy and time dimensions. In 

addition, this would transform the multi-criteria heuristic function into an evolutionary multi-criteria 

heuristic function that automatically fine tunes the parameters to prioritise numerous useful reviews to 

generate optimal prioritisation results (Wessing et al., 2017).     

6.3.3.1 Surrogate Modelling Approach 

One approach to perform automated fine tuning of the parameters is to subject the multi-criteria 

heuristic function to a surrogate model (Forrester et al., 2007). The multi-criteria heuristic function 

works in a feed forward fashion i.e., takes the useful reviews and keywords of interest as input, 

processes the input with the particular prioritisation methods which are incorporated as variables of the 

multi-criteria heuristic function and generates the list of prioritised useful reviews. However, the 

prioritisation results produced by the proposed multi-criteria heuristic function are linear and such 

results are sometimes known to be insignificant over time in comparison to the non-linear results 

generated by multi-criteria heuristic functions that are driven by feedback mechanisms (Solow, 2007). 

This is because, linear results contribute towards tactical growth, whereas non-linear results contribute 

towards the strategic growth of the respective multi-criteria heuristic functions. Therefore, we propose 

a feedback mechanism based multi-criteria heuristic function derived from surrogate modelling 

(Forrester et al., 2008). Surrogate modelling iteratively creates optimal results over time through means 

of evolutionary computing (Forrester et al., 2007). Figure 24 illustrates the proposed surrogate model 

to prioritise numerous useful reviews, wherein, the causal useful reviews prioritisation results can be 

used to create virtual models of the numerous useful reviews prioritisation problem, and with the 

assistance of these virtual models, optimal results can be generated that could be applied to the real 

world numerous useful reviews prioritisation problem reflecting one of the virtual model. The causal 

prioritised useful reviews indicate the outcome of a specific prioritisation operation. Such causal 

prioritised useful reviews act as solutions to the relevant prioritisation problems which can be virtually 

formulated. These virtually formulated problems represent the different versions of the prioritisation 

problem that are formulated to address the prioritisation of useful reviews. For instance, a specific 

version of the problem can be efficiently solved using entropy and sentiment methods based on setting 

appropriate α and δ values, and another version of the problem may only require the β value to be set 

to 1 for efficient prioritisation. These problems would assist in determining the right combination of 

parameters to prioritise useful reviews pertaining to a specific prioritisation problem. Such combination 
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of parameters would act as surrogates of the default parameter values to generate optimal prioritisation 

results pertaining to real world useful reviews.       

 

Figure 24. Surrogate model of the multi-criteria heuristic function towards numerous useful reviews prioritisation 

problem 

However, implementing the proposed surrogate model of the multi-criteria heuristic function is not a 

straightforward task. There are few challenges that need to be addressed to achieve this model. We 

represent these challenges in Figure 25 using the ‘What, Why, and How’ research methodology (Fuchs 

& Fuchs, 2006). Therefore, in this case ‘What’ addresses the object of examination (i.e., numerous 

useful reviews) that causally predicts the ‘Why’, which reflects the priorities of the useful reviews, 

which in turn assists in answering the ‘How’ aspect i.e., how we can evolve and test optimal results 

through the means of virtual useful reviews prioritisation problem models.       

 

Figure 25. Challenges represented in the form of questions to implement the proposed surrogate model 
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6.3.3.2 Parameter Sweeping Approach 

Another approach to find the optimal set of values for the parameters α, β, γ, and δ is by performing 

parameter sweeping so that the multi-criteria heuristic function can optimally solve the numerous useful 

reviews prioritisation problem (Wibisono et al., 2008). The prime objective of the parameter sweeping 

methods in case of prioritisation of useful reviews is to identify appropriate values for the parameters 

that would produce an optimal multi-criteria heuristic function which could potentially minimise a 

predefined cost function on given useful reviews (Bergstra & Bengio, 2012). The predefined cost 

function in this scenario would be a function that would map the acceptable accuracy and time results 

related to prioritisation onto a real number. The overall objective would be to minimise the cost function 

(Bergstra & Bengio, 2012). Later, by means of an objective function (generating accurate and timely 

prioritised useful reviews) multiple combinations of values pertaining to the parameters can be 

evaluated to check for several values returned by the cost function (Bergstra & Bengio, 2012). The cost 

function with minimum value would determine the optimal set of parameter values (Bergstra & Bengio, 

2012). There are some prominent parameter sweeping methods specialised in such tasks. One common 

method is Bayesian method that generates a probabilistic model of the function mapping from the 

parameter values to the evaluated objective function (Snoek et al., 2012). The method generates a set 

of parameter values based on the current probabilistic model and simultaneously updates the model at 

every iteration with the objective of identifying the optimal parameter values. Such a method generates 

the values pertaining to the parameters and shortlists those that are close to the optimal ones (Snoek et 

al., 2012). Another method is to utilise evolutionary algorithm that would initially generate random sets 

of parameter values to later evaluate these values and obtain their fitness function (e.g., accuracy or 

time results of the multi-criteria heuristic function with those parameter values) (Bergstra et al., 2011). 

Later, the sets of parameter values would be ranked based on their relative fitness to substitute the sets 

of values of the parameters generating worst results with new sets of values of the parameters computed 

through crossover and mutation. The evolutionary algorithm runs iteratively until the algorithm is no 

longer generating any optimal parameters (Bergstra et al., 2011).  

6.3.3.3 Orthogonal Procrustes Problem Approach 

 In addition, another potential approach to generate the optimal parameter values can be considered. 

The approach would require the final set of normalised priority values generated by each variable ER, 

FR, TF-IDFR and - (SCR) to be represented in the form of a matrix (X) where each column represents 

the priority value generated by each variable respectively. The values in each row would represent the 

priority values generated by each variable for a particular useful review. In another matrix (Y) having 

a single column, PR indicating the actual priorities (i.e., ground truth obtained from domain experts) of 

the useful reviews would reside. The arrangement of these two matrices can be seen as orthogonal 



 

122 

 

Procrustes problem (matrix approximation problem), where the objective would be to compute an 

orthogonal matrix (Z) which would closely map X to Y (Gower & Dijksterhuis, 2004) given as 

Z = argminΩ ||ΩX-Y||F  
                                                                                                                                                  (20) 

Where (20) is subject to ΩTΩ = I and ||ΩX-Y||F is derived from Frobenius norm (Storjohann, 2001). This 

is equivalent to finding the nearest orthogonal matrix to given matrix (M) such that M = YXT and to 

find the orthogonal matrix Z, singular value decomposition is utilised such that 

M = U∑VT  to derive  

Z = UVT                                                                                                                                                          (21) 

In (21), U is an m x m real unitary matrix whereas V is an n x n real unitary matrix and ∑ is an m x n 

rectangular diagonal matrix with non-negative real numbers on the diagonal.  

Once Z is computed, the respective optimal values of parameters could be identified by dividing the 

values of X by 4, since there are four variables in the multi-criteria heuristic function. One potential 

solution to generate Z would be the utilisation of Kabsch algorithm that would generate the optimal Z 

by minimising the root mean squared deviation between X and Y (Blatov et al., 2019). However, other 

solutions pertaining to the generation of Z can be investigated and evaluated.  

In the next sub-section, we present the threats to validity. 

6.4 Threats to Validity 

In this section, we present the threats to validity that can potentially affect the outcomes reported in this 

prioritisation study. This study was focused on the prioritisation of useful reviews that are expressed in 

natural language, and hence our developed automated prioritisation methods were only evaluated for 

their appropriateness at prioritising useful reviews. 

6.4.1 Internal Validity 

We have mitigated several threats related to the subjectivity involved in manually assigning the 

priorities to informative reviews by: (a) inheriting essential guidelines from the pertinent prioritisation 

study (Licorish et al., 2017), (b) rigorously studying what types of useful reviews the actual app 

developers are concerned with and (c) making efficient use of the feedback provided by the app 

developers. All the essential information including the priority assigning guidelines (refer to table 6.1) 

were discussed among the three labellers for common understanding, before the reliability assessments 

were conducted which returned fair to substantial agreements. Follow up discussions were held to 

establish consensus before generating the appropriate results and finalising the particular outcomes. In 
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addition, we have performed external evaluation in the final phase (i.e., prioritisation of useful reviews) 

and have achieved substantial results that confirm the valid construction of ground truth (i.e., labelled 

datasets) in phases 2 and 4. Furthermore, we have selected four prominent methods for performing the 

prioritization of informative reviews. However, app developers (and other stakeholders) may also 

favour other methods for prioritization purpose (e.g., end-users’ geographic location). The impact of 

such methods is not investigated in this study. However, we believe that our multi-criteria heuristic 

function is flexible. It would thus be easy to incorporate any additional methods, modify any existing 

ones or remove the unnecessary ones depending upon the objective of prioritisation. 

6.4.2 External Validity 

The external evaluation participants may have assigned priorities based on their intuition and experience 

of apps usage; however, these individuals were properly introduced to the work and guided accordingly 

on the assigning of priorities. The application of the developed individual prioritisation method was 

tested on useful reviews of four apps. Hence, the generalisability of the method could be further 

evaluated through the use of additional useful reviews from several apps. However, the accuracy and 

time requirements of the proposed individual prioritisation method is substantial in terms of the 

validation of the method. We used a computer with specific hardware configuration (refer to Section 

4.5), which may limit the generalisability of the reported time results, however the pattern of results 

were consistent across the datasets and so this was not a threat to the pattern of results observed. 

Furthermore, the objective of the proposed prioritisation method is to generate prioritised list of the 

useful reviews but the decision of addressing certain prioritised useful reviews is totally dependent on 

the judgements of app developers for the given app maintenance and evolution cycle. This is because, 

only app developers are aware of the constraints such as feasibility, cost, time and so on that are imposed 

upon them to influence such decision.   

6.4.3 Construct Validity 

To construct the ground truth data to prioritise useful reviews we followed the well-established rules 

from the pertinent study to label the app reviews and recommended practices from the software 

engineering discipline (consensus formation). However, another alternative to construct this ground 

truth data would be to approach the app developers of the respective apps to obtain the prioritised set 

of reviews for evaluating the performance of the prioritisation method.   

In the next chapter, we provide the concluding remarks of each phase, research contributions and 

summary of implications along with the potential future work. 
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7 Conclusion  

In this chapter, we present the conclusions related to the four phases of research that were conducted in 

this research study, research contributions, along with a summary of implications and potential future 

work. As stated in the chapters 1, 2 and 3, the findings of the first phase influenced the next three phases 

that are linked subsequently. In section 7.1 we provide the conclusions drawn from the conducted 

systematic mapping study on requirements prioritisation (Phase 1), which is followed by the 

conclusions of the pilot study on automated filtering of useful reviews (Phase 2). Next, the conclusions 

for the pilot study on the approach towards automated taxonomy generation (Phase 3), and the pilot 

studies on the group-based prioritisation method and individual prioritisation method along with the 

full-scale study on individual prioritisation method are provided (Phase 4). In the subsequent sections 

we highlight the research contributions (Section 7.2) and the summary of implications along with the 

potential future work (Section 7.3).  

7.1 Summary of Outcomes 

This section provides a summary of outcomes for the four research phases of the study.  

7.1.1 Phase 1 - Systematic Mapping Study (RQ1) 

Stakeholders often provide requirements before the development of a product begins, and log feedback 

containing feature requests, bugs or enhancements for post-release product improvements. Product 

developers at times face challenges in terms of deciding which requirements or feedback to address and 

in what order during the product development or the product maintenance and evolution cycles. This is 

particularly evident when stakeholders are provided with an online platform to provide their 

requirements or feedback pertaining to software products. Therefore, software developers are on the 

lookout for efficient and reliable prioritisation methods to aid in deciding which crucial requirements 

or feedback to address initially. Numerous prioritisation methods exist, and these are utilised based on 

the orientation of a particular prioritisation application as these methods have their own merits and 

demerits.  

While requirements prioritisation methods assist with the requirements prioritisation process under 

several conditions, challenges are encountered when there are numerous requirements to prioritise. 

Some of the prominent challenges are: lack of scalability of the particular requirements prioritisation 

method or the dependency of the particular requirements prioritisation method on domain knowledge 

and priority preferences of stakeholders to perform prioritisation. In addition, it is established that such 

methods demand much from stakeholders when the number of requirements to prioritise increase 

significantly, and particularly in crowdsourced contexts such as app reviews. However, our proposed 

prioritisation methods have addressed these challenges. That said, previous review studies did not 
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perform evaluations across full range of requirements prioritisation methods that are present in the 

studies on requirements prioritisation belonging to different disciplines. Thus, in the first phase of the 

study, we have exploited this opportunity and conducted a comprehensive systematic mapping study 

on requirements prioritisation that highlights the strength of evidence that is available on requirements 

prioritisation. To achieve this, we answered six research questions, analysing the interest in 

requirements prioritisation over time, the publication venues of the studies on requirements 

prioritisation and the disciplines of these studies (RQ1.1). We next investigated the approaches that are 

used for studying requirements prioritisation (RQ1.2) and the types of contributions that are provided 

for addressing the requirements prioritisation challenge (RQ1.3). Next, we identified the actual 

requirements prioritisation methods (RQ1.4) and the dimensions that were evaluated for requirements 

prioritisation methods (RQ1.5). Finally, we examined the performance outcomes of the various 

evaluations, and evidence of relationships between attributes of the requirements prioritisation methods 

and their performance outcomes (RQ1.6).  

To summarise the outcomes of phase 1, the findings show that there has been steady interest in 

requirements prioritisation over the years. We observed that most of the studies are published in 

conferences and journals, in the discipline of software engineering, with product manufacturing also 

featuring eminently. Moreover, we found out that the majority of the studies focused on requirements 

prioritisation targeted evaluated solutions. We observed that researchers have also often proposed 

solutions (i.e., solutions that were not evaluated) or provided some type of simulation. The contributions 

towards addressing requirements prioritisation challenges ranged from hybrid methods to tools, and 

some hybrid methods harnessed the strengths of multiple methods while attempting to avoid the 

methods’ drawbacks. That said, we identified eight dimensions that were evaluated for empirical 

requirements prioritisation studies, with requirements prioritisation methods largely evaluated for their 

operational demonstration, while the examined attributes had limited effects on requirements 

prioritisation methods’ outcomes. We also observed that out of the 157 requirements prioritisation 

methods, 67 of these methods were part of multiple studies. AHP, CV, QFD, NA and PG were among 

the top ten requirements prioritisation methods that were researched. While there exists an opportunity 

to perform further evaluations on requirements prioritisation studies, our findings reveal that the 

development of new methods may efficiently address the encountered requirements prioritisation 

challenge if they are inspired by hybrid methods. The performance trade-offs of such methods are to be 

expected based on their performance targets. In the next sub-section, we provide the summary of 

outcomes related to the filtering of useful reviews.      

7.1.2 Phase 2 - Useful Reviews Filtering (RQ2) 

In the pilot study, we investigated the Multinomial Naïve Bayes variants for their feasibility and utility 

towards the filtering of useful reviews. Previously, many studies have proposed filtering approaches to 
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extract reviews of interest for app developers. However, the approach involving Expectation 

Maximization of Multinomial Naïve Bayes had shown the most promise. Therefore, in our pilot study, 

we investigated the performances of six variants of Multinomial Naïve Bayes. The results of this pilot 

study suggest that Expectation Maximisation Multinomial Naïve Bayes  with Laplace smoothing 

(variant IV) and Complement Naïve Bayes with Laplace Smoothing (variant VI) may be best suited for 

filtering useful reviews for further app maintenance and evolution operations such as meaningful data 

analysis and visualisation, classification or prioritisation. In the next sub-section we provide the 

summary of outcomes related to the classification of useful reviews based on the automatically 

generated taxonomy.      

7.1.3 Phase 3 - Classification of Useful Reviews (RQ3) 

The need to generate an automated taxonomy for grouping useful reviews was a requirement of the 

group-based prioritisation method. Hence, we conducted a pilot study to validate the feasibility of our 

proposed approach. By doing so, we found out that previous studies on classification of reviews 

pertaining to apps have worked towards classifying and analysing numerous reviews in support of app 

maintenance and evolution cycles. Generally, the proposed classification approaches utilise a taxonomy 

that is manually derived from domain knowledge to classify reviews having similar characteristics into 

specific groups. However, such domain knowledge needs to be made available from experts and is often 

generalised (shallow), which forces app developers to manually analyse each review after the 

classification process is completed. Moreover, as the number of reviews increase, scalability challenges 

are encountered for classification approaches that are driven by manually derived taxonomies. We 

addressed these drawbacks in this pilot study and developed a novel approach that automatically 

generates a taxonomy to group reviews into dynamically created groups of interest without being 

dependent on the availability of domain knowledge. Based on the empirical evaluation conducted in 

this pilot study, the outcome of our proposed approach compares substantially to the one that was 

manually derived, and thus, could be useful for grouping useful reviews. In the next sub-section we 

provide the summary of outcomes related to the prioritisation of useful reviews.      

7.1.4 Phase 4 - Automated Prioritisation of Useful Reviews (RQ4) 

Previous studies on requirements prioritisation have attempted to address the challenge to prioritise 

numerous requirements but we observed that these methods were dependent on stakeholders’ 

preferences and domain knowledge to prioritise the requirements or lacked scalability. Subsequently, 

only two studies from the app reviews domain were aimed at prioritisation of reviews pertaining to the 

apps, but these works lacked essential dimensions to measure their prioritisation performance further 

bringing into question their suitability. In the pilot study, we addressed the limitations of the previous 

studies by proposing novel automated prioritisation methods (i.e., group-based and individual) for 

prioritising numerous useful reviews. Based on the empirical evaluations reported in the pilot study, 
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our proposed methods are completely automated in comparison to manual ones that are dependent on 

the availability of domain knowledge or priority preferences of the stakeholders. In addition, 

dimensions such as accuracy and time are found to be crucial in benchmarking the prioritisation 

performance of these methods as app developers have to address several critical useful reviews in time 

constrained app maintenance and evolution cycles. As the individual prioritisation method 

outperformed the group-based prioritisation method in terms of the accuracy and time dimensions, we 

performed a full-scale evaluation of the individual prioritisation method. Our outcomes show that the 

results generated by the individual prioritisation method for useful reviews belonging to different sets 

of app are promising. Therefore, this method could be of potential use to app developers who are bound 

by time constraints to identify and address issues from numerous useful reviews in the app maintenance 

and evolution cycles.  

7.2 Contributions 

In this section, we highlight the key contributions that are provided for the software engineering 

community.   

Firstly, we contribute a systematic mapping study protocol for studies related to requirements 

prioritisation, which provides classification schemes to categorise the studies on requirements 

prioritisation or similar work for meaningful interpretations. The proposed classification schemes on 

research approaches and contributions have been specifically developed for the studies on requirements 

prioritisation. The protocol also assisted in uncovering research interest in requirements prioritisation 

along with the different venues of publications and disciplines in which requirements prioritisation is 

considered. Along with these, we were able to uncover several requirements prioritisation methods 

(empirical and non-empirical) and identify the essential dimensions that are crucial towards the 

evaluation of requirements prioritisation methods.      

Secondly, we contribute an approach to automatically filter useful reviews using a set of predefined 

rules and a recommended Multinomial Naïve Bayes variant. The recommendation related to the variant 

being, the semi supervised variant Expectation Maximisation of Multinomial Naïve Bayes with Laplace 

Smoothing (variant IV) is best suited overall. However, app developers can utilise the supervised variant 

Complement Naïve Bayes with Laplace smoothing (variant VI) if the app developers have substantial 

number of reviews whose labels (useful or non-useful) are imbalanced.  

Thirdly, we contribute a preliminary approach that automatically generates a taxonomy from useful 

reviews for classification purpose. The approach is best suited when there is unavailability of domain 

knowledge (e.g., predefined manual taxonomy) to perform classification. It can also be used when app 

developers need to generate a fine-grained taxonomy reflecting prioritised list of app features and their 

association with requests, bugs or enhancements.  
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Fourthly, we contribute through the development and evaluation of two automated prioritisation 

methods for prioritising useful reviews. These methods driven by a multi-criteria heuristic function are 

independent of the stakeholders’ priority preferences and domain knowledge to prioritise useful 

reviews. In addition, the multi-criteria heuristic function provides the flexibility to add, modify or 

remove prioritisation methods to support application-oriented prioritisation. For example, the 

prioritisation application requiring the useful reviews being prioritised based on the prominent end-

users of the app.      

Finally, the empirically evaluated and developed requirements prioritisation solution is demonstrated 

as a web-based tool available at:  https://recptool.otagointeractive.nz/ 

7.3 Implications and Future Work  

In this sub-section, we summarise implications and potential future work related to the four phases of 

the study. With the identification of requirements prioritisation studies from multiple disciplines, 

researchers from one discipline may seek guidelines from studies from other disciplines to effectively 

solve the particular encountered requirements prioritisation problem. Moreover, with the knowledge of 

the developed classification schemes and identified requirements prioritisation methods, researchers 

could work towards the development of a hybrid requirements prioritisation method that harnesses the 

strengths of multiple methods while avoiding their drawbacks. With regards to this, there is scope to 

develop a taxonomy for the comparison of the requirements prioritisation methods across different 

disciplines. Furthermore, the development of an application specific requirements prioritisation method 

could benefit from utilisation of relevant dimensions. For instance, researchers aiming to accurately and 

rapidly prioritise a product’s requirements or feedback based on the dependencies that exist among the 

requirements or feedback could benefit from studies covering the accuracy, time and requirements 

dependency dimensions and utilise these dimensions to their advantage. Practitioners may also be able 

to use our insights when addressing the requirements prioritisation challenge.    

In addition, software engineering practitioners could benefit from the developed automated filtering 

approach (i.e., information retrieval) as this approach identifies and extracts logged requests, bugs or 

enhancements related to software products (e.g., app) logged by the products’ stakeholders (e.g., 

product’s end-users). In addition, there exists a research opportunity to investigate and evaluate 

techniques that generate discriminative features (i.e., words) for learning purpose that can help increase  

the prediction accuracy and F-Measure of the Multinomial Naïve Bayes variants IV (Expectation 

Maximisation of Multinomial Naïve Bayes with Laplace Smoothing) and VI (Complement Naïve Bayes 

with Laplace Smoothing) along with the addressing of the problem of independence assumption made 

by the Multinomial Naïve Bayes variants.    

https://recptool.otagointeractive.nz/
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The practitioners can also benefit from the proposed automated taxonomy generation approach to build 

a taxonomy which indicates requests, bugs or enhancements associated with the prominent product’s 

features. The application of such an approach is best suited when stakeholders log bugs, requests or 

enhancements pertaining to product features that are contextually similar. Furthermore, with regards to 

the COALS method that was utilised to automatically generate the taxonomy used the default threshold 

value. However, outcomes of COALS can be evaluated using different threshold settings. In addition, 

COALS could be integrated with SVD on the appropriate SVD parameter value to generate potential 

optimal data necessary towards the generation of taxonomy.  

Finally, through means of this conducted PhD study, practitioners can gain insights on how automated 

prioritisation methods can be developed to prioritise logged requests, bugs or enhancements pertaining 

to a software product. The key aspect in such a scenario being the identification of essential criteria 

required to drive the prioritisation process and developing the relevant methods to fulfil the criteria 

along with the utilisation of appropriate dimensions. That said, further research towards automated 

tuning of the parameters of the multi-criteria heuristic function to generate potential optimal 

prioritisation results reflecting increases in accuracy and reduction in time required for prioritisation 

can be conducted. In addition, the utility of other dimensions (e.g., computational complexity) towards 

prioritisation could also be investigated and evaluated. Beyond useful reviews, the validity of the 

prioritisation methods could also be investigated on bugs and requests that are logged on software 

repositories such as Jira, GitHub and so on.  Such follow up research holds promise for the continuous 

evolution of prioritisation methods. 
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requirement in fuzzy 

quality function 

deployment 

Conference: 2008 IEEE 

International Conference on 

Service Operations and 

Logistics, and Informatics 

2008 

24 Zhaoling Li; 

Dongling Zhang; 

Qisheng Gao 

A grey method of 

prioritizing 

engineering 

characteristics in 

QFD 

Conference : 2009 Chinese 

Control and Decision 

Conference 

2009 

25 M. R. Beg; R. P. 

Verma; A. Joshi 

Reduction in number 

of comparisons for 

requirement 

prioritization using 

B-Tree 

Conference: 2009 IEEE 

International Advance 

Computing Conference 

2009 

26 M. Sadiq; S. 

Ghafir; M. Shahid 

An Approach for 

Eliciting Software 

Requirements and its 

Prioritization Using 

Analytic Hierarchy 

Process 

Conference: 2009 

International Conference on 

Advances in Recent 

Technologies in 

Communication and 

Computing 

2009 

27 M. Ramzan; M. A. 

Jaffar; M. A. Iqbal; 

S. Anwar; A. A. 

Shahid 

Value Based Fuzzy 

Requirement 

Prioritization and Its 

Evaluation 

Framework 

Conference: 2009 Fourth 

International Conference on 

Innovative Computing, 

Information and Control  

2009 

28 Amir Seyed 

Danesh, Soolmaz 

Mir Mortazavi, 

Seyed Yahya 

Seyed Danesh 

Requirements 

Prioritization in On-

line Banking 

Systems: Using 

Value-Oriented 

Framework 

Conference: 2009 

International Conference on 

Computer Technology and 

Development 

2009 

29 Aaron K. Massey, 

Paul N. Otto, Annie 

I. Antón 

Prioritizing Legal 

Requirements 

Workshop: 2009 Second 

International Workshop on 

Requirements Engineering 

and Law 

2009 

30 P. Fitsilis; V. 

Gerogiannis; L. 

Anthopoulos; I. K. 

Savvas 

Supporting the 

Requirements 

Prioritization Process 

Using Social 

Network Analysis 

Techniques 

Workshop:  2010 19th IEEE 

International Workshops on 

Enabling Technologies: 

Infrastructures for 

Collaborative Enterprises 

2010 

31 S. A. Marjaie; V. 

Kulkarni 

Recognition of 

Hidden Factors in 

Requirements 

Prioritization Using 

Factor Analysis 

Conference: 2010 

International Conference on 

Computational Intelligence 

and Software Engineering 

2010 

32 C. E. Otero; E. 

Dell; A. Qureshi; L. 

D. Otero 

A Quality-Based 

Requirement 

Prioritization 

Framework Using 

Binary Inputs 

Conference: 2010 Fourth 

Asia International 

Conference on 

Mathematical/Analytical 

Modelling and Computer 

Simulation 

2010 

33 M. Sadiq; J. 

Ahmed; M. Asim; 

A. Qureshi; R. 

Suman 

More on Elicitation 

of Software 

Requirements and 

Conference: 2010 

International Conference on 

Data Storage and Data 

Engineering 

2010 
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Prioritization Using 
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34 P. Chatzipetrou; L. 

Angelis; P. 

Rovegard; C. 

Wohlin 

Prioritization of 

Issues and 

Requirements by 

Cumulative Voting: 

A Compositional 

Data Analysis 

Framework 

Conference : 2010 36th 

EUROMICRO Conference 

on Software Engineering and 

Advanced Applications 

2010 

35 N. M. Carod Cognitive-driven 

requirements 

prioritization: A case 

study 

Conference: 2010 9th IEEE 

International Conference on 

Cognitive Informatics (ICCI) 

2010 

36 N. M. Carod Cognitive Profiles in 

Understanding and 

Prioritizing 

Requirements: A 

Case Study 

Conference: 2010 Fifth 

International Conference on 

Software Engineering 

Advances 

2010 

37 Z. Racheva; M. 

Daneva; A. 

Herrmann; R. J. 

Wieringa 

A conceptual model 

and process for 

client-driven agile 

requirements 

prioritization 

Conference: 2010 Fourth 

International Conference on 

Research Challenges in 

Information Science  

2010 

38 Z. Racheva; M. 

Daneva; K. Sikkel; 

A. Herrmann; R. 

Wieringa 

Do We Know 

Enough about 

Requirements 

Prioritization in 

Agile Projects: 

Insights from a Case 

Study 

Conference : 2010 18th IEEE 

International Requirements 

Engineering Conference 

2010 

39 M. Aasem; M. 

Ramzan; A. Jaffar 

Analysis and 

optimization of 

software 

requirements 

prioritization 

techniques 

Conference: 2010 

International Conference on 

Information and Emerging 

Technologies 

2010 

40 M. A. Iqbal; A. M. 

Zaidi; S. Murtaza 

A New Requirement 

Prioritization Model 

for Market Driven 

Products Using 

Analytical 

Hierarchical Process 

Conference: 2010 

International Conference on 

Data Storage and Data 

Engineering 

2010 

41 P. Tonella; A. Susi; 

F. Palma 

Using Interactive GA 

for Requirements 

Prioritization 

Symposium : 2nd 

International Symposium on 

Search Based Software 

Engineering 

2010 

42 A. Ahmad; A. 

Shahzad; V. K. 

Padmanabhuni; A. 

Mansoor; S. 

Joseph; Z. Arshad 

Requirements 

prioritization with 

respect to 

Geographically 

Distributed 

Stakeholders 

Conference: 2011 IEEE 

International Conference on 

Computer Science and 

Automation Engineering 

2011 

43 R. B. Svensson; T. 

Gorschek; B. 

Regnell; R. Torkar; 

A. Shahrokni; R. 

Feldt; A. Aurum 

Prioritization of 

quality requirements: 

State of practice in 

eleven companies 

Conference: 2011 IEEE 19th 

International Requirements 

Engineering Conference 

2011 



 

158 

 

ID Authors Title Type Year 
44 M. I. Babar; M. 

Ramzan; S. A. K. 

Ghayyur 

Challenges and 

future trends in 

software 

requirements 

prioritization 

Conference: International 

Conference on Computer 

Networks and Information 

Technology 

2011 

45 A. Ejnioui; C. E. 

Otero; A. A. 

Qureshi 

Software 

requirement 

prioritization using 

fuzzy multi-attribute 

decision making 

Conference: 2012 IEEE 

Conference on Open Systems 

2012 

46 N. Kukreja; B. 

Boehm; S. S. 

Payyavula; S. 

Padmanabhuni 

Selecting an 

appropriate 

framework for value-

based requirements 

prioritization 

Conference : 2012 20th IEEE 

International Requirements 

Engineering Conference  

2012 

47 S. Nidhra; L. P. 

Kelapanda Satish; 

V. S. Ethiraj 

Analytical Hierarchy 

Process issues and 

mitigation strategy 

for large number of 

requirements 

Conference: 2012 CSI Sixth 

International Conference on 

Software Engineering 

2012 

48 S. Forouzani; R. 

Ahmad; S. 

Forouzani; N. 

Gazerani 

Design of a teaching 

framework for 

software requirement 

prioritization 

Conference:  2012 8th 

International Conference on 

Computing Technology and 

Information Management  

2012 

49 Hans Christian 

Benestad, Jo E. 

Hannay 

Does the 

prioritization 

technique affect 

stakeholders' 

selection of essential 

software product 

features?  

Symposium: Proceedings of 

the 2012 ACM-IEEE 

International Symposium on 

Empirical Software 

Engineering and 

Measurement 

2012 

50 M. Pergher; B. 

Rossi 

Requirements 

prioritization in 

software 

engineering: A 

systematic mapping 

study 

Workshop : 2013 3rd 

International Workshop on 

Empirical Requirements 

Engineering  

2013 

51 M. W. Asghar; A. 

Marchetto; A. Susi; 

G. Scanniello 

Maintainability-

Based Requirements 

Prioritization by 

Using Artifacts 

Traceability and 

Code Metrics 

Conference: 2013 17th 

European Conference on 

Software Maintenance and 

Reengineering 

2013 

52 A. Perini; A. Susi; 

P. Avesani 

A Machine Learning 

Approach to 

Software 

Requirements 

Prioritization 

Journal: IEEE Transactions 

on Software Engineering 

2013 

53 Nupul Kukreja  

Decision theoretic 

requirements 

prioritization A two-

step approach for 

sliding towards value 

realization 

Conference: 2013 35th 

International Conference on 

Software Engineering (ICSE) 

2013 

54 R. Ahmed; D. 

Musleh; M. 

Ahmed; M. El-

Attar 

Use case 

prioritization using 

fuzzy logic system 

Conference:  2014 IEEE 5th 

International Conference on 

2014 
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Software Engineering and 

Service Science 

55 Y. Z. Chen; Q. Yu A fuzzy game 

approach to prioritize 

customer 

requirements in 

Quality Function 

Deployment 

Conference : 2014 

International Conference on 

Management Science & 

Engineering 21th Annual 

Conference Proceedings 

2014 

56 F. Fellir; K. Nafil; 

R. Touahni 

System requirements 

prioritization based 

on AHP 

Conference: 2014 Third 

IEEE International 

Colloquium in Information 

Science and Technology 

(CIST) 

2014 

57 R. Popli; N. 

Chauhan; H. 

Sharma 

Prioritising user 

stories in agile 

environment 

Conference: 2014 

International Conference on 

Issues and Challenges in 

Intelligent Computing 

Techniques (ICICT) 

2014 

58 A. Sureka Requirements 

Prioritization and 

Next-Release 

Problem under Non-

additive Value 

Conditions 

Conference: 2014 23rd 

Australian Software 

Engineering Conference 

2014 

59 M. Inoki; T. 

Kitagawa; S. 

Honiden 

Application of 

requirements 

prioritization 

decision rules in 

software product line 

evolution 

Workshop: 2014 IEEE 5th 

International Workshop on 

Requirements Prioritization 

and Communication 

2014 

60 B. A. Mustafa; A. 

Zainuddin 

An experimental 

design to compare 

software 

requirements 

prioritization 

techniques 

Conference : 2014 

International Conference on 

Computational Science and 

Technology 

2014 

61 R. Easmin; A. U. 

Gias; S. M. Khaled 

A partial order 

assimilation 

approach for 

software 

requirements 

prioritization 

Conference : 2014 

International Conference on 

Informatics, Electronics & 

Vision 

2014 

62 F. Sher; D. N. A. 

Jawawi; R. 

Mohamad; M. I. 

Babar 

Multi-aspects based 

requirements 

priortization 

technique for value-

based software 

developments 

Conference: 2014 

International Conference on 

Emerging Technologies  

2014 

63 F. Sher; D. N. A. 

Jawawi; R. 

Mohamad; M. I. 

Babar 

Requirements 

prioritization 

techniques and 

different aspects for 

prioritization a 

systematic literature 

review protocol 

Conference : 2014 8th. 

Malaysian Software 

Engineering Conference  

2014 

64 N. Condori-

Fernandez; P. Lago 

Can we know upfront 

how to prioritize 

Workshop: 2015 IEEE Fifth 

International Workshop on 

2015 
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quality 

requirements? 

Empirical Requirements 

Engineering  

65 J. M. Fernandes; S. 

P. Rodrigues; L. A. 

Costa 

Comparing AHP and 

ELECTRE I for 

prioritizing software 

requirements 

Conference : 2015 

IEEE/ACIS 16th 

International Conference on 

Software Engineering, 

Artificial Intelligence, 

Networking and 

Parallel/Distributed 

Computing 

2015 

66 N. Garg; P. 

Agarwal; S. Khan 

Recent 

advancements in 

requirement 

elicitation and 

prioritization 

techniques 

Conference : 2015 

International Conference on 

Advances in Computer 

Engineering and 

Applications 

2015 

67 R. R. Maiti; F. J. 

Mitropoulos 

Capturing, eliciting, 

predicting and 

prioritizing (CEPP) 

non-functional 

requirements 

metadata during the 

early stages of agile 

software 

development 

Conference: SoutheastCon 

2015 

2015 

68 M. A. Abou-

Elseoud; E. S. 

Nasr; H. A. Hefny 

Enhancing 

requirements 

prioritization based 

on a hybrid technique 

Conference: 2016 11th 

International Conference on 

Computer Engineering & 

Systems 

2016 

69 J. R. F. D. Santos; 

A. B. Albuquerque; 

P. R. Pinheiro 

Requirements 

Prioritization in 

Market-Driven 

Software: A Survey 

Based on Large 

Numbers of 

Stakeholders and 

Requirements 

Conference: 2016 10th 

International Conference on 

the Quality of Information 

and Communications 

Technology 

2016 

70 M. Yousuf; M. U. 

Bokhari; M. 

Zeyauddin 

An analysis of 

software 

requirements 

prioritization 

techniques: A 

detailed survey 

Conference : 2016 3rd 

International Conference on 

Computing for Sustainable 

Global Development  

2016 

71 R. M. Liaqat; M. A. 

Ahmed; F. Azam; 

B. Mehboob 

A Majority Voting 

Goal Based 

technique for 

Requirement 

Prioritization 

Conference : 2016 22nd 

International Conference on 

Automation and Computing 

2016 

72 S. Dhingra; 

Savithri G; M. 

Madan; Manjula R 

Selection of 

prioritization 

technique for 

software requirement 

using Fuzzy Logic 

and Decision Tree 

Conference: 2016 Online 

International Conference on 

Green Engineering and 

Technologies  

2016 

73 M. Sadiq; T. 

Hassan; S. Nazneen 

AHP_GORE_PSR: 

Applying analytic 

hierarchy process in 

goal oriented 

requirements 

Conference: 2017 3rd 

International Conference on 

Computational Intelligence 

& Communication 

Technology (CICT) 

2017 
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elicitation method for 

the prioritization of 

software 

requirements 

74 Morales-Ramirez; 

D. MuÃ±ante; F. 

Kifetew; A. Perini; 

A. Susi; A. Siena 

Exploiting User 

Feedback in Tool-

Supported Multi-

criteria Requirements 

Prioritization 

Conference: 2017 IEEE 25th 

International Requirements 

Engineering Conference 

2017 

75 B. B. Jawale; G. K. 

Patnaik; A. T. 

Bhole 

Requirement 

Prioritization Using 

Adaptive Fuzzy 

Hierarchical 

Cumulative Voting 

Conference: 2017 IEEE 7th 

International Advance 

Computing Conference 

2017 

76 U. Garg; A. Singhal Software 

requirement 

prioritization based 

on non-functional 

requirements 

Conference : 2017 7th 

International Conference on 

Cloud Computing, Data 

Science & Engineering 

2017 

77 A. R. Asghar; A. 

Tabassum; S. N. 

Bhatti; A. M. Jadi 

Impact and 

challenges of 

requirements 

elicitation & 

prioritization in 

quality to agile 

process: Scrum as a 

case scenario 

Conference: 2017 

International Conference on 

Communication 

Technologies 

2017 

78 Emitza Guzman,  

Mohamed Ibrahim, 

Martin Glinz 

Prioritizing User 

Feedback from 

Twitter: A Survey 

Report 

Workshop : 2017 

IEEE/ACM 4th International 

Workshop on 

CrowdSourcing in Software 

Engineering (CSI-SE) 

2017 

79 Perini, Anna; 

Ricca, Filippo; 

Susi, Angelo 

Tool-supported 

requirements 

prioritization: 

Comparing the AHP 

and CBRank 

methods 

Journal: Information and 

Software Technology 

2009 

80 Berander, Patrik; 

Svahnberg, Mikael 

Evaluating two ways 

of calculating 

priorities in 

requirements 

hierarchies – An 

experiment on 

hierarchical 

cumulative voting 

Journal: Journal of Systems 

and Software 

2009 

81 Bimal Nepal, Om 

P.Yadav, Alper 

Muratc 

A fuzzy-AHP 

approach to 

prioritization of CS 

attributes in target 

planning for 

automotive product 

development 

Journal: Expert Systems with 

Applications 

2010 

82 Riņķevičs, K.; 

Torkar, R. 

Equality in 

cumulative voting: A 

systematic review 

with an improvement 

proposal 

Journal: 

Information and Software 

Technology 

2013 



 

162 

 

ID Authors Title Type Year 
83 Tonella, Paolo; 

Susi, Angelo; 

Palma, Francis 

Interactive 

requirements 

prioritization using a 

genetic algorithm 

Journal:  

Information and Software 

Technology 

2013 

84 AL-Ta’ani, Rami 

Hasan; Razali, 

Rozilawati 

Prioritizing 

Requirements in 

Agile Development: 

A Conceptual 

Framework 

Conference: 4th International 

Conference on Electrical 

Engineering and Informatics, 

ICEEI 2013 

2013 

85 Kukreja, Nupul; 

Payyavula, Sheetal 

Swaroop; Boehm, 

Barry; 

Padmanabhuni, 

Srivinas 

Value-Based 

Requirements 

Prioritization: Usage 

Experiences 

Conference: 2013 

Conference on Systems 

Engineering Research 

2013 

86 Liu, Yuanyuan; 

Zhou, Jian; Chen, 

Yizeng 

Using fuzzy non-

linear regression to 

identify the degree of 

compensation among 

customer 

requirements in QFD 

Journal : Neurocomputing 2014 

87 Konstantina 

Kamvysi, Katerina 

Gotzamani, 

Andreas 

Andronikidis, 

Andreas 

C.Georgiou 

 

Capturing and 

prioritizing students’ 

requirements for 

course design by 

embedding Fuzzy-

AHP and linear 

programming in QFD 

Journal:European Journal of 

Operational Research 

2014 

88 Pitangueira, 

Antônio Mauricio; 

Maciel, Rita 

Suzana P.; Barros, 

Márcio 

Software 

requirements 

selection and 

prioritization using 

SBSE approaches: A 

systematic review 

and mapping of the 

literature 

Journal: Journal of Systems 

and Software 

2015 

89 Santos, Rômulo; 

Albuquerque, 

Adriano; Pinheiro, 

Plácido Rogerio 

Towards the Applied 

Hybrid Model in 

Requirements 

Prioritization 

Conference : Promoting 

Business Analytics and 

Quantitative Management of 

Technology: 4th 

International Conference on 

Information Technology and 

Quantitative Management  

2016 

90 Raj KumarChopra, 

Varun Gupta, Durg 

Singh Chauhan 

Experimentation on 

accuracy of non 

functional 

requirement 

prioritization 

approaches for 

different complexity 

projects 

Journal: Perspectives in 

Science 

2016 

91  

Hosna Pakizehkar, 

Mohammad 

Mirmohammadi 

Sadrabadi, Rasool 

ZareMehrjardi, 

 

The Application of 

Integration of Kano's 

Model, AHP 

Technique and QFD 

Matrix in Prioritizing 

Conference: 3rd International 

Conference on New 

Challenges in Management 

and Business: Organization 

and Leadership 

2016 
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Amir Ehsan 

Eshaghieh 

the Bank's 

Substructions 

92 Shao, Fei; Peng, 

Rong; Lai, Han; 

Wang, Bangchao 

DRank: A semi-

automated 

requirements 

prioritization method 

based on preferences 

and dependencies 

Journal: Journal of Systems 

and Software 

2017 

93 Achimugu, Philip; 

Selamat, Ali; 

Ibrahim, Roliana; 

Mahrin, Mohd 

Naz’ri 

A systematic 

literature review of 

software 

requirements 

prioritization 

research 

Journal: Information and 

Software Technology 

2017 

94 Daneva, Maya; van 

der Veen, Egbert; 

Amrit, Chintan; 

Ghaisas, Smita; 

Sikkel, Klaas; 

Kumar, Ramesh; 

Ajmeri, Nirav; 

Ramteerthkar, 

Uday; Wieringa, 

Roel 

Agile requirements 

prioritization in 

large-scale 

outsourced system 

projects: An 

empirical study 

Journal:Journal of Systems 

and Software 

2017 

95 Anand, R. Vijay; 

Dinakaran, M. 

andling stakeholder 

conflict by agile 

requirement 

prioritization using 

Apriori technique 

Journal: Computers & 

Electrical Engineering 

2017 

96 Persis Voola, 

Vinaya Babu 

Study of aggregation 

algorithms for 

aggregating 

imprecise software 

requirements’ 

priorities 

Journal:European Journal of 

Operational Research 

2017 

97 Wasserman, G.S. On how to prioritize 

design requirements 

during the qfd 

planning process 

Journal: IIE Transactions 

(Institute of Industrial 

Engineers) 

1993 

98 Armacost, R.L.,  

Componation, P.J.,  

Mullens, M.A.,  

Swart, W.W. 

 

An AHP framework 

for prioritizing 

customer 

requirements in 

QFD: An 

industrialized 

housing application 

Journal:IIE Transactions 

(Institute of Industrial 

Engineers) 

1994 

99 Franceschini, F., 

Rossetto, S. 

QFD: The problem of 

comparing 

technical/engineering 

design requirements 

Journal: Research in 

Engineering Design 

1995 

100 Fung, Richard 

Y.K.,  Ren, Shouju,  

Xie, Jinxing 

Prioritisation of 

attributes in customer 

requirement 

management 

Conference:Proceedings of 

the IEEE International 

Conference on Systems, Man 

and Cybernetics 
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101 Park, Taeho,  Kim, 

Kwang-Jae 

Integrative 

prioritization process 

in QFD with 

Conference: Proceedings - 

Annual Meeting of the 

Decision Sciences Institute 
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102 Ryan, Kevin, 

Karlsson, Joachim 

Prioritizing software 

requirements in an 

industrial setting 

Conference: Proceedings - 

International Conference on 

Software Engineering 

1997 

103 Wang, H., Xie, M., 

Goh, T.N. 

A comparative study 

of the prioritization 

matrix method and 

the analytic hierarchy 

process technique in 

quality function 

deployment 

Journal: Total Quality 

Management 
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104 Avesani, P., 

Bazzanella, C., 

Perini, A., Susi, A. 

Exploiting domain 

knowledge in 

requirements 

prioritization 

Conference: 17th 

International Conference on 

Software Engineering and 

Knowledge Engineering 
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105 Karlsson, L., Host, 

M., Regnell, B. 

Evaluating the 

practical use of 

different 

measurement scales 
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prioritisation 

Symposium:Proceedings of 

the 5th ACM-IEEE 

International Symposium on 

Empirical Software 

Engineering 
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106 Lehtola, L., 

Kauppinen, M. 

Suitability of 

requirements 

prioritization 

methods for market-

driven software 

product development 

Journal:Software Process 

Improvement and Practice 

2006 
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Rawani, A.M. 

Prioritizing 
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requirements in QFD 
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(India), Part PR: Production 

Engineering Division 

2007 
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prioritization for 
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B. Web crawler to extract app reviews from Google Play Store 

''' 

Python Script to extract reviews of an app hosted on Google Play Store 

''' 

 

#load webdriver function from selenium 

from selenium import webdriver 

import bs4 

import pandas as pd 

from selenium.webdriver.common.keys import Keys 

from webdriver_manager.chrome import ChromeDriverManager 

import time 

 

x = 100 

 

 

link="https://play.google.com/store/apps/details?id=nz.co.zenergy.loyaltycard.android&showAllRevi

ews=true" 

 

driver = webdriver.Chrome(ChromeDriverManager().install()) 

driver.get(link + '&showAllReviews=true') 

 

num_clicks = 0 

num_scrolls = 0 

 

while num_clicks <= x and num_scrolls <= x*10: 

    try: 

        show_more=driver.find_element_by_xpath('//*[@id="fcxH9b"]/div[4]/c-

wiz/div/div[2]/div/div[1]/div/div/div[1]/div[2]/div[2]/div/span/span') 

        # Change accordingly if GooglePlay is updated 

        show_more.click() 

        num_clicks += 1 

 

        print ("num_clicks =", num_clicks) 

    except: 

        html = driver.find_element_by_tag_name('html') 

        html.send_keys(Keys.END) 

        num_scrolls +=1 

        time.sleep(3) 

        print("num_scrolls =", num_scrolls) 
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## File mode 

# with open('F:/final.html', encoding='utf-8') as source: 

#     source_content = source.read() 

#     try: 

#         soup = bs4.BeautifulSoup(source_content, 'html.parser') 

#         h2 = soup.find_all('h2') 

#     except Exception as e: 

#         print(e) 

#         raise e 

 

## Live mode 

try: 

    soup = bs4.BeautifulSoup(driver.page_source.encode('utf-8'), 'html.parser') 

    h2 = soup.find_all('h2') 

except Exception as e: 

    print(e) 

    raise e 

 

results_df = pd.DataFrame() 

 

blocks = soup.findAll('div', {'class':'zc7KVe'}) 

# print('blocks :', len(blocks)) 

for one_block in blocks: # Change accordingly if GooglePlay is updated 

    name = one_block.find('span', {'class':'X43Kjb'}) 

    rate = one_block.find('div', {'class':'pf5lIe'}) 

    try: 

        rate = len(rate.findAll('div', {'class':'vQHuPe'})) 

    except AttributeError: 

        rate = '' 

 

    date = one_block.find('span', {'class':'p2TkOb'}) 

    review = one_block.find('div', {'class':'UD7Dzf'}) 

    try: 

        temp_df = pd.DataFrame([[date.text, rate, name.text, review.text]], columns = 

['Date','Rating','User','Review']) 

        results_df = results_df.append(temp_df) 

    except: 

        continue 

 

results_df = results_df.reset_index(drop=True) 

results_df.to_csv('F:/ZappNZ.csv', index=False) 

 

driver.close() 
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C. University of Otago Human Ethics Committee application  
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D. External evaluation details 
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E. List of requirements prioritisation methods 

ID. Method Number 

of studies  

1 Analytical Hierarchical Process 42 

2 Cumulative Voting 13 

3 Quality Function Deployment 12 

4 Numerical Assignment 11 

5 Planning Game 10 

6 Hierarchical Cumulative Voting 9 

7 Cost Value 8 

8 Fuzzy Analytical Hierarchical Process 7 

9 Priority Groups 7 

10 Ranking 7 

11 Binary Search 6 

12 Case Base Ranking 6 

13 Cost and Benefit Prediction 6 

14 EVOLVE 6 

15 Hierarchy Analytical Hierarchical Process 6 

16 Pairwise Comparison 6 

17 Top 10 6 

18 Value Oriented Prioritization 6 

19 B – Tree (Binary Tree) 5 

20 Cognitive Approach 5 

21 FUZZY Logic 5 

22 Minimal Spanning Tree 5 

23 MosCoW 5 

24 Bubble Sort 4 

25 Fuzzy Multi Attribute/Criteria Decision Making 4 

26 Kano Model 4 

27 SERUM(Software Engineering Risk: Understanding 

and Management) 

4 

28 Value Based Requirements Prioritization 4 

29 AGORA(Attribute Goal Oriented Requirements 

Analysis) 

3 

30 Binary Priority List 3 

31 Conceptual Model 3 

32 Interactive Genetic Algorithm 3 

33 Minimal Marketable Features 3 

34 Multi Criteria Decision 3 

35 Value Based Intelligent Requirements Prioritization 3 

36 Weiger’s Method 3 

37 Win Win 3 

38 ABC Framework 2 

39 Automated Requirements Triage  2 

40 Dot Voting 2 

41 Eclipse Process Framework 2 

42 Extensive Numerical Assignment 2 

43 Group Recommendation Heuristics 2 

44 Hybrid Assessment Method (HAM) 2 

45 Internal Evident Reasoning 2 

46 Lanchester Theory 2 
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ID. Method Number 

of studies  

47 Larman 2 

48 Linear Programming-GW-Analytical Hierarchy 

Process 

2 

49 Linear Regression 2 

50 Mathematical Programming Technique 2 

51 Multi Criteria Preference Analysis Requirements 

Negotiation 

2 

52 Multi Objective Next Release Problem 2 

53 Multi Voting System 2 

54 Other (Plan Based + Agile) 2 

55 PHandler 2 

56 Ping Pong Balls 2 

57 Quality Function Deployment – Linear 

Programming 

2 

58 Ranking based on product definition 2 

59 Relative Weighting 2 

60 Requirements uncertainty prioritization approach 2 

61 SNIPR 2 

62 Theme Screening/Scoring 2 

63 Theory W 2 

64 TOPSIS 2 

65 Weiger’s Matrix Method 2 

66 Weighted Sum Method 2 

67 100 Points 1 

68 100$ Method 1 

69 Adaptive Fuzzy Decision Matrix Model 1 

70 Adaptive Fuzzy Hierarchy Cumulative Voting 1 

71 Adaptive Requirements Prioritization 1 

72 Adhoc Prioritization 1 

73 AHP-GORE-PSR 1 

74 Alpha – Beta – Gamma Framework 1 

75 Analytic Network Process (ANP) 1 

76 Apriori Technique 1 

77 Architecture Driven 1 

78 Binary Inputs 1 

79 ConTexter 1 

80 Contextual Requirements Prioritization 1 

81 Correlation Based Assessment Framework 1 

82 Cost of Delay 1 

83 Decision Weighted Matrix 1 

84 DRank 1 

85 Dynamic Reprioritization of requirements in Agile 

Development 

1 

86 ELECTRE - I 1 

87 Enhanced Genetic Algorithm 1 

88 Evolutionary Algorithms 1 

89 Fuzzy Hierarchy Cumulative Voting 1 

90 Fuzzy Quality Function Deployment 1 

91 Fuzzy TOPSIS 1 

92 Game Theory 1 

93 Genetic Algorithm 1 
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ID. Method Number 

of studies  

94 Goal Based Technique 1 

95 Goal Skill Preferences 1 

96 GOASREP (Goal Oriented Software Requirements 

Elicitation & Prioritization) 

1 

97 Gradient Descent Ranking 1 

98 Grey Relational Analysis 1 

99 GW- Analytical Hierarchy Process 1 

100 Hierarchical Dependencies 1 

101 Importance Performance Analysis 1 

102 Incomplete Analytical Hierarchy Process 1 

103 Incremental Funded Methodology 1 

104 Individual Attribute Based Ranking 1 

105 Integrated Prioritization Approach (IPA) 1 

106 K-Means 2 

107 Laplace Evidential Reasoning 1 

108 Maintainability Based 1 

109 Majority Voting Goal Based 1 

110 Meta Networks Based 1 

111 MPRAN 1 

112 Multi Attribute Utility Theory 1 

113 NAcAHP (Numerical Assignment + Analytical 

Hierarchy Process) 

1 

114 Natural Language Processing 1 

115 New Lanchester Theory 1 

116 Other (Cumulative Voting + Decision Weighted 

Matrix) 

1 

117 Other (Data Mining + Machine Learning) 1 

118 Other (Lagrange Function + Group Decision 

Making) 

1 

119 Other (Multi Voting + Binary Search) 1 

120 Other (Quality function Deployment + Yager’s 

Algorithm) 

1 

121 Other(Data Mining + Recommender System) 1 

122 Other(Satisfactory Modulo Theory + Pairwise 

Comparison) 

1 

123 Others(Multi Criteria + Automated Reasoning) 1 

124 Outranking 1 

125 Partial Order Assimilation 1 

126 PGcAHP (Planning Game + Analytical Hierarchy 

Process) 

1 

127 Planning Poker 1 

128 Preference Weights 1 

129 Prioritization of Stakeholder Values using Metric 1 

130 Priority ranking using topological potential 1 

131 PROMETHEE 1 

132 Psychotherapy For System Requirements 1 

133 Purpose Alignment Model 1 

134 Quantitative Framework 1 

135 REMBRANDT (Multi Criteria Decision Analysis 

based) 

1 

136 RepiZer 1 
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ID. Method Number 

of studies  

137 RepoTizer 1 

138 Requirements Interdependencies  Technique 1 

139 Round the group prioritization 1 

140 Sample Selection 1 

141 SELRank 1 

142 Simple Additive Weighting Rating Technique 1 

143 Single Multi Criteria Rating Technique 1 

144 Situation Oriented Evaluation 1 

145 Stratified Analytical Hierarchy Process 1 

146 Technique for ordering from similarity to ideal 

solution 

1 

147 Technique of bucketing requirements 1 

148 Tensor Decomposition 1 

149 Thurston’s Law of Competitive Judgement 1 

150 Value Based Fuzzy Requirements Prioritization 1 

151 Value Oriented Framework 1 

152 Value Oriented Hierarchical Cumulative Voting 1 

153 Verbal Decision Analysis 1 

154 Visualization Technique 1 

155 Weighted Critical Analysis 1 

156 Meta Model Based Requirements Prioritization 1 

157 Market Driven  1 

 

F. Screenshots based walkthrough of operational demonstration  

F.1 Reviews upload page 

After accessing the link to RECP (RECP - Reviews Elicitation Classification Prioritisation) web tool 

via a web browser and successfully completing the registration process, the end-user can login and 

select the 'TRY IT' option to visit the reviews upload page. This page provides the necessary options 

for the end-user to upload the CSV containing only reviews in its first column. The end-user needs to 

select 'Upload' button after providing the CSV file to the web tool.    
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F.2 Manually tagging 50% reviews for filtering 

After the CSV file containing the reviews has been successfully uploaded, the end-user will be directed 

to a page where the end-user needs to tag 50% of the reviews as 'Useful' or 'Non-Useful'. The end-user 

needs to click the appropriate buttons as mentioned below to tag a particular review as 'Useful' or 'Non-

Useful'. Once the end-user has tagged 50% of the reviews, the end-user will be presented with a 

'Continue' button to proceed with the filtering of remaining useful reviews. The end-user needs to click 

this button to proceed with the filtering task. This filtering task depicts the phase 2 of the undertaken 

research work.    
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F.3 Filtered useful reviews 

Once the filtering process is completed, the end-user is directed to a page where the end-user can view 

the classified 'Useful' and 'Non-Useful' reviews. Along with this, the end-user is provided with three 

options - Classification, Individual Prioritisation and Group-based prioritisation to select. These options 

(i.e., Classification, Individual Prioritisation and Group-based Prioritisation) reflect phase 3 and phase 

4 of the undertaken research respectively.   
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F.4 Classified useful reviews 

When the end-user selects the 'Classification' option, the end-user is directed to a page that displays the 

results of classification method. Initially, the end-user is presented with a list of groups. In the display 

list, the name of the group is followed by the number of useful reviews it holds. When the end-user 

clicks a particular group, a list of useful reviews the group holds is displayed as shown below.       
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F.5 Individual prioritisation 

When the end-user selects the 'Individual Prioritisation' option, the end-user is directed to a page that 

displays the results of individual prioritisation method. The end-user is presented with a list of 

prioritised useful reviews. In the display list, the particular useful review is accompanied by its 

associated priority as shown below.   
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F.6 Group-based prioritisation 

When the end-user selects the 'Group-based Prioritisation' option, the end-user is directed to a page that 

displays the results of group-based prioritisation method. Initially, the end-user is presented with a list 

of groups along with their generated priorities. In the display list, the name of the group is followed by 

the number of useful reviews it holds along with its associated priority. When the end-user clicks a 

particular group, a list of useful reviews the group holds is displayed along with the priorities of those 

useful reviews as shown below. 
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