

Prioritisation of requests, bugs and

enhancements pertaining to apps for remedial

actions

Towards solving the problem of which app

concerns to address initially for app developers

Saurabh

Malgaonkar

A thesis submitted for the degree of

 Doctor of Philosophy

at the University of Otago, Dunedin,

 New Zealand

 11th September 2020

ii

Abstract

Background: Useful app reviews contain information related to the bugs reported by the app’s end-

users along with the requests or enhancements (i.e., suggestions for improvement) pertaining to the app.

App developers expend exhaustive manual efforts towards the identification of numerous useful

reviews from a vast pool of reviews and converting such useful reviews into actionable knowledge by

means of prioritisation. By doing so, app developers can resolve the critical bugs and simultaneously

address the prominent requests or enhancements in short intervals of apps’ maintenance and evolution

cycles.

Research Problem: That said, the manual efforts towards the identification and prioritisation of useful

reviews have limitations. The most common limitations are: high cognitive load required to perform

manual analysis, lack of scalability associated with limited human resources to process voluminous

reviews, extensive time requirements and error-proneness related to the manual efforts. While prior

work from the app domain have proposed prioritisation approaches to convert reviews pertaining to an

app into actionable knowledge, these studies have limitations and lack benchmarking of the

prioritisation performance. Thus, the problem to prioritise numerous useful reviews still persists.

Research Method: In this study, initially, we conducted a systematic mapping study of the

requirements prioritisation domain to explore the knowledge on prioritisation that exists and seek

inspiration from the eminent empirical studies to solve the problem related to the prioritisation of

numerous useful reviews. Findings of the systematic mapping study inspired us to develop automated

approaches for filtering useful reviews, and then to facilitate their subsequent prioritisation. To filter

useful reviews, this work developed six variants of the Multinomial Naïve Bayes method. Next, to

prioritise the order in which useful reviews should be addressed, we proposed a group-based

prioritisation method which initially classified the useful reviews into specific groups using an

automatically generated taxonomy, and later prioritised these reviews using a multi-criteria heuristic

function. Subsequently, we developed an individual prioritisation method that directly prioritised the

useful reviews after filtering using the same multi-criteria heuristic function.

Results: Some of the findings of the conducted systematic mapping study not only provided the

necessary inspiration towards the development of automated filtering and prioritisation approaches but

also revealed crucial dimensions such as accuracy and time that could be utilised to benchmark the

performance of a prioritisation method. With regards to the proposed automated filtering approach, we

observed that the performance of the Multinomial Naïve Bayes variants varied based on their

algorithmic structure and the nature of labelled reviews (i.e., balanced or imbalanced) that were made

iii

available for training purposes. The outcome related to the automated taxonomy generation approach

for classifying useful review into specific groups showed a substantial match with the manual taxonomy

generated from domain knowledge. Finally, we validated the performance of the group-based

prioritisation and individual prioritisation methods, where we found that the performance of the

individual prioritisation method was superior to that of the group-based prioritisation method when

outcomes were assessed for the accuracy and time dimensions. In addition, we performed a full-scale

evaluation of the individual prioritisation method which showed promising results.

Conclusion: Given the outcomes, it is anticipated that our individual prioritisation method could assist

app developers in filtering and prioritising numerous useful reviews to support app maintenance and

evolution cycles. Beyond app reviews, the utility of our proposed prioritisation solution can be

evaluated on software repositories tracking bugs and requests such as Jira, GitHub and so on.

iv

Acknowledgement

I would like to convey my wholehearted gratitude to the people who supported me throughout the PhD

course.

Firstly, I would like to convey my sincere thanks to my supervisors Sherlock A. Licorish and Bastin

‘Tony’ Roy Savarimuthu for their continuous encouragement, guidance and support during the PhD

course. The mentorship offered by my supervisors was fundamental to shape the research conducted

during the course of my PhD. With the supervisors’ dedication and regular feedback, I was able to

enhance my knowledge and improvise to complete the undertaken research work and thesis. I appreciate

their beneficial advices and efforts, especially on making the research work robust which is essential to

complete the PhD course.

I am very grateful to my parents (Ramakant Malgaonkar and Rhujuta Malgaonkar) and sister (Ketki

Malgaonkar), who have been there for me always and motivated me during my PhD. I am also thankful

to them for offering the essential financial and moral support to complete the PhD course.

I would also like to thank the members and participants of the Postgraduate Symposium organised by

the Department of Information Science at University of Otago for their valuable feedback.

I would also like to thank my colleagues at University of Otago who made the PhD experience

interesting and enjoyable and other staff members (Holger Regenbrecht, Gail Mercer, Heather Copper,

Karen Bosworth, Brendon Sly, Steven Doig and Dean Huakau) for helping me out with several

administrative and ICT support aspects.

I am also grateful for the financial support (hardship funds) I received from University of Otago and

the grant funding from Russell Education Trust. I am thankful to the Department of Information Science

at University of Otago for providing me with job opportunities such as teaching and research

assistantships.

Special thanks to Daniel Alencar da Costa, Caitlin Amelia Owen and Abira Sengupta for offering their

genuine moral support by being present at the final oral examination.

Finally, and importantly, I would like to thank God for helping me throughout this PhD journey and

life in many mysterious ways.

v

List of Acronyms

 ACM - Association for Computing Machinery

 AHP - Analytical Hierarchical Process

 BERT - Bidirectional Encoder Representations from Transformers

 BoW - Bag of Words

 BST - Binary Search Tree

 CNN - Convolution Neural Network

 COALS - Correlated Occurrence Analogue to Lexical Semantics

 CV - Cumulative Voting

 CVA - Cost Value Approach

 GPS - Global Positioning System

 HAL - Hyperspace Analogue to Language

 HCV - Hierarchical Cumulative Voting

 IEEE - Institute of Electrical and Electronics Engineers

 KNN - K Nearest Neighbours

 LDA - Latent Dirichlet Allocation

 LSA - Latent Semantic Analysis

 MARA - Mobile App Repository Analyser

 MoSCoW - Must, Should, Could and Won’t

 NA - Numerical Assignment

 NRP - Next Release Problem

 PG - Planning Game

 POS - Parts of Speech

 QFD - Quality Function Deployment

 SVD - Singular Value Decomposition

 SVM - Support Vector Machines

 TF-IDF - Term Frequency-Inverse Document Frequency

 UML - Unified Modelling Language

 VADER - Valence Aware Dictionary and sEntiment Reasoner

vi

Publications

Journal

 Saurabh Malgaonkar, Sherlock A. Licorish, Bastin Tony Roy Savarimuthu, “A Survey and

Critical Evaluation of Requirements Prioritization”, IET Software. https://digital-

library.theiet.org/content/journals/10.1049/iet-sen.2019.0215

Conference

 Saurabh Malgaonkar, Sherlock A. Licorish, Bastin Tony Roy Savarimuthu (2020) Towards

Automated Taxonomy Generation for Grouping App Reviews: A Preliminary Empirical Study.

In: Shepperd M., Brito e Abreu F., Rodrigues da Silva A., Pérez-Castillo R. (eds) Quality of

Information and Communications Technology. QUATIC 2020. Communications in Computer

and Information Science, Vol. 1266. Springer, Cham. http://doi-org-

443.webvpn.fjmu.edu.cn/10.1007/978-3-030-58793-2

Paper under consideration

 Extended version of published paper “Towards Automated Taxonomy Generation for Grouping

App Reviews: A Preliminary Empirical Study” has been submitted to the Software Quality

Journal.

 Paper titled “Evaluating Possible Variants of Naïve Bayes Towards Filtering Useful App

Reviews” which is based on the filtering of useful reviews phase documented in this thesis has

been submitted to the Software: Evolution and Process Journal.

 Paper titled “Prioritizing User Concerns in App Reviews – A Study of Requests for New

Features, Enhancements and Bug Fixes” which is based on the prioritisation of useful reviews

phase documented in this thesis has been submitted to Information and Software Technology

Journal.

vii

Table of Contents

Abstract ... ii

Acknowledgement ... iv

List of Acronyms .. v

Publications .. vi

Table of Contents .. vii

List of Figures .. xi

List of Tables .. xii

1 Introduction ... 1

1.1 Problem Statement .. 2

1.2 Research Aim .. 3

1.3 Research Outline ... 4

1.4 Research Questions ... 5

1.5 Thesis Structure .. 7

2 Background ... 8

2.1 App Domain Studies ... 9

2.2 Next Release Problem (NRP) ... 12

2.3 Requirements Prioritisation... 13

3 Systematic Mapping Study on Requirements Prioritisation ... 17

3.1 Introduction ... 17

3.2 Background and Related Studies .. 18

3.3 Research Questions ... 19

3.4 Methodology ... 20

3.4.1 Classification Schemes (RQ1.2 and RQ1.3) ... 24

3.5 Results ... 28

3.5.1 Interest, Publication Venues and Disciplines (RQ1.1) .. 28

3.5.2 Requirements Prioritisation Approaches (RQ1.2) .. 31

3.5.3 Requirements Prioritisation Contributions (RQ1.3) ... 33

3.5.4 Requirements Prioritisation Methods (RQ1.4) ... 35

viii

3.5.5 Dimensions of evaluated requirement prioritisation solutions (RQ1.5) 37

3.5.6 Performance Outcomes and Relationship between Attributes and Outcomes (RQ1.6) 39

3.6 Remaining Overarching RQs .. 44

3.7 Discussion ... 47

3.7.1 RQ1.1 What has been the interest in requirements prioritisation over time, what are the

different publication venues and what are the various disciplines in which the application of

requirements prioritisation exist? .. 47

3.7.2 RQ1.2. What approaches have been used to study requirements prioritisation? 49

3.7.3 RQ1.3 What form did the contributions of the requirements prioritisation studies take?

 50

3.7.4 RQ1.4 What prioritisation methods have been studied or developed? 52

3.7.5 RQ1.5 What are the dimensions that were evaluated for requirements prioritisation

methods?.. ... 53

3.7.6 RQ1.6 What are the performance outcome of the evaluations, and is there evidence of

relationships between attributes of requirements prioritisation methods and their performance

outcomes? ... 54

3.7.7 Summary of the way evaluated requirements prioritisation dimensions influence each

other........ .. 57

3.8 Threats to Validity .. 58

4 Filtering of Useful Reviews .. 60

4.1 Introduction ... 60

4.2 Related Studies .. 60

4.3 Methods and Concepts .. 62

4.3.1 Reviews Pre-Processing .. 63

4.3.2 Multinomial Naïve Bayes ... 63

4.3.3 Complement Naïve Bayes ... 64

4.3.4 Laplace Smoothing ... 65

4.3.5 Expectation Maximisation .. 66

4.4 Multinomial Naïve Bayes Variants ... 67

4.5 Experimental Settings ... 68

4.6 Results ... 70

ix

4.6.1 My Tracks Dataset .. 70

4.6.2 Flutter Dataset ... 71

4.7 Discussion ... 73

4.7.1 RQ2.1 What are the performances of Multinomial Naïve Bayes variants when extracting

useful reviews, and are there differences in outcomes of the different implementations? 73

4.8 Threats to Validity .. 77

4.8.1 Internal Validity .. 77

4.8.2 External Validity ... 77

5 Classification of Useful Reviews .. 79

5.1 Introduction ... 79

5.2 Related Studies .. 79

5.3 Classification Approach (RQ3.1) .. 82

5.3.1 Feature Engineering .. 82

5.3.2 Semantic Similarity Methods .. 83

5.3.3 Pareto Principle ... 87

5.3.4 Keyword Lookup Classifying Mechanism .. 87

5.3.5 Generated Taxonomy Evaluation .. 88

5.4 Experimental Settings ... 89

5.4.1 Dataset ... 89

5.4.2 Useful Reviews Pre-processing and POS Tagging ... 89

5.5 Results ... 90

5.6 Automatically Generated Taxonomy Validity .. 90

5.7 Discussion ... 92

5.7.1 RQ3.1 How can an approach be developed to automatically generate a taxonomy for

classifying useful reviews, and how will such taxonomy compare to a manually developed one?

 …………………………………………………………………………………………93

5.8 Threats to Validity .. 94

5.8.1 Internal Validity .. 95

5.8.2 External Validity ... 95

5.8.3 Construct Validity ... 95

x

6 Prioritisation of Useful Reviews ... 96

6.1 Automated Prioritisation Methods (RQ4) ... 96

6.1.1 Group-based Prioritisation Method ... 96

6.1.2 Experimental Settings (Group-based Prioritisation Method) 104

6.1.3 Individual Prioritisation Method ... 107

6.1.4 Experimental Settings (Individual Prioritisation Method) .. 108

6.2 Results ... 111

6.2.1 Group-based Prioritisation Results ... 111

6.2.2 Individual Prioritisation Method ... 112

6.3 Discussion ... 114

6.3.1 RQ4.1 What is the performance of the developed group-based prioritisation method?

 ………………………………………………………………………………………..115

6.3.2 What is the performance of the developed individual prioritisation method? 117

6.3.3 Automated Parameter Fine Tuning ... 119

6.4 Threats to Validity .. 122

6.4.1 Internal Validity .. 122

6.4.2 External Validity ... 123

7 Conclusion .. 124

7.1 Summary of Outcomes.. 124

7.1.1 Phase 1 - Systematic Mapping Study (RQ1) ... 124

7.1.2 Phase 2 - Useful Reviews Filtering (RQ2) .. 125

7.1.3 Phase 3 - Classification of Useful Reviews (RQ3) ... 126

7.1.4 Phase 4 - Automated Prioritisation of Useful Reviews (RQ4) 126

7.2 Contributions ... 127

7.3 Implications and Future Work .. 128

References ... 130

Appendices .. 154

xi

List of Figures

Figure 1. Example of end-user rating and review for My Tracks app .. 1

Figure 2. Research questions .. 6

Figure 3. Relationship between an end-user and the software product development, maintenance and

evolution process .. 13

Figure 4. AHP working network ... 14

Figure 5. Systematic mapping study process related to requirements prioritisation 21

Figure 6. Requirements prioritisation publications summary over the past years 29

Figure 7. Requirements prioritisation publication venues .. 29

Figure 8. Requirements prioritisation publication disciplines .. 30

Figure 9. Requirements prioritisation publication disciplines and venues.. 31

Figure 10. Requirements prioritisation approaches .. 32

Figure 11. Requirements prioritisation publication disciplines and approaches 33

Figure 12. Requirements prioritisation contributions ... 34

Figure 13. Requirements prioritisation publication approaches and contributions 35

Figure 14. Top 10 requirements prioritisation methods .. 36

Figure 15. Requirements prioritisation methods and contributions .. 36

Figure 16. Requirements prioritisation dimensions .. 38

Figure 17. Representation of dimensions based on their occurrence in empirical studies 39

Figure 18. Representation of requirements prioritisation publications on the world map 48

Figure 19. Overall performance of Multinomial Naive Bayes variants based on accuracy, F-Measure

and time. This is based on aggregate results for both datasets. ... 74

Figure 20. Example of a generated taxonomy .. 83

Figure 21. Proposed classification approach for useful reviews using an automated generated taxonomy

 .. 88

Figure 22. Visualisation of partial taxonomy consisting of ten prominent app features....................... 91

Figure 23. Diagrammatic representation of heuristic function f generating priorities of useful reviews

 .. 102

Figure 24. Surrogate model of the multi-criteria heuristic function towards numerous useful reviews

prioritisation problem .. 120

Figure 25. Challenges represented in the form of questions to implement the proposed surrogate model

 .. 120

xii

List of Tables

Table 1.1 Examples indicating a request, bug or enhancement review .. 2

Table 1.2 Example of prioritised useful reviews .. 3

Table 3.1 Search results .. 23

Table 3.2 Final entries from knowledge databases ... 24

Table 3.3 Classification scheme for evaluating research approaches ... 26

Table 3.4 Classification scheme for evaluating research contributions .. 27

Table 3.5 Requirements prioritisation evaluated dimensions ... 37

Table 3.6 Requirements prioritisation accuracy dimension outcomes .. 40

Table 3.7 Requirements prioritisation stakeholders' preferences dimension outcomes 40

Table 3.8 Requirements prioritisation requirements dependency dimension 41

Table 3.9 Requirements prioritisation time dimension outcomes ... 42

Table 4.1 Six Multinomial Naive Bayes variants ... 68

Table 4.2 Multinomial Naive Bayes variants average performance on My Tracks dataset 70

Table 4.3. Multinomial Naive Bayes average performance on Flutter dataset 72

Table 5.1 Summary of classification studies on reviews .. 80

Table 5.2 Partial view of manually derived taxonomy ... 92

Table 6.1 Priority assignment guideline ... 107

Table 6.2 Extracted datasets summary .. 109

Table 6.3. Performance of group-based prioritisation method on My Tracks dataset 111

Table 6.4. Performance of individual prioritisation method on My Tracks dataset 112

Table 6.5 Total time required for prioritisation .. 112

Table 6.6 Accuracy of individual prioritisation method (internal evaluation) 113

Table 6.7. Accuracy of individual prioritisation method (external evaluation) 113

1

1 Introduction

An app is a software product that is the outcome of software engineering and undergoes several re-

engineering phases for its maintenance and evolution (Goul et al., 2012; Maalej et al., 2016a). The app

market has become a multibillion dollar industry1 with millions of apps hosted on commonly known

app distribution platforms such as Google Play Store2 or Apple App Store3. This suggests that the

modern society is strongly reliant on apps to fulfil their application specific requirements (Pagano &

Maalej, 2013). The prospective end-users of these apps download and install the apps on their app

compatible devices such as smartphones, tablets, notebooks, and so on. As the app distribution

platforms facilitate the provision of end-users’ feedback regarding their experience with an app, usually

the majority of the end-users log their feedback in the form of reviews (Pagano & Maalej, 2013). Apart

from a star rating that is expressed on a scale of 1-5, or a general compliment or criticism, the reviews

usually indicate the request for features, bugs present in the app, or enhancements (i.e., suggestions for

improvements) (Maalej et al., 2016a; Pagano & Maalej, 2013). Figure 1 illustrates an example depicting

a star rating of 3 and a review indicating a bug related to My Tracks4 app made available on Google

Play Store. My Tracks app allows its end-users to set and track possible travelling routes. The app also

allows its end-users to check statistics of their travelling activities with regards to the distance travelled,

speed attained, ground elevation levels, exercise routines, and so on.

Figure 1. Example of end-user rating and review for My Tracks app

1 https://www.businessofapps.com/data/app-revenues/
2 https://play.google.com/store
3 https://www.apple.com/ios/app-store/
4 https://play.google.com/store/apps/details?id=com.zihua.android.mytracks

2

Table 1.1 shows review examples that reflect a request, a bug and an enhancement pertaining to the My

Tracks app. In the request example, a feature is requested that would allow the end-user to save the

travelled routes for comparison purpose and find the shortest route among them. The bug example

indicates a flaw in the tracking functionality of the app that generates inaccurate distance statistics. On

the other hand, an end-user suggests an enhancement that would probably motivate end-users for regular

exercising.

Table 1.1 Examples indicating a request, bug or enhancement review

Review Type Example

Request I go walk from one place to one destination, From different routes, I want to

save and COMPARE and find shortest route….please add this option.

Bug Tracking is inaccurate...known 3 mile walk tracked at over 5 miles. 2 out of 4

tracks were inaccurate. Frustrating... can't rely on the data.

Enhancement I would suggest that a reward system for regular exercising would be an

awesome addon to this app..

From the above-mentioned examples, it is evident that the reviews indicate aspects related to the app

that are significant to the end-users. Thus, addressing reviews indicating key requests, bugs or

enhancements logged by the end-users is of foremost importance to app developers as it allows the app

developers to launch a new version of the app reflecting the addressed requests, bugs or enhancements

in the form of app updates (Licorish et al., 2017). Simultaneously, this supports the app maintenance

and evolution cycles and improves the quality of the app (Maalej et al., 2016a; Pagano & Maalej, 2013).

Furthermore, this contributes towards the app enterprise’s monetary gains and potentially increases the

popularity of the app in the competitive app market (Goul et al., 2012; Maalej et al., 2016b). Throughout

this study, the reviews that indicate requests, bugs or enhancements are termed as ‘useful reviews’ as

these reviews indicate the useful information for app developers which is necessary towards improving

the quality and market performance of the app (Panichella et al., 2015; Roma & Ragaglia, 2016).

1.1 Problem Statement

Several studies on app reviews mining have been conducted such as understanding end-users’

sentiments regarding app usage, and identification of keywords of interest from reviews (Fu et al., 2013;

Iacob & Harrison, 2013). As such studies only attempt to draw out application specific meaningful

insights from the reviews, and app developers are constantly on the lookout for reliable automated

approaches that convert the innumerable useful reviews into actionable knowledge as they endlessly

face the dilemma of ‘Which useful reviews to address initially during the short intervals of app

maintenance and evolution cycle?’ (Maalej et al., 2016a; Pagano & Maalej, 2013). App developers

usually prefer automated approaches over manual ones to lessen errors, reduce the overall processing

time, avert the need for high levels of cognitive load, and to establish scalability (Pagano & Maalej,

3

2013). Thus, classification is a popular approach utilised towards the resolution of the dilemma

(Ciurumelea et al., 2018; Maalej et al. 2016a). However, the outcome of classification tends to provide

only a generalised view of the actionable knowledge, and hence, is suited only when the reviews are in

manageable numbers (Yang & Liang, 2015). In case of numerous reviews, classification fails to answer

the question ‘Which are the important reviews to address and in what order they need to be addressed?’,

and in most scenarios does not resolve the redundant information issue occurring as a result of duplicate

instances of similar reviews being classified into multiple groups (or classes) of interests (Aly, 2005;

Ciurumelea et al., 2018; Maalej et al., 2016a). On the contrary, prioritisation approaches have shown

promise towards the conversion of numerous reviews into actionable knowledge, as they perform

ranking of certain aspects (e.g., app features) mentioned in the reviews, or reviews themselves based on

their importance or severity through the use of particular method(s) (Chen et al., 2014; Licorish et al.,

2017). However, the methods that are used for prioritisation are far from perfect, and the problem to

prioritise numerous reviews still persists which is the primary research gap that this study aims to

address (Licorish et al., 2017).

1.2 Research Aim

The problem to prioritise numerous useful reviews is similar to the NRP (Next Release Problem)

encountered by software developers (Bagnall et al., 2001; Sureka, 2014). The NRP states that the

software developers are unable to decide on which software requirements to address for the next release

version of the software during the requirements engineering phase. For instance, the order in which the

end-users’ requirements need to be addressed to release the next version of the software (Sureka, 2014).

Therefore, the overall aim of this research is to engineer a prioritisation method to generate actionable

knowledge for app developers through the prioritisation of numerous useful reviews and simultaneously

provide understandings for the software engineering community in terms of how a method can be

developed to prioritise requests, bugs or enhancements pertaining to a software product logged by users.

Table 1.2 provides an example of actionable knowledge generated in the form of prioritisation that this

study aims to provide for the app developers.

Table 1.2 Example of prioritised useful reviews

Review Priority

I go walk from one place to one destination, from different routes, I want to save and

COMPARE and find shortest route…please add this option

Medium

Tracking is inaccurate...known 3 mile walk tracked at over 5 miles. 2 out of 4 tracks

were inaccurate. Frustrating... can't rely on the data.

High

I would suggest that a reward system for regular exercising would be an awesome

addon to this app..

Low

4

In Table 1.2 the Priority column indicates the order in which the app developers can address the

concerns related to the app conveyed through useful reviews. Based on the computed priorities, the app

developers can initially fix the bug related to the tracking functionality of the app that displays

inaccurate distance, and then later can add the option in the app that allows the end-user to save and

compare the travelled routes and find the shortest route among them. Finally, the app developers can

work towards the reward system. We believe that the app developers with the assistance of such

actionable knowledge can decide on which useful reviews to address first during the limited intervals

of app maintenance and evolution cycle given the constraints (e.g., budget, technical, time, resource,

feasibility, and so on) that are imposed on the app developers.

1.3 Research Outline

To our best knowledge there are limited prior studies in the app domain that deal with prioritisation. As

we could not inherit essential guidelines towards developing an automated prioritisation method for

useful reviews from the limited prior studies in the app domain, we reviewed studies from the

requirements prioritisation domain in different disciplines that address the prioritisation problem. Next,

based on our findings from the conducted assessments we accordingly framed the relevant initial

research question to drive our research. The research question lead to the initiation of the first phase of

the study. In the first phase we conducted a comprehensive systematic mapping study of the

requirements prioritisation domain to explore and critique prioritisation studies belonging to various

disciplines such as software engineering, product manufacturing, education, finance, real estate and law

to seek inspiration and derive essential guidelines towards the development and empirical evaluation of

our proposed prioritisation method. The outcome of the systematic mapping study lead to the initiation

of the next subsequent three phases guided by appropriate research questions. In the second phase we

carried out a pilot study which deals with the filtering of useful reviews and benchmarked the

performance of six different variants of the same filtering method. The motive behind the filtering

approach was to avoid non-useful reviews that did not convey significant information necessary towards

the remedial actions for the particular app. Phase three presents a pilot study that experimented with a

classification approach which comprised of automatically generating a taxonomy to classify useful

reviews into groups of interest. Phase four presents a pilot study in which we experimented with a

group-based prioritisation method and an individual prioritisation method. The group-based

prioritisation method utilised the outcome generated by our proposed classification approach (i.e.,

classified useful reviews) from phase 3 to compute priorities of the useful reviews and their associated

groups. However, the method did not produce promising results in the internal validation stage because

of which we had to develop the individual prioritisation method. Thus, we developed the individual

prioritisation method that outperformed the group-based prioritisation method based on the generated

results. Next, we performed a full-scale evaluation of the individual prioritisation method. As the results

5

generated by the individual prioritisation method showed promise in the interval validation stage, we

subjected the same subset of results for external validation and found similar reassuring outcomes.

1.4 Research Questions

Based on the research outline mentioned above, Figure 2 illustrates the research questions (RQs)

addressed in this thesis and the relationship shared among the overarching RQs (Dillon, 1984; Potts,

1993). The brief elaboration of the RQs portrayed in Figure 2 is as follows; in this study, RQ1 (What is

the state-of-the art of requirements prioritisation?) is concerned with obtaining a comprehensive

understanding of the requirements prioritisation domain and we answered RQ1 through the means of a

systematic mapping study (Petersen et al., 2008). Because of the systematic mapping study, we were

able to perform a critical evaluation of studies that have provided requirements prioritisation methods

across all disciplines. We found out that the current methods from the software engineering discipline

do not consider the strengths of the requirements prioritisation methods available from other disciplines

(e.g., product manufacturing) or vice-versa, a gap that opens new research opportunities. Among the

other findings, we observed that while many prioritisation methods are targeted, often researchers have

proposed prioritisation methods that were not evaluated. Most prioritisation methods were only

validated as being operational, and the attributes studied had limited effects on performance outcomes.

In addition, performance trade-offs are to be expected of such methods, depending on their performance

targets. Overall, the evidence obtained from the systematic mapping study suggests that emerging

methods may address the requirements prioritisation challenge if they are inspired by hybrid

prioritisation methods. The explicit details of our mapping study with regards to RQ1.1 to RQ1.6 are

presented from Chapter 3 onwards. That said, we found one empirical study in phase 1 that proposed a

prioritisation method which prioritised numerous requirements assuring its scalability (Peng et al.,

2012). Even though the prioritisation method performed the prioritisation of requirements at a group

level (i.e., generating only the priorities of the pre-defined groups (or classes) in which the requirements

were classified into) and was dependent on the availability of the domain knowledge along with the

priority preferences of stakeholders to generate the priorities of the groups, the model followed by the

method for prioritisation provided the essential inspiration and shaped RQ2, RQ3 and RQ4 respectively.

6

Figure 2. Research questions

To answer RQ2 (How can useful reviews be filtered?), we explored the information retrieval approaches

that provided insights towards the filtering (or extraction) of useful reviews from a vast pool of reviews.

Our investigation led to the discovery and empirical evaluation of six Multinomial Naïve Bayes variants

specialised in filtering of useful reviews based on predefined rules. As an outcome of this we could

7

conclude that the selection of a specific Multinomial Naïve Bayes variant for useful reviews filtering is

dependent on the nature of the information retrieval application (i.e., number of reviews and the ratio

of useful to non-useful reviews that are made available for learning purpose) (Nigam et al., 2003). We

cover all the details revolving around RQ2 from Chapters 3 onwards. To answer RQ3 (How can the

useful reviews be classified into groups of interest?), we went beyond the utilisation of a manual

taxonomy to classify useful reviews into groups of interest by developing a preliminary approach that

automatically generates a taxonomy independent of the availability of domain knowledge. Finally, to

answer RQ4 (How can an automated prioritisation method be developed to prioritise numerous useful

reviews?) we took inspiration from studies from domains such as feature engineering, information

theory, information retrieval and marketing to identify prominent methods specialised in prioritisation

and develop a hybrid automated prioritisation methods (i.e., group-based prioritisation method and

individual prioritisation method) to prioritise useful reviews (Chea et al., 2009; Fang & Zhan, 2015;

Filcek et al., 2017; Htay & Lynn, 2013; Ko et al., 2000; Sundaram et al., 2005). We benchmarked the

performance of the developed prioritisation methods using the two dimensions (accuracy and time)

identified in phase 1. Similar to RQ1 and RQ2 all the evidence related to the answering of RQ3 and

RQ4 is explicitly elaborated from Chapter 3 onwards.

1.5 Thesis Structure

The further chapters of this thesis are organised as follows. Chapter 2 (Background) presents a review

highlighting a brief assessment of the existing prioritisation studies that provide the foundation related

to the problem investigated in this thesis, and describes the basics related to the actionable knowledge

generated in terms of prioritisation. In Chapter 3, we present the undertaken systematic mapping study

on requirements prioritisation corresponding to RQ1 and its associated decomposed RQs (i.e., RQs 1.1

to RQ1.6). Chapter 4 presents the phase which deals with filtering of useful reviews (i.e., phase 2)

corresponding to RQ2 and its associated decomposed RQ2.1. Chapters 5 and 6 present the phases that

deal with classification of useful reviews (i.e., phase 3) and prioritisation of useful reviews (i.e., phase

4), respectively. RQ3 and RQ4 and their associated decomposed RQs (i.e., RQ3.1, RQ4.1 to RQ4.2)

are covered in Chapters 5 and 6 accordingly. The results pertaining to each decomposed RQs are

covered within the relevant chapters, and Chapter 6 mentions a link to the web tool that shows the

operational demonstration of phases 2, 3 and 4 of the research project. Furthermore, the discussions and

implications related to the RQs are documented within the relevant chapters along with the threats to

validity associated with the respective phase. Finally, we provide the summary of the outcomes

corresponding to the RQs, contributions and potential future work in Chapter 7 (Conclusions).

In the next chapter, we present the background related to the undertaken study.

8

2 Background

A successful app thriving in the competitive market constantly demands software maintenance and

evolution cycles as the usefulness of the app to its end-users depends on the features the app provides

and the quality it aims to assure by addressing the end-users’ requests, bugs or enhancements (Bennett

& Rajlich, 2000; Maalej et al., 2016a; Pagano & Maalej, 2013). Thus, the app’s maintenance and

evolution cycles are initiated after the app is released in the market, and the cycles typically involve the

addressing of end-users’ requests, bugs or enhancements. This leads to the relevant transformations in

the app’s software architecture which causes a new release version of the app in the form of an update

(Bennett & Rajlich, 2000; Maalej et al., 2016a; Pagano & Maalej, 2013). Similar to the traditional

software repositories such as logs comprising of bug reports or requests that are often seen beneficial

for software maintenance, app developers primarily rely on the app’s reviews as most of these are seen

as trusted source of insights and provide the necessary information to drive the app’s maintenance and

evolution cycles (Goul et al., 2012; Iacob et al., 2014; Tian et al., 2004). Furthermore, as app developers

are aware that end-users’ satisfaction is central to the app gaining positive popularity to guarantee

prolong usage of the app, app developers find it necessary to address reviews reflecting end-users’

requests, bugs or enhancements to provide substantial contribution towards the app’s market value

(Fabio et al., 2015; Roma & Ragaglia, 2016). As the stream of reviews are logged by the end-users at

regular intervals (i.e., after app or update release), the app developers are constantly engaged in the

app’s post-delivery activities to identify the necessary information (i.e., useful reviews) from the

reviews and later convert the information into actionable knowledge to address the end-users’ requests,

bugs or enhancements pertaining to the app and expedite the necessary app updates (Pagano & Maalej,

2013).

As the reviews logged by the end-users usually tend to be voluminous, app developers face limitations

when utilising manual efforts towards the identification and conversion of the useful reviews into

actionable knowledge (Pagano & Maalej, 2013). Some of the serious limitations point towards the

demand for high cognitive loads for manual analysis, error-proneness, time constraints and lack of

scalability of the manual efforts due to limited human resources (Maalej et al., 2016a). Therefore, the

app developers are on the lookout for automated approaches that allow them to accomplish the same

objective by incurring less overheads but at the same time providing a substantial level of precise

information because of which they can work towards the essential updates required for the app

(Ciurumelea et al., 2017; Maalej et al., 2016a).

We review the studies from the app domain in section 2.1 that utilise different research approaches to

examine app reviews to gain meaningful insights, and those that attempt to transfer such insights into

actionable knowledge, along with the limitations of these studies. This is followed by a brief

9

introduction of the NRP in section 2.2 and studies from the requirements prioritisation domain in section

2.3, which ultimately lead towards the generation of RQ1.

2.1 App Domain Studies

Many studies have made attempts towards obtaining meaningful insights from reviews through the

means of app reviews mining. For instance, Kim et al. (2012) have studied the relationship between

app’s ratings assigned by several end-users and the market price of the app to investigate if the price of

the app was suitable according to its market performance. This involved investigating the end-users’

satisfaction of purchasing the app based on the number of properly functioning app features. Similarly,

Fu et al. (2013) study the variations in the number of reviews logged over time and have attempted to

uncover the reasons behind the sudden logging of a large set of reviews at specific intervals (e.g., after

app update release). The authors also perform sentiment analysis of the reviews to understand the end-

users satisfaction levels associated with the app usage and found out that such analysis assisted in

identifying the crucial aspects (i.e., requests, bugs or enhancements) of the app that needed immediate

attention. In another study, Iacob and Harrison (2013) have developed a prototype tool named MARA

(Mobile App Repository Analyser) that uses text mining for automatically identifying and extracting

app features from reviews. However, these existing studies mainly focus on gaining meaningful insights

from the app reviews (i.e., restricted only towards certain semantics of the app reviews) and ignore the

aspect that the uncovered insights must be converted into some form of actionable knowledge so that

app developers can initiate the necessary remedial actions for the app. For example, a prior study

developed a method to identify the critical app features and indicated the order in which they need to

be addressed by the app developers, but did not offer a tool to bring the undertaken research at

application level nor benchmarked the performance of the prioritisation method to determine its

suitability (Licorish et al., 2017).

Classification approaches have been widely used by researchers with the intent to automatically convert

the reviews into actionable knowledge. For instance, Pagano and Maalej (2013) have classified reviews

into four categories; rating, requirements, community reviews and user experience. Reviews referencing

other reviews or apps are classified into the community reviews category, whereas the requirements

category covers end-user requests, bugs related to the apps or suggestions for improvements (i.e.,

enhancements). Reviews expressing end-user sentiments (e.g., happy) are classified into rating category

and end-user experiences indicating helpful information aiding towards increasing the quality of the

app are classified into the user experience category. Maalej et al. (2016a) have extended the scope of a

study conducted earlier to utilise and empirically evaluate the performance of several classification

methods that classify reviews into four categories; user experience, bug reports, end-user requests and

ratings. Reviews reflecting end-user experience regarding the app usage are classified into the user

experience category, reviews indicating issues associated with the apps are contained in the bug reports

10

category while requests pertaining to the apps are classified into the end-user requests category, and

reviews expressing the end-user sentiments are classified into ratings category. McIlroy et al. (2016)

have classified reviews into the following categories; user interface problem, crash report, cost, update

issue, optimization problem, removal requests, functionality problem, privacy concern, compatibility

issue, network issue and uninteresting content. In another study, Di Sorbo et al. (2017) have performed

the summarisation of app reviews by initially classifying the reviews into manually derived topics from

domain knowledge such as App, GUI, Contents, Pricing, Feature or Functionality, Improvement,

Updates/Versions, Resources, Security, Download, Model and Company. Similarly, Ciurumelea et al.

(2018) have classified reviews restricted to Android apps into the following self-explanatory categories;

Price, Performance, Complaint, Device, Hardware, Licensing, Privacy, UI, Security, App Usability,

Android Version, Memory and Battery. That said, Vu et al. (2019) have utilised the manual taxonomy

developed by Di Sorbo et al. (2017) to classify app reviews and respond to these reviews automatically

using system generated responses. While such studies summarise the information conveyed by the

reviews into specific categories of interest through classification approaches, these approaches fail to

identify the important categories or reviews that reside in those categories and does not indicate the

order in which they need to be addressed as a part of app maintenance and evolution. Moreover, the

majority of the approaches do not eliminate the duplicate instances of the same reviews getting

classified into multiple categories constituting towards unwanted redundant information (Maalej et al.,

2016a; McIlroy et al., 2016). Both these limitations of the works employing a classification approach

are of concern as app developers have to eventually traverse through numerous classified reviews to

uncover their specifics (e.g., which important app feature has problem or is being requested), which

requires time and demands strenuous efforts from the app developers for performing manual analysis.

Such a scenario demonstrates the need for a prioritisation approach.

That said, to our best knowledge, only few preliminary prior studies (with various limitations) from the

app domain have researched on prioritisation approach for converting reviews into actionable

knowledge. For instance, a study specific to app reviews mining has classified numerous reviews using

topic modelling and an unsupervised algorithm (i.e., LDA - Latent Dirichlet Allocation) into various

categories. Later, the study generates priorities of the categories and the reviews present in those

categories using a prioritisation method that was developed as a result of the incorporation of multiple

unjustified criteria (Chen et al., 2014). However, the study does not thoroughly assess the performance

of the prioritisation method (i.e., study did not conduct the validation of the generated priorities of all

the categories and its reviews). Furthermore, to generate the priorities of each category the method

considers criteria such as the number of reviews present inside a category, the priorities computed for

a category over time and the average rating of the reviews within a category. Subsequently, the priority

of each review is computed based on criteria such as the proportion of a review with reference to the

other reviews within a category, the similar types of reviews within a category (i.e., duplicate reviews),

11

the posterior probability of the review, the rating and timestamp of a review (i.e., the time and date the

review was logged). Thus, as observed from the above-mentioned criteria, it is obvious that the method

tends to generate higher priorities of the categories that hold more reviews than the others but certain

categories holding lesser reviews might be equally or more important. For instance, consider a category

holding 100 unique reviews and another category holding 25 unique reviews. Based on the category-

based prioritisation criteria, the prioritisation method would always generate a higher priority of the

first category than the second category as it holds greater number of reviews. Secondly, the method

does not eliminate the duplicate instances of the same reviews classified into different categories (due

to unsupervised classification) creating redundant information to act upon that leads to the question

‘what is the correct priority of a review having different priorities across multiple prioritised

categories?’ More to this, studies show that there are discrepancies between the ratings assigned and

the reviews logged by the end-users, thus questioning the judgement to utilise rating as a criteria to

prioritise reviews or categories in the way it was used (Aral, 2014; Fu et al., 2013; Ganu et al., 2009;

Rodrigues et al., 2017). For instance, Pagano and Maalej (2013) have found out that the reviews falling

under different ratings categories (i.e., 1-5) highlighted feature requests, shortcomings of the app or

provided helpful information towards improving the quality of the app. In addition, based on the

timestamp criteria Chen et al.’s (2014) method assigns higher priorities to the reviews that are the latest

ones, thus making the method bias towards new incoming reviews. This suggests that there might be

scenarios where the old reviews and their respective categories of actual importance might never be

brought to the notice of the app developers. In another study, Licorish et al. (2017) have filtered reviews

that had ratings less than or equal to three to identify and prioritise app features (e.g., interface) present

in those reviews that might need attention. However, as the reviews were filtered using the unreliable

rating criteria, some of the useful reviews could have been potentially left out which could cause a loss

of significant information required towards app improvement. Furthermore, as the generalised priorities

of the app features (i.e., an average priority score of each app feature) are computed, the details

regarding requests, bugs or enhancements associated with the app features (e.g., “the interface fails to

load properly on my Samsung s7”) stay hidden and their importance for planning the necessary remedial

actions remains undetermined. Similarly, Gao et al., (2018) have developed an approach that prioritises

app reviews using different criteria. However, this approach was validated based on its usefulness i.e.,

how useful did the app developers find the approach towards its utilisation for app maintenance and

evolution tasks, but the authors did not benchmark the performance of the approach based on standard

metrics such as accuracy and time.

That said, both studies (Chen et al., 2014; Licorish et al., 2017) lacked the vital and standard dimensions

(e.g., time required for prioritisation, accuracy of the generated priorities, and so on (refer to Chapter 4,

sub-section 4.1.5) based on which the performance of the prioritisation method could be benchmarked.

Benchmarking the performance of a prioritisation method is crucial as it helps to determine the

12

effectiveness of the method and allows the researchers to investigate the method so that it can be

optimised or tuned for an improved performance (Achimugu et al. 2014b).

In addition, Gao et al., (2015) have developed a tool that prioritises app reviews based on semantics and

sentiment of those reviews. However, this tool attempts to identify and prioritise bugs (issues)

associated with the app and does cover the requests or enhancements pertaining to the app. Similarly,

Jiang et al., (2019) have proposed a new prioritisation approach that identifies new feature requests

mentioned in app reviews and later prioritises these feature requests. However, this approach is

restricted to new feature requests and does not cover prioritisation of existing features, bugs or

enhancements.

2.2 Next Release Problem (NRP)

As the studies from the app domain suffer from several limitations as discussed above and did not

provide adequate guidelines towards the solving of the problem related to the prioritisation of numerous

reviews reflecting end-users’ requests, bugs or enhancement, our further investigation lead towards the

NRP. NRP in some cases is termed an NP-hard problem and in the software engineering community is

commonly known as the problem to determine the optimal next release of a software product as the

enterprise creating and maintaining a software product faces a steady stream of incoming requirements

over software product evolution (Bagnall et al., 2001; Sureka, 2014). The cases in which NRP is termed

as NP-hard is when the number of feasible prioritisation solutions increase exponentially with the

increase in the number of requirements to prioritise (Sureka, 2014). In such cases, the number of

potential prioritisation solutions for ‘N’ requirements is ‘2N’ and as the number of requirements increase

it becomes practically extensive or unlikely for software developers to conduct an exact search to

compute or identify an optimal prioritisation solution (Sureka, 2014).

As the enterprises face the challenge of deciding which requirements to address considering the imposed

constraints (e.g., feasibility, time, budget, etc.) for the next release of the software product towards

meeting the needs of their stakeholders, this makes prioritisation of the requirements inevitable and

there has been a demand for requirements prioritisation methods (Bagnall et al., 2001; Sureka, 2014).

It should be noted that the NRP problem is similar to the problem to prioritise numerous useful reviews

pertaining to an app i.e., ‘which end-users’ requests, bugs or enhancements to address before launching

the next release version of the app?’ (Bagnall et al., 2001; McIlroy et al., 2015). Figure 3 visualises the

generally observed relationship between the stakeholders (i.e., end-users and software team) and the

software product development, maintenance and evolution process from the software product

enterprise’s perspective (Wnuk et al., 2009). The end-users state their requirements and often provide

feedback which indicates their experience regarding the software product’s access or usage. It is then

the primary task of the software team to address the prominent requirements or crucial pointers (i.e., to

13

software feature requests, reported bugs or enhancements) present in the feedback. Software

development, maintenance and evolution cycles typically follow the requirements engineering phase

before software testing is done towards the product or its update release. During such cycles, the

question most often at the forefront of the software team is ‘which requirements or feedback should be

addressed and in what order?’ End-users may answer this question during development or post release

of the product, especially when there is limited information (i.e., requirements or feedback) to convey.

However, as the information scales upwards in abundance because of voluminous feedback from end-

users, the software developers face challenges in manually processing and deciding which aspects of

the information need to be actioned before the next release of the product. Hence, prioritisation becomes

an important component in the requirements engineering phase, as it plays a crucial part in significantly

assisting the software product enterprise to deliver continuous value to the end-users (Lehtola &

Kauppinen, 2006).

Figure 3. Relationship between an end-user and the software product development, maintenance and evolution process

2.3 Requirements Prioritisation

Requirements prioritisation is a domain that has diverse studies dedicated towards solving of the NRP,

and is often scrutinised by researchers in the requirements engineering phase of the software

engineering discipline (Berander & Andrews, 2005). Requirements prioritisation deals with the ranking

or classification of software product requirements based on their severity or importance. This is because,

identifying and addressing prioritised requirements assists valuably in releasing the software product

with most prominent features in the market or launching essential software updates. Irrespective of the

software development model followed by the software team (e.g., Waterfall, Agile, Spiral, and so on),

a suitable requirements prioritisation method helps with the identification and fulfilment of the

requirements. This in general contributes towards enhancing the performance and quality of the

software product with regards to the changing market conditions (Achimugu et al., 2014b).

Prioritisation is particularly crucial when there are numerous requirements and feedback in the form of

crowdsourced information such as useful reviews, and we believe that methods from the requirements

prioritisation domain may influence the development of a reliable prioritisation approach for app

14

reviews (i.e., to determine which reviews are important and indicate the order in which they could be

addressed) (Hosseini et al., 2015; Licorish et al., 2017; Maalej et al., 2016a; Pagano & Maalej, 2013).

Several requirements prioritisation methods have been developed to prioritise requirements. The

common ones are AHP (Analytical Hierarchical Process), MoSCoW (Must, Should, Could, Won’t),

CV (Cost Value), QFD (Quality Function Deployment), CVA (Cost Value Analysis) and NA

(Numerical Assignment) (Achimugu et al., 2014b). Among these, the AHP method is the most popular

and is commonly used to perform requirements prioritisation (Achimugu et al., 2014b). In fact, we

noticed that most of the prioritisation methods have some methodological concepts inherited from the

AHP method. The AHP method is a mathematical framework augmented by components that support

decision making aspects of human beings required towards the prioritisation of requirements. Figure 4

presents the structure of the AHP method where the alternatives are a set of possible priorities that can

be generated based on the specific criteria to achieve a particular goal. Alternatives are set to certain

values such as low, medium, or high. Criteria would determine the various factors that influence the

prioritisation process such as cost, risk, feasibility, scope, importance, complexity, and so on. The goal

is based on alternatives and criteria which are then used to generate the final outcome such as setting

the priority of a requirement.

Figure 4. AHP working network

While AHP computes the priorities of each requirement, the MoSCoW method is one of those

requirements prioritisation methods that determines the priority of a requirement based on the category

the requirements gets classified into (i.e., classification based requirement priority generation). This

method classifies each requirement in any one of the following four categories; MUST – points towards

a requirement which is of utmost important and should be addressed first. SHOULD – indicates a

requirement of a high priority and needs to be addressed on a regular basis. COULD – suggests a

requirement of less importance in comparison to MUST and can be addressed later. WON’T –

highlights a requirement which can be addressed last or may not be addressed at all as it does not have

importance. In the requirements engineering phase, all the requirements from the MUST category are

given attention by product developers followed by the requirements of the SHOULD, COULD and

15

WON’T categories. Despite of being a classification-based prioritisation method, the application of

MoSCoW is best suited when the number of requirements are limited. For instance, Kravchenko and

Sergey (2017) have used the MoSCoW method to prioritise eighteen requirements of six stakeholders

that played a crucial role in a bank’ communication management process. Other traditional methods

such as QFD, PG (Planning Game), BST (Binary Search Tree), HCV (Hierarchical Cumulative Voting),

Weiger’s method and Win-Win method also attempt to address the requirements prioritisation problem

(Achimugu et al., 2014b). Reviewing these methods, it was concluded that the utilisation of the

particular requirements prioritisation method is dependent on the type of requirements prioritisation

problem that is to be solved and these methods have their individual advantages and disadvantages

(Achimugu et al., 2014b). In addition, software teams often use an appropriate prioritisation method

that suits their prioritisation application requirement (Ryan & Karlsson, 1997). For instance, the AHP

method performs well in accurately prioritising a small set of requirements but suffers from scalability

issue (i.e., takes more time to prioritise with extensive use of computing resources) when dealing with

numerous requirements due to its pairwise comparison mechanism, especially if the number of

stakeholders’ inputs increase (Achimugu et al., 2014b). On the other hand, the EVOLVE prioritisation

method through means of machine learning approaches along with the stakeholders’ priority

preferences of requirements overcomes the scalability issue when prioritising numerous requirements

but does not perform well when dealing with the dynamically changing priorities of the same set of

requirements over time (Greer & Ruhe, 2004).

Furthermore, more recent efforts from researchers have focussed on merging different methods together

(Abou-Elseoud et al., 2016; Ahmad et al., 2011). For instance, Ahmad et al. (2011) have combined CV

and BST to prioritise a small set of requirements belonging to a mobile application whose end-users

were geographically distributed. In another study, Abou-Elseoud et al. (2016) merged AHP, CV and

QFD to prioritise a few illustrated requirements belonging to a software development company. This

method dynamically computed the hierarchical levels (Alternatives, Criteria and Goal) and created two

separate levels to prioritise the requirements. The CV method was used to rank the requirements at the

lower level while the QFD operated at the upper level to generate the list of prioritised requirements.

Similarly, Berander and Jonssen (2006) have addressed the weakness of CV and AHP, and combined

their strengths to develop HCV that partitions complex requirements into smaller low-level

requirements to create a hierarchical structure of all the requirements and later generates the priorities

of these requirements based on the priority preferences of the product’s stakeholders. However, the

application of HCV was found to be restricted to only a small set of requirements. From the above-

mentioned studies it was concluded that, to achieve the objective of prioritisation in the most optimal

way researchers or software teams often aim to use a method that requires less time to reliably prioritise

the given set of requirements with the assurance of optimal utilisation of allocated resources (e.g.,

manpower, time, computing power and so on) (Achimugu et al., 2014b).

16

The examples of the requirements prioritisation methods mentioned above assist with requirements

prioritisation and there exist a plethora of promising requirements prioritisation methods across several

disciplines that may influence the development of a prioritisation method to prioritise numerous useful

reviews (Achimuguet al., 2014b). For instance, for many years the product manufacturing discipline is

facing the requirements prioritisation challenge and the researchers from that discipline have explored

the utility of several prioritisation methods for addressing the challenge (Chen & Yu, 2014; Nepal et

al., 2010). Similarly, the researchers from software engineering discipline have explored prioritisation

methods confined to the same discipline (Pergher & Rossi, 2013). Thus, there exists an opportunity to

comprehensively and systematically survey the literature available on requirements prioritisation from

different disciplines that may influence the development of new prioritisation method(s). In addition,

the findings of such survey may inspire a discipline (e.g. software engineering) to consider the strengths

or address the weakness of requirements prioritisation method(s) from other disciplines or vice-versa.

Moreover, challenges appear for prioritisation when there are numerous requirements to deal with,

especially in the case of crowdsourced requirements logged by large number of end-users (Iacob &

Harrison, 2013; Maalej et al., 2016b) (e.g., as evident for app reviews (Iacob et al., 2014; Licorish et

al., 2017)). These challenges occur mainly due to the conventional prioritisation methods constantly

demanding the involvement of humans to ensure the reliability of the prioritisation outcome which in

turn increases the overall time required for prioritisation and simultaneously compromise the scalability

of the prioritisation method (Achimugu, et al., 2014b; Licorish et al., 2017). For instance, Licorish et

al. (2017) were unable to discover uniform markers that could potentially remove the need for human

involvement when utilising multiple regression for prioritising app features.

Hence, the first phase of this study deals with the detailed investigation of the requirements prioritisation

domain by performing a comprehensive systematic mapping study of the same. The objective of this

mapping study is to understand what has been done in the requirements prioritisation domain across all

disciplines, and later conduct a critical evaluation of empirical studies that have provided knowledge

towards the understanding of requirements prioritisation methods that are spread across different

disciplines. This will assist in understanding and evaluating the various prioritisation methods that

might provide the inspiration and essential guidelines towards solving the problem of prioritising

numerous useful reviews.

In the next chapter, we provide the details regarding the conducted systematic mapping study on

requirements prioritisation.

17

3 Systematic Mapping Study on Requirements Prioritisation

This chapter provides the details of the systematic mapping study on requirements prioritisation that

was carried out to uncover what exists across the requirements prioritisation domain to seek inspiration

from the prominent studies existing in this domain towards solving the problem of prioritising numerous

useful reviews. That said, the four phases reported in this chapter follow an empirical research

methodology since such a methodology is extensively followed in academia as well as industrial

software engineering research. This is mainly due to the methodology being based on data and

observations rather than general theories (Abran et al., 2004). As noted from the previous chapters, in

phase 1 we conducted a comprehensive systematic mapping study of the requirements prioritisation

domain and performed a critical evaluation of the empirical studies that provided implementations of

the requirements prioritisation methods across multiple disciplines. The overarching RQ driving this

study is:

RQ1. What is the state-of-the art of requirements prioritisation?

To conduct the necessary investigations, RQ1 was decomposed into six RQs aimed towards

understanding the interest in requirements prioritisation across multiple disciplines (RQ1.1),

approaches followed by researchers to conduct research on requirements prioritisation (RQ1.2), the

form of requirements prioritisation contributions provided by the researchers (RQ1.3), the various

requirements prioritisation methods (RQ1.4), the dimensions that were evaluated for empirical

requirements prioritisation methods (RQ1.5) and the performance outcomes of the evaluations along

with the investigation of any existing evidence regarding the relationship between attributes of the

empirically evaluated requirements prioritisation methods and their performance outcomes (RQ1.6).

The detailed elaboration of the above-mentioned systematic mapping study is provided in the relevant

sections (i.e., sections 3.1 to 3.4) below.

3.1 Introduction

By means of this systematic mapping study, we identify requirements prioritisation methods proposed

by researchers and later consider those empirical methods that are noteworthy for further evaluation.

This allows us to generate a knowledge base for software engineering researchers to understand the

different problem specific solutions generated via requirements prioritisation methods that are available

for use from disciplines other than software engineering. In this way, researchers from a discipline can

become aware of the ways in which other disciplines have addressed the requirements prioritisation

problem and may seek inspiration from them towards addressing the encountered requirements

prioritisation problem. The critical evaluations present the previously unexplored knowledge and

potential limitations in a discipline that could be central to steering research on requirements

18

prioritisation. To our best knowledge, the findings from the systematic mapping study have not been

discovered by previous review studies on requirements prioritisation.

3.2 Background and Related Studies

The ultimate success of a software product is determined by the proper execution of its requirements

engineering phase which deals with the elicitation and addressing of the stakeholders’ requirements

pertaining to the product (Nuseibeh & Easterbrook, 2000). Most often written or graphical methods,

and in certain cases, a combination of both is used to elicit requirements from stakeholders

(Sommervile, 2009). User stories is the most popular written method whereas UML (Unified Modelling

Language) is the most commonly followed graphical method (Sommervile, 2009). Furthermore, under

the traditional software development models like Waterfall, the stakeholders usually approve their

requirements identified by the software team and simultaneously resolve any conflicts related to the

requirements by means of negotiations. After the requirements engineering phase is completed, the

software team models the software product design and develops the software product. Sometimes the

software product design and development is done incrementally where agile models such as SCRUM

are followed. Thus, the requirements engineering phase lays the important foundations towards software

product design and development (Zowghi & Coulin, 2005). That said, sometimes challenges are

encountered during the requirements engineering phase that may compromise the development and

release of a software product. For instance, Wnuk et al. (2009) while investigating the requirements

engineering phase of a software product at Sony Ericsson enterprise uncovered that the software team

faced challenges that were severe and needed immediate attention. One of the challenges was to address

the complex requirements and dependencies that existed among those requirements that made the

software team to question the feasibility of addressing those requirements. The second challenge was

associated with the ineffective communication that took place between the stakeholders and software

team. Another critical and notable challenge was to constantly address the numerous requirements (and

software product bugs) logged by the stakeholders of the software product after the software product

was released in the market. This challenge in particular has been the centre of attention as the software

engineering community still lacks a reliable and efficient solution to address the challenge (Licorish et

al., 2017).

Requirements prioritisation is an effective solution that is initiated at regular intervals as it guides the

decisions regarding the order in which the requirements should be addressed. However, challenge

remains for the software engineering community in terms of prioritising numerous requirements,

especially those that exist in crowdsourced information (Groen et al., 2015; Khalid et al., 2015; Licorish

et al., 2017; Maalej et al., 2016b). This is because researchers are still unable to attain satisfactory

performance of requirements prioritisation methods when the number of requirements to prioritise

increase significantly (Achimugu et al., 2014b; Babar et al., 2011; Licorish et al., 2017). Some survey

19

studies have reviewed requirements prioritisation methods from the software engineering discipline

(Achimugu et al., 2014b; Pergher & Rossi, 2013; Sher et al., 2014). We examine such studies towards

identifying gaps to justify our research agenda of undertaking the systematic mapping study on

requirements prioritisation.

Achimugu et al. (2014b) have published a literature review on requirements prioritisation that highlights

various methods which have been used in the software engineering discipline until 2014. The key

finding of this study was that the existing requirements prioritisation methods suffered from

performance issues which were found to be associated with the scalability of the methods, and pointed

towards the need for requirements prioritisation methods that could prioritise numerous requirements

reliably and efficiently. In a similar study conducted in 2013, Pergher and Rossi (2013) have reviewed

only certain requirements prioritisation methods used in academic software engineering research and

these methods were from studies extracted from four knowledge databases which were IEEE Xplore,

ACM Digital Library, Science Direct and Springer. The authors reported that the majority of the

methods focussed only on the prioritisation of functional requirements and side-tracked the non-

functional ones. Moreover, accuracy was often used as a dimension to evaluate the performance of the

requirements prioritisation methods. Accuracy indicated the percentage of correctly prioritised

requirements based on specific ground truth data. Finally, it was suggested by the authors that

researchers should emphasise on the prioritisation of non-functional requirements as they reflect

important business values. In another study, Sher et al. (2014) carried out a systematic mapping study

of requirements prioritisation in 2014 that was restricted to the requirements prioritisation studies of the

software engineering discipline. The authors found out that most of the requirements prioritisation

methods did not support business or stakeholders’ goals and lacked empirical validation.

3.3 Research Questions

The previously mentioned studies have focused on obtaining the knowledge on how the research on

requirements prioritisation is carried out in the software engineering discipline. However, there is scope

to understand the research on requirements prioritisation across multiple disciplines with the intent of

developing a possible interdisciplinary prioritisation method towards addressing the requirements

prioritisation challenge. Novel and reliable requirements prioritisation methods are especially required

to prioritise large scale requirements and feedback such as those existing in useful reviews (Groen et

al., 2015; Licorish et al., 2017; Maalej et al., 2016b; Pagano & Maalej, 2013). Hence, we aim towards

conducting a comprehensive systematic mapping study and critical evaluation for understanding the

research on requirements prioritisation that is available across multiple disciplines. To achieve this, we

formulate six RQs listed as follows:

20

RQ1.1 What has been the interest in requirements prioritisation over time, what are the

different publication venues, and what are the various disciplines in which the application

of requirements prioritisation exist?

RQ1.2 What approaches have been used to study requirements prioritisation?

RQ1.3 What form did the contributions of the requirements prioritisation studies take?

RQ1.4 What prioritisation methods have been studied or developed?

RQ1.5 What are the dimensions that were evaluated for requirements prioritisation

methods?

RQ1.6 What are the performance outcomes of the evaluations, and is there evidence of

relationship between attributes of requirements prioritisation methods and their

performance outcomes?

The objective of RQ1.1 is to uncover the interest in requirements prioritisation over time and the venues

(e.g., journals or conferences) where the studies on requirements prioritisation from multiple disciplines

(e.g., software engineering or product manufacturing) have been published. RQ1.2 helps to understand

the nature (e.g., surveys, proposed or empirically evaluated prioritisation method) of the studies

conducted on requirements prioritisation. RQ1.3 aims towards analysing the type of contributions (e.g.,

taxonomy or tool) that are provided by researchers to solve the requirements prioritisation problem.

This will assist in distinguishing theoretical postulations from the empirical requirements prioritisation

methods used for solving real world requirements prioritisation problems. RQ1.4 assists in identifying

the various requirements prioritisation methods (e.g., AHP or CV) existing across multiple disciplines,

while RQ1.5 examines the dimensions (i.e., focus of evaluation - e.g., accuracy or time) that were

evaluated while conducting research on requirements prioritisation. RQ1.6 analyses the performance

outcomes (i.e., the requirements prioritisation performance that is benchmarked when a method is

evaluated - e.g., 84 % accurate in prioritising requirements) of the suitable empirically evaluated

requirements prioritisation methods, and aims to uncover any relationship between the performance

outcomes and the attributes (i.e., criteria within a study that affects the performance outcomes - e.g.,

number of requirements) used by researchers for meaningful insights.

3.4 Methodology

To answer the RQs mentioned in the previous sub-section we conduct a systematic mapping study

which is suitable for exploring research published on a particular topic of interest using different facets.

For instance, one facet is visualising how many studies published in a particular year were empirical

(Petersen et al., 2008). Figure 5 provides the visualisation of the systematic mapping study process that

was followed. Figure 5 portrays that initially we scoped the requirements prioritisation problem which

lead to the formulation of the RQs. Next, we developed the appropriate keywords that were used to

search and find studies on requirements prioritisation from various knowledge databases. The identified

21

studies were subjected to an exclusion and inclusion filtering criteria which removed irrelevant studies

and retained the pertinent ones. The filtered studies were subjected to reliability checks before being

classified according to the developed classification schemes. Additional reliability checks were

performed to assure the reliability of the results. Finally, the RQs were answered based on the obtained

results of the study and the results were meaningfully visualised.

Figure 5. Systematic mapping study process related to requirements prioritisation

To find keywords that were used to search and extract studies on requirements prioritisation on a global

scale we used Google’s search engine (Mccallum & Bury, 2013). This was undertaken to explore the

keywords related to requirements prioritisation. We followed the navigation and information search

strategies that are commonly used by researchers to narrow down the keywords related to a topic of

interest (Lorigo et al., 2008). Initially, requirements prioritization was used as a search keyword on the

Google search engine and the search results from the first three pages were analysed using the guideline

towards the relevance of the search results (Broder, 2002). The guideline suggests the use of an

information retrieval model that is driven by humans to distinguish relevant search results pertaining to

22

a particular topic of interest from the non-relevant ones retrieved via the search engine. This outcome

is achieved when the retrieved results are manually analysed based on human judgements and

understanding of each result. That is, verifying if the contents of the retrieved search results are highly

relevant to the topic of interest by means of thorough examination of the contents. Next, using the

navigation and information search strategies, we uncovered the three additional most frequent keywords

(along with requirements prioritization) related to requirements prioritisation and these were;

requirements prioritization techniques, requirements prioritization methods and requirements

prioritization strategies. The navigational strategy assists humans in visiting the web links that point

towards webpages that hold the relevant contents related to the topic of interest. For instance, the

retrieved web link via search engine ‘https://ieeexplore.ieee.org/document/6615215’ contains the study

on ‘requirements prioritisation’. In addition, the information search strategy initiated via navigation

strategy assists in identifying the markers such as additional keywords to search for supplementary

contents of the topic of interest. Finally, we adapted Kitchenham’s approach for utilising the shortlisted

search keywords on knowledge databases (Kitchenham, 2007). Following the mentioned approach, we

expressed the keywords in the form of Boolean searches and used the right combination of ‘AND’ /

‘OR’ operators to inform accurate searches for the topic of interest. This process also helps to simplify

the search, and reduce time. In executing our targeted searches, the following Boolean search strings

were developed from the set of keywords that were finalized through the wider Google pilot search

mentioned above. Thus, we developed the following Boolean search keywords from the set of

shortlisted keywords:

1. (‘requirements’) AND (‘prioritization’)

2 (‘requirements’) AND (‘prioritization’) AND (‘methods’ OR ‘techniques’ OR

‘strategies’)

The two Boolean search keywords were developed so that the studies on requirements prioritisation

could be extensively searched.

We used the developed Boolean search keywords to search for studies on requirements prioritisation

from eight recommended knowledge databases: ScienceDirect, IEEE Xplore, Springer, ACM Digital

Library, Inspec, EI Compendex, Web of Science and Scopus (Kitchenham, 2007; Rowley & Slack,

2004). These knowledge databases cover most of the disciplines given our objective to uncover studies

from multiple disciplines. We had initially included Google Scholar5 as part of the knowledge database.

However, after going through the first ten pages of the search results on Google scholar we noticed that

even though few relevant studies that were already captured by the performed searches on the

knowledge databases mentioned earlier were evident, there were many irrelevant studies that were

5 https://scholar.google.com/

23

captured (e.g., studies in which words requirements and prioritisation appeared separately but the

studies were not about requirements prioritisation). Thus, we removed Google Scholar from our

knowledge database list. The searches were conducted in December 2017 and the summary of the search

results from the knowledge databases is provided in Table 3.1. Table 3.1 shows that Scopus had the

highest number of studies on requirements prioritisation (3,325) followed by IEEE Xplore (795), ACM

(499), ScienceDirect (407) and Inspec (7). It was also observed that all the search results of the second

Boolean search keywords were a subset of the first Boolean search keywords. All the results of the

conducted search were exported to a Microsoft Excel file for further analysis.

Table 3.1 Search results

Knowledge

Database

Keywords

Total
Requirements

Prioritisation

Requirements

Prioritisation

Methods

Requirements

Prioritisation

Techniques

Requirements

Prioritisation

Strategies

ScienceDirect 236 82 41 48 407

IEEE Xplore 478 135 139 43 795

Springer 35 1 0 1 37

ACM 325 67 78 29 499

Inspec 2 2 1 2 7

EI

Compendex

6 5 2 3 16

Web of

Science

118 4 16 1 139

Scopus 1964 644 457 260 3325

∑ 3164 940 734 387 5225

After conducting the necessary searches, we followed the guidelines provided by Petersen et al. (2008)

to develop an exclusion and inclusion criteria to filter studies. The criteria used is as follows:

Exclusion:

1. Study that is not available in English language.

2. Duplicate instances of the same study.

3. Studies which just mention the summaries.

4. Studies that highlight only extended abstracts or proposals.

5. Studies which are not peer-reviewed.

Inclusion:

1. Study in which the abstract clearly mentions requirements prioritisation and the study

goes beyond the extended abstract.

24

2. Study that investigates the methods related to requirements prioritisation.

3. Studies which propose and develop methods related to requirements prioritisation.

While performing the screening of the studies, we first applied the exclusion criteria to remove the

irrelevant and unwanted studies, and then applied the inclusion criteria to shortlist the pertinent ones.

As all the search entries of the second Boolean search keywords were subsets of the primary Boolean

search keywords, 2,061 studies were discarded. The remaining 3,164 were checked for duplicates and

a total of 844 duplicate studies were detected which were then discarded. Out of the remaining entries,

72 studies were found to be just summaries and 7 studies were not documented in English language

along with 6 studies that had unwanted characters. With the assistance of the exclusion criteria 2,990

studies were eliminated and the remaining 2,235 studies were subjected to inclusion criteria which

removed 2024 unwanted studies with the final set of 211 studies left for further analysis. The

distribution of the shortlisted studies is highlighted in Table 3.2.

Table 3.2 Final entries from knowledge databases

Knowledge Database

Total

ScienceDirect 18

IEEE Xplore 66

Springer 24

ACM 12

Web of Science 24

Scopus 67

∑ 211

To ensure that we conducted proper filtering of the studies based on the exclusion and inclusion criteria,

we conducted reliability assessments using Fleiss’ Kappa which is the extension of Cohen’s Kappa to

support the independent evaluations of three or more human evaluators (Fleiss & Cohen, 1973). To

ensure that no study was discarded or included by mistake, the mentioned reliability assessment was

performed. Three of us (i.e., two supervisors and the PhD candidate) independently performed a

screening of the total number of studies towards exclusion and inclusion. The convergence or

divergence between the three was mapped to the relevant yes or no flag (i.e., study to be shortlisted or

not) for each analysed study. The Fleiss coefficient was found to be 0.85 which indicated a near perfect

agreement (Landis & Koch, 1977). Further discussions were held accordingly to resolve any

disagreements and establish consensus (i.e., 100% agreement).

3.4.1 Classification Schemes (RQ1.2 and RQ1.3)

To answer RQ1.2 and RQ1.3 we first had to develop the relevant classification schemes related to the

respective RQs. To develop a classification scheme to answer RQ1.2 we adapted Wieringa et al.’s

25

(2005) classification guidelines which were developed to classify studies based on the approaches6

presented in the studies on requirements engineering. The authors state that the studies reflect

approaches such as Proposal of Solution, Validation Research, Evaluation Research, Philosophical,

Opinion or Experience, and hence the studies can be classified into the relevant research approach. The

authors also mention that studies may cover multiple approaches. For requirements prioritisation studies

we merged Opinion and Philosophical approaches to form a new approach Opinion/Philosophical as

some of the shortlisted studies provided views or opinions of the authors, reports or surveys pertaining

to requirements prioritisation. Secondary Evaluation/Categorisation was created as some of the studies

revealed that there were a number of secondary studies. The three approaches Proposal of Solution,

Validation Research and Evaluated Research were redefined into Proposed Solution, Simulated

Solution and Evaluated Solution. Proposed Solution highlights studies that present requirements

prioritisation solutions proposed by authors and these solutions are yet to be evaluated. Simulated

Solution highlights studies that provide solutions to the requirements prioritisation problems that were

evaluated only at experimental level, whereas Evaluated Solution highlights the studies that provide

solutions which were empirically evaluated. The retained Experience approach presents the studies

which describe the authors experience regarding utilised requirements prioritisation methods. The

classification scheme for approaches followed in requirements prioritisation studies is presented in

Table 3.3. The final list of approaches that are developed for classifying approaches is listed in the first

column, the description of the approaches is provided in the second column followed by the suitable

example in the third column.

Similarly, to answer RQ1.3 we first developed a classification scheme for classifying contributions

provided by the researchers working on requirements prioritisation. Petersen et al. (2008) have provided

a set of guidelines to classify studies according to the contributions provided by those studies. Following

these guidelines and reviewing each shortlisted study we came up with six types of contributions;

Taxonomy, Single Method, Multiple Methods, Hybrid Method, Tool and Process. The majority of the

shortlisted studies covered most of the contributions, however, few studies did not provide any type of

contribution. Hence, we assessed the six types of contributions against those provided by other studies.

Lehtola (2017) have used a manually derived framework to classify the type of contributions into

Activities, Techniques, Methods and Process. After cross checking our six types of contributions with

those developed by these authors, we noticed that Methods and Process were covered with Technique

being an abstraction of Method. Activities was found to be granular for adaption (i.e., activities was

found to be a subset of Taxonomy or Process), and hence was discarded. Next, we cross checked the

six types of contributions against those developed by Pergher and Rossi (2013) and noted that the

authors have Framework as a type of contribution, however, this type of contribution was already

6 Type of approach followed by authors for conducting research such as evaluated solution or proposed solution.

26

captured under our Taxonomy type of contribution, and hence, we did not include this as a separate

type of contribution. Studies that did not provide any type of contribution were classified as Others.

Table 3.3 Classification scheme for evaluating research approaches

Approach Description Example

Proposed Solution For solving a requirements prioritisation

problem, a particular solution is

proposed in the study which could be

existing or new, however, the solution is

not practically implemented and

evaluated.

Cleland-Huang and Mobasher

(2008) proposed a new solution

that is built on data mining and

recommender systems concepts.

Simulated Solution Similar to proposed solution mentioned

above, however, simulated solution is

validated only at the experimental level

mostly in the form of a solved example

or simulation.

Shao (2008) have presented the

simulation results of a proposed

requirements prioritisation

method.

Evaluated Solution Study presents a developed empirical

solution to solve a requirements

prioritisation problem which may be

already existing or new.

Carod and Cechich (2010)

provide an empirical

requirements prioritisation

solution that is thoroughly

evaluated beyond the

experimental level.

Opinion/Philosophy A study that presents concepts, opinions,

ideas or views expressed by the surveyed

participants or authors.

Babar et al. (2011) provide their

opinions on the different

challenges and future trends in

requirements prioritisation.

Secondary

Evaluation/

Categorisation

Studies present a literature review or

systematic mapping study on

requirements prioritisation.

Achimugu et al. (2014b) provide

a systematic literature review of

studies on requirements

prioritisation from the software

engineering discipline.

Experience Studies that highlight authors’

experience regarding the application of

requirements prioritisation method(s) on

a requirements prioritisation problem.

Berander and Svahnberg (2009)

have experimented with HCV and

have worked on different ways

towards generating the priorities

of requirements.

Table 3.4 highlights the type of contributions, provides the description of these contributions and

mentions an appropriate example of the same. The final list of contributions that are developed for

classifying contributions is listed in the first column, the description of the contributions is provided in

the second column followed by the suitable example in the third column.

27

Table 3.4 Classification scheme for evaluating research contributions

Contribution Description Example

Taxonomy Studies that provide a taxonomy

describing methods, challenges, future

trends and so on.

Babar et al. (2011) described the

limitations of the requirements

prioritisation methods and pointed

towards the need for an automated

requirements prioritisation that could

process numerous requirements.

Single

Method

Study that presents a single method to

perform prioritisation of requirements.

Sadiq et al. (2009) used AHP to prioritise

a small set of requirements.

Multiple

Methods

Two or more requirements

prioritisation methods are presented in a

study

Felfernig and Ninaus (2012) have

evaluated multiple heuristic methods

(least distance, standard deviation,

random selection, average value, median

based, majority voting and ensemble) to

prioritise requirements.

Hybrid

Method

A study presents a hybrid method that

combines and synthesises aspects (e.g.,

prioritisation mechanism) from two or

more methods.

Abou-Elseoud et al. (2016) developed a

hybrid requirements prioritisation

method that combines decision matrix

method with CV method.

Tool Tool based contributions represent

software artefacts or prototypes that

prioritise a given set of requirements.

The tool can be in the form of an app,

website and so on.

Ryan and Karlsson (1997) have

implemented a prototype requirements

prioritisation tool for the Ericson Radio

Systems.

Process Studies provide an elaborate description

of the various steps involved in the

prioritisation of requirements. These

steps could be planning and executing

the activities related to requirements

prioritisation, participation of

stakeholders and product teams in those

activities and the evaluation of the

outcomes associated with those

activities.

Lehtola and Kauppinen (2006) have

documented all the practices and their

associated challenges while carrying out

the prioritisation of requirements in a

software company. The authors initially

gather information on requirements from

the participants of different companies

and later evaluated the outcome of the

conducted requirements prioritisation

process.

Others Studies did not provide any type of the

above-mentioned contributions.

Forouzani et al. (2012) developed a tool

that provides teaching regarding

requirements prioritisation and not an

actual tool to prioritise requirements.

It is to be noted that there is no specific methodology associated with RQ 1.1, RQ1.4, RQ1.5 and RQ1.6,

as answering these would require reviewing the studies individually and noting the findings, and later

performing reliability assessments to validate those findings. For instance, RQ1.1 deals with identifying

the number of studies on requirements prioritisation published each year, the different publication

venues where the studies were published and the different disciplines the studies belonged to.

Answering such research question would require a manual review of each study to identify its year of

publication, the study’s publication venue and discipline of the study. For answering RQ 1.4, each study

needs to be reviewed to identify the requirements prioritisation methods examined in the study.

28

Similarly, for answering RQ 1.5, each empirical study out of those which were shortlisted as an outcome

of the systematic mapping study on requirements prioritisation needs to be reviewed to identify the

dimensions that were evaluated for requirements prioritisation method. The analysis of the outcome

achieved through means of RQ1.5 would finally assist us to answer RQ1.6.

While developing the classification schemes to answer RQ1.2 and RQ1.3, the two supervisors and PhD

candidate performed reliability assessments where each one of us independently assessed the shortlisted

211 studies to manually classify each study into the particular approach or contribution of the above-

mentioned classification schemes. That said, Fleiss coefficients 0.78 and 0.82 were returned

respectively indicating substantial agreement and a near perfect agreement (Landis & Koch, 1977).

Follow up discussions were held among us to resolve any disagreements and establish consensus (100%

agreement) to answer RQ1.2 and RQ1.3.

We repeated the same reliability assessment procedure after answering the remaining RQs (i.e., to

validate the authenticity of the generated results) where the respective outcomes answering RQ1.1,

RQ1.4, RQ1.5 and RQ1.6 from the 211 studies were subjected to reliability assessments. We noted a

Fleiss coefficient of 0.83 indicating a near perfect agreement (Landis & Koch, 1977). Follow up

discussions were held accordingly to resolve any disagreements and establish consensus to achieve

100% agreement after performing all the reliability assessments.

That said, the full list of the shortlisted studies from which the necessary information was extracted for

answering RQ1.1 to RQ1.6 is made available in the Appendices (refer to section A). The results from

answering RQ1.1 to RQ1.6 are presented in section below.

3.5 Results

In this section, we report the results of the systematic mapping study on requirements prioritisation.

These findings provide insights on the research interest, publication venues and disciplines pertaining

to requirements prioritisation (RQ1.1), the approaches followed by researchers to conduct research on

requirements prioritisation (RQ1.2), the different types of contributions provided by the researchers

towards requirements prioritisation (RQ1.3), the various proposed requirements prioritisation methods

(RQ1.4), the distinct dimensions evaluated in empirical requirements prioritisation studies by

researchers (RQ1.5) and the requirements prioritisation performance outcomes reported in empirical

studies and the relationship between the identified attributes and those outcomes (RQ1.6). In addition,

these results also provide triangulations for RQ1.

3.5.1 Interest, Publication Venues and Disciplines (RQ1.1)

Figure 6 provides a summary of the requirements prioritisation studies that were published over the past

years. Out of the shortlisted 211 studies, the first study appeared in 1993 and in the subsequent years

29

the publication of at least one paper up to 1998 is observed. As no studies were published between 1999

and 2003, a reduced interest in requirements prioritisation research can be concluded. On the contrary,

there has been an increase in publications on requirements prioritisation since 2004, with 2017 showing

the highest number of studies published.

Figure 6. Requirements prioritisation publications summary over the past years

Next, we report the venues targeted by researchers for publishing the studies on requirements

prioritisation. From Figure 7 it is evident that majority of the studies were published in conferences

(48.8% or 103 studies), followed by journals (35.5% or 75 studies). Of the total studies, 16 studies were

published in workshops (7.6%), 9 were published as book chapters (4.3%), 7 were published in

symposiums (3.3%) and 1 was published in a world forum.

Figure 7. Requirements prioritisation publication venues

Next, we examine the disciplines for the publications on requirements prioritisation in Figure 8. Figure

8 shows that the majority of the studies were from the software engineering discipline (82.9% or 175

studies), and 22 studies (10.4%) were from the product manufacturing discipline. The remaining studies

30

were from education (5 studies), finance (4 studies), real estate (3 studies), law (1 study) and transport

(1 study) disciplines respectively.

Figure 8. Requirements prioritisation publication disciplines

To gain further insights into the disciplines and publication venues, we plot a bubble chart as shown in

Figure 9. Such type of visualisation is common in systematic mapping studies as it helps to analyse the

findings from multiple facets (Petersen et al., 2008). We have utilised such visualisations in the

remaining sections of the systematic mapping study on requirements prioritisation. Figure 9 shows that

software engineering discipline had the highest number of studies published in conferences, journals,

workshops, book chapters and symposiums in comparison to product manufacturing (175 versus 36

studies) and other disciplines. Although few studies were published across the other disciplines, we can

observe a similar pattern for education, finance, and real estate disciplines in Figure 9.

31

Figure 9. Requirements prioritisation publication disciplines and venues

3.5.2 Requirements Prioritisation Approaches (RQ1.2)

We report the approaches provided in the 211 studies on requirements prioritisation and plot a summary

of it in Figure 10. Figure 10 shows that 91 studies (43.1%) proposed and empirically evaluated a

requirements prioritisation solution, 32 studies (15.2%) proposed a requirements prioritisation solution

but the solution was not evaluated, 31 (14.7%) studies highlighted authors’ experience with

requirements prioritisation, 28 (13.3%) studies presented a simulated solution, 17 studies (8.1%) were

found to be secondary evaluation or categorisation, and 13 studies (6.2%) stated authors’

opinion/philosophy. Overall, the number of studies reported in Figure 10 add up to 212 as one study

provided experiences as well as a proposed solution.

32

Figure 10. Requirements prioritisation approaches

Next, we plotted approaches across the various disciplines in Figure 11, where it can be observed that

of all the approaches followed in the software engineering discipline, evaluated solutions were provided

by a large number of studies (37.1% or 65 studies). The higher number of studies reflecting evaluated

solution were also observed in cases of product manufacturing, education, law and real estate

disciplines. Interestingly, it is to be noted that only software engineering discipline has reviewed the

secondary evaluation/categorisation studies. However, such studies were not undertaken in other

disciplines. In Figure 11, studies classified into various approaches under the software engineering

discipline add up to 176 (instead of 175), since one study provided experiences as well as a proposed

solution.

33

Figure 11. Requirements prioritisation publication disciplines and approaches

3.5.3 Requirements Prioritisation Contributions (RQ1.3)

We visualise the requirements prioritisation contributions provided by researchers in Figure 12. From

Figure 12 it can be observed that most studies contributed a single method (32.7% or 69 studies),

followed by 58 studies (27.5%) contributing hybrid methods. Researchers also experimented with

multiple methods (17.5% or 37 studies) and developed taxonomies (12.8% or 27 studies). Other

contributions were provided in the form of processes (7.1% or 15 studies), tools (4.7% or 10 studies),

and 5 studies (2.4%) were classified under the ‘Other’ category. Some studies were classified under

multiple contributions, and hence, a total of 221 studies (instead of 211) is observed in Figure 12. For

instance, while 52 studies were classified under hybrid method, 6 were classified under hybrid method

as well as multiple methods, resulting in 58 studies being classified under hybrid method. A similar

pattern was observed for the other types of contributions.

34

Figure 12. Requirements prioritisation contributions

Next, we plot the contributions against the approaches in Figure 13. From Figure 13 it can be observed

that the single and hybrid method contributions are dominant, with frequent classification being

evaluated and proposed solution. Additionally, a convergence between taxonomy contribution and

secondary evaluation/categorisation, opinion/philosophy is observed. This is because, most papers have

conducted secondary evaluation, have proposed a taxonomy (14 out of 17). In addition, papers that

belong to opinion/philosophy, proposed a taxonomy (9 out of 13). The tools on requirements

prioritisation were largely evaluated by researchers. The number of studies in Figure 13 add up to 223

(instead of 211) due to multiple classifications. For instance, one study was classified as proposed

solution and experience when being reviewed to answer RQ1.2 that emphasised on requirements

prioritisation approaches and the same study was also classified under taxonomy and single method

when reviewed in terms of requirements prioritisation contributions to answer RQ1.3.

35

Figure 13. Requirements prioritisation publication approaches and contributions

3.5.4 Requirements Prioritisation Methods (RQ1.4)

We identified 157 different requirements prioritisation methods from the 211 shortlisted studies, with

90 of these methods researched only once and 31 methods were researched two times. The remaining

37 methods were researched three or more times. We show the top 10 frequently utilised requirements

prioritisation methods in Figure 14 where it is observed that Analytical Hierarchical Process (42

studies), Cumulative Voting (13 studies) and Quality Function Deployment (12 studies) were most

frequently researched. Specifically, AHP was researched across all the disciplines with contributions

ranging from hybrid method to tools as observed from Figure 15. From Figure 15 it is evident that many

methods were presented in different taxonomy studies and researchers frequently researched multiple

methods but often did not merge multiple methods into a hybrid method.

36

Figure 14. Top 10 requirements prioritisation methods

Figure 15. Requirements prioritisation methods and contributions

The full list of the requirements prioritisation methods has been made available in the Appendices (refer

to section E).

37

3.5.5 Dimensions of evaluated requirement prioritisation solutions (RQ1.5)

To answer RQ1.5 we reviewed the 91 studies that presented an empirically evaluated solution. Out of

the 91 studies, we noticed that 15 studies were the extended versions of their previous studies. For

instance, Carod and Cechich (2010) have published the extended version of a previous study with

additional contents such as literature, methodology, experimental results and discussions. Such

predecessor studies were excluded from further review. The remaining 76 studies were thoroughly

reviewed and it was observed that the solutions provided by the empirical studies were evaluated along

eight dimensions; operational demonstration, accuracy, stakeholders preferences, scalability, time,

requirements dependencies, requirements updates and computational complexity. Table 3.5 explains

the identified dimensions with the support of a relevant example.

Table 3.5 Requirements prioritisation evaluated dimensions

Dimension Description Example

Operational

demonstration

Requirements prioritisation method is

applied to a set of requirements and

only a list of prioritised requirements

is returned as an outcome with no

specific measure reported.

Popli et al. (2014) have proposed a

requirements prioritisation method that

prioritises a small set of user stores of an

online Quiz system.

Accuracy Requirements prioritisation method is

applied to a set of requirements and its

accuracy is reported (i.e., correct vs

incorrect priorities of the

requirements)

Bebensee et al. (2010) have reported that

Binary priority list method was 70.0%

accurate in prioritising 114 requirements

while Wieger’s method exhibited 45.0%

accuracy while prioritising the same set

of requirements.

Time Requirements prioritisation method is

utilised and the time required by the

method to perform prioritisation is

reported.

Nidhra et al. (2012) have reported the

time required by NAcAHP and AHP to

prioritise 40 requirements.

Stakeholders’

preferences

Requirements prioritisation method is

able to accommodate stakeholders’

preferences (i.e., requirements’

priorities assigned by each

stakeholder) when utilised for

prioritisation.

Zhaoling et al. (2009) proposed a

requirements prioritisation method that

is able to accommodate stakeholders’

preferences and resolve any conflicts

pertaining to those preferences when

prioritising 4 requirements from 7

stakeholders.

Requirements

dependencies

Requirements prioritisation method is

able to discover dependencies among

the requirements and utilise the

knowledge of dependencies for

prioritisation.

Yutao Ma et al. (2012) have identified

dependencies among requirements and

represented them in the form of a

network graph to filter insignificant

requirements and optimise the

prioritisation process.

Requirements

updates

The requirements prioritisation

method is capable of dynamically

updating the priorities of the same set

of requirements over time based on

certain changing conditions (e.g.,

business value of the requirements).

Peng et al. (2012) have demonstrated

that in a cohort of 1878 requirements, the

updated priorities of the same set of

requirement groups were captured which

informed the undertaken requirements

prioritisation process.

38

Dimension Description Example

Scalability Requirements prioritisation method is

capable of handling and prioritising an

increasing number of requirements.

Elsood et al. (2014) have determined the

scalability of two requirements

prioritisation methods while prioritising

7 requirements using the particular

method’s operational cycle.

Computational

Complexity

Requirements prioritisation method

aims to investigate or attempts to

optimise the utilisation of system

resources (e.g., memory)

Voola and Babu (2017) have utilised the

Big - O notation to investigate the

computational complexity of three

requirements prioritisation methods

while prioritising 15 requirements.

Next, we analyse the number of studies in which requirements prioritisation methods were empirically

evaluated using the above-mentioned dimensions in Figure 16. It is observed that the majority of the

studies provided operational demonstrations (67.1% or 51 studies). Accuracy was found to be another

popular dimension used for evaluation (26.7% or 19 studies) followed by stakeholders’ preferences and

time (17 and 13 studies respectively). The remaining studies (31.5% or 24 studies) evaluated

requirements updates, scalability, requirements dependencies and computational complexity. The

number of studies reported in Figure 16 add up to 124 (instead of 76) as certain studies utilised multiple

dimensions.

Figure 16. Requirements prioritisation dimensions

Next, we examine how these identified dimensions evaluated by the researchers conducting research

on requirements prioritisation are distributed across the empirically evaluated studies and how they are

linked. Figure 17 shows an undirected network graph where each node in the graph represents a

dimension. The node CC indicates computational complexity, OD indicates operational demonstration,

SI indicates stakeholders’ preferences, ACC indicates accuracy, T indicates time, RD indicates

requirements dependencies, RU indicates requirements updates and SCA indicates scalability. These

dimensions are connected by a set of links and the weights on the links represent the number of studies

39

that contain the two connecting dimensions. The weights on self-looping links indicate the number of

studies solely focusing on one particular dimension. In Figure 17 we can observe a wide spread of

dimensions, where the spread of certain connected dimensions is dense while for others it is sparse. As

observed from Figure 17, 33 studies solely focused on operational demonstration of a particular

requirements prioritisation method, five studies worked towards the handling of stakeholders’

preferences, four studies focused solely on accuracy and one study exclusively investigated the

scalability dimension. Other remaining studies have evaluated multiple dimensions.

Figure 17. Representation of dimensions based on their occurrence in empirical studies

3.5.6 Performance Outcomes and Relationship between Attributes and Outcomes

(RQ1.6)

Out of the eight dimensions reported in sub-section 3.5.5, accuracy was utilised to evaluate the

correctness of a requirements prioritisation method to benchmark its performance. We report the studies

that reported outcomes based on accuracy dimension in Table 3.6 wherein we report the number of

requirements prioritised by the particular requirements prioritisation method along with the criteria (i.e.,

ground truth) used to validate the accuracy of the requirements prioritisation method and the assessment

procedure used to evaluate the accuracy. It can be observed that accuracy was found to be in the range

of 16% to 99% with varying number of requirements and the majority of the requirements prioritisation

methods were evaluated for accuracy using the stakeholders’ preferences as the ground truth.

40

Table 3.6 Requirements prioritisation accuracy dimension outcomes

Study Number of

requirements

Criteria Assessment Method Result

(%)

Asghar et al.

(2013)

36 Stakeholders’

preferences

Predicted

priority vs

actual priority

Maintainability

Based Approach

16.7

Chopra et al.

(2016)

103 Dataset

consisting of

prioritised

requirements

Predicted

priority vs

actual priority

AHP - A1

AHP - A2

AHP - A3

35.0

68.0

90.0

Bebensee et

al. (2010)

114 Stakeholders’

preferences

Predicted

priority vs

actual priority

BPL

Weiger

70.0

45.0

Achimugu et

al. (2016)

1820 Stakeholders’

preferences

Predicted

priority vs

actual priority

ReproTizer 98.9

Gärtner and

Schneider

(2012)

8 Stakeholders’

preferences

Predicted

priority vs

actual priority

ConTexter 87.5

McZara et al.

(2015)

100 Stakeholders’

preferences

Predicted

priority vs

actual priority

WSM

SNIPR

74.9

82.0

Kukreja et

al. (2012)

31 Stakeholders’

preferences

Predicted

priority vs

actual priority

TOPSIS 85.0

Laurent et al.

(2007)

202 List of prioritised

requirements

List of

prioritised

requirements

Automated

Requirements

Triage

82.2

Next, we report our findings related to the stakeholders’ preferences dimension that was evaluated by

nine studies as shown in Table 3.7, where four studies resolved uncertain stakeholders’ preferences

along with the conflicting ones, three studies resolved only uncertain stakeholders’ preferences and two

provided a solution to resolve conflicting stakeholders’ preferences.

Table 3.7 Requirements prioritisation stakeholders' preferences dimension outcomes

Study Number of

requirements

Number of

stakeholders

Method Resolve

uncertain

preferences

Resolve

conflicting

preferences

Bajaj and

Arora (2013)

3 3 Fuzzy alpha

cut

0 1

Zhaoling et

al. (2009)

4 7 Grey and

weighted

average

method

1 1

Achimugu et

al. (2014)

262 76 Metric

distance

0 1

Achimugu,

et al. 2014a)

4 9 Fuzzy logic 1 0

41

Study Number of

requirements

Number of

stakeholders

Method Resolve

uncertain

preferences

Resolve

conflicting

preferences

McZara et

al. (2015)

100 45 AHP 1 1

Philip

Achimugu

(2014)

4 4 Fuzzy logic 1 1

Chen and Yu

(2014)

4 5 Fuzzy logic

and game

theory

1 0

Xuemei et

al. (2008)

5 5 Fuzzy

weighted

1 1

Voola and

Babu (2013)

20 8 Uncertainty

modelling

1 0

(Legend: 0 - absent, 1 - present)

Requirements dependency dimension was evaluated by studies mentioned in Table 3.8 where it is

observed that majority of the requirements prioritisation methods utilise a graph-based approach to

uncover the dependencies that exist among the requirements. However, these studies have not provided

any specific evaluation outcomes.

Table 3.8 Requirements prioritisation requirements dependency dimension

Study Number of

requirements

Method Prioritisation Dependency

type

Peng et al.

(2012)

1878 Ontology modelling X 1

Delia Ilie et

al. (2009)

52 Cross linking degree Y 1

Atukorala et

al. (2016)

18 Situation transition framework Y 1

Sharma

(2007)

10 Integration of requirements

weights with correlation triangle

values (QFD method specific

only)

Y 0

Thakurta

(2013)

7 Hierarchical structure Y 1

Yutao Ma et

al. (2012)

34 Network analysis Y 1

Sureka

(2014)

100 Value analysis Y 1

(Legend: Y - Individual, X - Group-based; 1 - Graph, 0 - Matrix)

Next, we report the studies that investigated the time dimension in Table 3.9. Researchers have

benchmarked the performance of the particular requirements prioritisation method by noting the time

required by the method to prioritise a given set of requirements. Table 3.9 indicates the particular

requirements prioritisation method that was evaluated in the study along with the measure of time

utilised by the method to prioritise a given set of requirements. For simplicity of understanding, we

42

provide an additional column indicating the number of requirements prioritised per minute by the

particular method. ReproTizer, SMT and IGA were found to be the top three best performing

requirements prioritisation methods with regards to the time dimension.

Table 3.9 Requirements prioritisation time dimension outcomes

Study Number of

requirements

Measurement Method Metric

(minutes)

Requirements

prioritised per

minute

Voola and

Babu (2013)

20 Average time

(minutes)

NA

AHP

ENA

11.0

36.0

7.0

1.8

0.6

2.9

Bebensee et

al. (2010)

114 Average time

(minutes)

BPL

Weiger

25.0

87.5

4.6

1.3

Achimugu et

al. (2016)

1820 Average time

(milliseconds)

ReproTizer 0.3 7280.0

Misaghian

and Motameni

(2016)

11 Average time

(seconds)

Tensor

AHP

5.7

311.0

2.0

<0.1

McZara et al.

(2015)

100 Average time

(minutes)

SNIPR

WSM

41.4

51.3

2.4

2.0

Yutao Ma et

al. (2012)

34 Total time

(minutes)

Hybrid

AHP

Bubblesort

82.0

2083.0

1074.0

0.4

<0.1

<0.1

Nidhra et al.

(2012)

40 Average time

(minutes)

AHP

NAcAHP

326.5

272.3

0.1

0.2

Palma et al.

(2011)

109 Average time

(minutes)

SMT

IGA

IAHP

0.8

0.8

14.2

145.3

132.9

7.7

It is to be noted that the information presented in Tables 3.6 - 3.9 is a summary of the relevant data

presented in the studies mentioned in the respective tables. As the studies mentioned in the specific

table (e.g., Table 3.9) follow different experimental settings (e.g., research methodology, data for

experimentation or validation criteria and procedures) we are not performing any comparison analysis.

Furthermore, two noteworthy studies focused on the requirements updates dimension. Asghar et al.

(2013) observed that their proposed requirements prioritisation method was capable of generating

updated priorities of the same set of requirements according to the evolving software architecture of the

system. Achimugu et al. (2016) have developed ‘ReproTizer’ which computes new priorities of

requirements when a particular requirement or a stakeholder’s preference is excluded from or included

in the system.

Next, we observed that three studies investigated the scalability dimension of a particular requirements

prioritisation method. Nidhra et al. (2012) have compared the scalability of NAcAHP with AHP and

found out that the former method was more scalable than the later one as it reduced the time complexity

43

involved in performing pairwise comparisons. Achimugu et al. (2016) proposed requirements

prioritisation method is claimed to accommodate new requirements at runtime. Elsood et al. (2014)

through the means of operational cycles (i.e., number of iterations required for prioritising

requirements) found out that their proposed goal based requirements prioritisation method was more

scalable than AHP.

With regards to the computational complexity dimension, Bajaj and Arora (2013) have utilised the Big

- O notation to investigate the computational complexity of the different stages of their proposed

requirements prioritisation method. Thakurta (2013) through means of Big-O notation found out that

AHP suffered from scalability issues as the number of requirements to prioritise increased whereas their

proposed requirements prioritisation method (i.e., quantitative framework) was found to be linear.

Finally, we report the findings related to the relationship between the attributes and performance

outcomes. Due to the subjective nature of some of the evaluations performed by the researchers (e.g.,

scalability) and the few studies under certain dimensions (e.g., requirements updates), we were able to

include only two dimensions (i.e., accuracy and time) in the statistical significance analysis. We

performed the Spearman correlation test to examine the relationship between the number of

requirements and the accuracy of the requirements prioritisation method (refer to Table 3.6) as we had

the appropriate number of studies from accuracy and time dimensions to perform the test (Myers &

Sirois, 2004). The correlation coefficient was found to be 0.1 (p-value < 0.05) indicating that the

accuracy of the requirements prioritisation methods increased as the number of requirements to

prioritise increased. It is to be noted that the correlation reported is weak but it is statistically significant.

Next, we examined the correlation between the number of requirements and the time taken by the

requirements prioritisation methods to prioritise requirements. We recorded a weak statistically

significant correlation coefficient of -0.27 indicating an inverse relationship (i.e., time required for

prioritisation decreased with the increase in number of requirements). In addition, on average,

requirements prioritisation methods researched in education discipline required less time to prioritise

requirements than the methods from the software engineering and product manufacturing disciplines

(average time: education = 18 minutes, software engineering = 303 minutes and product manufacturing

= 158 minutes).

We discuss the results of the undertaken systematic mapping study on requirements prioritisation and

the considerations of their implications for theory and practice in the Discussion section (refer to section

3.7). In the next section, we present the remaining overarching RQs.

44

3.6 Remaining Overarching RQs

We present the remaining overarching RQs of the subsequent phases (i.e., 2-4) in this sub-section as

these phases are inspired and influenced from the outcomes of the systematic mapping study. We

provide a detailed elaboration of the motivation for the same in this sub-section.

As not all the reviews of an app logged by its end-users on app distribution platforms are useful reviews,

we had to investigate a filtering approach that identified and extracted useful reviews to prevent the

performance (i.e., accuracy and time) of the particular prioritisation method from being hampered by

the presence of non-useful reviews (Achimugu et al., 2014b; Maalej et al., 2016a; Panichella et al.,

2015). The filtering approach came into consideration and the idea towards a filtering approach was

inspired by several requirements elicitation methods and the requirements prioritisation method

proposed by Peng et al. (2012) that acted upon a set of elicited requirements made available by domain

experts and such methods suggested the avoidance of information that did not reflect stakeholders

requirements to generate reliable prioritisation results (Garg et al., 2017; Thew & Sutcliffe, 2017;

Zowghi & Coulin, 2005). Moreover, app developers are always on the lookout for efficient and

automated information retrieval approaches that are able to filter (or extract) useful reviews logged

about their apps given the vast amount of reviews that are provided online (Maalej et al., 2016a). The

knowledge obtained from the useful reviews significantly assists the app developers in their software

quality evaluations, and software maintenance and evolution cycles (Ghose & Ipeirotis, 2011; Maalej

et al., 2016a). However, as online apps distribution platforms hold numerous reviews which are open

to public access, manually extracting these useful reviews from a vast pool of numerous reviews is

potentially challenging as it would be an error-prone and arduous task for the app developers. Such

situation demands a reliable approach to filter useful reviews. This leads towards the next RQ which is

RQ2. How can useful reviews be filtered?

The objective of RQ2 is to identify an approach that will allow us to filter useful reviews for

classification or prioritisation purpose. After developing a filtering approach to distinguish useful

reviews from non-useful ones and extract the useful reviews from a vast pool of reviews, we had to

develop a method that could prioritise the numerous useful reviews for remedial actions to support the

app’s maintenance and evolution cycles. Among the empirical studies reviewed during the systematic

mapping study of requirements prioritisation, the requirements prioritisation method proposed by Peng

et al. (2012) targeted the highest number of requirements (i.e., total - 1878) for prioritisation, and thus

assured its scalability. Scalability is of prime importance in this study as the prioritisation of numerous

useful reviews is the aim of the work. Moreover, the authors’ requirements prioritisation method was a

hybrid method i.e., it combined several methods for requirements prioritisation purpose and through

means of the systematic mapping study on requirements prioritisation we observed that researchers

45

often developed hybrid methods as these methods have shown more promise towards generating

reliable and efficient requirements prioritisation solutions than the other types of methods (i.e., single

methods or multiple methods) (Abou-Elseoud et al., 2016; Achimugu & Selamat, 2015; Santos et al.,

2016; Yutao Ma et al., 2012). This proposed hybrid method initially classified a set of elicited

requirements into manually predefined groups of interest using the domain knowledge made available

by domain experts. Later, using a combination of methods such as SemanticVOC, Domain Semantic

Model, SELRank algorithm and a query processing module along with the priority preferences of the

stakeholders, the method generated the priorities of the predefined groups of interest. This method

provided us the inspiration (i.e., following the steps of this method) to come up with the three steps in

our proposed prioritisation approach i.e., filtering useful reviews (Phase 2), classification of the useful

reviews into groups of interest (Phase 3) and prioritisation of useful reviews and the groups using a

hybrid method (Phase 4). However, all the empirical studies identified and reviewed via the systematic

mapping study presented requirements prioritisation methods whose designs and developments were

based on the availability of domain knowledge or priority preferences of the stakeholders. For instance,

Ninaus (2012) utilised a specific heuristic method which with the support of varied priority preferences

of the stakeholders operated on the same set of requirements to generate compatible priorities of the

requirements (i.e., converting the dissimilar priority preferences into universal requirements’ priorities).

Franceschini et al. (2015) have used domain knowledge made available from domain experts to develop

and accordingly customise QFD method for prioritising the requirements of a pencil product, trekking

products and office products based on the priority preferences of the stakeholders. Hence, for

prioritising useful reviews we cannot directly adapt such methods or inherit guidelines from them to

develop our hybrid prioritisation method because: 1) millions of apps hosted on app distribution

platforms belong to a wide spectrum of domains (e.g., games, entertainment, education, tools,

communication, music, shopping, travel and so on), hence it is not practically possible to contact the

app developers (i.e., domain experts) of these apps to gather and store the boundless domain knowledge

required for prioritisation (or classification). 2) Moreover, it is practically impossible to request the

priority preferences on useful reviews from the countless and geographically scattered end-users (i.e.,

presiding stakeholders) of the apps (Pagano & Maalej, 2013; Sorbo et al., 2016). In addition, it would

be a challenging and intricate task to handle any missing priority preferences or resolve any conflicts

related to different priority preferences on the same set of useful reviews to achieve consensus.

Furthermore, the application of requirements prioritisation methods is confined to requirements whereas

useful reviews are an extension of requirements as they contain bugs or enhancements along with the

requests for features logged by the end-users (Maalej et al., 2016a; Panichella et al., 2015).Therefore,

these reasons point towards the development of an automated prioritisation method that is not dependent

on the availability of domain knowledge and is independent of the priority preferences of the end-users

(i.e., end-users who are not available to provide priority preferences).

46

Before suitable prioritisation methods can be developed, we had to figure out an approach to

automatically classify useful reviews into specific groups of interest as we had taken inspiration from

the requirements prioritisation method proposed by Peng et al. (2012) which initially classified

requirements into predefined groups of interest based on domain knowledge made available by domain

experts. This leads to the RQ which is

RQ3. How can the useful reviews be classified into groups of interest?

After achieving the outcome of classifying useful reviews into specific groups of interests, our final

objective was to prioritise the useful reviews and their associated groups which leads towards the final

RQ of this study, that is

RQ4. How can an automated prioritisation method be developed to prioritise numerous useful reviews?

It is to be noted that the requirements prioritisation method proposed by Peng et al. (2012) generates

only the priorities of the predefined groups based on the priority preferences of the individual

requirements assigned by the stakeholders whereas in our study we have proposed to automatically

generate the priorities of the useful reviews as well as the groups in which the useful reviews are

classified into (i.e., our work proposes two prioritisation methods – one for grouped useful reviews and

the other for individual useful reviews).

That said, it is to be noted that considering the prime objective of this undertaken research is the

prioritisation of numerous useful reviews, we followed the pilot study approach in the relevant phases

of this research as a pilot study allows to perform preliminary investigations and experiments which

aim to validate the feasibility of a proposed approach (e.g., approach to filter useful reviews, classify

useful reviews based on an automatically generated taxonomy, and so on) and steers the research in the

right direction through the outcomes of the pilot studies while optimising the utilisation of scarce

resources (e.g., time, human evaluators, research funds, and so on) associated with the undertaken

research (Allan et al., 1998; Thabane et al., 2010). Thus, the primary objective of these pilot studies

was to examine the feasibility of the proposed approaches (e.g., filtering of useful reviews, automated

taxonomy generation and so on) and quantifying evaluation of the outcomes generated by those

approaches in the respective phases. This was due to the time and human resource constraints that were

associated with the development of approaches and evaluations of the outcomes generated in the

subsequent phases. Hence, based on the outcomes of the pilot studies from phase 2, 3 and 4 we were

able to conduct a full-scale study on the prioritisation of numerous useful reviews in phase 4.

In the next section, we highlight the discussions related to the systematic mapping study on

requirements prioritisation.

47

3.7 Discussion

By following the systematic mapping study process proposed by Petersen et al. (2008) we were able to

derive relevant RQs (i.e., RQ1.1 to RQ1.6) piloting the systematic mapping study on requirements

prioritisation. We developed several classification schemes to appropriately organise the studies on

requirements prioritisation. The analysis of the findings primarily focused on answering the RQs. From

a holistic viewpoint, the conducted systematic mapping on requirements prioritisation in phase 1

provided a structure (i.e., roadmap to investigate a field of interest) that assisted us in identifying the

type of research studies (i.e., proposed solution, evaluated solution, simulated solution, taxonomy,

opinion/philosophy, hybrid method, secondary evaluation/categorisation, experience, single method,

multiple methods, tool, and process) that have been published and classify those studies into suitable

categories based on the relevant classification scheme. Because of this, we could generate visual

summaries of the findings reported in the Results section (refer to section 3.5), thereby providing an

overview of the comprehensive findings. Furthermore, as we were able to conduct the systematic

mapping study on requirements prioritisation we were able to get an overview of the requirements

prioritisation field, and along with this, filter empirical studies of this topic which were then reviewed

in detail. The subsections below discuss the results and implications of RQ1.1 to RQ1.6.

3.7.1 RQ1.1 What has been the interest in requirements prioritisation over time, what

are the different publication venues and what are the various disciplines in which

the application of requirements prioritisation exist?

Results in the previous chapter reveal that there has been growing interest in requirements prioritisation

over the years, with the highest interest observed for 2017. Most studies were found to be published in

conference and journal venues. Such findings potentially point to the fact that requirements

prioritisation is gaining the attention of the scientific community, with studies addressing the particular

requirements prioritisation problem encountered by product developers. Beyond journal and conference

venues, a breadth of requirements prioritisation studies across other venues is observed. That said, an

interesting observation is that the proportion of journals to conferences in the product manufacturing

discipline is higher (0.67) than that of software engineering discipline (0.39). This may be because of

discipline specific publication norms (e.g., a larger number of publications in the software engineering

discipline appear in conferences when compared to other disciplines). In addition, we performed an

analysis of the publication locations of the 211 studies which shows that the studies have been

contributed by researchers from several countries across the world. Figure 18 shows a heat map where

the intensity of the colour corresponds to the frequency of publications presented on the colour scale.

Looking at the top 10 countries, the majority of the publications were from India (43 studies), followed

by USA (32 studies), Malaysia (24 studies), Italy (18 studies), Sweden (17 studies), Pakistan (11

studies), Netherlands (11 studies), Germany (10 studies), China (9 studies), and Brazil (7 studies).

48

Figure 18. Representation of requirements prioritisation publications on the world map

While the increase in studies on requirements prioritisation is evident in the software engineering

discipline over the years, there was no initiative observed towards understanding how the requirements

prioritisation problem is addressed in other disciplines or vice-versa. This may be due to studies from

particular disciplines are not being considered or missing out on the repository of knowledge evident in

other disciplines. For instance, from the product manufacturing discipline, Zhaoling et al. (2009) have

utilised QFD integrated with grey relational analysis to examine the relationships between stakeholders’

preferences and product engineering characteristics. In this study, the authors have investigated the

application of the weighted average method to resolve any conflicts related to the priority preferences

of stakeholders. In another study, Nepal et al. (2010) have evaluated the fuzzy analytical hierarchical

process to prioritise the requirements pertaining to an automobile. The proposed prioritisation method

considers customer satisfaction attributes along with the priority preferences of stakeholders while

prioritising the requirements which in turn assists the automotive company to refine their vehicle design

and its performance. The method developed by these authors initially identifies the aspects that

influence the decision making process of the automobile’s requirements engineering phase, in

promoting an organised view of requirements’ priorities. Fuzzy logic is used to compute the priorities

of the requirements which are expressed in a hierarchical representation. Overall, requirements

prioritisation methods developed in other disciplines have the potential to resolve stakeholders’

conflicts on priority preferences of requirements, address dependencies among requirements, handle

updated priorities of requirements and enhance the outcome of requirements prioritisation (Li et al.,

2012; Nepal et al., 2010; Zhaoling et al., 2009). Therefore, such requirements prioritisation methods

may be of utility to researchers working on the requirements prioritisation problem in the software

engineering discipline.

49

3.7.2 RQ1.2. What approaches have been used to study requirements prioritisation?

The findings in this work reveal that the majority of the requirements prioritisation studies targeted

empirically evaluated solutions (43%). These findings are appropriate for the requirements prioritisation

field, as the particular requirements prioritisation problem needs to be addressed with continuous

experimentation and different types of case studies. That said, we observed the presence of proposed

solutions that were not evaluated, or at times such solutions existed only in some form of simulation.

Moreover, fewer studies have highlighted opinions and gathered evidence around various requirements

prioritisation solutions that are provided through secondary evaluation/categorisation. While secondary

evaluation/categorisation is performed, such evaluations have focused on analysing requirements

prioritisation approaches in the software engineering discipline and especially targeted secondary

studies. For instance, Aasem et al. (2010) have published a secondary study which emphasises on the

significance of requirements prioritisation towards launching essential software updates, and the merits

and limitations of AHP, B-Tree, CV, Ranking, Top 10, NA, CV, and PG requirements prioritisation

methods. Garg et al. (2017) states that the identification of requirements through means of a reliable

requirements elicitation method is crucial as the outcome of prioritisation is dependent of the

requirements elicitation process. This study also examines advancements related to requirements

elicitation and prioritisation. In another study, Fadhl Hujainah et al. (2016) has mentioned that

complexity, time, value, accuracy, risk, importance and benefit are crucial factors that drive the

requirements prioritisation process. The author has evaluated several requirements prioritisation

methods such as AHP, NA, Top Ten, Ranking, Priority Groups, CV, Hierarchical AHP, Planning Game,

B-Tree, Minimal Spanning Tree, Benefit and Cost Prediction, PHandler, Case Based Ranking,

Requirements Uncertainty Prioritisation Approach, Evolve, SERUM, Cost Benefit and Pairwise

Comparison. That said, Fadzir et al. (2016) have provided a systematic literature review on

requirements prioritisation practices evident in the software engineering discipline.

Hence, our results suggest there is a need for studies that perform a more comprehensive investigation

of the evidence and proposed solutions on the requirements prioritisation problem existing across

different disciplines. Such evidence would probably inform the efforts directed towards developing the

relevant requirements prioritisation solutions for software developers and particularly those addressing

numerous requirements. For instance, Laurent et al. (2007) from the software engineering discipline

have proposed a requirements prioritisation method that uses a classification approach to categorise

requirements having similar characteristics into classes such as business goals, non-functional

requirements, functional requirements and so on. Later, the requirements are prioritised with the

assistance of priority preferences provided by the stakeholders and these priority preferences are utilised

as weights to perform prioritisation. Such requirements prioritisation methods have been informally

claimed to be scalable. That said, these authors can take inspiration from studies from other disciplines

that provide effective mechanisms to generate reliable stakeholders’ preferences for prioritisation

50

purpose (Nepal et al., 2010; Zhaoling et al., 2009). On the contrary, the studies from other disciplines

can seek inspiration from studies proposed by Laurent et al. (2007) for addressing scalability issues

associated with prioritisation.

Interestingly, beyond the software engineering discipline, other disciplines have not performed

secondary evaluation/categorisation towards developing a repository of methods and evidences around

requirements prioritisation. That said, some studies reflected authors’ opinions and experiences.

Secondary evaluation/categorisation studies are essential for providing the key concepts of the field of

interest, identifying different research trends, uncovering challenges and exploring the solutions

proposed to address challenges in a discipline. In certain cases, secondary evaluation/categorisation

studies classify details of the primary studies into categories of interest for meaningful interpretation,

providing a plethora of evidence around a field. While the lack of studies reflecting secondary

evaluation/categorisation in other disciplines besides software engineering demands attention of

researchers, several contributions provided by these disciplines are noteworthy. This aspect is discussed

further in the next sub-section.

3.7.3 RQ1.3 What form did the contributions of the requirements prioritisation studies

take?

Overall, a wide spread of requirements prioritisation contributions is observed, ranging from

taxonomies to tools. While some studies investigated multiple methods, these methods were evaluated

for their individual merits and demerits. That said, hybrid methods potentially harness the strengths of

multiple methods and attempt to avoid their weaknesses. While hybrid methods are an amalgamation

of several requirements prioritisation methods, there has only been a small-scale effort (16%) observed

towards a systematic evaluation of the single methods in view of developing reliable hybrid methods.

In fact, around 63% of the hybrid methods have undergone empirical evaluations. This was one of the

inspirations that lead to the development of our proposed prioritisation methods (group-based and

individual) that are hybrid. That is, multiple prioritisation methods are incorporated as variables of a

multi-criteria heuristic function. Moreover, other researchers could also pursue such undertakings

related to hybrid methods in developing well-founded requirements prioritisation solutions.

For instance, the advantages and disadvantages of AHP have been briefly examined by Nidhra et al.

(2012) to develop a requirements prioritisation method which includes all the strengths of AHP but

overcomes its weaknesses. To achieve this, the authors have combined NA with AHP and termed it as

‘NAcAHP’. The NA method first classifies each requirement into groups and later AHP prioritises the

requirements present in those groups. The performance of ‘NAcAHP’ was compared with AHP in terms

of time. A set of forty requirements were prioritised by both methods with results showing ‘NAcAHP’

to be faster than AHP. In another study, Abou-Elseoud et al. (2016) have merged AHP, CV and QFD

51

to develop a new requirements prioritisation method named ‘EHRP’. Initially, the method generates

three levels of hierarchical nodes (i.e., Goal, Criteria and Requirements). This generation approach is

similar to AHP, however, the method utilises two non-identical prioritisation pathways instead of a

matrix-based approach to prioritise requirements. CV is used to rank requirements residing at the lower

levels of the hierarchy while QFD operates at the last level to generate the final priorities of the

requirements. This hybrid method was empirically evaluated in an enterprise resource planning

organisation to prioritise a set of small requirements where the method was validated to be efficient for

prioritisation purpose.

Similarly, Garg and Singhal (2017) have come up with an approach that establishes a relation between

functional requirements and non-functional requirements. These functional requirements are prioritised

on the basis of their degree of relationship with the non-functional requirements. The authors were able

to achieve this by merging three requirements prioritisation methods together, which were the cost-

value approach, NA and matrix multiplication. The cost-value approach enables the pairwise

comparison of stakeholders' preferences on non-functional requirements. This output is then used as

input to the NA method, where values are assigned to functional requirements based on the operational

outcome of the pairwise comparisons. The final priorities of the requirements are then calculated by

matrix multiplication. This approach was used to prioritise the requirements of an article publishing

software where it was assessed to be effective. In another study, Kamvysi et al. (2014) have improved

the performance of the QFD method in prioritising the requirements of students belonging to an

educational institute. They were able to achieve this outcome by customising the internal structure of

the QFD method. Fuzzy logic and linear programming concepts were integrated with the QFD method.

It was claimed that the utilisation of fuzzy logic resolved the issue of incomplete, vague or conflicting

priority preferences that were provided by the students. The utilised fuzzy linear programming approach

operated on the priority preferences to generate the essential weights (i.e., compatible students’ priority

preferences) required by the QFD method to generate the prioritised list of requirements. This hybrid

method successfully prioritised the requirements of students which assisted the educational institute in

updating teaching objectives and techniques according to the requirements of students. Sensitivity

analysis was used to determine the accuracy of the method which showed that this hybrid method

performed better than the traditional requirements prioritisation methods.

Furthermore, the outcomes of the undertaken systematic mapping study are assessed in relation to the

discipline of enquiry, and specifically in terms of hybrid methods in other disciplines apart from

software engineering. In this regard, we found that other disciplines like product manufacturing have

also developed hybrid requirements prioritisation methods that are novel. For instance, Fung et al.

(1996) have combined AHP and QFD to prioritise requirements to improve the design of a product.

Armacost et al. (1994) have also merged QFD and AHP to capture and prioritise the requirements of

52

the stakeholders. Such hybrid methods are particularly suitable for supporting stakeholders’ multi-

criteria decision making process related to requirements prioritisation. In addition, we observed that

specific methods tend to gain attention across the identified disciplines. This aspect is examined further

in the following sub-section.

3.7.4 RQ1.4 What prioritisation methods have been studied or developed?

We were able to identify 157 requirements prioritisation methods that were researched by those

investigating a particular requirements prioritisation problem. We noticed an interest among the

researchers to propose new requirements prioritisation solutions or perform replication studies. AHP,

CV, QFD, NA and PG were the top five prominent requirements prioritisation methods that were given

the most attention by researchers. These methods were involved in different types of research, ranging

from taxonomies, processes to single methods. The merging of these methods to form hybrid

requirements prioritisation methods is noteworthy as evidence points to the fact that many single

methods do not perform satisfactorily on their own (Abou-Elseoud et al., 2016; Achimugu & Selamat,

2015; Sadiq et al., 2017; Yutao Ma et al., 2012). Moreover, we observed that 26 hybrid requirements

prioritisation methods were developed as variations of the top ten requirements prioritisation methods

(refer to Results sub-section 3.5.4). That said, many of these methods were found to be evaluated on a

small number of requirements, and these evaluations involved real world requirements prioritisation

problems. However, researchers of these methods often encountered scalability issues or computational

complexity challenges (Berander & Jonssen, 2006; Thakurta, 2013). From a discipline perspective, we

observed that out of the twelve evaluated hybrid methods, seven were from software engineering, four

were from product manufacturing and one was from the real estate discipline. Among these, hybrid

variants of AHP dominated the entries. However, the hybrid variants of AHP prioritised only a few

requirements and were not capable of handling dependencies among the requirements or requirements

updates. Thus, such approaches were found to be non-scalable. Nonetheless, this method (i.e., AHP)

was researched often as researchers aim to generate accurate prioritisation solutions for a small number

of requirements. That said, there exists an opportunity to investigate and experiment with the

combination of other single methods to validate their utility as hybrid methods.

Interestingly, after reviewing the studies across all the disciplines that highlighted tools and taxonomies,

we found out that only one study from the software engineering discipline indicated that the QFD

method was operationalised in the form of a tool. Similarly, only one study from the product

manufacturing discipline indicated that AHP was contributed as a tool. However, AHP, CV, NA, PG,

HCV, ranking, and priority groups were commonly examined as a part of taxonomies. This shows that

researchers often tend to conduct reviews or empirical studies of the same methods rather than

developing new hybrid methods, which may be derived from other methods.

53

3.7.5 RQ1.5 What are the dimensions that were evaluated for requirements

prioritisation methods?

Our analysis of the dimensions that were evaluated for requirements prioritisation methods revealed

that the majority of the studies have investigated the methods from a single dimension (e.g., time). Some

dimensions (e.g., requirements update) are often neglected when methods are developed and evaluated

in favour of the operational demonstration dimension. Accuracy is often utilised by researchers for

validating correctness of the outcome (i.e., list of prioritised requirements) generated by a requirements

prioritisation method (Achimugu et al., 2016; Asghar et al., 2013; Bebensee et al., 2010). Such studies

ascertain stakeholders’ acceptability of the priorities generated by a requirements prioritisation method.

Accordingly, this dimension is important in determining the effectiveness of a requirements

prioritisation method. In addition, as a product is developed to satisfy the requirements of its

stakeholders, their preferences (i.e., priorities of requirements) act as the ground truth for evaluating the

outcomes of a particular requirements prioritisation method. Hence, this aspect is considered in our

work wherein we utilise stakeholders’ priority preferences to validate the accuracy of the group-based

and individual prioritisation methods.

Next, we noticed that the scalability dimension was utilised by researchers to check for the

accommodation of new requirements during the requirements prioritisation process. In general,

scalability in requirements prioritisation points towards the ability of a requirements prioritisation

method to accommodate a large number of requirements before performing the prioritisation

(Achimugu et al., 2016). Furthermore, computational complexity considered by researchers quantifies

the performance of the requirements prioritisation methods in terms of their space and time complexity.

Studies covering this dimension show that researchers investigated the computational complexity of the

particular requirements prioritisation method to record the requirements prioritisation method’s

execution time and memory utilisation (Thakurta, 2013). The computed computational complexity may

assist researchers to optimise the particular requirements prioritisation method for delivering efficient

performance. However, only three out of the shortlisted seventy-six empirical studies covered the

computational complexity dimension. This suggests that computational complexity is not often

considered to address a requirements prioritisation challenge. This aspect needs the attention of

researchers given that computational complexity influences other dimensions such as time or accuracy

(Voola & Babu, 2017).

As a product evolves after it is launched in the market, its requirements are often subjected to change

(Oliveira & Almeida, 2015). This is particularly evident when certain stakeholders specify changes that

may lead to a change in priorities around requirements or requirements themselves (e.g., the

marketplace to sell or buy products on Facebook app was not initially part of the app’s features).

Therefore, it is beneficial to consider prioritisation mechanisms that accommodate the evolving

54

requirements of a product. That said, only six studies covered the requirements update dimension while

thirteen studies recorded the time required for prioritising a set of requirements. The inclusion of the

time dimension in a requirements prioritisation study is important when the study is related to

enterprises targeting the release of new versions of their products within limited time intervals. This is

because as the amount of time the particular prioritisation method takes for prioritisation should be less

than that of the release date of the new version since there should be enough time for the developers to

address the top concerns that are recommended by the prioritisation methods (Oliveira & Almeida,

2015). Hence, we have included this dimension in our study.

Finally, we reviewed studies that have covered the requirements dependencies dimension with the intent

of considering the discovered knowledge of dependencies among requirements or addressing the

dependencies among the requirements in the process of prioritising those requirements. Such studies

provide an understanding around the way requirements are nested and how such nesting influences

product engineering processes such as impact analysis, planning, design, development, testing, and so

on (Li et al., 2012). The studies covering the requirements dependencies dimension uncovered and

visualised dependencies using graph-based mechanisms. The outcomes of the requirements dependency

analysis are challenging to evaluate given that stakeholders often agree to an outcome, whereas in some

scenarios the requirements dependencies are discovered by a mechanism and the stakeholders may have

limited prior knowledge of the dependencies to evaluate its correctness. Thus, there exists an

opportunity to develop new mechanisms to fulfil this objective where the effectiveness of dependency

mechanisms could be evaluated.

3.7.6 RQ1.6 What are the performance outcome of the evaluations, and is there

evidence of relationships between attributes of requirements prioritisation

methods and their performance outcomes?

We observed that the majority of the studies that included the accuracy dimension had used

stakeholders’ preferences to validate the accuracy of the requirements prioritisation methods. This

assisted researchers to compare the priorities of the requirements generated by the particular

requirements prioritisation method against those provided by the stakeholders to evaluate the method’s

accuracy. Such practice of evaluating accuracy highlights the significance of stakeholders’ preferences

in the requirements prioritisation process, and indicates that requirements prioritisation methods are

developed towards the prioritisation driven by the preferences of stakeholders. This highlights the

importance of addressing the requirements in the order preferred by the stakeholders. Accuracy

measures in the results ranged from 16% to 99%, with ReproTizer tool reported to be most accurate

while accommodating the stakeholders’ preferences (Achimugu et al., 2016). The overhead involved in

getting priority preferences from stakeholders and resolving any conflicts among them is challenging

55

and thus it is conclusive that studies measuring the accuracy of a requirements prioritisation method

tend to operate on limited set of requirements (Asghar et al., 2013; Bebensee et al., 2010; Sadiq, 2017).

With regards to the studies that dealt with the handling of stakeholders’ preferences, we noticed that

researchers had encountered two major challenges. The first challenge was the stakeholders’

preferences were often incomplete or vague, thus making them unsuitable for prioritisation (Inoki et al.,

2014; Voola & Babu, 2013). The second challenge being that the stakeholders had different priority

preferences for the same set of requirements (Bajaj & Arora, 2013; Zhaoling et al., 2009). Initially, the

conflicting preferences had to be transformed into a compatible priority preferences to satisfy the

stakeholders when the requirements prioritisation method was initialised. Fuzzy logic was found to be

an effective solution to achieve this, providing outcomes that were suitable in terms of generating a

prioritised list of requirements that encompassed conflicts, vagueness or uncertainty (Achimugu et al.,

2014; Achimugu et al., 2014b; Bajaj & Arora, 2013). That said, when compared to the accuracy

dimension, it is difficult to evaluate the utility of the outcomes of the stakeholders’ preferences

dimension as there was no objective measure reported that could prove the correctness of processing

the stakeholders’ preferences. Similar conclusions were drawn after reviewing the empirical studies that

focussed on the scalability dimension, where it was observed that the researchers have developed their

own practices to assess the scalability of the requirements prioritisation methods (Achimugu et al.,

2016; Nidhra et al., 2012). For instance, Achimugu et al. (2016) have measured scalability in terms of

the number of requirements their requirements prioritisation tool (ReproTizer) could accommodate at

runtime. Whereas, Nidhra et al. (2012) have utilised the time dimension to informally determine the

scalability of the particular requirements prioritisation methods. Such practices are dissimilar in terms

of how scalability was assessed, thus pointing towards the need for the establishment of a common

practice to assess the scalability of requirements prioritisation method. That said, in our work we term

the empirical requirements prioritisation method handling the highest number of requirements for

prioritisation purpose as most scalable Peng et al. (2012). This is based on the ability of the requirements

prioritisation method to handle the highest number of requirements at runtime (refer to results section,

Table 3.8).

Furthermore, the Big-O notation was most favoured by researchers for computing the computational

complexity of the requirements prioritisation methods. This shows that the performance of any module

(component) of a requirements prioritisation method or the method itself can be inspected and the results

of such an inspection could prove beneficial towards analysing or fixing flaws or to further optimise

the method for better performance. This is clearly evident in the work of Thakurta (2013), where it was

proved that AHP suffered scalability challenges as the number of requirements to prioritise increased

linearly.

56

Only two studies out of the six covering the requirements updates dimension proposed mechanisms that

allowed the particular requirements prioritisation method to handle dynamically changing priorities or

incorporate new requirements during the requirements prioritisation process. These two studies may

inspire the implementation of a requirements prioritisation method that adapts to evolving requirements.

Another dimension that was covered in studies was requirements dependency where the proposed

solutions varied. For instance, Peng et al. (2012) have performed ontology analysis to uncover

dependencies among the classified textual requirements. Other studies that covered the requirements

dependency dimension used matrix or graph-based mechanisms (refer to results section, Table 3.8).

Such mechanism holds promise for discovering dependencies among large-scale requirements,

especially those that are crowdsourced.

With regards to the studies covering the time dimension, we observed that the time required for a

particular requirements prioritisation method to prioritise different sets of requirements was nonlinear.

For instance, several studies utilised AHP, and the time required for AHP to prioritise a given set of

requirements differed (Misaghian & Motameni, 2016; Nidhra et al., 2012; Voola & Babu, 2013; Yutao

Ma et al., 2012). This was because the dimensions accuracy, scalability and stakeholders’ preferences

influenced the total time required for AHP to prioritise the requirements. This suggests that the

requirements prioritisation process tends to influence the outcome measures (e.g., a customisation of

AHP that makes it accurate may make the solution slower, or vice-versa). This in turn could affect the

perception of the dimensions’ utilisation, effectiveness, and outcomes. We further consider this issue in

sub-section 3.7.7.

Finally, we examined the attributes of requirements prioritisation methods and their performance

outcomes. As noted in the Results sub-section 3.5.6, due to the limited number of studies under certain

dimensions such as scalability, requirements updates, requirements dependency and stakeholders’

preferences, and the subjective nature of some of the dimensions (e.g., stakeholders’ preferences), we

were able to include only accuracy and time dimensions for statistical analysis. The statistical analysis

results show that the number of requirements affect the accuracy that was reported marginally. A more

detailed review of the studies covering the accuracy dimension shows that the accuracy of the

requirements prioritisation method was dependent on the complexity of the requirements that were

prioritised, along with the structure and operating mechanism of the particular requirements

prioritisation method (Misaghian & Motameni, 2016; Nidhra et al., 2012; Palma et al., 2011; Voola &

Babu, 2013). In addition, over the years, it was found that requirements prioritisation methods require

less time to prioritise increasing number of requirements (Achimugu et al., 2016; Misaghian &

Motameni, 2016; Voola & Babu, 2013). Such findings are central to the process of scoping a specific

requirements prioritisation problem and developing a problem specific requirements prioritisation

57

solution. Moreover, these findings may inform researchers in terms of optimising the requirements

prioritisation process to produce efficient methods and obtain beneficial results.

3.7.7 Summary of the way evaluated requirements prioritisation dimensions influence

each other

In this sub-section, we summarise the dimensions that were studied by those that have examined

requirements prioritisation to understand how they influence each other. These connections were

revealed after an investigation of the empirical studies in our sample. For instance, Yutao Ma et al.

(2012) study shows that as requirements are subjected to updates, dependencies among old and new

requirements are constantly affected. In another study, McZara et al. (2015) convey that resolving vague

preferences of stakeholders affect the accuracy of requirements prioritisation methods and this

ultimately affected the time that is required for completing the requirements prioritisation process.

Although we are not able to precisely measure the degree of influence the various evaluation dimensions

have on each other, we review certain observed relationships below.

Firstly, multiple studies show that the time dimension is influenced by all the other dimensions (Asghar

et al., 2017; Kukreja et al., 2012; Voola & Babu, 2013; Yutao Ma et al., 2012). Therefore, it can be

inferred that the overall time required for the requirements prioritisation process changes as researchers

add other dimensions (e.g., requirements dependency) for evaluation in their study, or as the nature of

the requirements prioritisation problem and the application of the requirements prioritisation method

varies (Nidhra et al., 2012; Voola & Babu, 2013; Yutao Ma et al., 2012). While only one study

investigated the accuracy of requirements prioritisation method along with its computational

complexity, this investigation allowed the researchers to understand how accuracy and computational

complexity were interrelated (Voola & Babu, 2017). Similarly, stakeholders’ preferences are known to

play a major role in influencing the accuracy of a requirements prioritisation method, as in many

scenarios it is used as the baseline for validating requirements prioritisation outcomes. In fact, given

that stakeholders ultimately assess the outcomes of requirements prioritisation methods, this dimension

also affect requirements updates, scalability and computational complexity dimensions (Achimugu et

al., 2014a; Bajaj & Arora, 2013; Berander & Svahnberg, 2009; Ninaus, 2012).

Furthermore, managing scalability is challenging, and this dimension has an impact on the

computational complexity of a requirements prioritisation method (Bajaj & Arora, 2013; Kukreja et al.,

2012). Interestingly, it was also discovered that requirements updates affected accuracy, scalability,

requirements dependencies, and computational complexity (Achimugu et al., 2016; Asghar et al., 2013;

Perini et al., 2013; Yutao Ma et al., 2012). This is primarily due to the overhead associated with an

increasing number of requirements or their associated updates. Only one study revealed that

requirements updates are dependent on stakeholders’ preferences (Santos et al., 2016). That said,

58

requirements dependencies also impact scalability and computational complexity (Delia Ilie et al., 2009;

Kukreja et al., 2012; Santos et al., 2016; Sharma, 2007). In addition, prior to evaluation, any empirical

requirements prioritisation method is established to be operational. Such considerations are insightful

for balancing the trade-offs in performance outcomes of requirements prioritisation methods.

3.8 Threats to Validity

In this section, we present the threats to validity that can potentially affect the outcomes reported in this

systematic mapping study on requirements prioritisation.

The selection of studies in the systematic mapping study can be seen as a threat as we have considered

studies which were published in English language, and thus, we might have missed pertinent studies

documented in other languages. Subsequently, we have not targeted studies that were not peer-reviewed

(e.g., technical reports, proposals) or reports (e.g., thesis) which may contain relevant details for

answering the research questions RQ1.1 to RQ1.6. The approach used to develop the search keywords

could potentially pose a threat. However, we have conducted substantial searches to understand the

keywords that are used for identifying studies on requirements prioritisation (Broder, 2002; Lorigo et

al., 2008). In this regard, we have followed the guidelines provided by Kitchenham (2007) for piloting

search keywords that are likely to uncover a substantial number studies rather than miss out on the

pertinent studies. Hence, although posing a threat with regards to the large number of studies that were

returned for shortlisting, broader search keywords were utilised to reduce or avoid the threat of missing

studies, as specific keywords covering narrow search could have resulted in missing certain studies. To

address this, formal reliability checks were performed to ensure agreement on the excluded and included

studies. Furthermore, beyond using the broad search keywords to address the threat related to missing

of relevant papers for answering RQ1.1 to RQ1.6, systematic searches were conducted in eight

prominent digital knowledge databases as recommended by Kitchenham (2007).

It is to be noted that, for the subsequent chapters, we have summarised the threats to validity associated

with these Chapters into three relevant sub-sections: internal validity, external validity and construct

validity. Internal validity reflects the confidence in results, and the factors that are attributed towards

the results. In other words, internal validity rules out alternative explanations for a result. Due diligence

towards minimising this threat involves the consideration of all possible factors associated with the

suitable research activities to perform robust research. Such activities include developing a suitable

research methodology, formulating appropriate research questions, extensive searches for literature,

utilising the right protocol for performing literature searches, experiments, relevant rigorous

assessments, standard reliability assessment procedures and so on that generate reliable research

outcomes (Grafton et al., 2011). External validity highlights aspects related to the generalisability of

59

the outcomes and construct validity points towards the validity of the conclusions that are drawn from

the results generated from the conducted experiments (Grafton et al., 2011).

That said, we provide the concluding remarks of this phase, its research contributions and summary of

implications in the Conclusion chapter (refer to Chapter 7). In the next chapter, we present the details

of Phase 2 (i.e., filtering of useful reviews)

60

4 Filtering of Useful Reviews

In this chapter, we present phase 2 of the undertaken research through a pilot study where we worked

on an approach to filter useful reviews from a vast pool of reviews (RQ2) by answering RQ2.1 that

dealt with the investigation of the performance of six Naïve Bayes variants by exploring their utility

towards the automated filtering of useful reviews based on a set of rules that distinguished useful

reviews from the non-useful ones.

4.1 Introduction

Manually identifying and extracting useful reviews from a vast pool of reviews is a challenging task as

it requires high levels of cognitive load, time and effort from the app developers and this task may be

compounded due to the presence of large numbers of non-useful reviews (Pagano & Maalej, 2013;

Panichella et al., 2015). Moreover, as the group of app developers usually tend to be small, error

proneness and lack of scalability may compromise the manual filtering task. Thus, in this phase we

conducted a pilot study to review information retrieval studies in which the limitations of the filtering

approaches proposed by these studies were observed (Fu et al., 2013; Keertipati et al., 2016). The most

significant limitation was that the approaches often failed to filter most of the useful reviews.

Furthermore, in studies from the software engineering disciplines it was found out that Multinomial

Naïve Bayes method was proven to be most appropriate and reliable for automating the filtering

approaches based on a set of predefined rules (i.e., classifying new information using previously

classified information) (Caruana & Niculescu-Mizil, 2006; Wang et al., 2018). Therefore, we identified

and empirically evaluated six variants of the Multinomial Naïve Bayes method and benchmarked their

performances. We present the essential details associated with this phase for piloting and evaluating the

proposed filtering approach to identify useful reviews in the next sub-sections.

4.2 Related Studies

Traditional filtering approaches cannot reliably filter useful reviews as they are unable to perform

filtering based on the disambiguation of the information conveyed by the reviews (Pagano & Maalej,

2013). For instance, Licorish et al. (2017) have filtered reviews whose ratings were less than 3 and thus

may have missed out on crucial reviews that had higher ratings that may reflect useful end-user feedback

about improving an app. In another study, Fu et al. (2013) have used sentiment analysis to filter reviews

having negative end-users’ sentiments associated with them with the assumption that such reviews

indicate app issues (bugs). Similarly, Shah et al. (2018) have evaluated the performance of BoW (Bag

of Words) and CNN (Convolutional Neural Networks) towards the extraction of app features from

reviews. It was reported by the authors that BoW performed better than CNN but suffered from

overfitting of the learning data (Luo et al., 2014). These filtering approaches usually tend to miss some

of the useful reviews or return non-useful reviews (Hoon et al., 2013). For instance, consider a review

61

that is filtered based on negative sentiment and lower rating filtering approach, ‘(a) Useless app,

uninstalling it as it left me very disappointed  !!’, and another review discarded because of its higher

rating ‘(b) Fantastic app and works well but has a small problem with screen resolution and sometimes

lags’. App developers may find review (a) to be of no use, and on the contrary, addressing review (b)

allows the app developers to fix bugs related to screen resolution and optimisation of the app.

Apart from the filtering approaches mentioned above, linguistic approach governed by a set of

application specific filtering rules are seen promising by researchers. For instance, Iacob and Harrison

(2013) have defined a set of linguistic rules to extract only feature requests (i.e., unigrams of interest)

from reviews. Such an approach is often combined with an appropriate machine learning method for

scalability purpose to identify useful features that require attention. For instance, Cleland-Huang et al.

(2007) have developed a machine learning method (i.e., probabilistic classifier) to classify non-

functional requirements by predicting their appropriate labels (i.e., performance, availability, security,

usability and so on). However, the machine learning method (like many others) used by the authors

require a large amount of learning data (i.e., requirements with their associated labels) to attain the

required level of accuracy needed for performing predictions (Michie et al., 1994). That said,

Multinomial Naïve Bayes is the most popular and commonly utilised supervised machine learning

method that has been empirically evaluated to be a reliable option for text related software engineering

applications (i.e., information conveyed through English language and expressed in text) and was found

to outperform other machine learning methods (Caruana & Niculescu-Mizil, 2006). For instance, Wang

et al. (2018) have benchmarked the performance of Decision Trees, KNN (K Nearest Neighbours),

Bagging and Multinomial Naïve Bayes towards the classification of functional and non-functional

requirements, and discovered that Multinomial Naïve Bayes generated most reliable results. Moreover,

Multinomial Naïve Bayes often prevents overfitting of the data made available for learning purpose due

to its mechanism of generalisation towards predictions, further leading towards the requirement of less

data for learning purpose (McCallum & Nigam, 2001). In addition, the semi-supervised variant of

Multinomial Naïve Bayes method i.e., Expectation Maximisation for Multinomial Naïve Bayes further

reduces the amount of data required for learning purpose (Collins, 2012; Nigam et al., 2000). Thus,

Multinomial Naïve Bayes method is widely used in software engineering applications such as software

bug predictions, predicting the labels of non-functional requirements, spam content filtering and so on

(Bacchelli et al., 2012; Calders & Verwer, 2010). One study has developed a filtering approach to

predict useful reviews using the Multinomial Naïve Bayes method, however the algorithmic and

implementation details of the approach were not provided. In addition, even though the filtering

approach was used to predict numerous useful reviews belonging to different apps, the approach’s

filtering performance (F-Measure = 0.86) was reported for reviews of only one app, further questioning

its generalisability (Chen et al., 2014). This also raises the question ‘Under what circumstances and

settings does the Multinomial Naïve Bayes method deliver the reported performance?’. Hence, based

62

on the recommendations provided by the above-mentioned pertinent studies that show the Multinomial

Naïve Bayes method to be superior in terms of performance than other algorithms for software

engineering based application, we shortlisted and reviewed the method and its associated concepts for

further investigation. Subsequently, this method is specialised in text based prediction applications, and

further assisted us to identify and evaluate six variants of Multinomial Naïve Bayes methods towards

their utility for information retrieval (i.e., filtering useful reviews) via text classification (Collins, 2012;

Nigam et al., 2000; Yuan et al., 2012). The prime objective of investigating these variants is to assist

app developers in filtering useful reviews to support the maintenance and evolution cycles of the apps.

This leads to the RQ

RQ2.1 What are the performances of the Multinomial Naïve Bayes variants when

extracting useful reviews, and are there differences in the outcomes of these variants?

It is to be noted that while Multinomial Naïve Bayes stands out as one of the most suitable for filtering

of useful reviews, we have not observed published efforts aimed at designing its possible variants and

evaluating the performances of those variants.

4.3 Methods and Concepts

We introduce the Multinomial Naïve Bayes method and concepts that assisted us in developing the six

variants. The prime objective of these variants is to filter useful reviews by classifying useful and non-

useful reviews present in the vast pool of reviews through means of learning and predictions. The

required set of useful and non-useful reviews for learning purpose can be manually labelled using a set

of filtering rules proposed by Chen et al. (2014). The rules related to useful reviews indicate feature

requests (e.g., “please add the feature to search for multiple routes”), bugs (e.g., “the map freezes after

few minutes of loading”) or enhancements (e.g., “I suggest you also add the black theme for the layout

to make it look better”). Subsequently, non-useful reviews indicate unwanted and irrelevant information

(e.g., “stupid app is useless, uninstalling now!”). Thus, the objective of the respective variant is to assign

each review to one of the two categories (C) (i.e., useful or non-useful) wherein each category would

contain reviews with properties reflecting the relevant filtering rules. In the learning (training) stage the

particular variant generates a classifier trained from a set of substantial manually labelled reviews that

predicts the categories of unlabelled reviews in the classification stage (prediction or testing) and so the

useful reviews can be distinguished from the non-useful ones for filtering purpose. In the following sub-

sections, we document the transformation of reviews into a suitable dictionary that is used as an input

for the six variants. Then we provide the overview of the Multinomial Naïve Bayes method followed

by the concepts of Complement, Laplace Smoothing and Expectation Maximisation.

63

4.3.1 Reviews Pre-Processing

Text pre-processing allows the conversion of reviews into subsequent word vectors through a series of

pre-processing operations (Aggarwal & Zhai, 2012). We pre-process the reviews by removing numbers,

whitespaces, special characters (e.g., $, #) and punctuations (e.g., !, ?) before transforming them into

lower case (Maalej et al., 2016a). Later, any stop words (e.g., is, and) present in the pre-processed

reviews are removed and lemmatisation is performed to generate the original dictionary form of the

words present in the pre-processed reviews (Maalej et al., 2016a). These mentioned steps are standard

text pre-processing operations that are performed by researchers to have reliable features (words) for

the specific research purpose (e.g., learning and prediction), and simultaneously prevent the generation

of unreliable and noisy results (Maalej et al., 2016a). The final set of pre-processed reviews are used to

form the dictionary (D) that provides the required word frequency information for the variants

(McCallum & Nigam, 2001).

4.3.2 Multinomial Naïve Bayes

Multinomial Naïve Bayes is an extended version of the basic Naïve Bayes method and is specialised

for text based machine learning classification applications (McCallum & Nigam, 2001). The foundation

of this method is based on the principle of maximum likelihood estimates as the method uses word

frequency information extracted from the reviews. Initially, Multinomial Naïve Bayes computes the

probability of a review belonging to a particular category (C) which is given as

P(C) = Nrs(r=C) / Nrs (1)

Where, Nrs indicates the total number of reviews and Nrs(r=C) indicates the number of reviews

belonging to a category C, and C = {useful, non-useful}. Subsequently, the maximum likelihood

estimate is computed as

P(wn|C) = freq(wn, C) / ∑w∊D freq(w, C) (2)

Where, P(wn|C) indicates the conditional probability of a word wn given that it belongs to category C

which is given as the ratio of the total number of occurrences of the word wn in category C to the total

number of words w present in the reviews of category C. This is the fraction of the total number of

times word wn appears among all words (D) in the reviews that belong to category C. The Multinomial

Naïve Bayes method generates a word space for a category C by creating a dictionary of words

belonging to the reviews of category C. This is achieved by identifying the frequency of occurrence of

each word w. Using equations (1) and (2), the category of a review R can be predicted using

CMAP(R) = argmaxc (P(C) * Πn P(wn|C)) (3)

64

CMAP indicates the most probable category defined as maximum a posteriori (MAP) which indicates the

most likely category C for a review R given as the arguments of maxima over all the categories of the

priori times the likelihood. The learning and prediction stage of Multinomial Naïve Bayes method is

given in algorithm 1 (McCallum & Nigam, 2001)

Algorithm 1: Learning and prediction stage of Multinomial Naïve Bayes

Input: A set of reviews

Processing:

Begin

1. From the manually labelled reviews, extract Dictionary (D)

2. Calculate all the P(C) terms

 2.1 For each C do:

 2.1.1 reviewsC  all reviews in category C

 2.1.2 P(C)  |reviewsC| / |Total reviews|

3. For every word wn, given every category C

 3.1 Calculate P(wn|C) (maximum likelihood estimates)

 3.1.1 WordSpaceC  words belonging to reviewsC

 3.1.2 For each word wn in the Dictionary (D)

 3.1.2.1 nn  Total occurrences of wn in WordSpaceC

 consisting of a total of n words

 3.1.2.2 P(wn|C)  nn / n

4. For every unlabelled review (R):

 4.1 Compute CMAP(R)

End

Output: Each review categorised into one of two categories (useful and non-useful).

4.3.3 Complement Naïve Bayes

The Complement Naïve Bayes is the complement concept of Multinomial Naïve Bayes that computes

the likelihood of a category C using the training data of all the other categories C̅ other than C. The

Complement Naïve Bayes was developed to address a potential drawback of the Multinomial Naïve

Bayes method which was its inability to generate accurate predictions if the method was trained with

data (reviews) having imbalanced labels (categories), i.e., the reviews in the learning stage did not

belong to approximately equal number of different types of categories (Rennie et al., 2003). Using

equation (1), the Complement Naïve Bayes computes the prior probability. However, unlike the

Multinomial Naïve Bayes method, the Complement Naïve Bayes computes the likelihood of a word wn

by considering its occurrences in category(ies) C̅ other than C. Thus, the maximum likelihood is

calculated as

P(wn|C̅) = freq(wn, C̅) / ∑w∊D freq(w, C̅) (4)

65

Where P(wn|C̅) indicates the conditional probability of a word wn given that it belongs to category(ies)

C̅ which is given as the ratio of the total number of occurrence of the wn in category(ies) C̅ to the total

number of words w present in the reviews of category(ies) C̅. The Complement Naïve Bayes creates a

word space for a category C by creating a dictionary of words belonging to the reviews of category(ies)

C̅ by identifying the occurrences of w. Using equations (1) and (4), the category of a review R is

predicted using

CMAP (R) = argminC (P(C) * Πn (1/ (P(wn|C̅)))) (5)

Where CMAP (R) indicates the most probable category given as the argument of the minimum of

likelihood estimates of the category(ies) computed as priori times the inverse likelihood. The learning

and prediction stage of Complement Naïve Bayes is given in algorithm 2 (Rennie et al., 2003).

Algorithm 2: Learning and prediction stage of Complement Naïve Bayes

Input: A set of reviews

Processing:

Begin

1. From the manually labelled reviews, extract Dictionary (D)

2. Calculate all the P(C) terms

 2.1 For each C do:

 2.1.1 reviewsC  all reviews in category C

 2.1.2 P(C)  |reviewsC| / |Total reviews|

3. For every word wn, given every category C

 3.1 Calculate P(wn|C̅) (maximum likelihood estimates)

 3.1.1 WordSpaceC  words belonging to reviews of category(ies) C̅

 3.1.2 For each word wn in the Dictionary (D)

 3.1.2.1 nn  Total occurrences of wn in WordSpaceC

 consisting of a total of n words

 3.1.2.2 P(wn|C̅)  nn / n

4. For every unlabelled review (R):

 4.1 Compute CMAP(R)

End

Output: Each review categorised into one of two categories (useful and non-useful).

4.3.4 Laplace Smoothing

The parameters of equations (2) and (4) that compute the maximum likelihood estimates are unable to

deal with zero probabilities (Lowd & Domingos, 2005). Multinomial Naïve Bayes and Complement

Naïve Bayes would return zero probability of a word if the particular word is not present in the learning

stage which in turn affects the accuracy of prediction. This problem is resolved by subjecting the

parameters to Laplace Smoothing (Jung et al., 2016; Yuan et al., 2012). Laplace smoothing enables the

particular Multinomial Naïve Bayes variant (e.g., Complement Naïve Bayes) to keep track of the

66

frequency of words in predicting the relevant category by adding 1 to parameters to manage the zero

occurrences of a particular word efficiently. Utilisation of the Laplace Smoothing concept is of prime

importance when the particular Multinomial Naïve Bayes variant comes across a word in the prediction

stage (classification) whose information is not present in the learning (training) stage. Hence, we update

equations (2) and (4) to incorporate the Laplace Smoothing concept to manage the information related

to a particular missing word wn. For Multinomial Naïve Bayes using equation (2) the parameter that

performs maximum likelihood estimation based on Laplace Smoothing is given as

P(wn|C) = (freq(wn, C) + 1) / (∑w∊D freq(w, C) + |D|) (6)

Similarly, for Complement Naïve Bayes using equation (4) the parameter that performs maximum

likelihood estimation based on Laplace Smoothing is given as

P(wn|C̅) = (freq(wn, C̅) + 1) / (∑w∊Dfreq(w, C̅) + |D|) (7)

In equations (6) and (7), as the addition of 1 is considered in the numerator, the size of the dictionary

(|D|) is added in the denominator indicating the addition of one for every dictionary word in the

denominator. Based on equations (6) and (7) the learning stages of Multinomial Naïve Bayes and

Complement Naïve Bayes can be updated accordingly.

4.3.5 Expectation Maximisation

Multinomial Naïve Bayes and Complement Naïve Bayes are supervised machine learning algorithms

that require a substantial number of manually labelled reviews to learn a classifier that is capable of

accurately predicting the category of an unlabelled review (McCallum & Nigam, 2001; Rennie et al.,

2003). Manually labelling the required number of reviews might become a time consuming task

associated with potential errors. An appropriate semi-supervised learning concept addresses this

drawback by reducing the labelling effort demanded from humans and Expectation Maximisation (EM)

is a popular and commonly utilised semi-supervised concept (Collins, 2012; Nigam et al., 2000). EM

comprises of two steps, Expectation (E) and Maximisation (M). The E step predicts and generates the

unknown information based on the current maximum likelihood estimation parameters initiated by

Multinomial Naïve Bayes method and the M step iteratively re-estimates the parameters which leads to

the maximisation of the overall likelihood (Collins, 2012). EM allows the Multinomial Naïve Bayes

method to run repeatedly until the maximum likelihood estimates become constant (Nigam et al., 2000).

The goal of EM concept for this study is to create the respective semi-supervised variants of the

Multinomial method and these variants were developed according to the algorithm mentioned in

(Collins, 2012; Nigam et al., 2000). The initial stages of EM would consist of training the Multinomial

Naïve Bayes method on the manually labelled categories of reviews and then later, using the learned

information on categories related to the reviews to make predictions on the unlabelled reviews. Thus,

67

the predictions can be transformed into categories and can be utilised for subsequent iterative training

of the Multinomial Naïve Bayes method using the unlabelled reviews with the previously predicted

categories. The entire procedure needs to be repeated until the value generated by the maximum

likelihood parameters becomes constant (likelihood is computed using the entire corpus of pre-

processed reviews). The above-mentioned details of the EM of Multinomial Naïve Bayes (Collins,

2012;)Nigam et al., 2000) have been elaborated stepwise in algorithm 3. The detailed explanation of

the mentioned algorithm is as follows; consider a reviews set RS containing reviews wherein each

review is manually labelled with a category C (useful or non-useful). The prime objective of EM is to

predict the categories of the unlabelled reviews based on the prediction mechanism of Multinomial

Naïve Bayes. In every iteration, EM calculates the appropriate probabilistic category and assigns it to

the particular unlabelled review, that is P(Cu|Ri) which is estimated to be 0 or 1. Here Cu denotes the

particular category and Ri indicates the particular review. The labelled reviews having a specific

category (a) is known prior, hence P(Ca|Ri) = 1 and P(Cb|Ri) = 0 for a ≠ b. Using the information of

labelled reviews and P(Cu|Ri) an updated version of the Multinomial Naïve Bayes classifier is generated

which works in a recursive manner until P(wn|C) and P(C) become constant.

Algorithm 3: Expectation Maximisation of Multinomial Naïve Bayes

Input: A set of reviews

Processing:

Begin

1. Train the Multinomial Naïve Bayes mNB from the manually labelled and pre-processed set of reviews R.

2. Expectation (E):

 2.1 For each review Ri in the review set RS

 2.1.1 Using the method mNB, calculate P(Cu|Ri)

3. Maximization (M):

 3.1 Train an updated version of mNB from R ∪ RS by calculating P(C) and P(wn|C)

4. Repeat steps 2 and 3 until mNB’s parameters (maximum likelihood estimators) become constant.

5. Return mNB after completion of step 4.

End

Output: Each review categorised into one of two categories (useful and non-useful)

That said, while EM integrates well with Multinomial Naïve Bayes, the Complement Naïve Bayes does

not support any generative interpretations, and hence the creation of its EM variant is not possible

(Rennie et al., 2003).

4.4 Multinomial Naïve Bayes Variants

The six Multinomial Naïve Bayes variants that were an outcome of the method and the concepts

mentioned in section 4.3 are briefly elaborated in Table 4.1. Table 4.1 provides the name of the

68

particular variant along with its description. We first formulated the variants belonging to the

Multinomial Naïve Bayes method. Based on the method mentioned in sub-section 4.3.2 and the

concepts mentioned in sub-sections 4.3.4 and 4.3.5, there are four possible variants (I, II, III and IV)

related to the Multinomial Naïve Bayes method. Similarly, based on the Complement concept

mentioned in sub-section 4.3.3 and the concept mentioned in sub-sections 4.3.4 we formulated two

possible variants (V and VI) of Complement Naïve Bayes.

Table 4.1 Six Multinomial Naive Bayes variants

Variant Name Description

I Multinomial Naïve Bayes This variant is the Multinomial Naïve Bayes method

introduced in sub-section 3.2.2.2

II Expectation Maximisation

of Multinomial Naïve

Bayes

The Expectation Maximisation concept described in sub-

section 3.2.2.5 has been integrated with I. Therefore, this

variant is the semi-supervised version of I

III Multinomial Naïve Bayes

with Laplace Smoothing

The Laplace Smoothing concept described in sub-section

3.2.2.4 has been incorporated in I and therefore this variant

is the post version of I.

IV Expectation Maximisation

of Multinomial Naïve

Bayes with Laplace

Smoothing

The Multinomial Naïve Bayes method has been integrated

with Expectation Maximisation concept and incorporated

with Laplace Smoothing concept making this variant a

semi-supervised version of III and a post version of II.

V Complement Naïve Bayes This variant is the Complement concept of the Multinomial

Naïve Bayes method described in sub-section 3.2.2.3.

VI Complement Naïve Bayes

with Laplace Smoothing

Variant V has been incorporated with the concept of

Laplace Smoothing making this variant a post version of V.

4.5 Experimental Settings

In this pilot study, the six variants described in Table 4.1 were implemented using Python7 with the

support of suitable libraries provided by Natural Language Tool Kit8 (NLTK), numpy9 and scikit-learn10

packages. In the remaining experiments conducted in the subsequent phases, all the necessary

implementations were done using the same programming language and the supporting libraries.

Moreover, we utilised R11 to perform the necessary statistical computing and analysis. That said, the

performances of the six variants towards filtering of useful reviews were evaluated using the datasets

provided by the app developers belonging to two different apps. In addition, the two supervisors of this

PhD study had previously worked with some of the datasets while providing insights for the app

developers, and hence, the supervisors have a thorough understanding and knowledge of the contents

of these datasets that was later shared with the candidate of this PhD study (Keertipati et al., 2016;

7 https://www.python.org/
8 https://www.nltk.org/
9 https://numpy.org/
10 https://scikit-learn.org/
11 https://www.r-project.org/

69

Licorish et al., 2017). The first dataset belonged to My Tracks app and the second dataset belonged to

Flutter app (Keertipati et al., 2016; Licorish et al., 2017). My Tracks dataset consisted of 4003 reviews

while Flutter dataset consisted of 3483 reviews. Using the set of filtering rules defined in (Chen et al.,

2014) we independently labelled the reviews of both datasets before reliability assessments were

performed. The task of manual labelling was undertaken to empirically evaluate the performances of

six variants based on the domain knowledge made available by humans (i.e., cross-validating the results

generated from human decisions against those generated by the respective variant). Such cross

validation approaches are deemed reliable and the provided domain knowledge acts as the ground truth

(Stumpf et al., 2007). That said, after performing the reliability assessments the Fleiss coefficients were

found to be 0.74 (substantial agreement) and 0.77 (substantial agreement) for My Tracks and Flutter

datasets (Landis & Koch, 1977). Follow up discussions were held to resolve any disagreements and

establish consensus leading to 100% agreement. Based on the manual labelling task, My Tracks dataset

consisted of 1638 (41%) useful reviews and 2365 (59%) non-useful reviews. Flutter dataset consisted

of 2433 (70%) of useful reviews and 1063 (30%) of non-useful reviews making it imbalanced (Rennie

et al., 2003).

The objective of classifying the reviews using the particular variant is to determine the category of each

review by means of learning and prediction mechanism of the variant. The performance of each variant

towards the binary classification of reviews present in the two datasets was evaluated using standard

metrics such as accuracy, precision, recall, F-Measure and time (Michie et al., 1994; Sokolova &

Lapalme, 2009). As app developers want to extract useful reviews in a timely manner due to the time

constrained app maintenance and evolution cycles, we note the time (in seconds) required by each

variant to perform learning and predictions (Michie et al., 1994). Accuracy determines the ability of a

variant to correctly predict the category of the reviews given as the number of correctly classified

reviews among the total number of classified reviews (Sokolova & Lapalme, 2009) and is given as

Accuracy = (true positives + true negatives) / (true positives + true negatives + false positives + false

negatives) (8)

In (8), true positives term indicates the number of reviews correctly predicted as useful, true negatives

indicates the number of reviews correctly predicted as non-useful, false positives indicates the number

of reviews that were predicted as useful but were actually non-useful and false negatives indicates the

number of reviews that were predicted as non-useful but were actually useful.

Precision indicates the number of correctly predicted useful reviews among the total number of reviews

predicted as useful and recall indicates the number of correctly predicted useful reviews to the total

number of actual useful reviews (Sokolova & Lapalme, 2009), and both are given as

70

Precision = true positives / (true positives + false positives) (9)

Recall = true positives / (true positives + false negatives) (10)

F-Measure is the harmonic mean of precision and recall which determines the robustness of the variants

(Sokolova & Lapalme, 2009), and is given as

F-Measure = 2 * (Precision * Recall) / (Precision + Recall) (11)

The computer used for the conducting the experiments of this phase including those in the other phases

had a CORE i5 CPU and 14GB RAM. For each experiment of this phase, we randomly split the

respective dataset into a training set (90%) that is used to learn the relevant variant and a testing set

(10%) which is used to evaluate the performance of the variant in predicting the categories of the

nondisclosed reviews. Each experiment was run 100 times using ten-fold cross validation mechanism

to obtain average results of the metrics mentioned above, and such evaluation approach is traditionally

followed by researchers to ensure the stability of the machine learning methods (Arlot & Celisse, 2010;

Kohavi, 1995).

We present the results of the experiments conducted on the two datasets in the Results section.

4.6 Results

In this section, we present the results of the pilot study conducted towards the filtering of useful reviews.

We report the average results of 100 times ten-fold cross validation operations conducted on My Tracks

and Flutter datasets in Table 4.2 and Table 4.3 respectively. These results provide context for answering

RQ2.1 and provide triangulations for RQ2.

4.6.1 My Tracks Dataset

Initially, we evaluated the performance of the six Multinomial Naïve Bayes variants on the My Tracks

dataset. Table 4.2 indicates average performances of the variants for the My Tracks dataset.

Table 4.2 Multinomial Naive Bayes variants average performance on My Tracks dataset

Variant Accuracy

(%)

Precision

(0-1)

Recall

(0-1)

F

(0-1)

Time

(seconds)

I 68.1 0.56 0.98 0.71 0.26

II 80.4 0.73 0.88 0.80 0.30

III 87.4 0.81 0.91 0.86 0.12

IV 89.2 0.84 0.94 0.89 0.19

V 84.6 0.76 0.90 0.82 0.15

VI 86.5 0.78 0.91 0.84 0.10

71

Initially, we conducted the Shapiro-Wilk test to evaluate the distribution of the results generated by

each variant (i.e., 100 results of each variant) (Sheskin, 2003). From the conducted test, we found no

evidence regarding normal distribution of the results (p-value < 0.01). Hence, we conducted the

Kruskal-Wallis non-parametric test to check for statistically significant differences between the results

of the Multinomial Naïve Bayes variants (Sheskin, 2003). Result of the conducted test showed that there

were statistically significant differences (p-value < 0.01) among all the results of the Multinomial Naïve

Bayes variants for all performance metrics (i.e., accuracy, precision, recall, F-Measure and time). Thus,

we performed the pairwise Wilcox test to evaluate pairwise comparisons between the results of the

Multinomial Naïve Bayes variants with corrections for multiple testing (Wilcox, 2011). We observed

statistically significant differences for all comparisons (p-value < 0.01) pertaining to the accuracy,

precision, recall, F-Measure and time metrics.

As observed from Table 4.2 variant I exhibited the lowest accuracy (68.1%) and F-Measure (0.71)

compared to the other variants. On the contrary, variant IV exhibited the highest accuracy (89.2%) and

F-Measure (0.89). In addition, variant VI required the least amount of time to perform learning and

predictions (0.10 seconds) while variant II required the highest time (0.30 seconds). Moreover, the semi-

supervised variants II and IV performed better than their supervised variants I and II in terms of

accuracy (80.4% versus 68.1%, 89.2% versus 80.4%) and F-Measure (0.80 versus 0.71, 0.89 versus

0.80). However, these semi-supervised variants required more time than their predecessor variants. The

supervised variants III, V and VI outperformed semi-supervised variant II in terms of accuracy (87.4%,

84.6%, 86.5% versus 80.4%), F-Measure (0.86, 0.82, 0.84 versus 0.80) and time (0.12 seconds, 0.15

seconds, 0.10 seconds versus 0.30 seconds). The variants V and VI derived from the Complement

concept outperformed variants I and II in terms of accuracy (84.6%, 86.5% versus 68.1%, 80.4%), F-

Measure (0.82, 0.84 versus 0.71, 0.80) and time (0.15 seconds, 0.10 seconds versus 0.26 seconds, 0.30

seconds). Similarly, variants III and IV outperformed variants I and II in terms of accuracy (87.4%,

89.2% versus 68.1%, 80.4%), F-Measure (0.86, 0.89 versus 0.71 and 0.80) and time (0.26 seconds, 0.30

seconds versus 0.12 seconds, 0.19 seconds). Furthermore, Laplace smoothing led towards an increase

in accuracy of variants III, IV and VI when compared to their respective earlier versions I, II and V

(87.4% versus 68.1%, 89.2% versus 80.4%, and 86.5% versus 84.6%) and F-Measure (0.86 versus 0.71,

0.89 versus 0.80, and 0.84 versus 0.82). In addition, Laplace smoothing assisted in reducing the time

required for performing learning and predictions in cases of the same variant pairs (III-I, IV-II, and VI-

V).

4.6.2 Flutter Dataset

Next, we evaluated the performances of the six variants on Flutter dataset. Table 4.3 indicates the

average performances of the variants.

72

Table 4.3. Multinomial Naive Bayes average performance on Flutter dataset

Variant Accuracy

(%)

Precision

(0-1)

Recall

(0-1)

F

(0-1)

Time

(seconds)

I 76.2 0.75 0.97 0.85 0.19

II 80.3 0.82 0.91 0.86 0.23

III 80.5 0.81 0.94 0.87 0.12

IV 82.3 0.84 0.93 0.88 0.16

V 80.4 0.83 0.87 0.85 0.10

VI 84.4 0.87 0.91 0.89 0.08

Firstly, we repeated the Shapiro-Wilk test to investigate the distribution of the results generated by each

variant and observed no normal distribution (p-value < 0.01). Hence, we conducted the Kruskal-Wallis

test followed by the pairwise Wilcox test to check for any statistically significant differences among all

the results of the six variants in Table 4.3. Both tests returned statistically significant differences (p-

value < 0.01).

That said, as observed from Table 4.3, variant I exhibited the lowest accuracy (76.2%), whereas VI had

the highest accuracy (84.4%), F-Measure (0.89) with least time (0.08 seconds) required for performing

learning and predictions. Variant II had the highest time requirements (0.23 seconds) and variant IV

ranked second in terms of accuracy (82.3%) and F-Measure (0.88). Variants II, III and V did not exhibit

large differences in magnitude of accuracy and F-Measure results despite these differences being

significant statistically (p-value < 0.01). In addition, Laplace smoothing assisted in reducing the time

required by variants III, IV and VI to perform learning and predictions in comparison to their respective

earlier versions I, II and V (0.12 seconds versus 0.19 seconds, 0.16 seconds versus 0.23 seconds, and

0.08 seconds versus 0.10 seconds). Laplace smoothing also assisted in increasing the accuracy (80.5%

versus 76.2%, 82.3% versus 80.3%, and 84.4% versus 80.4%) and F-Measure (0.87 versus 0.85, 0.88

versus 0.86, and 0.89 versus 0.85) in cases of the same variant pairs (III-I, IV-II, and VI-V).

Furthermore, based on the evaluation results of My Tracks and Flutter datasets, in case of pure

Multinomial Naïve Bayes variants (i.e., excluding the Complement concept) variant IV outperformed

the other variants in terms of accuracy and F-Measure while variant III had the least time requirements

to perform learning and predictions. In cases of variants belonging to the Complement concepts, variant

VI outperformed its predecessor variant V in terms of accuracy, F-Measure and time.

We discuss the results of the undertaken pilot study on useful reviews filtering and the considerations

of their implications in the Discussion section.

73

4.7 Discussion

As reviews pertaining to an app usually tend to be numerous, there was a necessity to develop an

automated filtering approach to identify and extract useful reviews. Doing so would not only assist the

app developers to analyse or visualise information within the filtered useful reviews which is beneficial

but also generate accurate and timely classification or prioritisation results, as significant amount of

noisy and unwanted information negatively affecting the accuracy and time metrics would be avoided.

The studies on requirements elicitation identified from the systematic study on requirements

prioritisation were the primary source of inspiration for such a filtering approach along with the need

to process large numbers of reviews associated with apps which majorly consist of non-useful reviews

(i.e., irrelevant information for app developers) (Chen et al., 2014; Garg et al., 2017; Sadiq et al., 2017).

This guided us to review studies that specialised in automated filtering of information that was of

interest to the researchers. In this regard, we identified several studies from the app reviews domain but

these studies had several limitations in their proposed filtering approaches (refer to section 4.2).

However, continuing our search further, we identified a study that showed the rule based Multinomial

Naïve Bayes method is one of the most reliable and suitable approach to filter useful reviews (Chen et

al., 2014). As the study did not provide the algorithmic and implementation details of the method, apart

from the rules for filtering, we had to examine the Multinomial Naïve Bayes method which lead to the

discovery of six variants pertaining to the same method whose utility towards filtering useful reviews

was investigated in our pilot study. Such an empirical evaluation was never performed in any prior

studies, which allowed us to provide a contribution to the software engineering discipline. The sub-

section below discusses the results and implications of RQ2.1.

4.7.1 RQ2.1 What are the performances of Multinomial Naïve Bayes variants when

extracting useful reviews, and are there differences in outcomes of the different

implementations?

When the results for the two datasets (i.e., My Tracks and Flutter) are observed, we notice varied

performances exhibited by the six variants of Multinomial Naïve Bayes (Schaffer, 1993). This is

inferred based on the results conveyed through accuracy, F-Measure and time metrics (Schaffer, 1993).

We believe the features affiliated with each label (i.e., useful or non-useful) play a significant role in

predicting the relevant label of a review (Yuan et al., 2012; Zhu et al., 2006). This may be the reason

behind the variations in performances exhibited for the six variants when predicting useful and non-

useful reviews for the two datasets. Based on this observation, we are of the opinion that the variants

may reliably predict the label of each review if the features associated with the label had substantial

degree of distinctness (i.e., features related to a label are notably discrete in comparison to the features

related to the other labels), an aspect that requires empirical examination (Yuan et al., 2012; Zhu et al.,

2006). In the experiments conducted related to the two datasets and the results presented in Tables 4.2

74

and 4.3, the readings related to precision indicate a particular variant’s ability to correctly identify useful

reviews out of all the reviews that are actually useful. In such case, variant IV exhibits the highest

precision for My Tracks dataset whereas, variant VI exhibits the highest precision for Flutter dataset.

Subsequently, the readings related to recall indicate that for all the reviews that are useful, how many

of such useful reviews did a particular variant correctly identified as useful. In such case, variant I

exhibits the highest recall for both datasets. That said, app developers might utilise a particular variant

towards filtering of useful reviews based on the application requirement. For instance, app developers

might utilise variant I if the filtering of useful reviews is based only on recall metric. However,

prominent app studies based on domain experts’ suggestions have considered results based on F-

Measure as a significant deciding factor towards determining the robustness of a machine learning

method (i.e., based on combination of both - precision and recall) (Chen et al., 2014; Di Sorbo et al.,

2016; Jiang et al. 2019). Hence, we formulate the further discussion of results based on F-Measure that

considers the metrics precision and recall. Figure 19 provides a visualisation of the performance results

based on accuracy, F-Measure and time metrics of the six variants pertaining to the two datasets.

Figure 19. Overall performance of Multinomial Naive Bayes variants based on accuracy, F-Measure and time. This is

based on aggregate results for both datasets.

75

Figure 19 allows for meaningful interpretation of patterns observed in the generated results. From

Figure 19, it can be observed that the Expectation Maximisation Multinomial Naïve Bayes variants (II

and IV) significantly improved the performance (accuracy and F-Measure) of the primary Multinomial

Naïve Bayes variants (I and III) respectively. The Expectation Maximisation customisations resulted in

as much as 9.1% improvement in accuracy in retrieving useful reviews. On the contrary, the Expectation

Maximisation variants (II and IV) required more time to perform learning and predictions (31.8%

increase in time). The observed increase in accuracy and F-Measure as seen in Figure 19 is due to the

EM mechanism of II and IV that allows these variants to gain maximum information about the words

present in app reviews belonging to the same category (useful or non-useful) during the particular EM

variant’s learning phase.

This can be observed in sub-section 4.3.5 when unclassified and classified reviews are passed to the

particular EM variant, which in turn allows the EM variant to gain insights about the different types of

words pertaining to a specific category in the variant’s learning phase. This crucial information gained

during the learning phase leads towards the increase in accuracy and F-Measure. Moreover, the

algorithmic structure of Multinomial Naïve Bayes (I) and Multinomial Naïve Bayes with Laplace

Smoothing (III) is based on closed form formulas, which enable these variants to generate results

quickly (Ren et al., 2009). However, the Expectation Maximisation of Multinomial Naïve Bayes and

Expectation Maximisation of Multinomial Naïve Bayes with Laplace smoothing generate results based

on an iterative approach (EM computation continues until likelihood parameters become constant), thus

needing more time for learning and making predictions.

With regards to Laplace smoothing, results show that Laplace smoothing augmentation assisted

significantly in increasing accuracy and F-Measure, and reduced the time required for learning and

prediction purposes involving Multinomial Naïve Bayes, Expectation Maximisation of Multinomial

Naïve Bayes and Complement Naïve Bayes. We note a 17.0% increase in accuracy, 0.1 improvement

in F-Measure and 0.11 seconds reduction in time which were accounted for by Laplace smoothing.

Laplace smoothing augmentation enhanced the retrieval of useful reviews. As observed from equations

(6) and (7), Laplace smoothing prevents the zero counts of words whose information is not available

during the learning phase, thus preserving the value of maximum likelihood estimates that are crucial

towards the prediction of a category of a review. Hence, any maximum likelihood estimate being 0

compromises a variant’s judgement towards determining the relevant category of a review. In addition,

the Laplace smoothing variants (III, IV and VI) compute faster estimates of the parameters that generate

the likelihood, hence improving Multinomial Naïve Bayes’s overall performance.

From Figure 19 it is observed that, overall, Expectation Maximisation of Multinomial Naïve Bayes with

Laplace smoothing (IV) performed well on both datasets in terms of accuracy and F-Measure. Thus,

from an application perspective, Expectation Maximisation of Multinomial Naïve Bayes with Laplace

76

smoothing may be a suitable variant for the information retrieval task which involves limited number

of reviews that are manually labelled (categorised) by app developers. Subsequently, Complement

Naïve Bayes with Laplace Smoothing (VI) performed well on the Flutter dataset. This is because, the

complement concept of Multinomial Naïve Bayes allows it to perform well when the dataset consists

of reviews with imbalanced labels. That said, concerning both datasets, Complement Naïve Bayes with

Laplace Smoothing had the least time requirements (average ~ 0.1 seconds). Therefore, the application

of Complement Naïve Bayes with Laplace smoothing is potentially suited when app developers have a

substantial number of labelled reviews whose categories (labels) are imbalanced and at the same

instance are bounded by severe time constraints to extract useful reviews.

Furthermore, it is to be noted that all the Multinomial Naïve Bayes variants operated on the assumption

of independence. This indicates that each variant disregards the meaning of the words it processes

relative to other words. This is a questionable assumption as it may compromise a variant’s ability to

perform predictions when processing words belonging to real world learning and prediction applications

(John & Langley, 1995). For instance, consider the review ‘the map pixelates every time I run’, the

words ‘map’ and ‘pixelates’ are related as the word pair ‘map - pixelates’ indicates that the map

becomes unclear to the app’s end-user when the end-user starts running. This is not modelled by the

Multinomial Naïve Bayes method and hence, the method and its variant exhibit the independence

assumption. That said, other machine learning methods such as logistic regression attempt to fit a

normal curve or discretise the words (Ng & Jordan, 2002). With regards to this, each variant assumes

that the word space is normally distributed with zero variance between the words present in all the

categories. Because of this, in some scenarios the particular variant may be unable to generate a reliable

discretisation of interrelated (continuous) words (features) which may compromise the performance of

the particular variant. A potential solution to solve this would be to test for the independence of the

words to get a tentative estimate of prediction errors to determine the suitability of a particular variant

or generate a zero normal distribution towards generating more efficient results in terms of accuracy

and F-Measure (Boullé, 2006).

However, the results obtained from the conducted pilot study are promising (e.g., over 89% accuracy,

0.87 precision, 0.98 recall, 0.89 F-Measure, and 0.08 seconds time). Thus, the six Multinomial Naïve

Bayes variants (especially variants: IV - Expectation Maximisation of Multinomial Naïve Bayes with

Laplace Smoothing and VI - Complement Naïve Bayes with Laplace Smoothing) investigated in this

pilot study on their own hold promise for aiding useful reviews filtering and software maintenance

cycles.

77

4.8 Threats to Validity

In this section, we present the threats to validity that can potentially affect the outcomes reported in this

Chapter.

4.8.1 Internal Validity

The prime objective of the pilot study conducted in this phase was to examine and compare the

performance of the Multinomial Naïve Bayes variants against each other for their efficiency towards

filtering of useful reviews. Hence, the performance of other machine learning approaches is not

investigated in our study. However, potential future work aimed at conducting such an investigation

could be planned. This investigation could involve the performance evaluation of popular machine

learning algorithms such as BERT (Bidirectional Encoder Representations from Transformers),

Decision Trees, Random Forests, Logistic Regression, SVM and so on, towards the filtering of useful

reviews. In addition, addressing research aspects related to the distinct features (words) to be made

available for learning and prediction purpose, and the independence assumptions made by the

Multinomial Naïve Bayes variants were beyond the scope of this pilot study. That said, we have

mitigated the threats related to the manual labelling of reviews for filtering purposes by: (a) using the

feedback provided by app developers, (b) studying and becoming associated with the rules mentioned

in (Chen et al., 2014) for labelling reviews, and (c) rigorously analysing the types of reviews that the

app developers are concerned with. All the essential information including the rules were discussed

among the three labellers for common understanding, before the reliability assessments were conducted

which returned fair to substantial agreements. Follow up discussions were held to establish consensus

before generating the appropriate results and finalising the particular outcomes.

4.8.2 External Validity

In this phase, we have used a computer with a particular hardware configuration (Core i5 CPU and

14GB RAM) which may limit the generalisability of certain results, especially those involving the

measurement of time. However, the pattern of results is consistent across the two datasets used for

evaluations, and hence, these results do not possess a threat to validity. We have utilised two datasets

in the pilot study conducted in phase 2 and hence, the generalisability of the outcomes of this pilot study

might be affected. However, the primary objective of this pilot study was to examine the feasibility of

the proposed filtering of useful reviews approach and quantifying evaluation of the outcomes generated

by this approach.

4.8.3 Construct Validity

To construct the ground truth data to filter useful reviews we followed the well-established rules from

the prominent study to label the app reviews and the recommended practices from the software

78

engineering discipline (consensus formation). However, another alternative to construct this ground

truth data would be to approach the app developers of the respective apps to obtain the labelled set of

reviews to evaluate the performance of the filtering approach.

We provide the concluding remarks of this phase, its research contributions and summary of

implications in the Conclusions chapter (refer to Chapter 7). In the next chapter, we present the details

of Phase 3 (i.e., classification of useful reviews)

79

5 Classification of Useful Reviews

After figuring out an approach to filter useful reviews (refer to Chapter 4), our next objective was to

convert the useful reviews into actionable knowledge by means of classification (RQ3). Thus, in phase

3 we developed and experimented with an automated taxonomy generation approach through means of

a pilot study that answered one RQ. This RQ (RQ3.1) was aimed towards testing a preliminary approach

to automatically generate a taxonomy for classifying useful reviews into groups of interest. In this

chapter, we provide the details regarding phase 3 of the undertaken research work.

5.1 Introduction

In this phase, we conducted a pilot study which primarily deals with the classification of useful reviews

into groups of interest. To achieve this, we first had to investigate the classification methods that

classified reviews of apps where we identified a drawback. This drawback being, that all the

classification methods were driven by manually derived taxonomy which is problematic when the

domain knowledge is absent. Thus, we developed an approach that automatically creates a taxonomy

from a corpus of useful reviews and later classifies them into specific groups of interests. The detailed

elaboration towards the classification of useful reviews using the automatically generated taxonomy is

presented in the following sections.

5.2 Related Studies

Beforehand, researchers have utilised classification as one of the approach to obtain actionable

knowledge from reviews (Maalej et al., 2016a; Panichella et al., 2016). Such approach classifies reviews

having common attributes into specific categories (groups) based on a taxonomy derived manually from

domain knowledge, as a review of the literature shows that all the classification methods for classifying

reviews are dependent on domain knowledge made available manually through means of extensive

research or by domain experts. For instance, Panichella et al. (2015) have inherited a taxonomy from

the taxonomy proposed by Pagano and Maalej (2013) and have evaluated the classification performance

SVM (Support Vector Machines), Naïve Bayes, Decision Tress and Logistic Regression. Pagano and

Maalej (2013) have manually assigned categories that constitute a taxonomy for classifying reviews.

Similarly, Maalej et al. (2016a))manually developed four categories to classify reviews using methods

such as keyword lookup classifying mechanism, Decision Tress, Naïve Bayes and Maximum Entropy.

Such studies have provided inspiration for others. For instance, Panichella et al. (2016) developed a

manual taxonomy that was inherited from the taxonomy created by Panichella et al. (2015) to

automatically classify reviews using the J48 supervised machine learning method. In another study,

Ciurumelea et al. (2018) have come up with five sets of categories by taking inspiration from (Panichella

et al., 2015) and created a taxonomy to classify reviews using Gradient Boosting supervised machine

learning method. Similarly, Dhinakaran et al. (2018) developed an automated classification approach

80

that classifies reviews into categories using a previously proposed taxonomy (Maalej et al., 2016a). In

this study, a domain expert assigns categories to a set of random reviews and this information is used

to automatically classify the remaining set of reviews using a machine learning method. The

performance of supervised machine learning methods such as SVM, Logistic Regression and Naïve

Bayes was evaluated towards the automated classification task. Sorbo et al. (2016) have developed a

fine-grained taxonomy from the taxonomy proposed by Panichella et al. (2015) which consists of

additional categories over the study it is based on. It is to be noted that, with such classification

approaches the need to manually analyse reviews is unavoidable. For instance, Maalej et al. (2016a)

have classified reviews into one of the four categories; user experience, bug reports, ratings and feature

requests. Of note here is that the manually derived taxonomy does not provide the specific details (e.g.,

which feature is requested by the end-user or what type of bug is reported), thus requiring the app

developers to analyse each of the classified review to obtain the necessary information. This limitation

is observed for the above reviewed studies on classification of reviews. Table 5.1 provides a summary

of the above-mentioned studies in which the first column indicates the study, followed by the type of

taxonomy utilised, number of categories, the name of those categories and the automated classification

methods evaluated.

Table 5.1 Summary of classification studies on reviews

Study Taxonomy Number of

categories in

taxonomy

Name of the

categories

Classification methods

Pagano and

Maalej (2013)

Manually

derived

17 1. Recommendation

2. Helpfulness

3. Feature Information

4. How to

5. Praise

6. Content Request

7. Important Request

8. Other App

9. Feature Request

10. Noise

11. Other Feedback

12. Question

13. Promise

14. Shortcoming

15. Bug Report

16. Dispraise

17. Dissuasion

Manual classification

Panichella et

al. (2015)

Manually

derived

5 1. Information Seeking

2. Information Giving

3. Feature Request

4. Problem Discovery

5. Others

1. Naïve Bayes

2. SVM

3. Logistic Regression

4. Decision Tress

81

Study Taxonomy Number of

categories in

taxonomy

Name of the

categories

Classification methods

Maalej et al.

(2016a)

Manually

derived

4 1. Bug Reports

2. Feature Requests

3. User Experience

4. Ratings

1. Keyword lookup

grouping mechanism

2. Naïve Bayes

3. Decision Tress

4. Maximum Entropy

Panichella et

al. (2016)

Manually

derived

5 1. Information Giving

2. Information Seeking

3. Feature Request

4. Problem Discovery

5. Other

J48

Ciurumelea et

al. (2018)

Manually

derived

13 1. Device

2. Android Version

3. Hardware

4. App Usability

5. UI

6. Performance

7. Battery

8. Memory

9. Licensing

10. Price

11. Security

12. Privacy

13. Complaint

Gradient Boosted Tress

Dhinakaran et

al. (2018)

Manually

derived

4 1. Feature Request

2. Bug Report

3. User Experience

4. Rating

1. SVM

2. Naïve Bayes

3. Logistic Regression

Sorbo et al.

(2016)

Manually

derived

12 1. App

2. GUI

3. Contents

4. Pricing

5. Feature of

Functionality

6. Improvement

7. Updates/Versions

8. Resources

9. Security

10. Download

11. Model

12. Company

Topic classification

using WordNet and

probabilistic classifier

From the information present in Table 5.1 it is evident that while studies inherit categories from the

predecessor studies, there is no universal manually derived taxonomy to classify reviews, which raises

the question, are the taxonomies customised based on the types of reviews or the domain of the app(s)?,

another challenge that needs to be addressed. Another drawback of utilising a manually created

taxonomy is the necessity to update the domain knowledge to create a new version of the taxonomy

when the app evolves and new reviews are logged by the end-users (Pagano & Maalej, 2013; Peng et

82

al., 2012). To address such drawbacks, we have taken inspiration from well-known studies from several

domains to develop an automated taxonomy generation approach to classify useful reviews which leads

to the following research question

RQ3.1 How can an approach be developed to automatically generate a taxonomy for

classifying useful reviews, and how will such taxonomy compare to a manually developed

one?

5.3 Classification Approach (RQ3.1)

The initial objective is to automatically generate a taxonomy to classify useful reviews and in this

section we provide the details of the concepts and method that lead to the generation of such taxonomy

from useful reviews. The performed investigations in this section answers RQ3.1.

5.3.1 Feature Engineering

Feature engineering helps to identify the relationship between a particular product’s market

characteristics and its features (Brunetti & Golob, 2000). However, performing feature engineering for

app reviews is challenging because of the way in which the reviews are expressed by the end-users and

thus, the presence of domain knowledge is required to identify the features (e.g., distance feature that

indicates the possible distances between two routes that connect locations X and Y) and their associated

market characteristics (e.g., requests, bugs or enhancements) (Ko et al., 2000; Licorish et al., 2017; Liu,

2000). To achieve this, researchers have used parts of speech (POS) tagging method which uses

grammar concepts to identify the essential markers that represent the product features and their market

characteristics (Cysneiros & do Prado Leite, 2004; Ko et al., 2000; Licorish et al., 2017; Zhang & Liu,

2011). For instance, Ko et al. (2000) have identified nouns as software product features and adjectives

and verbs as the requests, bugs or enhancements in the domain knowledge provided by the domain

experts to classify software product requirements expressed in natural language. Thus, we take

inspiration and inherit guidelines from such studies to automatically generate a taxonomy to classify

useful reviews and make an assumption that the nouns present in the useful reviews are app features,

and adjectives and verbs are requests, bugs or enhancements related to the particular app feature (Ko et

al., 2000; Licorish et al., 2017; Zhang & Liu, 2011). For example, consider the useful reviews, ‘Distance

(noun - app feature) is inaccurate (adjective - bug) and needs to be resolved (verb -

request/enhancement)’. ‘Map (noun - app feature) pixelated (verb - bug) continuously!’. In both

examples, Distance and Map represent the app features, while words such as inaccurate and pixelated

reflect bugs, and resolved reflects request or enhancement pertaining to the app feature Distance. Such

patterns form the core of a potential taxonomy highlighted in Figure 20 generated via feature

engineering (Htay & Lynn, 2013; Ko et al., 2000) and this taxonomy would assist towards classification

of similar useful reviews sharing common characteristics (i.e., based on the presence of app features or

their associated requests, bugs or enhancements) into the relevant groups of interest.

83

Figure 20. Example of a generated taxonomy

Given our objective to automatically generate a taxonomy independent of domain knowledge we utilise

the POS tagging method from natural language processing to identify nouns, verbs and adjectives from

the useful reviews (Hajič et al., 2009). Later, we identify adjectives and verbs which are semantically

similar to the respective noun with regards to their contextual application to generate the taxonomy (Ko

et al., 2000). Next, we report the investigation that lead towards the selection of a suitable semantic

similarity method to assign similar useful reviews into groups.

5.3.2 Semantic Similarity Methods

There are several methods developed by researchers that determine semantic similarity between words

which is quantified by a computed semantic score (Mihalcea et al., 2006). All these methods operate on

the principle of word sense disambiguation that identifies the meaning of a word with reference to

another based on its context of application measured via the computed semantic score (Karov &

Edelman, 1998). Such methods may belong to multiple categories; (1) semantic similarity methods

based on features, (2) semantic similarity methods based on graphical edges, (3) semantic similarity

methods based on information theory and, (4) semantic similarity methods based on knowledge

distribution (Sánchez et al., 2011). The methods from the first category determine the semantic

similarity between words of interest by means of a dictionary (e.g., WordNet) (Petrakis et al., 2006)

The methods falling in the second category, generate a graph based on the spread of word pairs

according to a dictionary and later compute the semantic score of the word pairs based on the spread

and distance values of the graph edges (Leacock & Chodorow, 1998). For the third category, methods

utilise the knowledge of the distribution of words extracted from the information under scrutiny to

determine the similarity between word pairs given an ontology derived from a dictionary (Jiang &

Conrath, 1997). The methods from the fourth category use a common data source such as the world

wide web (WWW), Wikipedia and so on as a dictionary to determine the semantic similarity between

word pairs based on their co-occurrence (Bollegala et al., 2011). That said, as observed these methods

use a dictionary which provides the formal descriptions of the words that can be compared for semantic

similarity and hence, the suitable knowledge sources (e.g., dictionary) need to be obtained before the

84

methods compute semantic similarity scores. Thus, the prime disadvantage of such types of semantic

similarity methods that are knowledge source based (e.g., dictionary, and online repository such as

Wikipedia) is that they are entirely dependent on the existence of these knowledge sources (i.e., domain

knowledge). In certain cases, it might not be possible to obtain the necessary domain knowledge or the

domain knowledge from one domain may not be suitable for other domains. In fact, computing semantic

scores between word pairs is far from perfect and is an ongoing challenge in the field of linguistics

(Mihalcea et al., 2006). This is because of the variations in the way in which words are expressed by

humans (Erk, 2010). This challenge lies at the heart of our proposed method to automatically generate

a taxonomy from useful reviews. As mentioned in sub-section 3.6, we contend that the need to contact

domain experts for gaining the necessary domain knowledge is problematic because of the differences

in the way in which words are expressed by end-users of different types of apps that poses a challenge.

For example, consider the word ‘draining’ whose meaning in a standard dictionary is ‘liquid running

out of a space’ (Kozima & Furugori, 1993). On the contrary, in terms of useful reviews, ‘draining’ is

related to the excessive consumption of a device’s battery power. Moreover, the useful reviews contain

words that are not covered by dictionaries. For example, urban words (e.g., hog, kill, drain - which are

related to device battery), domain specific end-user generated words (e.g., spotting, capture, scan –

which are related to camera use) and so on.

That said, given the nature of useful reviews, most often, the words in the useful reviews that are in

close proximity of each other are contextually similar as the end-users who log the reviews often

mention contextually semantically similar words in close vicinity of each other (Iacob & Harrison,

2013; Rohde et al., 2006). For instance, consider the useful review; ‘not possible to accurately track

route due to the wrong map’. This useful review indicates that the app is unable to accurately track the

route because of the wrong map being loaded by the app. Of note here is that ‘accurately’, ‘track’,

‘route’, ‘wrong’, and ‘map’ are in close proximity to each other indicating their contextual semantic

similarities. Such pattern is often repeated for many useful reviews indicating that in a vector space

representation of words, semantically similar words are often close to each other because of their

contextual application, while the irrelevant words are distant (Iacob & Harrison, 2013; Reisinger &

Mooney, 2010). This forms the basis for the automatic generation of taxonomy which identifies the

verbs and adjectives (i.e., requests, bugs or enhancements) that are semantically similar to the relevant

nouns (i.e., app features) based on their context of usage. Hence, we reviewed semantic similarity

methods that computed semantic scores of word pairs independent of domain knowledge.

To begin, the LSA (Latent Semantic Analysis) method initially constructs a word-document matrix, in

which the words from a particular document d correspond to rows while the documents correspond to

columns. Whenever a particular word w appears in a specific document, its frequency of occurrence is

registered and updated in the respective word-document matrix’s cell Cw,d (Landauer & Dumais, 2008).

85

Thus, the matrix represents the dispersal of a word in the documents space. In the next stage, the rows

of the matrix are normalised using an entropy-based normalisation method. Later, the semantic

similarity between any two words existing in the word-document matrix is determined using the cosine

distance measure. However, this method is often known to strongly depend on the learning data, thus

causing substantial errors and further compromising its predictive judgments (overfitting) (Landauer &

Dumais, 2008). More to this, in many cases the words, and documents represented by the word-

document matrix data structure are interconnected by the Gaussian model, which makes LSA bias

towards commonly occurring words (Evangelopoulos et al., 2012).

The probabilistic version of LSA tries to overcome the drawbacks of the LSA method (Hofmann, 1999).

It achieves this by processing two conditional probabilities to determine the semantic similarity between

two words. Firstly, it computes the probability of a word linked to a particular subject of interest, and

secondly, it computes the probability of a document belonging to a given subject under a probabilistic

model (e.g., Bayesian probability model). Finally, the occurrence of a word in a given document can be

determined by the probability of the occurrence of a particular word related to the subject of interest,

and the probability that the subject is related to the document under investigation. However, this model

does not entirely solve the problem of overfitting (Leksin & Vorontsov, 2008). Furthermore, LSA

operates with the assistance of the word-document matrix data structure that is only useful in

determining the relevance of a word from the document’s perspective, and not in terms of its contextual

semantic similarity with other words, as necessary in case of useful reviews (Deerwester et al., 1990).

Another method named HAL (Hyperspace Analogue to Language) developed by Burgess (1998)

measures the semantic similarities between two words based on their proximity in vector space. This

method was developed based on the concept of representing each word in a vector space which assists

in understanding the similarities between two words by calculating the pairwise distances between the

points symbolised by the respective vectors. These vectors are created from the information on words’

co-occurrences within a text corpus. The vector space12 of words is a word-word matrix that indicates

the semantic score of a particular word pair based on the vector distance of the two words from each

other in a particular text corpus (Lund & Burgess, 1996). To achieve this, the authors first run a window

of a size of ten words i.e., accommodating ten words in a single parsing operation, then moving from

one word to another to repeat the same set of operations recursively. This mechanism is used to create

a co-occurrence matrix of words present in the entire text corpus. For instance, for each word w1, the

technique counts the number of times another word w2 occurs in close distance with w1. The counting

is achieved using a weighted approach in which if w2 appears adjacent to w1, it assigns a weight of 10

(parsing window size), it assigns a weight of 9 if w2 is distant from w1 by one word, weight of 8 if w2

12 Mathematical model for representing useful reviews as vectors wherein each dimension corresponds to a

separate word. If a word occurs in the useful review, its value in the vector is non-zero. The dimensionality of the

vector is the number of words in the useful reviews corpus.

86

is distant from w1 by two words, and so forth for a window of 10 word neighbours. When the entire

corpus is traversed by the window, the word-word occurrence matrix’s cell Cw1,w2 holds the weighted

sum of all the occurrences of w2 in closeness to w1. Once the matrix is formed with all the necessary

data, all the vectors being represented by the matrix are normalised to a fixed size, and finally, the

similarity between two words’ vector is determined using the Minkowski distance formula or Euclidean

distance measure. However, it was found out that HAL was biased towards word pairs whose counts in

the co-occurrence matrix were higher than the ones with rare or moderate counts (Rohde et al., 2006).

The strengths and weaknesses of LSA and HAL were studied by Rohde et al. (2006) to develop a new

method COALS (Correlated Occurrence Analogue to Lexical Semantics) that inherited the strengths of

HAL and LSA, and discarded their weaknesses. Unlike HAL, this approach uses four word window

parser to create the words co-occurrence matrix. Once, the matrix is created, the counts are converted

to correlations using the Pearson correlation function. Once the normalisation operation is complete,

the negative values in the normalised words co-occurrence matrix are set to 0 (discarded), and the

positive values are square rooted and retained in the matrix. This is done to prevent the method from

being biased towards word pairs that are inversely related in terms of semantic similarity to prevent

inaccurate results. Furthermore, in extensive empirical evaluations COALS outperformed the other

methods as the semantic scores of several word pairs calculated by the method matched with those

assigned by the domain experts (Rohde et al., 2006). Thus, we shortlisted COALS as the candidate

method to evaluate the contextual semantic similarity between words of the useful reviews pertaining

to an app and generate the required taxonomy. We describe this method below.

Initially, COALS creates a word-word co-occurrence matrix from the text corpus, using a window of

size four. For each word w1, COALS counts the number of times every other word w2 occurs in

proximity to w1, and stores the weighted count (i.e., total occurrences of a pair of words divided by

total number of words) of the total occurrences of the relevant word pairs (w1 with w2) in the respective

cell of the word-word (w1-w2) matrix. The ramped window of size four is responsible for generating

the appropriate word counts. For instance, if w2 occurs adjacent to w1, the window assigns a count of

four, if w2 is separated from w1 by one word, the window generates a count of three, and so forth, down

to a count of one for a distance of three words. Finally, the word-word co-occurrence matrix portrays

the weighted count of all occurrences of w2 in proximity to w1. In the next stage, the Pearson’s

correlation coefficient is calculated between the weighted vector counts of the occurrence of words w1

and w2, i.e., the word-word counts in the matrix are converted to correlations. This, in general, provides

further insights into the vicinity of w2 with w1. Furthermore, with this context in the background,

COALS converts all the negative correlation values in the matrix to zero and computes the square roots

of the positive ones. The square root operation further normalises the matrix, thus making COALS

unbiased towards larger positive values. The positive values of the matrix correspond to the word-word

87

pairs that convey a substantial amount of information. Finally, the semantic similarity score S of word

pair (w1 and w2) is calculated using the data present in the normalised matrix as

S(w1,w2)= ∑ (w1i − w1̅̅ ̅̅)(w2i − w2̅̅ ̅̅)/ ((∑ (w1i − w1̅̅ ̅̅)n
i=1

2
∑ (w2i − w2̅̅ ̅̅)n

i=1
2

))
1/2

𝑛
𝑖=1 (12)

In equation (12), the value of i ranges from 1 to n and n indicates the maximum occurrence of the pair

of words (i.e., w1i and w2i) together. Also, (w1̅̅ ̅̅) and (w2̅̅ ̅̅) indicate the average occurrence of words

w1 and w2 in the calculated vector space. Since COALS operates only on positive values, the

correlation distance measure is known to provide accurate results than the cosine measure, as

correlations tend to be subtler than cosines (Rohde et al., 2006).

5.3.3 Pareto Principle

As COALS assisted in the automatic generation of the taxonomy based on feature engineering (refer to

sub-section 5.3.1) we still faced the challenge of determining the number of categories for the

taxonomy. The question encountered was, do we consider all the app features (nouns) and their

associated semantically similar requests, bugs or enhancements (adjectives and verbs) as categories

for the taxonomy? We address this challenge with the support of Pareto principle which gives the 80-

20 rule that states that 80% of the contribution towards an outcome is given by 20% of its participating

entries (Kiremire, 2011). The application of this principle is common in the software engineering

discipline. For instance, Archak et al. (2007) have used the Pareto principle to identify 20% of the

important software product features that influenced 80% of the software product sales. We take

inspiration from these studies and utilise the Pareto principle to shortlist the necessary categories to

generate the required taxonomy in which we identify the required number of categories that reflect 80%

of the app features along with their semantically similar requests, bugs or enhancements. All the other

app features are then classified in an ‘Others’ category. The detailed elaboration of the above-mentioned

process is as follows, initially we sort the app features and their associated requests, bugs or

enhancements in the descending order of the frequency of occurrences of the app features in useful

reviews. Next, we compute the cumulative frequency based on the frequency of occurrences of the app

features to compute the cumulative percentage to set the cut-off threshold (i.e., 80%) of the required

number of categories representing the app features and their associated requests, bugs or enhancements.

Thus, the Pareto Principal is used as an inspiration to identify the most frequently mentioned app

features and these app features were identified based on cumulative frequency percentage where the

cut-off threshold was set to 80%.

5.3.4 Keyword Lookup Classifying Mechanism

After determining the number of categories we utilise the keyword lookup classifying mechanism (i.e.,

basic string matching) to classify useful reviews into the relevant groups (Maalej et al., 2016a). A useful

88

review from a pool of useful reviews gets classified into a particular group if a word from the useful

review matches with any word of a particular group (category) present in the taxonomy comprising of

app features, bugs, requests, or enhancements. That said, if any useful review that is not classified in

any group, it is classified in an ‘Others’ group. It is to be noted that the particular app feature in the

taxonomy represents the name of the specific group and thus, it becomes easier for app developers to

seek requests, bugs or enhancements pertaining to the particular app feature. Figure 21 provides a

graphical illustration of the proposed classification approach mentioned above. After obtaining the

useful reviews, the nouns, adjectives and verbs present in those are tagged (using NLP approaches), and

are modelled as the basis for representing the categories of the taxonomy. Finally, the categories of the

taxonomy are used for classifying useful reviews into different groups of interests (using the keyword

lookup classifying mechanism).

Figure 21. Proposed classification approach for useful reviews using an automated generated taxonomy

5.3.5 Generated Taxonomy Evaluation

In this sub-section we mention the steps that were used to validate the automatically generated

taxonomy which were based on a qualitative content analysis approach (Mayring, 2004). Initially, the

first noun entry from the automatically generated taxonomy is selected. We then check for the presence

of the noun in the pool of useful reviews. The useful reviews containing the noun entry are selected for

further analysis. Next, we manually analyse each useful review to determine the set of adjectives and

verbs that are associated with the noun under analysis. After every useful review is analysed, we extend

the list of adjectives and verbs (in the useful reviews) that are relevant to the noun under scrutiny.

Finally, the manually finalised adjectives and verbs pertaining to the specific noun entry are compared

against those present in the automatically generated taxonomy, where the accuracy is computed. In this

scenario, accuracy indicates the percentage of adjectives and verbs that are common to both the

automatically generated taxonomy and manual outcomes. The entire process is repeated for all the noun

entries present in the automatically generated taxonomy until no noun entry is left for evaluation. After

the manual evaluation process is completed, an overall average accuracy percentage is computed. In

addition, the two supervisors and the PhD candidate independently performed the manual evaluation of

89

the automatically generated taxonomy using the useful reviews by following the above-mentioned

evaluation process. Later, reliability assessments were conducted to resolve any disagreements and

establish consensus to compute average accuracy. The average accuracy percentage reflects the average

accuracy percentage of all the evaluated noun entries which ultimately indicates the overall accuracy of

the automatically generated taxonomy.

5.4 Experimental Settings

In this section, we provide the details regarding the procedures that were enacted to drive our experiment

and validate the primary outcome of the automated taxonomy generation based on the useful reviews

classification phase. First, we provide a brief description of the dataset that was used for the pilot

experimentation purpose. We then provide the details of the pre-processing and POS tagging operations

that were performed. Thereafter, we provide details regarding the evaluation procedure followed to

validate the taxonomy generated by COALS.

5.4.1 Dataset

To demonstrate and evaluate the approach to automatically generate a taxonomy for classifying useful

reviews we utilise the My Tracks dataset. In addition, the My Tracks dataset was selected in the pilot

studies of taxonomy generation (Phase 3) as well as prioritisation (Phase 4) as the two supervisors of

this undertaken PhD work have previously provided software maintenance insights for the developers

of this app, and thus this software provides a good baseline for comparing our outcomes in the pilot

studies. That said, a set of 855 useful reviews were identified and extracted from this dataset for further

experimentation (refer to sub-section 4.5 for more details).

5.4.2 Useful Reviews Pre-processing and POS Tagging

Initially, we performed the basic useful reviews pre-processing operations mentioned in sub-section

4.3.1. That said, the first task of this experiment was to identify nouns, adjectives, and verbs from the

pre-processed useful reviews. To achieve this goal, we use the average perceptron POS tagger as it often

outperforms the other types of POS taggers and is known to be scalable for domain specific text corpus

(Hajič et al., 2009). After tagging the nouns, adjectives, and verbs in the pre-processed useful reviews,

we provide the tagged useful reviews (e.g., GPS – NOUN, inaccurate – ADJECTIVE, drain – VERB)

as input to COALS. Finally, the useful reviews were classified based on the generated taxonomy

through COALS and evaluated the automatically generated taxonomy using the procedure mentioned

in sub-section 5.3.5.

We provide results of this pilot study in the Results section.

90

5.5 Results

In this section, we report the results of the pilot study that reflects the evaluations related to the

classification of useful reviews. We compare the automatically generated taxonomy against a manually

developed taxonomy for the My Tracks dataset for evaluation. This outcome provides context for

answering RQ3.1, and provides triangulations for RQ3.

5.6 Automatically Generated Taxonomy Validity

We evaluated the accuracy of the automatically generated taxonomy which consisted of 152 categories

as mentioned in this Chapter (refer to sub-section 5.3.5). Prior to this, we had applied the Pareto

principle on the result generated by COALS to identify the necessary categories constituting the

automatically generated taxonomy required for classifying useful reviews. The Pareto principle returned

152 categories that depicted respective nouns along with their associated adjectives and verbs. This

outcome indicating the followed steps (refer to sub-section 5.3.3) to shortlist the required number of the

categories that reflect 80% of the app features along with their semantically similar requests, bugs or

enhancements is made available online13 where it can be observed that the top 152 categories are

identified based on ‘Cumulative Percentage’ column (i.e., the application of Pareto Principle accounted

for 152 app features out of 981 (15.49%)). A subset of the automatically generated taxonomy is

visualised in Figure 22 where ten prominent app features sharing dependencies with each other via a

common set of requests, bugs or enhancements are depicted. In the undirected graph, each node

represents an app feature and the information on the links represent the requests, bugs or enhancements.

For example, it seems that the travel or workout data provided by the ‘stats’ (statistics) feature of My

Tracks app and the ‘map’ (app feature) selected for travel or workout are ‘unreadable’ to the app’s end-

users. Other conclusions of interest can be drawn from the visualisation. For instance, the relationship

between GPS and signal (two nouns representing app features) was described using verbs such as

fluctuate, drop, and lose.

13 https://tinyurl.com/y5bq3vrh

91

Figure 22. Visualisation of partial taxonomy consisting of ten prominent app features

The overall accuracy of the automatically generated taxonomy was found to be 72% which indicates a

substantial match between the manual taxonomy created by us and the automatically generated

taxonomy (Košmerlj et al., 2015). The two supervisors and PhD candidate followed the taxonomy

evaluation process mentioned in sub-section 5.3.5 of this Chapter. Each evaluator independently

analysed the 855 useful reviews to identify the requests, bugs, and enhancements (adjectives and verbs)

related to the app features (noun) to finalise the contents of the manual taxonomy. With regards to the

reliability assessment practise followed in this study, a substantial agreement of 0.62 was observed

between the evaluators. The reported Fleiss coefficient indicates the agreements on the adjectives or

verbs associated with the particular nouns. Follow up discussions were held among the supervisors and

the PhD candidate to resolve any disagreements to establish consensus. After the consensus were

established, the finalised manual taxonomy was compared with the automatically generated one to

compute the overall accuracy. Table 5.2 shows the partial manual taxonomy generated for the app

features presented in Figure 22.

92

Table 5.2 Partial view of manually derived taxonomy

App features Requests, bugs or enhancements

GPS drop, recognise, loses, loose, fluctuate, anomaly, blame, picked, regain

Map destroyed, unreadable, lagging, nonresponsive, offline, preloading

Time pausing, recover, reconnect, unsync

Battery eat, amoled, drain, kill, consume, wasting, flatten, lowered

Phone accessible, heating, decrease, scrolling

Distance travelled, jagged, counted, incorrect, wrong, measured, overestimated,

increase, timekm, gradual

Stats aggregate, leading, unreadable, grouped, overview

Signal recognise, fluctuate, decrease, drop, lose, leading, loses, anomaly, blame,

regain, recover, dotted

Screen lock, scrolling, unresponsive, amoled, heating, smaller, sliding, lag

Speed increase, gradual, colorcode, jogging, calculated, traditional, kmh

In addition, the accuracy of the keyword lookup classifying mechanism was found to be 98.3%, the

slight imperfection was due to the presence of misspelled words in the useful reviews.

In the next section, we provide the discussion related to the undertaken pilot study that deals with the

automatic generation of a taxonomy for classifying useful reviews.

5.7 Discussion

The scalable requirements prioritisation method proposed by Peng et al. (2012) classified the

requirements into groups of interest based on the domain knowledge (groups and their associated

keywords of interest). The essential domain knowledge was provided by experts before the method

prioritised the groups of interest using the stakeholders’ priority preferences on individual requirements.

As stated earlier (refer to Chapter 3, section 3.6), this method was one of the inspiration sources towards

our proposed group-based prioritisation method. However, as the app domain is vast, it is not possible

for us to gather the required enormous domain knowledge needed for classification or prioritisation

(refer to Chapter 3, section 3.6). Thus, we reviewed studies from the app domain that provided context

regarding classification of reviews pertaining to the apps. Our investigation of these studies revealed

that all the proposed classification approaches from the app domain were dependent on the domain

knowledge made available by experts, and there was no universal taxonomy encountered for

classification purpose (Ciurumelea et al., 2018; Maalej et al., 2016a; Panichella et al., 2015). This was

not suitable for our research and was identified as a critical research gap that lead us to propose an

approach that automatically generates a taxonomy for classifying useful reviews with the intent of

addressing the research gap. The sub-section below discusses the results and implications of RQ3.1.

93

5.7.1 RQ3.1 How can an approach be developed to automatically generate a taxonomy

for classifying useful reviews, and how will such taxonomy compare to a manually

developed one?

The outcomes reported in the pilot study show that it is possible to develop an approach that

automatically generates a taxonomy to classify useful reviews into dynamically created groups of

interest. This approach is directly able to extract app features and their associated requests, bugs or

enhancements from a corpus of useful reviews without the necessity of human involvement and domain

knowledge. This has a potential implication for supporting software maintenance and evolution cycles

where a small group of app developers have to manually analyse numerous useful reviews. We believe

the key aspect towards the development of the automatically generated taxonomy is the selection and

utilisation of suitable concepts and methods from multiple domains (Ko et al., 2000; Maedche & Staab,

2000; Rohde et al., 2006; Turner et al., 1999). While natural language processing application involving

POS is widely utilised, the level of human involvement in labelling large numbers of useful reviews in

support of manually generating taxonomies for classification is a potential challenge (Maalej et al.,

2016a). Feature engineering assisted us in developing a suitable taxonomy framework for constituting

the automatically extracted domain knowledge (i.e., app features and their associated requests, bugs or

enhancements) from the corpus of useful reviews, thereby solving a significant research problem that

is evident for manually generated taxonomies which is the need to develop categories. With regards to

this, our primary objective was to determine the requests, bugs or enhancements (adjectives and verbs)

that were semantically similar (contextually similar) to app features (nouns) for which we evaluated

COALS, where COALS directly operated on the distances of vector data belonging to the respective

word pairs. It is to be noted that, in our research the relationship between the words are determined

based on the primary principle of word sense disambiguation (Karov & Edelman, 1998). The

application of a reliable contextual semantic similarity method such as COALS addresses a limitation

that is observed for manually generated taxonomies which is the appropriate data for the categories of

a taxonomy (Walid Maalej & Haader Nabil, 2015). Taxonomies generated by experts provide a limited

number of categories, and hence, classification results often provide a holistic view of grouped reviews

which is inappropriate if there are numerous useful reviews. In addition, the application of the Pareto

distribution law seems useful in determining the prominent categories for the taxonomy and at the same

time, prioritising the most significant categories (i.e., app features and their associated requests, bugs

or enhancements) while still retaining an ‘Others’ category (Archak et al., 2007). That said, the keyword

lookup classifying mechanism provides a near perfect classification of useful reviews in completing the

automatically generated taxonomy which may be used as an inspiration for other software engineering

research that focus on app reviews.

94

Furthermore, the automatically generated taxonomy compared substantially to the one that was

developed manually. There was an overlap of 72% observed in the two taxonomies which suggested

that the combination of concepts and methods provided an intuitive automated solution that closely

aligned with human thinking. This is noteworthy as our proposed approach is in its preliminary stage

and the utilised methods have not been refined or tuned for optimisation (e.g., tuning the threshold

settings of COALS) which could lead to potential improvements (Konkol et al., 2015). For instance, in

a recent study, Konkol et al. (2015) have integrated COALS with singular value decomposition (SVD)

and subjected COALS to specific SVD parameters (careful tuning) to generate optimal data required

for performing named entity recognition using latent semantics. That said, we believe that the fine-

grained taxonomy that was generated automatically provides an explicit view of the prominent app

features and their associated requests, bugs or enhancements for the app developers. Thus, app

developers may directly utilise the generated taxonomy to identify app features that require immediate

attention based on the requests, bugs or enhancements associated with these app features without the

need to perform classification. Moreover, such a taxonomy indirectly represents the prioritised app

features due to the application of the Pareto distribution law, as the app features (nouns) constituting

the categories are arranged in descending order of prominence (based on frequency of nouns) (Licorish

et al., 2017). In fact, the partial taxonomy presented in Figure 22 (refer to section 5.5) reveals that

certain app features share common set of requests, bugs or enhancements. Such finding is crucial to app

developers, as it would significantly assist them in uncovering dependencies among the app features.

This in turn could assist in identifying the influence of one app feature on another based on the common

characteristics (related requests, bugs or enhancements) that are shared among the app features (Li et

al., 2012). Furthermore, based on the observed hierarchical dependencies among the app features,

resolving certain requests, bugs or enhancements associated with specific app feature will reduce the

burden of defects on the dependent app features. That said, the proposed approach of automatically

generating a taxonomy to classify useful reviews requires limited human involvement and provides a

wide spread of categories naturally. To conclude, the empirical evaluations conducted in the pilot study

showed satisfactory result when the outcome (automatically generated taxonomy) of our proposed

approach was compared against the one that is manually derived albeit we have used a single dataset.

Therefore, our proposed automated taxonomy generation approach may be promising for the software

engineering community.

5.8 Threats to Validity

In this section, we present the threats to validity that can potentially affect the outcomes reported in this

Chapter.

95

5.8.1 Internal Validity

The pilot study conducted in this phase is limited to the grouping of useful reviews based on an

automatically generated taxonomy. However, we have performed evaluation of the automatically

generated taxonomy for triangulation. That said, coming out of the text pre-processing and POS tagging

pipeline, it was not feasible to evaluate the nouns, adjectives and verbs that do not reflect app features,

issues, suggestions, or requests, or those that were misclassified. This was largely due to the high levels

of overhead involved with other rigorous manual evaluations that were performed. Furthermore, our

proposed automatic taxonomy generation approach may potentially leave out some important app

features that are less frequently requested. In addition, there could be presence of synonyms (e.g., track,

tracker and so on), and misspelled words with associated bugs, requests or enhancements that could

point to the same app feature. Thus, the size of the automatically generated taxonomy might increase,

and such taxonomy may hold redundant information expressed in different forms. Concerning these,

there is scope for future research to address the issues related to the presence of synonyms in the

taxonomy or missed out less frequent but prominent app features. One potential solution towards

resolving these issues would be to involve domain experts (i.e., app developers) to select the prominent

app features of interest. Finally, investigations done using manual analysis are always criticised for

subjectivity. We have worked to remove this threat by performing reliability assessments where

substantial agreements were observed.

5.8.2 External Validity

We have used one dataset in this study, which may affect the generalisability of this study. However,

the accuracy of the generated taxonomy reported for the app is substantial in terms of the validation of

the automated taxonomy generation approach.

5.8.3 Construct Validity

The Pareto distribution law returned a significant number of categories for the generated taxonomies,

which may seem excessive. That said, our manual evaluation confirmed that these categories were

largely relevant. One way to limit the number of categories in the taxonomy is to implement a cut-off

mechanism (e.g., top 10). Concerning this, there is scope to research ‘How can the optimal categories

for different apps be identified?’ Furthermore, an alternative to the validation of the automatically

generated taxonomy would be to approach the app developers of the respective apps to evaluate the

requests, bugs and enhancements associated with the features of the app.

We provide the concluding remarks of this phase, research contributions and summary of implications

in the Conclusions chapter (refer to Chapter 7). In the next chapter, we present the details of Phase 4

(i.e., prioritisation of useful reviews).

96

6 Prioritisation of Useful Reviews

This chapter describes phase 4 of the undertaken research work in which we developed and

experimented with a group-based prioritisation method that utilised the outcome of phase 3 (i.e.,

classified useful reviews into specific groups of interest) before generating the priorities of the classified

useful reviews and their respective groups. In the same phase, we also developed an individual

prioritisation method where the priority of each useful review was computed without performing

classification. This phase answered RQ4 which is comprised of two research questions. The formulated

RQ 4.1 and RQ 4.2 benchmarked the performance of the group-based prioritisation method as well as

the individual prioritisation method to validate the application of the respective methods. Based on our

findings of the pilot study conducted in this phase, we performed a full-scale study of the individual

prioritisation method in phase 4 to demonstrate its general suitability across a range of apps (i.e., to

show the comprehensive application of the method).

6.1 Automated Prioritisation Methods (RQ4)

After developing the required classification approach, our next step was to prioritise the classified useful

reviews and their groups for which we utilised an automated hybrid prioritisation method. The

automated hybrid prioritisation method reflects a multi-criteria heuristic function comprising of four

prominent methods incorporated as variables in the function to prioritise the classified useful reviews

and their groups. We provide all the details regarding this prioritisation method in sub-section 6.1.1.

That said, as we have highlighted several limitations of the prioritisation methods in Chapter 2 (refer to

section 2.1) and in Chapter 3 (refer to section 3.6) we had to seek inspiration from other domains such

as feature engineering, information theory, information retrieval, marketing and artificial intelligence

to develop the automated hybrid prioritisation method and benchmark its performance (Chea et al.,

2009; Dasgupta et al., 2013; Fang & Zhan, 2015; Filcek et al., 2017; Htay & Lynn, 2013; Sundaram et

al., 2005; Zhang & Tran, 2008). The RQ related to benchmarking the performance of the prioritisation

method is

RQ4.1 What is the performance of the developed group-based prioritisation method?

6.1.1 Group-based Prioritisation Method

As mentioned in Chapter 3, section 3.6, the group-based prioritisation method inspired by the

requirements prioritisation method proposed by Peng et al. (2012) was to be developed in such a way

that it would be independent of domain knowledge and priority preferences of the stakeholders. Given

the numerous useful reviews, our objective is to generate the required priorities so that the useful

reviews can be addressed accordingly. In this sub-section, we mention the key concepts and methods

that lead towards the development of our proposed automated hybrid prioritisation method.

97

6.1.1.1 Keywords of Interest

Referring to sub-section 5.3.1, the distinguishing nouns, adjectives and verbs identified from useful

reviews are termed as keywords of interest (K) as these keywords of interest represent quantitative end-

user feedback properties that have significant impact on a product’s requirements engineering phase as

such keywords of interest hold noteworthy meaning and eliminate the need for the availability of

domain knowledge required for taxonomy generation or prioritisation (Chea et al., 2009; Htay & Lynn,

2013; Ko et al., 2000). In the next sub-section, we mention the methods that utilise the knowledge of

such keywords of interest to generate the priorities of the useful reviews and their groups.

6.1.1.2 Methods

Studies have shown that the complex problem to prioritise requirements can be appropriately solved

using multiple criteria as considering a single criterion does not guarantee exact or approximate exact

prioritisation solution (Achimugu et al., 2014b; Garg et al., 2017). For instance, Asghar et al.’s (2013)

prioritisation method on average was found to be 16% accurate when the method considered code

metrics as a single criteria to prioritise requirements. On the contrary, AHP has proved to generate

accurate prioritisation results because of its ability to incorporate multiple criteria along with the priority

preferences of the stakeholders that significantly influence the priorities of the requirements. However,

AHP is known to suffer from scalability and computational complexity issues due to its pairwise

comparison mechanism (Achimugu et al., 2014b). Hence, taking inspiration from studies belonging to

renowned domains such as information theory, information retrieval, marketing and artificial

intelligence, we identify four prominent methods for prioritising useful reviews and represent them as

criteria by encompassing them as variables in a multi-criteria heuristic function with the objective of

generating the approximate exact solutions, i.e., priorities of the useful reviews. We provide a brief

elaboration of each method in the next sub-sections.

6.1.1.2.1 Entropy

In information theory, entropy is a measure of information that is widely used to acquire knowledge

about an entity of interest existing in vast information (Shannon, 1948). Knowledge gained through

entropy indicates the product features of prime interest to its customers whose identification and

weightage is essential to drive the development process of a product. For instance, Somprasertsri and

Lalitrojwong (2008) have used entropy to automatically extract and prioritise product features from

product reviews that required attention. Similarly, Zhang et al. (2008) have used the entropy to prioritise

product reviews based on the helpful information conveyed by the reviews. In our study, the key

objective of the entropy is to generate the priorities of the useful reviews based on the quantified

measure of information conveyed by a useful review (R) in proportion to the information present in the

entire corpus (C) of useful reviews. The priority ER of R through means of entropy is given as

98

ER = - ∑ P(𝐾𝑖) ∗ 𝑛
𝑖=1 log2P(Ki) (13)

Where K (K ∈ R) denotes the keyword of interest contained in R (R ∊ C), and the proportion P(K) is

given as the total occurrences of K in R to the total occurrences of K in C. Furthermore, entropy enables

the characterisation of the information through the probability distribution of the keywords of interest

drawn from C. The probability distribution of the keywords of interest associated with the information

quantity of every K forms a random variable whose average estimate is the average amount of

information generated by the probability distribution (Rényi, 1961).

6.1.1.2.2 Frequency

Most often, the requirements elicitation phase captures the frequently stated stakeholders’ requirements

(Groen et al., 2015; Hosseini et al., 2015; Solemon et al., 2008). Similar is the case observed for useful

reviews and researchers have exploited such knowledge for prioritisation purpose (Chen et al., 2014;

Licorish et al., 2017). For instance, Licorish et al. (2017) have prioritised app features based on their

frequency of occurrences in reviews with the assumption that end-users report buggy or most needed

app features on a regular basis. Hence, taking inspiration from such studies, we utilise the keywords of

interest frequency information to prioritise R belonging to C. We generate the priority of R as the

summation of the frequency values associated with the respective keywords of interest contained in R

(i.e., number of times each K in R appears in C). For example, consider keywords k1, k2, k3, k4,…, kn

present in C, and let fk1, fk2, fk3, fk4,…, fkn represent their respective frequency of occurrence values,

then priority FR of R is generated as

FR = ∑ 𝑓𝐾𝑖
𝑛
𝑖=1 (14)

Wherein K denotes the keyword of interest contained in R where K ∈ R and R ∊ C. Hence, in this study,

the frequency method assists in prioritising R based on the frequently mentioned K that useful reviews

captures from the end-users.

6.1.1.2.3 TF-IDF

TF-IDF (Term Frequency - Inverse Document Frequency) is a popular method that has a wide range of

applications in the information retrieval field, especially to prioritise documents (e.g., sentences) present

in a text corpus based on the importance of words that reside in those documents (Wu et al., 2008).

Moreover, in the past TF-IDF method has been utilised for tracing and prioritising requirements present

in a text corpus as well as to determine the significance of end-users’ reviews by prioritising the

requirements (Kim et al., 2006; Sundaram et al., 2005). Based on these studies and considering the

functioning mechanism of TF-IDF, this method seems fit to generate priorities of useful reviews. Thus,

given the useful reviews, we utilise the TF-IDF method to determine the TF-IDF weights of all the

keywords of interest present in R residing in C. Wherein, C exhibits the role of the entire useful reviews

99

corpus and R exhibits the role of a document. The keywords of interest (terms) present in each R are

subjected to TF-IDF method to determine their respective TF-IDF weights. Initially, we compute the

term frequency count of each K in every R present in C. Term frequency count is the ratio of the number

of times the K appears in R to the total number of keywords of interest present in R. Hence, every R

will maintain its own term frequency count data structure, which is given as

KfK, R = nK,R/ ∑ nK,R (15)

where Kf K, R indicates the number of occurrences of the K in R. Next, we compute the inverse document

frequency term, which generates the weight of keywords of interest based on their spread across all the

useful reviews in C. The inverse document frequency equation is given as

idf(K) = log10 (NR/dfK) (16)

where idf indicates the number of useful reviews containing K, NR indicates the number of useful

reviews and dfK indicates the number of occurrences of K in those useful reviews. Next, we compute

the TF-IDF score of K in R, which is given as

TF-IDFK,R = KfK, R * idf(K) (17)

Finally, the TF-IDF weights of all the keywords of interest present in R are summed up to determine

the priority (TF-IDFR) of R given as

TF-IDFR = ∑ K∈RTF-IDFK,R (18)

Therefore, the objective of TF-IDF method in this study is to determine the importance of keywords of

interest in R, given the collection of useful reviews in C. As observed from equations (15) to (18), the

logarithmic values of the inverse reviews frequencies are considered as the keywords of interest

frequencies and are distributed exponentially, thus generating a suitable weight concerning K’s

importance in R belonging to C (Wu et al., 2008).

6.1.1.2.4 Sentiment Analysis

In the marketing domain, the commercial value of a product is derived from the end users’ sentiments

affiliated with the product reviews and sentiment analysis is a method that has been widely utilised by

researchers to investigate this aspect (Fang & Zhan, 2015). Sentiment analysis aids in measuring the

content or discontent of end-users regarding their usage of the product, and significantly assists in

flagging the requirements that raise concerns such as end-users’ requests, suggestions or issues related

to the product (Das et al., 2012; Galvis Carreño & Winbladh, 2013). For instance, Zha et al.(2014) have

utilised sentiment analysis method to prioritise the concerns raised about a product by giving

appropriate priority to the reviews that reflected a high level of negative end-users’ sentiments as the

100

authors found that majority of such reviews reflected the raised concerns related to the product.

Similarly, sentiment analysis has been performed on the reviews present in the app domain to

substantially support the requirements engineering cycle associated with the development of apps to

launch long term market sustainable apps in the app market (Goul et al., 2012). In this study, we utilise

VADER (Valence Aware Dictionary and sEntiment Reasoner) to calculate the sentiment associated

with R, as this tool has been empirically evaluated to perform significantly better than other tools in

estimating the sentiments of reviews present in crowdsourced information (Hutto & Gilbert, 2015). The

foundations of VADER are built on a human-centric approach for determining sentiments by combining

qualitative analysis and empirical validation. Hence, VADER’s sentiment analysis is sensitive towards

polarity (positive or negative) and intensity of the particular emotion (i.e., anger, sad, happy, and so on)

expressed in reviews.

To elaborate further, VADER’s sentiment determining approach is based on lexicons14 of sentiment-

related words. To determine the polarity of these words, the developers of VADER utilised Amazon’s

Mechanical Turk15 platform to get polarity (and optionally, to what degree) of the numerous words

existing in crowdsourced information (such as reviews) from several human evaluators. Thus, VADER

has a wide coverage of words and there is a substantial fit between the lexicon and the words mentioned

in the reviews, and can return results of sentiment analysis faster than other sentiment analysis

approaches (Hutto & Gilbert, 2015).

We illustrate the working of VADER with an example. Consider the review ‘The product is good and

it has nice features.’ Initially, when VADER analyses this review it performs a check to determine if

any words in the review are present in its lexicon. In case of the review, the review has two words in

the lexicon (good and nice) with the positive polarity of 1.9 and 1.8 strength respectively. After analysis,

VADER generates three sentiment scores from these words’ polarities. For instance, assume that for

the given review example, the review gets rated 45% positive, 55% neutral and 0% negative. Then,

VADER computes a compound score16 that is the sum of all the lexicon polarities (i.e., 1.9 and 1.8 in

this case) and normalises the final score in the range [-1, 1]. In the mentioned example, the review gets

a compound score of 0.69 that is termed to be substantially positive.

Based on this tool, we generate priority (SCR) of R to measure the sentiment intensity of R present in

C. The VADER sentiment analysis tool generates sentiment scores in the range [-1, 1]; -1 for the review

with the most negative sentiments attached to it, and 1 for the review with the most positive end-user

sentiments embedded in it. The useful reviews having a higher degree of the negative score are crucial

than the ones having a positive score, and need to be addressed prior as such app reviews raise serious

14 Vocabulary of language or a particular branch of knowledge
15 https://tinyurl.com/8xzen9
16 https://github.com/cjhutto/vaderSentiment

101

product concerns (Goul et al., 2012; Licorish et al., 2017). This consideration is modelled by -(SCR) in

this study.

Finally, to maintain the same range of the priority scores generated by the four methods and to prevent

the prioritisation method from being bias towards the method generating larger range of priority values,

we perform the min-max normalisation of the priority scores generated by ER, FR, TF-IDFR, and -(SCR)

(Patro & Sahu, 2015).

6.1.1.3 Multi-Criteria Heuristic Function

Multi-criteria based heuristic functions are seen as cognitive tools that assist significantly in solving

complex problems by generating approximate solution that is dependent on multiple criteria, and further

assist in balancing the trade-off between the solution generation time, optimal nature of the solution,

and the accuracy of the solution complemented by its completeness (Dasgupta et al., 2013; Filcek et al.,

2017). For instance, the heuristic based approach has been proved successful to generate an optimal

solution (out of ‘n’ possible solutions) for the traveling salesperson problem (NP-hard) (Lin &

Kernighan, 1973). Since our objective is to generate an approximate optimal priority of R using the

prominent methods mentioned in the previous sub-sections, we incorporate all the methods into a multi-

criteria heuristic function f and represent those methods as variables of the function. Thus, the overall

priority PR of R is given as

PR = f: αER + βFR + γTF-IDFR + δ(- (SCR)) (19)

In (19), ER represents the priority of R generated by the entropy variable, FR indicates the priority of R

generated by the frequency variable, TF-IDFR indicates the priority of R generated by the TF-IDF

variable and -(SCR) indicates the priority generated by the sentiment variable. In addition, we introduce

four constants α, β, γ, and δ in the multi-criteria heuristic function to support the future prospects of

performing manual or automated optimisation of the function to improve its efficiency as required (i.e.,

reducing computation time, increasing accuracy of prioritisation, prioritising useful reviews based on

business requirements, and so on) (Blot et al., 2017; Marler & Arora, 2004). However, while performing

the optimisation, the values of α, β, γ, and δ should be set in such a way that it satisfies the constraint α

+ β + γ + δ = 1. Currently, following the conventions of recommended settings, the individual values

of α, β, γ, and δ are set to 0.25 as default (seed) values (Arcuri & Fraser, 2013). Figure 23 illustrates the

computation of PR pertaining to useful reviews. Initially, the keywords of interest are identified from

the corpus of useful reviews. For a particular useful review, ER is generated using equation (13), FR is

generated using equation (14) and TF-IDFR is generated using equation (18). As noted earlier, these

respective variables operate on the appropriate keywords information made available through the

identified keywords of interest. To generate -(SCR) the entire non pre-processed useful review is

processed by VADER. After ER, FR, TF-IDFR, and -(SCR) of all the useful reviews have been computed,

102

ER, FR, TF-IDFR, and -(SCR) are subjected to min-max normalisation respectively. That is, all the

priority scores generated by ER are normalised followed by those generated by FR, TF-IDFR, and -(SCR).

Next, the respective weights of α, β, γ, and δ are multiplied with the normalised ER, FR, TF-IDFR, and -

(SCR) of the useful reviews after which the final PR of each useful review is generated using equation

(19).

Figure 23. Diagrammatic representation of heuristic function f generating priorities of useful reviews

6.1.1.4 Group Priority

In statistics, weighted average method is utilised by researchers to measure the centre of a frequency

distribution which is influenced by all the samples within a population and the result generated by the

weighted average is termed as a reliable measure of central tendency when generating inferences from

a general population (James et al., 2013). For instance, in Geology weighted average is considered as a

significant statistical measure when determining the overall intensity of earthquake for a particular

region based on the earthquake’s previous frequency of occurrences, and Richter scale readings (Allen,

1986). In this study, we chose the weighted average method to generate the priority of a group (G). For

instance, if a group has three useful reviews with individual PR of 0.80, 0.90 and 0.90, then the group

priority will be 0.87. Doing so will enable the app developers to gain insights on the overall magnitude

of the priorities that are generated for useful reviews residing within a group. In addition, the groups

with higher weighted average priorities would reflect alarming useful reviews and this would aid

towards the standardisation of addressing the useful reviews based on the computed group priority. For

103

example, a standard approach that can be followed by app developers is to give preference to addressing

the useful reviews of a group that has the highest priority over the others (Peng et al., 2012).

6.1.1.5 Elimination of Duplicate Useful Reviews

It is to be noted that based on the taxonomy that is generated, a single useful review can be classified

into multiple groups. This is due to the app features being interlinked through the means of common

requests, bugs or enhancements (Li et al., 2012). For example, consider the useful review ‘map keeps

blurring and generates inaccurate distance’, this particular useful review will be classified into two

groups i.e., map and distance as the taxonomy generates map and distance as the groups and the

classification of useful reviews is accomplished though the means of keyword lookup classifying

mechanism.

As mentioned earlier in Chapter 2 (refer to section 2.1) it becomes necessary to eliminate the duplicate

instances of the useful reviews spread across multiple groups as they create confusion regarding the

different priorities of the same useful reviews generated across different groups (Chen et al., 2014).

Hence, we take our hybrid prioritisation method a step further to eliminate the duplicate useful reviews.

Peng et al. (2012) suggest that the product developers address the requirement groups based on the

descending order of their priorities. In addition, the NRP states that in every requirements addressing

cycle, the product developers always tend to address the requirements with higher priorities (Bagnall et

al., 2001). Based on these two studies, we develop the process to eliminate duplicate useful reviews

which is as follows; the duplicate useful reviews spread across multiple groups are initially identified

after which the priorities of their respective groups are compared. If a group has the highest priority

over the other groups, then the duplicate instances of the particular useful review are eliminated from

the groups having lower priorities. If the groups have equal priorities, then the useful review within a

group with the highest priority is retained and the duplicate instances of the useful review are eliminated

from the other groups. The listing of the elimination process is as follows; consider a useful review R

being classified into groups G1, G2, and G3. After the prioritisation process is complete, let us assume

that R has priority p1 in G1, p2 in G2, and p3 in G3. Then, if priority of G1 > priority of G2 > priority

of G3 then R is eliminated from G2, and G3, and if priority of G1 = priority of G2 = priority of G3, and

if p1 < p2 > p3, then the R is eliminated from G1, and G3. For example, consider the useful review ‘The

signal drops and so no proper GPS that causes battery wastage’ being classified into groups ‘signal’,

‘GPS’ and ‘battery’. Within the signal group having a priority Low, the priority of useful review is

Medium, whereas within the GPS group having a priority Medium, the priority of useful review is Low

and within the battery group having a priority High, the priority of useful review is High. In such case,

the entry to the useful review would be eliminated from the signal and GPS groups and would be

retained in the battery group for app developers’ to address. In addition, if all the groups have the same

104

priority, then the useful review would be retained in the battery group and eliminated from the others

as the useful review holds the highest priority in the battery group in comparison to the others.

6.1.2 Experimental Settings (Group-based Prioritisation Method)

In this sub-section, we provide the details regarding the procedure that was followed to validate the

primary outcome of the group-based prioritisation phase. First, we provide a brief description of the

dataset that was used for the pilot experimentation purpose. We then provide the details of the pre-

processing and POS tagging operations that were performed. Thereafter, we provide details regarding

the evaluation procedure followed to validate the performance of the group-based prioritisation method.

6.1.2.1 Dataset

To demonstrate and evaluate the proposed group-based prioritisation method we utilise the My Tracks

dataset that was part of the taxonomy generation pilot study conducted in Phase 3 of this undertaken

research.

6.1.2.2 Useful Reviews Pre-processing and POS Tagging

We performed the basic useful reviews pre-processing operations mentioned in sub-section 4.3.1. That

said, the first objective was to identify nouns, adjectives, and verbs from the pre-processed useful

reviews to identify the keywords of interest. To achieve this goal, we repeated the POS tagging

operation as mentioned in sub-section 5.4.2. Finally, after the necessary keywords of interest were

identified, the useful reviews were prioritised using the group-based prioritisation method. It is to be

noted that the pre-processing operation is performed to obtain the necessary keywords of interest and

compute the priorities based on ER, FR and TF-IDFR variables. We apply VADER on the original form

of useful reviews to compute -(SCR).

6.1.2.3 Group-based Prioritisation Method Evaluation

After classifying the useful reviews into groups of interest using the automatically generated taxonomy,

we initiated the group-based prioritisation method to generate the priorities of the useful reviews and

their associated groups. We then benchmarked the performance of the proposed group-based

prioritisation method using the commonly utilised time and accuracy dimensions (Bebensee et al., 2010;

McZara et al., 2015). For the purpose of this thesis, we cover accuracy, time and operational

demonstration dimensions. The other dimensions identified via the systematic mapping study such as

requirements dependency, requirements updates and computational complexity are beyond the scope

of this thesis and could be potentially part of the future work. It is to be noted that both proposed

prioritisation methods i.e., group-based and individual are influenced by a requirements prioritisation

method from a study from the systematic mapping phase (Peng et al., 2012) that addresses highest

105

number of requirements compared to the others, thus assuring the scalability dimension of prioritisation

for both of our proposed methods.

6.1.2.3.1 Time

As useful reviews tend to be numerous, we compute the total time (seconds) required to prioritise a

given set of useful reviews as time is of the essence when app developers have to address important

useful reviews in the limited intervals of app maintenance and evolution cycles (Bebensee et al., 2010;

Fabio et al., 2015; Pagano & Maalej, 2013). Benchmarking time required for prioritisation is also crucial

when the app developers are driven by NRP as it helps them to determine the suitability of the utilisation

of a particular prioritisation method based on the total time required for prioritisation (Bagnall et al.,

2001). Moreover, failing to do so, negatively affects the business value of the app in the app market as

quickly responsive app updates addressing end-users’ requests, bugs or enhancements are crucial to

keep the end-users engaged with the app or attract more end-users. For instance, app login problems

should be fixed immediately as the end-users are unable to use the app. Thus, addressing critical bugs,

requests or enhancements (accurately prioritised) on a timely basis allows the app to sustain in the

competitive market. Hence, this thesis emphasises on the time dimension which is crucial for app

developers towards fixing of prominent app concerns. Thus, it becomes necessary to benchmark the

time required for prioritisation as it enables the app developers to determine the suitability of the

utilisation of a particular prioritisation method based on the method’s total time required for

prioritisation.

6.1.2.3.2 Accuracy

We evaluate the accuracy of the group-based prioritisation method based on the priorities assigned by

the stakeholders i.e., cross-validating the priorities of useful reviews generated by the solution against

those assigned by the stakeholders (Bebensee et al., 2010; McZara et al., 2015). The empirical studies

on requirements prioritisation evaluating accuracy dimension show that stakeholders preferences (i.e.,

requirements priority preferences of humans) are the reliable source to validate the priorities of

requirements generated by a method, as these preferences reflect the actual order in which the

requirements need to be fulfilled from the stakeholders perspective (Achimugu et al., 2016; Bebensee

et al., 2010; Laurent et al., 2007).

Concerning useful reviews, the suitable candidates for stakeholders would be regular end-users of the

app who are familiar with the day-to-day use of the apps and accordingly log the requests, bugs or

enhancements related to the apps in the form of useful reviews (Maalej et al., 2016a; Pagano & Maalej,

2013; Panichella et al., 2015). Hence, such end-users have a better knowledge of the logged contents.

Moreover, addressing of prioritised useful reviews assists app developers in launching essential app

updates with end-users solicited requests, enhancements or rectified app bugs (Maalej et al., 2016a;

106

Robillard et al., 2014). Therefore, it is crucial that the priorities of the useful reviews match with those

of the app’s end-users.

That said, we performed an internal evaluation of the accuracy of the prioritisation method where we

assumed the role of the stakeholders (end-users) as we are familiar with apps’ experience (i.e., being

regular app users and software developers ourselves) and are aware of the importance of a useful review

from an end-user’s perspective (Licorish et al., 2017). To achieve this evaluation, we first had to convert

the priorities generated in numerical range (0 to1) to three intervals (Low, Medium, High). This in turn

leads towards the ease of simplifying the generation or assignment of the priorities, and allows us to

measure the reliability of the prioritisation results in alignment with the widely followed software

engineering convention (Boehm & Port, 2001; Diebold et al., 2018). Thus, we map the 10 numerical

priorities (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) onto interval priorities (Low, Medium, High)

using the class interval approach (Evans, 1977). Based on the computed class intervals, we map

numerical priorities in range 0-0.3 onto Low priority interval, numerical priorities in range 0.4-0.6 as

Medium priority interval and numerical priorities in range 0.7-1.0 are mapped onto High priority

interval.

After achieving the necessary conversion, our primary objective is to assist the stakeholders to assign

priorities to the useful reviews based on the defined priority intervals, and for this we have developed a

guideline inherited from the priority assignment codes mentioned in (Licorish et al., 2017). Following

the guidelines proposed by Licorish et al. (2017), we were able to map the authors’ code 2 assignment

guideline onto Low priority interval, code 3 assignment guideline onto Medium priority interval and

code 4 assignment priority interval onto High priority interval. The authors’ code 1 assignment

guideline was discarded as it indicated non-useful reviews and we have already figured out an approach

to automatically filter useful reviews in phase 2. Our guideline regarding the priority generation and

assignment towards useful reviews is provided in Table 6.1 where Low priority interval corresponding

to code 2 assignment guideline indicates the contents within the useful reviews that are not essential

towards the functionality or performance of the app. The code 3 assignment guideline mapped onto

Medium priority interval indicates useful reviews that directly affect the functionality or performance

of the app. Finally, High priority interval inferred from code 4 assignment guideline indicates severe

app concerns within useful reviews that require immediate attention of the app developers. In Table 6.1

along with the priority assignment guideline, we provide some examples of the useful reviews that fall

under the Low, Medium, and High priority intervals. The priorities of the useful reviews generated by

the group-based prioritisation method will be compared against those assigned by the stakeholders to

determine the accuracy of the group-based prioritisation method.

107

Table 6.1 Priority assignment guideline

Numerical

range and

priority

Justification for the priority

assignment

Useful reviews examples

0 - 0.3

Low

Useful reviews that reflect requests, bugs

or enhancements pertaining to an app that

seem optional (not obligatory) towards the

app’s functionalities or performance.

1. “Love the material design. Dark

mode and Chromebook optimisation

would be awesome.”

2. “I like it when you can get free add-

ons sometimes on your Vodafone app

but make it regular please.”

0.4 - 0.6

Medium

Useful reviews that reflect requests, bugs

or enhancements pertaining to an app that

seem mandatory (imperative) towards the

app’s functionalities or performance.

1. “The first few times I turned it on

the graphics were great but now the

butterflies are just coloured squares

along with the writing is messed up.”

2. “It's okay, good for basic use but

some options are not available on the

app so sometimes I need to use the full

website on a computer.”

0.7 - 1.0

High

Useful reviews that reflect requests, bugs

or enhancements pertaining to an app that

seem severe (critical) towards the app’s

functionalities or performance.

1. “The only streaming app on my

Samsung note that won't work.

Crashes frequently. Always gives

'unexpectedly stopped working'

notice.”

2. “I can't seem to download the app

due to "Error: 941" and it says "My

Vodafone can't be downloaded".

Please fix this!”

It is to be noted that in the previous study from which the priority assignment guideline mentioned in

Table 6.1 was derived, the authors had filtered reviews from the My Tracks dataset using the ratings

criteria (i.e., retaining reviews whose ratings were less than or equal to 3) and later manually labelled

them according to their developed coding scheme, and thus, only 855 useful reviews labelled as High,

Medium and Low based on the new guideline mentioned in Table 6.1 were retained for evaluation

(Licorish et al., 2017). We use these useful reviews to evaluate the accuracy and time of the group-

based prioritisation method.

We provide results of this pilot study in the Results section (refer to section 6.2) and present the details

related to the individual prioritisation method in the next sub-section.

6.1.3 Individual Prioritisation Method

While the group-based prioritisation method classifies useful reviews into groups of interest, we noticed

that within a group, different useful reviews might have different priorities. While some studies (Chen

et al., 2014; Peng et al., 2012) have considered group-based priorities, others (Asghar et al., 2013; Voola

& Babu, 2013; Chopra et al., 2016) have considered individual requirements for prioritisation. The

individual requirement-based prioritisation is also a more fine-grained method. Therefore, our work

108

also considered the individual-based prioritisation method. In this approach we decided to discard the

classification approach before prioritisation (i.e., directly prioritising useful reviews after filtering)

(Asghar et al., 2013; Voola & Babu, 2013). This was mainly due to the group-based prioritisation

method removing majority of group information associated with the useful reviews because of the

elimination of the duplicate useful reviews; as we observed that only few groups and their related

priorities were retained and thus, the method missed out on the other important groups of interest. In

addition, based on pertinent studies we had an intuition that prioritising useful reviews directly after the

filtering process would generate better results as it would avoid the complexities involved in

classification approach that hampered the performance of the prioritisation method because of factors

such as handling of redundant information, computational time, and so on (Asghar et al., 2017; Sadiq

et al., 2009; Zhang et al., 2014).

Thus, in this phase we conducted a pilot study in which we directly applied the multi-criteria heuristic

function (refer to equation (19)) on the previously mentioned set of 855 useful reviews of the My Tracks

dataset to prioritise them individually without classification. By doing so, we found out that such

individual prioritisation method generated better results than the group-based prioritisation method

(refer to sub-section 6.2.2). Hence, we conducted a full-scale experimentation of this method in this

phase and we highlight the details regarding this experimentation below. The RQ related to

benchmarking the performance of the prioritisation method during the pilot and full-scale study is

similar to that of RQ4.1 and is

RQ4.2 What is the performance of the developed individual prioritisation method?

6.1.4 Experimental Settings (Individual Prioritisation Method)

In this sub-section, we provide the details regarding the datasets, the pre-processing operations and the

evaluation approach used to empirically validate the individual prioritisation method.

6.1.4.1 Datasets

To demonstrate general relevance of the individual prioritisation method we extracted the latest reviews

(i.e., reviews logged up to November 2019) of four apps hosted on the public apps distribution platform

Google Play Store using a web crawler (refer to Appendices, section B). These four apps belonged to

Casual (App 1), Entertainment (App 2), Shopping (App 3) and Tool (App 4) categories, and comprised

of 5044, 3683, 4559 and 6583 reviews respectively. The average length of these reviews from these

four apps ranged from 112 to 137 words and the average ratings of these apps ranged from 1.5 to 4.2.

For anonymity purpose, we do not reveal the names of the apps. We provide the summary of these

extracted datasets in Table 6.2, where the first column corresponds to the identifier of the particular

app, followed by the number of reviews logged for the app, the maximum length of a review pertaining

109

to the app, the minimum length of the review pertaining to the app, the average length of the total

reviews of the app, the app’s average end-user rating and the app’s category.

Table 6.2 Extracted datasets summary

App

ID

Total

number

of

reviews

logged

Maximum

review length

(characters)

Minimum

review length

(characters)

Average

length of

review

Average

app

rating

Category

App 1 5044 2110 2 126 4.2 Casual

App 2 3683 1483 2 137 1.5 Entertainment

App 3 4559 1732 3 112 3.2 Shopping

App 4 6583 1434 2 123 2.4 Tool

These extracted reviews were then independently labelled as useful or non-useful by the two supervisors

and the PhD candidate using the filtering rules mentioned in (Chen et al., 2014). Next, we utilised Fleiss

Kappa to perform the reliability assessments to support our evaluations. The Fleiss co-efficient was

found to be 0.78 (substantial agreement), 0.65 (substantial agreement), 0.68 (substantial agreement) and

0.71 (substantial agreement) for App 1, App 2, App 3 and App 4 respectively (Landis & Koch, 1977).

Follow up discussions were conducted among us to resolve any conflicts and establish consensus for

achieving a reliable manual labelling process, where we converged on 100% agreement. After

performing the necessary tasks (i.e., reliability assessments and manual filtering) App 1, App 2, App 3

and App 4 indicated 1138, 1760, 1154 and 1120 useful reviews respectively. That said, we performed

the basic useful reviews pre-processing operations and POS tagging to identify keywords of interest

mentioned in sub-section 6.1.2.2. Furthermore, we make the datasets17 (i.e., both raw and labelled) used

in this study publicly available for the research community.

6.1.4.2 Individual Prioritisation Method Evaluation

We followed the evaluation approach mentioned in sub-section 6.1.2.3 to benchmark the performance

of the individual prioritisation method using the time and accuracy dimensions. In this phase, we

evaluated the accuracy of the method at two levels. Initially, we performed internal evaluation of the

method i.e., comparing the priorities of the useful reviews generated by the method against those

assigned by us. Next, to perform the external evaluation of the individual prioritisation method we

recruited 10 participants from the department of Information Science at the University of Otago. To

conduct the external evaluation, we initially had to get an ethics application approved from the Human

Ethics Committee of the University of Otago (refer to Appendices section C for its complete details).

Furthermore, the participants of the external evaluation are regular apps’ users and have experience

17 https://tinyurl.com/yy6nsurh

110

with apps along with software development. For both evaluations i.e., internal and external, the

stakeholders were made familiar with descriptions and usage of the four apps.

That said, based on the number of useful reviews belonging to each app, there was a cognitive overhead

associated with the limited human resources available for internal and external evaluation. Therefore,

for internal evaluation, we used random sampling method (i.e., 95% confidence interval, 5% error

margin) to determine the appropriate sample of useful reviews from each app that had to be evaluated

(Morse, 2000). The random sampling method returned 288, 316, 289 and 287 useful reviews from App

1, App 2, App 3 and App 4 respectively. Using the guidelines mentioned in Table 6.1, the two

supervisors and the PhD candidate independently prioritised the randomly sampled useful reviews.

Next, we performed the required reliability assessments and the Fleiss coefficients were found to be

0.54 (moderate agreement), 0.45 (moderate agreement), 0.61 (substantial agreement) and 0.66

(substantial agreement) for App 1, App 2, App 3 and App 4 respectively (Landis & Koch, 1977). Later,

follow up discussions among the team were held to resolve any conflicts on the priorities of the app

reviews and this lead to 100% convergence (i.e., establishment of consensus) essential towards the

evaluation of accuracy.

Finally, to perform the external evaluation, the 10 recruited participants were subjected to a 30 minute

study designed based on the participant cognitive load limitation guideline (De Jong, 2010; Katsanos,

et al., 2009). Katsanos et al. (2009) have shown that a sample size of 10 participants is reliable enough

to evaluate the outcomes of software engineering research or application. Next, to address the

requirement towards external evaluation, we performed stratified random sampling of the total useful

reviews that were part of internal evaluation to get the necessary useful reviews for the participants to

evaluate (Kadilar & Cingi, 2003). Stratified random sampling prevents the sampling process from being

dominated by the useful reviews of a particular app(s) by returning the approximate equal number of

useful reviews from each app. Out of the total 1,180 useful reviews (i.e., 288 - App 1, 316 - App 2, 289

- App3 and 287 - App 4) which were the part of internal evaluation, the stratified random sampling

returned 71, 73, 74, and 72 (total 290: 95 % confidence interval, 5% error margin) from App 1, App 2,

App 3 and App 4 respectively (Kadilar & Cingi, 2003). During external evaluation, each participant

evaluated a non-identical set of 29 useful reviews, wherein each set comprised of approximately equal

number of app reviews from four apps. Initially, using the guideline from the cognitive load theory, we

estimated an approximate set of 30 useful reviews would be adequate for evaluation for each participant

who had requested a maximum participation time of 30 minutes (De Jong, 2010). Based on the

guideline, each of the internal participants (i.e., two supervisors and the PhD candidate) initially had

independently recorded the average time required to evaluate useful reviews (i.e., time required to

analyse each review and assign it a priority). It was found out that, on average it takes around 1 minute

to perform the evaluation of a single useful review. After establishing an informal agreement on the

111

average time required to evaluate a useful review, it seemed appropriate that each participant evaluate

the non-identical set of 29 useful reviews (i.e., 290 useful reviews among 10 participants) in a span of

30 minutes. The additional 1 minute would assist in getting the participant’s mind frame ready to

perform manual evaluation after the necessary briefing on evaluation was conducted. Furthermore, to

establish a common understanding, the external participants were briefed in detail on the objective of

the evaluation and priority assignment guideline mentioned in Table 6.1 prior to the conduct of the

individual external evaluations. The details pertaining to the objective of external evaluation, the

necessary briefings and an external participant evaluation sheet are provided in the Appendices (refer

to section D).

We provide results of the pilot and full-scale experimentation study performed in this phase in the

Results section.

6.2 Results

In this section, we report the results of the pilot study pertaining to the group-based prioritisation method

and the individual prioritisation method. Later, we report the results of the conducted full-scale study

on the individual prioritisation method.

6.2.1 Group-based Prioritisation Results

Initially, we evaluated the performance of the group-based prioritisation method on My Tracks dataset.

Table 6.3 indicates the overall performance of the group-based prioritisation method based on time and

accuracy dimensions.

Table 6.3. Performance of group-based prioritisation method on My Tracks dataset

Number of useful reviews Time

(seconds)

Accuracy

(%)

855 347.6 58.0%

The group-based prioritisation method required 347.6 seconds to prioritise 855 useful reviews of the

My Tracks dataset and exhibited an accuracy of 58.0%. Furthermore, out of 152 app features, only 84

app features were retained after prioritisation. This was because of the duplicate reviews elimination

process. A useful review could get classified into several groups because of the keyword lookup

classifying mechanism and thus, its duplicate instances might exist in several groups. After the

elimination process is initiated, the duplicate instances of useful reviews in the groups having low

priorities are eliminated and is retained in the group having the highest priority. However, certain low

priority groups do not retain any useful reviews and thus are discarded. Also, out of these 84 app features

only 4 app features (i.e., accuracy, distance, download and package) were found common with those

112

reported in the previous study for priorities cross-validation purpose (Licorish et al., 2017). The

priorities of these app features did not match with those presented in the previous study, further reducing

the suitability of the group-based prioritisation method for useful reviews prioritisation.

We discuss the results of the undertaken pilot study on the prioritisation of useful reviews using the

group-based prioritisation method and the considerations of their implications in the Discussion section

(refer to Section 6.3). In the next sub-section, we present the results related to the individual

prioritisation method.

6.2.2 Individual Prioritisation Method

In this sub-section, we report the results of the pilot and full-scale study conducted using the individual

prioritisation method. Firstly, we report the results of the pilot study in Table 6.4.

Table 6.4. Performance of individual prioritisation method on My Tracks dataset

Number of useful reviews Time

(seconds)

Accuracy

(%)

855 24.4 65.0%

From Table 6.4 it is observed that the individual prioritisation method required 24.4 seconds to prioritise

855 useful reviews of the My Tracks dataset and exhibited an accuracy of 65.0%. When the performance

of the individual prioritisation method was compared with that of the group-based prioritisation method

(refer to Table 4.9), a reduction of 92.98% was observed in case of the time required for prioritisation

and an increase of 7% was observed in case of accuracy. This confirmed our intuition that stated the

performance of the individual prioritisation method would be better than group-based prioritisation

method (refer to sub-section 6.1.3).

Secondly, we report the results of the full-scale study that dealt with the prioritisation of the useful

reviews belonging to four apps: App 1, App 2, App 3 and App 4). Table 6.5 indicates the total time

required by the individual prioritisation method to prioritise the useful reviews. The useful reviews of

App 4 required the least time (17.1 seconds) for prioritisation whereas the useful reviews of App 2

required the most time (24.6 seconds). The useful reviews of App 3 and App 1 required 17.80 seconds

and 19.33 seconds for prioritisation respectively.

Table 6.5 Total time required for prioritisation

 App ID. Number of useful reviews Time

(seconds)

App 1 1138 19.3

App 2 1760 24.6

App 3 1154 21.8

App 4 1120 17.1

113

Thirdly, we present the accuracy of the individual prioritisation method after completing the full-scale

internal evaluation in Table 6.6. Based on the priorities of useful reviews manually assigned by us

against those generated by the individual prioritisation method, the method exhibited highest accuracy

in prioritising the useful reviews of App 3 (81.3%) followed by App 1 (77.43%), App 4 (76.7%) and

App 2 (73.3%).

Table 6.6 Accuracy of individual prioritisation method (internal evaluation)

App ID. Number of useful reviews Accuracy

(%)

App 1 288 77.4

App 2 316 73.3

App 3 289 81.3

App 4 287 76.7

Finally, we report the results of the external evaluation. Table 6.7 indicates the accuracy results obtained

from the external evaluation. Based on the priorities of useful reviews manually assigned by the

participants against those generated by the individual prioritisation method, the method exhibited

highest accuracy in prioritising the useful reviews of App 1 (85.9%) followed by App 4 (81.9%), App

3 (74.3%) and App 2 (74.0%).

Table 6.7. Accuracy of individual prioritisation method (external evaluation)

App ID. Number of useful reviews Accuracy

(%)

App 1 71 85.9

App 2 73 74.0

App 3 74 74.3

App 4 72 81.9

We had performed internal and external evaluation of the individual prioritisation method to determine

its accuracy (as shown in Tables 6.6 and 6.7). To achieve this, we had involved humans based evaluation

approach as such approach provides the necessary reliable ground truth for cross-validation purposes

(Stumpf et al., 2007). That said, the Pearson correlation between the priority assignment judgments of

us and the participants was found to be 0.8 (p-value < 0.01) which indicates that there was a substantial

level of agreement between the internal and external participants on the subjectivity involved in

assigning priorities to the useful reviews. The internal evaluation reported an average accuracy of

77.17%, whereas an average accuracy of 79.04% was reported in external evaluation for all the four

apps. Even though the sample selected for external evaluation was representative of the total population

(i.e., useful reviews) that was a part of the internal evaluation, the average accuracy results are

approximately similar with marginal difference (~1.9%) among them indicating promising results and

show significant level of alignment among the priority assignment perception of humans.

114

We discuss the results of the undertaken studies on the prioritisation of useful reviews using the

individual prioritisation method and the considerations of their implications in the Discussion section

(refer to section 6.3).

That said, the operational demonstration of the classification, group-based prioritisation and individual

prioritisation methods comprising of the filtering of useful reviews using the best performing variant

IV can be assessed by accessing the web tool18. A set of sample reviews have also been provided for

demonstration purpose19. The walkthrough towards operational demonstration with the support of

essential relevant screenshots are provided in the Appendices (refer to section F) of this thesis.

In the next section, we present the discussion and implications along with the threats to validity related

to the relevant phases.

6.3 Discussion

The research study that was conducted in this phase shows that it is possible to develop an automated

prioritisation method that can prioritise numerous useful reviews. The two proposed prioritisation

methods (i.e., group-based and individual) generate the required priorities by directly operating on the

end-users’ requests, bugs or enhancements contained in the useful reviews, and is thus independent of

domain knowledge and priority preferences of stakeholders. With regards to this, it is possible for the

developed prioritisation methods to accommodate new useful reviews and generate updated priorities

of useful reviews during the prioritisation process. Such methods hold promise in supporting software

maintenance and evolution cycles of apps, where there is often a necessity to convert numerous useful

reviews into actionable knowledge (i.e., classification or prioritisation) in regular short intervals (Fabio

et al., 2015; Groen et al., 2015). That said, based on the findings presented in this study, our intuition is

that the foremost aspect of developing an automated prioritisation method is the identification and

assembly of relevant prominent prioritisation methods. The fulfilment of this aspect is dependent on the

type of prioritisation research problem. For instance, if the prioritisation problem demanded to prioritise

useful reviews based only on the frequency of occurrences of the keywords of interest present in those

useful reviews, then frequency method would be appropriate in such case. For solving the problem

related to the prioritisation of numerous useful reviews, we conducted an extensive search for the

appropriate prioritisation methods and assessed their suitability when the four methods (i.e., ER, FR, TF-

IDFR and - (SCR)) were assembled by means of multi-criteria heuristic function. The multi-criteria

heuristic function provides flexibility towards prioritisation of useful reviews based on specific

objectives (del Campo et al., 2016). For instance, business manager of an app could set the value of δ

(refer to equation (19)) to a larger value if the requirement for prioritisation is based on end-users

18 https://recptool.otagointeractive.nz
19 https://f2h.io/buxdrhm7dnsf

115

satisfaction levels of app usage. Subsequently, app developers could perform prioritisation based on the

level of information conveyed by useful reviews by increasing the value of α. Moreover, it would be

easy to incorporate any additional methods, modify the existing ones or remove the unnecessary ones

via the multi-criteria heuristic function depending upon the requirement of prioritisation research or

application. For instance, app developers can develop a method that prioritises useful reviews based on

the geographical location of the app’s end-users and incorporate this method as a variable of the multi-

criteria heuristic function. The sub-sections below discuss the results and implications of RQ4.1 and

4.2

6.3.1 RQ4.1 What is the performance of the developed group-based prioritisation

method?

On default seed values of α, β, γ, and δ (i.e., 0.25), the group-based prioritisation method exhibited

accuracy of 58% and required 347.6 seconds to prioritise 855 useful reviews and their associated groups

in the conducted pilot study. Concerning time, the method prioritised 147 useful reviews per minute

given that the time dimension also considered the classification of useful reviews based on the

automatically generated taxonomy and elimination of duplicate useful reviews for the group-based

prioritisation method. The total time required for the classification phase (i.e., taxonomy generation and

classifying useful reviews into the dynamically generated groups of interest) within the group-based

prioritisation method was 323.10 seconds. The POS tagging operation required 20 seconds and the

taxonomy generation along with the classification of useful reviews into groups of interest took 303.10

seconds. That said, the actual time required to prioritise the useful reviews and their associated groups

along with the elimination of duplicate useful reviews was 24.5 seconds. Thus, the proposed group-

based prioritisation method could benefit from a timely optimised POS technique, providing a scope

for future research. However, given the number of useful reviews prioritised per minute, in terms of the

time dimension, the proposed method performs better than most of the requirements prioritisation

methods presented in Table 3.9 (refer to Chapter 3, sub-section 3.5.6) with only ReproTizer

outperforming our proposed group-based prioritisation method.

Concerning accuracy, the group-based prioritisation method performed fairly when compared to the

requirements prioritisation methods mentioned in Table 3.6 (refer to Chapter 3, sub-section 3.5.6), but

intuitively the result based on accuracy was not noteworthy. Moreover, the group-based prioritisation

method was unable to retain the majority of groups (app features) after the duplicate review elimination

process. With regards to this, only 4 app features matched with those present in the prioritised dataset

that was used as ground truth to validate the outcome of the group-based prioritisation method (Licorish

et al., 2017). Since the priorities of these app features did not match, an informal accuracy of 0% was

noted for the prioritised group, making this group-based prioritisation method ineffective. Such findings

open avenues for potential research whose primary objective would be to improve the accuracy of the

116

group-based prioritisation method by developing approaches specialised in efficient elimination of

duplicate useful reviews and retaining the majority of prioritised groups.

It is to be noted that in this and further sub-sections, we have compared the performances of the group-

based prioritisation method and the individual prioritisation method with those of other requirements

prioritisation methods based on the accuracy and time dimensions (refer to Chapter 3, sub-section

3.5.6). Even though the empirical studies on requirements prioritisation methods covering accuracy and

time dimensions have non-identical experimental settings (i.e., research methodology, number of

requirements, type of requirements - dependent or independent, validation procedures and so on) the

comparisons made are fitting for general summarisations. In addition, as mentioned earlier, the

empirical studies from the app domain did not benchmark the performance of their proposed

prioritisation methods based on any dimension, hence, we are unable to make any general comparison

with those studies. That said, the studies from the app domain focusing on prioritisation of app reviews

or the empirical studies on requirements prioritisation lacking the dimensions could benefit from the

utilisation of suitable dimensions that have been identified through means of our conducted systematic

mapping study on requirements prioritisation.

In addition, it is to be noted that both of our proposed prioritisation method (i.e., group-based and

individual) are not dependent on domain knowledge and the priority preferences of the stakeholders to

generate priorities of useful reviews. This contrasts with requirements prioritisation methods which

utilise domain knowledge and priority preferences of the stakeholders to gain better prioritisation results

in terms of accuracy. For instance, AHP or BPL are known to generate accurate priorities of the

requirements when the priority preferences provided by the various stakeholders are closely related to

each other and are in close proximity with the criteria used for validating accuracy of the particular

requirements prioritisation method (Bebensee et al., 2010; Chopra et al., 2016). One common example

of such criteria is a validation dataset consisting of already prioritised requirements. However, on

default seed values of the parameters α, β, γ, and δ, both the proposed prioritisation methods have shown

promising results and there is a potential scope to improve the methods performance based on parameter

tuning in future. We discuss some of the parameter tuning concepts in sub-section 6.3.3.

To conclude, albeit a pilot study, the results based on accuracy and time dimensions of group-based

prioritisation method that was evaluated in phase 4 did not seem satisfactory (accuracy: 58.0% and time:

347.6 seconds), we decided to discard the classification approach before prioritisation (i.e., directly

prioritising useful reviews after filtering) (Asghar et al., 2013; Voola & Babu, 2013). This was mainly

due to the group-based prioritisation method removing the majority of group information (i.e., only few

groups and their related priorities were retained, and thus, missing out on the other important groups of

interest) associated with the useful reviews. This was the result of the elimination process that removes

duplicate (useful) reviews. In addition, based on pertinent studies we previously had an intuition that

117

prioritising useful reviews directly after the filtering process would generate better results as it would

avoid the complexities involved (e.g. redundant information, computational time, and so on) in the

classification approach that hampered the performance of the prioritisation method (Asghar et al., 2017;

Sadiq et al., 2009; Zhang et al., 2014). The next sub-section addresses this issue.

6.3.2 What is the performance of the developed individual prioritisation method?

In the pilot study, the individual prioritisation method outperformed the group-based prioritisation

method by exhibiting an accuracy of 65.0% and requiring only 24.4 seconds to prioritise the same set

of 855 useful reviews. Concerning time, the individual prioritisation method prioritised 2085 useful

reviews per minute. This is a significant improvement over the group-based prioritisation method that

could only prioritise 147 useful reviews, albeit the group-based prioritisation method constituted the

classification phase. It was observed that the POS tagging operation performed to identify the keywords

of interest, which dominated the prioritisation time by 82% (20 seconds), whereas the actual time to

prioritise the useful reviews was minimal at 4.4 seconds. In addition, given the number of useful reviews

prioritised per minute, in terms of the time dimension, the proposed method performs better than most

of the requirements prioritisation methods presented in Table 3.9 (refer to Chapter 3, sub-section 3.5.6),

with only ReproTizer outperforming our proposed individual prioritisation method.

Concerning accuracy, the individual prioritisation method performed satisfactorily when compared to

the requirements prioritisation methods mentioned in Table 3.6 (refer to Chapter 3, sub-section 3.5.6).

This confirmed our intuition to directly prioritise useful reviews after they were filtered from a pool of

reviews as it prevented the complexities of the classification phase from hampering the performance of

the multi-criteria heuristic function that is the core driving force of our proposed prioritisation methods.

As the results of the individual prioritisation method based on accuracy and time dimensions were more

promising than the group-based prioritisation method, in the conducted pilot study, we performed a full-

scale evaluation of the individual prioritisation method. The evaluation was performed on datasets

pertaining to four new apps belonging to different categories and external participants were included to

assure a rigorous validation of the proposed individual prioritisation method.

In the pilot and full-scale evaluation study, it was observed that the individual prioritisation method

took less than half a minute to prioritise 855 useful reviews, while the traditional manually driven

requirements prioritisation methods like AHP, BPL, NA and Weiger took much longer time (i.e.,

measures in minutes or hours) to prioritise a small set of requirements (refer to Table 3.9). Concerning

the time results reported in the full-scale evaluation study, we observed that the POS technique that

identified the keywords of interest dominated the prioritisation time by 80-85% for App 1 (16.43

seconds), App 2 (20.40 seconds), App 3 (14.24 seconds) and App 4 (14.24 seconds) respectively. This

shows that the individual prioritisation method requires less time to perform prioritisation of numerous

118

useful reviews belonging to the four apps (App 1 - 2.9 seconds, App 2 - 4.18 seconds, App 3 - 3.56

seconds and App 4 - 3.25 seconds). Similar to the group-based prioritisation method, these findings

reveal that our proposed individual prioritisation method could benefit from a timely optimised POS

technique.

Concerning accuracy, during the full-scale evaluation study we performed external evaluation along

with the internal evaluation of the individual prioritisation method’s prioritisation outcomes to

determine its overall accuracy. The outcome sample selected for external evaluation was representative

of the total number of reviews that were a part of the internal evaluation. Even though a representative

sample, on average basis, the accuracy results (77.17 % and 79.04%) are approximately close, with

marginal difference (~1.9%) indicating promising results. In addition, the significant Pearson

correlation coefficient indicated that there was substantial level of agreement between the internal and

external participants on the subjectivity involved in assigning priorities to the useful reviews. That said,

while evaluating the accuracy of the group-based prioritisation method and individual prioritisation

method we utilised human evaluators (internal and external evaluators) who had experience with apps

and software development, and these human evaluators provided the necessary ground truth for cross-

validation purposes (Stumpf et al., 2007). Moreover, the utilisation of such evaluation practise was in

alignment with the guidelines provided by requirements prioritisation studies that suggested

stakeholders priority preferences are reliable source to validate the priorities of requirements generated

by a particular requirements prioritisation method (Achimugu et al., 2016; Asghar et al., 2013; Bebensee

et al., 2010; McZara et al., 2015).

Furthermore, both of our proposed prioritisation methods are novel and they are in their elementary

stage. We have not experimented with the fine tuning of α, β, γ, and δ parameters for useful reviews

belonging to different apps. It is unclear what results of the proposed methods would be generated on

different parameter settings, which in turn would assist in deciding the best, average and worst case

scenario in terms of accuracy and time required to prioritise numerous useful reviews belonging to a

particular app. However, researching this aspect is beyond of the scope of the current study and could

be planned as potential future work. Nevertheless, some of the accuracy and time results related to the

prioritisation of numerous useful reviews of the individual prioritisation method reported in this study

are substantial (Accuracy: 65.0%, 85.9%, 81.9%, 81.3%, 74.0% and Time: 24.4 seconds, 19.33 seconds,

24.58 seconds, 17.80 seconds, and 17.10 seconds). Thus, the proposed prioritisation methods, and

specifically the individual prioritisation method, holds promise for prioritising useful reviews to support

app maintenance and evolution cycles. In the next sub-section, we discuss some of the concepts that

would assist with the automation process leading to fine tuning of parameters of the multi-criteria

heuristic function.

119

6.3.3 Automated Parameter Fine Tuning

In this sub-section, we propose and discuss abstracts of few preliminary concepts that would assist in

performing automated fine tuning of the parameters (i.e., α, β, γ, and δ) pertaining to the multi-criteria

heuristic function to potentially generate optimal prioritisation results. This in turn will potentially allow

the proposed methods to exhibit better performance in terms of accuracy and time dimensions. In

addition, this would transform the multi-criteria heuristic function into an evolutionary multi-criteria

heuristic function that automatically fine tunes the parameters to prioritise numerous useful reviews to

generate optimal prioritisation results (Wessing et al., 2017).

6.3.3.1 Surrogate Modelling Approach

One approach to perform automated fine tuning of the parameters is to subject the multi-criteria

heuristic function to a surrogate model (Forrester et al., 2007). The multi-criteria heuristic function

works in a feed forward fashion i.e., takes the useful reviews and keywords of interest as input,

processes the input with the particular prioritisation methods which are incorporated as variables of the

multi-criteria heuristic function and generates the list of prioritised useful reviews. However, the

prioritisation results produced by the proposed multi-criteria heuristic function are linear and such

results are sometimes known to be insignificant over time in comparison to the non-linear results

generated by multi-criteria heuristic functions that are driven by feedback mechanisms (Solow, 2007).

This is because, linear results contribute towards tactical growth, whereas non-linear results contribute

towards the strategic growth of the respective multi-criteria heuristic functions. Therefore, we propose

a feedback mechanism based multi-criteria heuristic function derived from surrogate modelling

(Forrester et al., 2008). Surrogate modelling iteratively creates optimal results over time through means

of evolutionary computing (Forrester et al., 2007). Figure 24 illustrates the proposed surrogate model

to prioritise numerous useful reviews, wherein, the causal useful reviews prioritisation results can be

used to create virtual models of the numerous useful reviews prioritisation problem, and with the

assistance of these virtual models, optimal results can be generated that could be applied to the real

world numerous useful reviews prioritisation problem reflecting one of the virtual model. The causal

prioritised useful reviews indicate the outcome of a specific prioritisation operation. Such causal

prioritised useful reviews act as solutions to the relevant prioritisation problems which can be virtually

formulated. These virtually formulated problems represent the different versions of the prioritisation

problem that are formulated to address the prioritisation of useful reviews. For instance, a specific

version of the problem can be efficiently solved using entropy and sentiment methods based on setting

appropriate α and δ values, and another version of the problem may only require the β value to be set

to 1 for efficient prioritisation. These problems would assist in determining the right combination of

parameters to prioritise useful reviews pertaining to a specific prioritisation problem. Such combination

120

of parameters would act as surrogates of the default parameter values to generate optimal prioritisation

results pertaining to real world useful reviews.

Figure 24. Surrogate model of the multi-criteria heuristic function towards numerous useful reviews prioritisation

problem

However, implementing the proposed surrogate model of the multi-criteria heuristic function is not a

straightforward task. There are few challenges that need to be addressed to achieve this model. We

represent these challenges in Figure 25 using the ‘What, Why, and How’ research methodology (Fuchs

& Fuchs, 2006). Therefore, in this case ‘What’ addresses the object of examination (i.e., numerous

useful reviews) that causally predicts the ‘Why’, which reflects the priorities of the useful reviews,

which in turn assists in answering the ‘How’ aspect i.e., how we can evolve and test optimal results

through the means of virtual useful reviews prioritisation problem models.

Figure 25. Challenges represented in the form of questions to implement the proposed surrogate model

121

6.3.3.2 Parameter Sweeping Approach

Another approach to find the optimal set of values for the parameters α, β, γ, and δ is by performing

parameter sweeping so that the multi-criteria heuristic function can optimally solve the numerous useful

reviews prioritisation problem (Wibisono et al., 2008). The prime objective of the parameter sweeping

methods in case of prioritisation of useful reviews is to identify appropriate values for the parameters

that would produce an optimal multi-criteria heuristic function which could potentially minimise a

predefined cost function on given useful reviews (Bergstra & Bengio, 2012). The predefined cost

function in this scenario would be a function that would map the acceptable accuracy and time results

related to prioritisation onto a real number. The overall objective would be to minimise the cost function

(Bergstra & Bengio, 2012). Later, by means of an objective function (generating accurate and timely

prioritised useful reviews) multiple combinations of values pertaining to the parameters can be

evaluated to check for several values returned by the cost function (Bergstra & Bengio, 2012). The cost

function with minimum value would determine the optimal set of parameter values (Bergstra & Bengio,

2012). There are some prominent parameter sweeping methods specialised in such tasks. One common

method is Bayesian method that generates a probabilistic model of the function mapping from the

parameter values to the evaluated objective function (Snoek et al., 2012). The method generates a set

of parameter values based on the current probabilistic model and simultaneously updates the model at

every iteration with the objective of identifying the optimal parameter values. Such a method generates

the values pertaining to the parameters and shortlists those that are close to the optimal ones (Snoek et

al., 2012). Another method is to utilise evolutionary algorithm that would initially generate random sets

of parameter values to later evaluate these values and obtain their fitness function (e.g., accuracy or

time results of the multi-criteria heuristic function with those parameter values) (Bergstra et al., 2011).

Later, the sets of parameter values would be ranked based on their relative fitness to substitute the sets

of values of the parameters generating worst results with new sets of values of the parameters computed

through crossover and mutation. The evolutionary algorithm runs iteratively until the algorithm is no

longer generating any optimal parameters (Bergstra et al., 2011).

6.3.3.3 Orthogonal Procrustes Problem Approach

 In addition, another potential approach to generate the optimal parameter values can be considered.

The approach would require the final set of normalised priority values generated by each variable ER,

FR, TF-IDFR and - (SCR) to be represented in the form of a matrix (X) where each column represents

the priority value generated by each variable respectively. The values in each row would represent the

priority values generated by each variable for a particular useful review. In another matrix (Y) having

a single column, PR indicating the actual priorities (i.e., ground truth obtained from domain experts) of

the useful reviews would reside. The arrangement of these two matrices can be seen as orthogonal

122

Procrustes problem (matrix approximation problem), where the objective would be to compute an

orthogonal matrix (Z) which would closely map X to Y (Gower & Dijksterhuis, 2004) given as

Z = argminΩ ||ΩX-Y||F
 (20)

Where (20) is subject to ΩTΩ = I and ||ΩX-Y||F is derived from Frobenius norm (Storjohann, 2001). This

is equivalent to finding the nearest orthogonal matrix to given matrix (M) such that M = YXT and to

find the orthogonal matrix Z, singular value decomposition is utilised such that

M = U∑VT to derive

Z = UVT (21)

In (21), U is an m x m real unitary matrix whereas V is an n x n real unitary matrix and ∑ is an m x n

rectangular diagonal matrix with non-negative real numbers on the diagonal.

Once Z is computed, the respective optimal values of parameters could be identified by dividing the

values of X by 4, since there are four variables in the multi-criteria heuristic function. One potential

solution to generate Z would be the utilisation of Kabsch algorithm that would generate the optimal Z

by minimising the root mean squared deviation between X and Y (Blatov et al., 2019). However, other

solutions pertaining to the generation of Z can be investigated and evaluated.

In the next sub-section, we present the threats to validity.

6.4 Threats to Validity

In this section, we present the threats to validity that can potentially affect the outcomes reported in this

prioritisation study. This study was focused on the prioritisation of useful reviews that are expressed in

natural language, and hence our developed automated prioritisation methods were only evaluated for

their appropriateness at prioritising useful reviews.

6.4.1 Internal Validity

We have mitigated several threats related to the subjectivity involved in manually assigning the

priorities to informative reviews by: (a) inheriting essential guidelines from the pertinent prioritisation

study (Licorish et al., 2017), (b) rigorously studying what types of useful reviews the actual app

developers are concerned with and (c) making efficient use of the feedback provided by the app

developers. All the essential information including the priority assigning guidelines (refer to table 6.1)

were discussed among the three labellers for common understanding, before the reliability assessments

were conducted which returned fair to substantial agreements. Follow up discussions were held to

establish consensus before generating the appropriate results and finalising the particular outcomes. In

123

addition, we have performed external evaluation in the final phase (i.e., prioritisation of useful reviews)

and have achieved substantial results that confirm the valid construction of ground truth (i.e., labelled

datasets) in phases 2 and 4. Furthermore, we have selected four prominent methods for performing the

prioritization of informative reviews. However, app developers (and other stakeholders) may also

favour other methods for prioritization purpose (e.g., end-users’ geographic location). The impact of

such methods is not investigated in this study. However, we believe that our multi-criteria heuristic

function is flexible. It would thus be easy to incorporate any additional methods, modify any existing

ones or remove the unnecessary ones depending upon the objective of prioritisation.

6.4.2 External Validity

The external evaluation participants may have assigned priorities based on their intuition and experience

of apps usage; however, these individuals were properly introduced to the work and guided accordingly

on the assigning of priorities. The application of the developed individual prioritisation method was

tested on useful reviews of four apps. Hence, the generalisability of the method could be further

evaluated through the use of additional useful reviews from several apps. However, the accuracy and

time requirements of the proposed individual prioritisation method is substantial in terms of the

validation of the method. We used a computer with specific hardware configuration (refer to Section

4.5), which may limit the generalisability of the reported time results, however the pattern of results

were consistent across the datasets and so this was not a threat to the pattern of results observed.

Furthermore, the objective of the proposed prioritisation method is to generate prioritised list of the

useful reviews but the decision of addressing certain prioritised useful reviews is totally dependent on

the judgements of app developers for the given app maintenance and evolution cycle. This is because,

only app developers are aware of the constraints such as feasibility, cost, time and so on that are imposed

upon them to influence such decision.

6.4.3 Construct Validity

To construct the ground truth data to prioritise useful reviews we followed the well-established rules

from the pertinent study to label the app reviews and recommended practices from the software

engineering discipline (consensus formation). However, another alternative to construct this ground

truth data would be to approach the app developers of the respective apps to obtain the prioritised set

of reviews for evaluating the performance of the prioritisation method.

In the next chapter, we provide the concluding remarks of each phase, research contributions and

summary of implications along with the potential future work.

124

7 Conclusion

In this chapter, we present the conclusions related to the four phases of research that were conducted in

this research study, research contributions, along with a summary of implications and potential future

work. As stated in the chapters 1, 2 and 3, the findings of the first phase influenced the next three phases

that are linked subsequently. In section 7.1 we provide the conclusions drawn from the conducted

systematic mapping study on requirements prioritisation (Phase 1), which is followed by the

conclusions of the pilot study on automated filtering of useful reviews (Phase 2). Next, the conclusions

for the pilot study on the approach towards automated taxonomy generation (Phase 3), and the pilot

studies on the group-based prioritisation method and individual prioritisation method along with the

full-scale study on individual prioritisation method are provided (Phase 4). In the subsequent sections

we highlight the research contributions (Section 7.2) and the summary of implications along with the

potential future work (Section 7.3).

7.1 Summary of Outcomes

This section provides a summary of outcomes for the four research phases of the study.

7.1.1 Phase 1 - Systematic Mapping Study (RQ1)

Stakeholders often provide requirements before the development of a product begins, and log feedback

containing feature requests, bugs or enhancements for post-release product improvements. Product

developers at times face challenges in terms of deciding which requirements or feedback to address and

in what order during the product development or the product maintenance and evolution cycles. This is

particularly evident when stakeholders are provided with an online platform to provide their

requirements or feedback pertaining to software products. Therefore, software developers are on the

lookout for efficient and reliable prioritisation methods to aid in deciding which crucial requirements

or feedback to address initially. Numerous prioritisation methods exist, and these are utilised based on

the orientation of a particular prioritisation application as these methods have their own merits and

demerits.

While requirements prioritisation methods assist with the requirements prioritisation process under

several conditions, challenges are encountered when there are numerous requirements to prioritise.

Some of the prominent challenges are: lack of scalability of the particular requirements prioritisation

method or the dependency of the particular requirements prioritisation method on domain knowledge

and priority preferences of stakeholders to perform prioritisation. In addition, it is established that such

methods demand much from stakeholders when the number of requirements to prioritise increase

significantly, and particularly in crowdsourced contexts such as app reviews. However, our proposed

prioritisation methods have addressed these challenges. That said, previous review studies did not

125

perform evaluations across full range of requirements prioritisation methods that are present in the

studies on requirements prioritisation belonging to different disciplines. Thus, in the first phase of the

study, we have exploited this opportunity and conducted a comprehensive systematic mapping study

on requirements prioritisation that highlights the strength of evidence that is available on requirements

prioritisation. To achieve this, we answered six research questions, analysing the interest in

requirements prioritisation over time, the publication venues of the studies on requirements

prioritisation and the disciplines of these studies (RQ1.1). We next investigated the approaches that are

used for studying requirements prioritisation (RQ1.2) and the types of contributions that are provided

for addressing the requirements prioritisation challenge (RQ1.3). Next, we identified the actual

requirements prioritisation methods (RQ1.4) and the dimensions that were evaluated for requirements

prioritisation methods (RQ1.5). Finally, we examined the performance outcomes of the various

evaluations, and evidence of relationships between attributes of the requirements prioritisation methods

and their performance outcomes (RQ1.6).

To summarise the outcomes of phase 1, the findings show that there has been steady interest in

requirements prioritisation over the years. We observed that most of the studies are published in

conferences and journals, in the discipline of software engineering, with product manufacturing also

featuring eminently. Moreover, we found out that the majority of the studies focused on requirements

prioritisation targeted evaluated solutions. We observed that researchers have also often proposed

solutions (i.e., solutions that were not evaluated) or provided some type of simulation. The contributions

towards addressing requirements prioritisation challenges ranged from hybrid methods to tools, and

some hybrid methods harnessed the strengths of multiple methods while attempting to avoid the

methods’ drawbacks. That said, we identified eight dimensions that were evaluated for empirical

requirements prioritisation studies, with requirements prioritisation methods largely evaluated for their

operational demonstration, while the examined attributes had limited effects on requirements

prioritisation methods’ outcomes. We also observed that out of the 157 requirements prioritisation

methods, 67 of these methods were part of multiple studies. AHP, CV, QFD, NA and PG were among

the top ten requirements prioritisation methods that were researched. While there exists an opportunity

to perform further evaluations on requirements prioritisation studies, our findings reveal that the

development of new methods may efficiently address the encountered requirements prioritisation

challenge if they are inspired by hybrid methods. The performance trade-offs of such methods are to be

expected based on their performance targets. In the next sub-section, we provide the summary of

outcomes related to the filtering of useful reviews.

7.1.2 Phase 2 - Useful Reviews Filtering (RQ2)

In the pilot study, we investigated the Multinomial Naïve Bayes variants for their feasibility and utility

towards the filtering of useful reviews. Previously, many studies have proposed filtering approaches to

126

extract reviews of interest for app developers. However, the approach involving Expectation

Maximization of Multinomial Naïve Bayes had shown the most promise. Therefore, in our pilot study,

we investigated the performances of six variants of Multinomial Naïve Bayes. The results of this pilot

study suggest that Expectation Maximisation Multinomial Naïve Bayes with Laplace smoothing

(variant IV) and Complement Naïve Bayes with Laplace Smoothing (variant VI) may be best suited for

filtering useful reviews for further app maintenance and evolution operations such as meaningful data

analysis and visualisation, classification or prioritisation. In the next sub-section we provide the

summary of outcomes related to the classification of useful reviews based on the automatically

generated taxonomy.

7.1.3 Phase 3 - Classification of Useful Reviews (RQ3)

The need to generate an automated taxonomy for grouping useful reviews was a requirement of the

group-based prioritisation method. Hence, we conducted a pilot study to validate the feasibility of our

proposed approach. By doing so, we found out that previous studies on classification of reviews

pertaining to apps have worked towards classifying and analysing numerous reviews in support of app

maintenance and evolution cycles. Generally, the proposed classification approaches utilise a taxonomy

that is manually derived from domain knowledge to classify reviews having similar characteristics into

specific groups. However, such domain knowledge needs to be made available from experts and is often

generalised (shallow), which forces app developers to manually analyse each review after the

classification process is completed. Moreover, as the number of reviews increase, scalability challenges

are encountered for classification approaches that are driven by manually derived taxonomies. We

addressed these drawbacks in this pilot study and developed a novel approach that automatically

generates a taxonomy to group reviews into dynamically created groups of interest without being

dependent on the availability of domain knowledge. Based on the empirical evaluation conducted in

this pilot study, the outcome of our proposed approach compares substantially to the one that was

manually derived, and thus, could be useful for grouping useful reviews. In the next sub-section we

provide the summary of outcomes related to the prioritisation of useful reviews.

7.1.4 Phase 4 - Automated Prioritisation of Useful Reviews (RQ4)

Previous studies on requirements prioritisation have attempted to address the challenge to prioritise

numerous requirements but we observed that these methods were dependent on stakeholders’

preferences and domain knowledge to prioritise the requirements or lacked scalability. Subsequently,

only two studies from the app reviews domain were aimed at prioritisation of reviews pertaining to the

apps, but these works lacked essential dimensions to measure their prioritisation performance further

bringing into question their suitability. In the pilot study, we addressed the limitations of the previous

studies by proposing novel automated prioritisation methods (i.e., group-based and individual) for

prioritising numerous useful reviews. Based on the empirical evaluations reported in the pilot study,

127

our proposed methods are completely automated in comparison to manual ones that are dependent on

the availability of domain knowledge or priority preferences of the stakeholders. In addition,

dimensions such as accuracy and time are found to be crucial in benchmarking the prioritisation

performance of these methods as app developers have to address several critical useful reviews in time

constrained app maintenance and evolution cycles. As the individual prioritisation method

outperformed the group-based prioritisation method in terms of the accuracy and time dimensions, we

performed a full-scale evaluation of the individual prioritisation method. Our outcomes show that the

results generated by the individual prioritisation method for useful reviews belonging to different sets

of app are promising. Therefore, this method could be of potential use to app developers who are bound

by time constraints to identify and address issues from numerous useful reviews in the app maintenance

and evolution cycles.

7.2 Contributions

In this section, we highlight the key contributions that are provided for the software engineering

community.

Firstly, we contribute a systematic mapping study protocol for studies related to requirements

prioritisation, which provides classification schemes to categorise the studies on requirements

prioritisation or similar work for meaningful interpretations. The proposed classification schemes on

research approaches and contributions have been specifically developed for the studies on requirements

prioritisation. The protocol also assisted in uncovering research interest in requirements prioritisation

along with the different venues of publications and disciplines in which requirements prioritisation is

considered. Along with these, we were able to uncover several requirements prioritisation methods

(empirical and non-empirical) and identify the essential dimensions that are crucial towards the

evaluation of requirements prioritisation methods.

Secondly, we contribute an approach to automatically filter useful reviews using a set of predefined

rules and a recommended Multinomial Naïve Bayes variant. The recommendation related to the variant

being, the semi supervised variant Expectation Maximisation of Multinomial Naïve Bayes with Laplace

Smoothing (variant IV) is best suited overall. However, app developers can utilise the supervised variant

Complement Naïve Bayes with Laplace smoothing (variant VI) if the app developers have substantial

number of reviews whose labels (useful or non-useful) are imbalanced.

Thirdly, we contribute a preliminary approach that automatically generates a taxonomy from useful

reviews for classification purpose. The approach is best suited when there is unavailability of domain

knowledge (e.g., predefined manual taxonomy) to perform classification. It can also be used when app

developers need to generate a fine-grained taxonomy reflecting prioritised list of app features and their

association with requests, bugs or enhancements.

128

Fourthly, we contribute through the development and evaluation of two automated prioritisation

methods for prioritising useful reviews. These methods driven by a multi-criteria heuristic function are

independent of the stakeholders’ priority preferences and domain knowledge to prioritise useful

reviews. In addition, the multi-criteria heuristic function provides the flexibility to add, modify or

remove prioritisation methods to support application-oriented prioritisation. For example, the

prioritisation application requiring the useful reviews being prioritised based on the prominent end-

users of the app.

Finally, the empirically evaluated and developed requirements prioritisation solution is demonstrated

as a web-based tool available at: https://recptool.otagointeractive.nz/

7.3 Implications and Future Work

In this sub-section, we summarise implications and potential future work related to the four phases of

the study. With the identification of requirements prioritisation studies from multiple disciplines,

researchers from one discipline may seek guidelines from studies from other disciplines to effectively

solve the particular encountered requirements prioritisation problem. Moreover, with the knowledge of

the developed classification schemes and identified requirements prioritisation methods, researchers

could work towards the development of a hybrid requirements prioritisation method that harnesses the

strengths of multiple methods while avoiding their drawbacks. With regards to this, there is scope to

develop a taxonomy for the comparison of the requirements prioritisation methods across different

disciplines. Furthermore, the development of an application specific requirements prioritisation method

could benefit from utilisation of relevant dimensions. For instance, researchers aiming to accurately and

rapidly prioritise a product’s requirements or feedback based on the dependencies that exist among the

requirements or feedback could benefit from studies covering the accuracy, time and requirements

dependency dimensions and utilise these dimensions to their advantage. Practitioners may also be able

to use our insights when addressing the requirements prioritisation challenge.

In addition, software engineering practitioners could benefit from the developed automated filtering

approach (i.e., information retrieval) as this approach identifies and extracts logged requests, bugs or

enhancements related to software products (e.g., app) logged by the products’ stakeholders (e.g.,

product’s end-users). In addition, there exists a research opportunity to investigate and evaluate

techniques that generate discriminative features (i.e., words) for learning purpose that can help increase

the prediction accuracy and F-Measure of the Multinomial Naïve Bayes variants IV (Expectation

Maximisation of Multinomial Naïve Bayes with Laplace Smoothing) and VI (Complement Naïve Bayes

with Laplace Smoothing) along with the addressing of the problem of independence assumption made

by the Multinomial Naïve Bayes variants.

https://recptool.otagointeractive.nz/

129

The practitioners can also benefit from the proposed automated taxonomy generation approach to build

a taxonomy which indicates requests, bugs or enhancements associated with the prominent product’s

features. The application of such an approach is best suited when stakeholders log bugs, requests or

enhancements pertaining to product features that are contextually similar. Furthermore, with regards to

the COALS method that was utilised to automatically generate the taxonomy used the default threshold

value. However, outcomes of COALS can be evaluated using different threshold settings. In addition,

COALS could be integrated with SVD on the appropriate SVD parameter value to generate potential

optimal data necessary towards the generation of taxonomy.

Finally, through means of this conducted PhD study, practitioners can gain insights on how automated

prioritisation methods can be developed to prioritise logged requests, bugs or enhancements pertaining

to a software product. The key aspect in such a scenario being the identification of essential criteria

required to drive the prioritisation process and developing the relevant methods to fulfil the criteria

along with the utilisation of appropriate dimensions. That said, further research towards automated

tuning of the parameters of the multi-criteria heuristic function to generate potential optimal

prioritisation results reflecting increases in accuracy and reduction in time required for prioritisation

can be conducted. In addition, the utility of other dimensions (e.g., computational complexity) towards

prioritisation could also be investigated and evaluated. Beyond useful reviews, the validity of the

prioritisation methods could also be investigated on bugs and requests that are logged on software

repositories such as Jira, GitHub and so on. Such follow up research holds promise for the continuous

evolution of prioritisation methods.

130

References

Aasem, M., Ramzan, M., & Jaffar, A. (2010, 14-16 June 2010). Analysis and optimization of software

requirements prioritization techniques. Paper presented at the 2010 International Conference

on Information and Emerging Technologies. DOI: 10.1109/ICIET.2010.5625687

Abou-Elseoud, M. A., Nasr, E. S., & Hefny, H. A. (2016, 20-21 Dec. 2016). Enhancing requirements

prioritization based on a hybrid technique. Paper presented at the 2016 11th International

Conference on Computer Engineering & Systems (ICCES). DOI:

10.1109/ICCES.2016.7822009

Abran, A., Moore, J. W., Bourque, P., Dupuis, R., & Tripp, L. (2004). Software engineering body of

knowledge. IEEE Computer Society, Angela Burgess. DOI: 10.1109/52.805471

Achimugu, P., & Selamat, A. (2015). A Hybridized Approach for Prioritizing Software Requirements

Based on K-Means and Evolutionary Algorithms. In A. T. Azar & S. Vaidyanathan (Eds.),

Computational Intelligence Applications in Modeling and Control (pp. 73-93). Springer

International Publishing. DOI: https://doi.org/10.1007/978-3-319-11017-2_4

Achimugu, P., Selamat, A., & Ibrahim, R. (2014). A Clustering Based Technique for Large Scale

Prioritization during Requirements Elicitation. DOI: https://doi.org/10.1007/978-3-319-

07692-8_59

Achimugu, P., Selamat, A., & Ibrahim, R. (2016). ReproTizer: A Fully Implemented Software

Requirements Prioritization Tool. Paper presented at the Transactions on Computational

Collective Intelligence XXII, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-662-

49619-0_5

Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. (2014a). An Adaptive Fuzzy Decision Matrix

Model for Software Requirements Prioritization. In J. Sobecki, V. Boonjing, & S.

Chittayasothorn (Eds.), Advanced Approaches to Intelligent Information and Database Systems

(pp. 129-138). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-

05503-9_13

Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. (2014b). A systematic literature review of

software requirements prioritization research. Information and Software Technology, 56(6),

568-585. DOI: https://doi.org/10.1016/j.infsof.2014.02.001

Aggarwal, C., & Zhai, C. (2012). Mining Text Data: Springer Science Business Media. DOI:

https://doi.org/10.1007/978-1-4614-3223-4

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICIET.2010.5625687
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICCES.2016.7822009
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/52.805471
https://doi.org/10.1007/978-3-319-11017-2_4
https://doi.org/10.1007/978-3-319-07692-8_59
https://doi.org/10.1007/978-3-319-07692-8_59
https://doi.org/10.1007/978-3-662-49619-0_5
https://doi.org/10.1007/978-3-662-49619-0_5
https://doi.org/10.1007/978-3-319-05503-9_13
https://doi.org/10.1007/978-3-319-05503-9_13
https://doi.org/10.1016/j.infsof.2014.02.001
https://doi.org/10.1007/978-1-4614-3223-4

131

Ahmad, A., Shahzad, A., Padmanabhuni, V. K., Mansoor, A., Joseph, S., & Arshad, Z. (2011, 10-12

June 2011). Requirements prioritization with respect to Geographically Distributed

Stakeholders. Paper presented at the 2011 IEEE International Conference on Computer Science

and Automation Engineering. DOI: 10.1109/CSAE.2011.5952853

Allan, J., Carbonell, J. G., Doddington, G., Yamron, J., & Yang, Y. (1998). Topic detection and tracking

pilot study final report. DOI: https://doi.org/10.1007/978-1-4615-0933-2_1

Allen, J. R. L. (1986). Earthquake magnitude-frequency, epicentral distance, and soft-sediment

deformation in sedimentary basins. Sedimentary Geology, 46(1), 67-75. DOI:

https://doi.org/10.1016/0037-0738(86)90006-0

Aly, M. (2005). Survey on multiclass classification methods. Neural Networks, 19, 1-9. Retrieved from:

https://tinyurl.com/y6ah82s9

Aral, S. (2014). The problem with online ratings. MIT Sloan Management Review, 55(2), 47. Retrieved

from: https://tinyurl.com/yxbzjb4h

Archak, N., Ghose, A., & Ipeirotis, P. G. (2007). Show me the money!: deriving the pricing power of

product features by mining consumer reviews. Paper presented at the 13th ACM SIGKDD

international conference on Knowledge discovery and data mining. DOI:

10.1145/1281192.1281202

Arcuri, A., & Fraser, G. (2013). Parameter tuning or default values? An empirical investigation in

search-based software engineering. Empirical Software Engineering, 18(3), 594-623. DOI:

https://doi.org/10.1007/s10664-013-9249-9

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statist.

Surv., 4, 40-79. DOI: 10.1214/09-SS054

Armacost, R. L., Componation, P. J., Mullens, M. A., & Swart, W. W. (1994). An AHP Framework For

Prioritizing Customer Requirements In QFD: An Industrial Housing Application. IIE

Transactions, 26(4), 72-79. DOI: 10.1080/07408179408966620

Asghar, A. R., Tabassum, A., Bhatti, S. N., & Jadi, A. M. (2017, 19-21 April 2017). Impact and

challenges of requirements elicitation & prioritization in quality to agile process: Scrum as a

case scenario. Paper presented at the 2017 International Conference on Communication

Technologies (ComTech). DOI: 10.1109/COMTECH.2017.8065749

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/CSAE.2011.5952853
https://doi.org/10.1007/978-1-4615-0933-2_1
https://doi.org/10.1016/0037-0738(86)90006-0
https://tinyurl.com/y6ah82s9
https://tinyurl.com/yxbzjb4h
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/1281192.1281202
https://doi.org/10.1007/s10664-013-9249-9
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1214/09-SS054
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1080/07408179408966620
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/COMTECH.2017.8065749

132

Asghar, M. W., Marchetto, A., Susi, A., & Scanniello, G. (2013, 5-8 March 2013). Maintainability-

Based Requirements Prioritization by Using Artifacts Traceability and Code Metrics. Paper

presented at the 2013 17th European Conference on Software Maintenance and Reengineering.

DOI: 10.1109/CSMR.2013.62

Atukorala, N. L., Chang, C. K., & Oyama, K. (2016). Situation-Oriented Evaluation and Prioritization

of Requirements, Singapore. DOI: https://doi.org/10.1007/978-981-10-3256-1_2

Babar, M. I., Ramzan, M., & Ghayyur, S. A. K. (2011, 11-13 July 2011). Challenges and future trends

in software requirements prioritization. Paper presented at the International Conference on

Computer Networks and Information Technology. DOI: 10.1109/ICCNIT.2011.6020888

Bacchelli, A., Sasso, T. D., D'Ambros, M., & Lanza, M. (2012). Content classification of development

emails. Paper presented at the 34th International Conference on Software Engineering, Zurich,

Switzerland. DOI: 10.5555/2337223.2337268

Bagnall, A. J., Rayward-Smith, V. J., & Whittley, I. M. (2001). The next release problem. Information

and Software Technology, 43(14), 883-890. DOI: https://doi.org/10.1016/S0950-

5849(01)00194-X

Bajaj, P., & Arora, V. (2013). Multi-person decision-making for requirements prioritization using fuzzy

AHP. SIGSOFT Softw. Eng. Notes, 38(5), 1-6. DOI: 10.1145/2507288.2507302

Bebensee, T., van de Weerd, I., & Brinkkemper, S. (2010). Binary Priority List for Prioritizing Software

Requirements, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-14192-8_8

Bennett, K. H., & Rajlich, V. T. (2000). Software maintenance and evolution: a roadmap. Paper

presented at the Conference on The Future of Software Engineering, Limerick, Ireland. DOI:

https://doi.org/10.1145/336512.336534

Berander, P., & Andrews, A. (2005). Requirements Prioritization. In A. Aurum & C. Wohlin (Eds.),

Engineering and Managing Software Requirements (pp. 69-94). Berlin, Heidelberg: Springer

Berlin Heidelberg. DOI: https://doi.org/10.1007/3-540-28244-0_4

Berander, P., & Jonssen, P. (2006). Hierarchical Cumulative Voting (HCV) — Prioritization of

Requirements In Hierarchies. International Journal of Software Engineering and Knowledge

Engineering, 16(06), 819-849. DOI: 10.1142/s0218194006003026

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/CSMR.2013.62
https://doi.org/10.1007/978-981-10-3256-1_2
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICCNIT.2011.6020888
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/2337223.2337268
https://doi.org/10.1016/S0950-5849(01)00194-X
https://doi.org/10.1016/S0950-5849(01)00194-X
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/2507288.2507302
https://doi.org/10.1007/978-3-642-14192-8_8
https://doi.org/10.1145/336512.336534
https://doi.org/10.1007/3-540-28244-0_4
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1142/s0218194006003026

133

Berander, P., & Svahnberg, M. (2009). Evaluating two ways of calculating priorities in requirements

hierarchies – An experiment on hierarchical cumulative voting. Journal of Systems and

Software, 82(5), 836-850. DOI: https://doi.org/10.1016/j.jss.2008.11.841

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The Journal of

Machine Learning Research, 13(1), 281-305. DOI: 10.5555/2188385.2188395

Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter

optimization. Paper presented at the Advances in Neural Information Processing Systems. DOI:

10.5555/2986459.2986743

Blatov, I. A., Kitaeva, E. V., Shevchenko, A. P., & Blatov, V. A. (2019). A universal algorithm for

finding the shortest distance between systems of points. Acta Crystallographica Section A:

Foundations and Advances, 75(6). DOI: 10.1107/S2053273319011628

Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M.-É., & Hoos, H. H. (2017). Automatically

Configuring Multi-objective Local Search Using Multi-objective Optimisation. DOI:

https://doi.org/10.1007/978-3-319-54157-0_5

Boehm, B., & Port, D. (2001). Educating software engineering students to manage risk. Paper presented

at the 23rd International Conference on Software Engineering. DOI:

10.1109/ICSE.2001.919133

Bollegala, D., Matsuo, Y., & Ishizuka, M. (2011). A web search engine-based approach to measure

semantic similarity between words. IEEE Transactions on Knowledge and Data Engineering,

23(7), 977-990. DOI: 10.1109/TKDE.2010.172

Boullé, M. (2006). MODL: A Bayes optimal discretization method for continuous attributes. Machine

Learning, 65(1), 131-165. DOI: 10.1007/s10994-006-8364-x

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying

the systematic literature review process within the software engineering domain. Journal of

Systems and Software, 80(4), 571-583. DOI: https://doi.org/10.1016/j.jss.2006.07.009

Broder, A. (2002). A taxonomy of web search. SIGIR Forum, 36(2), 3-10. DOI:

10.1145/792550.792552

Brunetti, G., & Golob, B. (2000). A feature-based approach towards an integrated product model

including conceptual design information. Computer-Aided Design, 32(14), 877-887. DOI:

https://doi.org/10.1016/S0010-4485(00)00076-2

https://doi.org/10.1016/j.jss.2008.11.841
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/2188385.2188395
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/2986459.2986743
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1107/S2053273319011628
https://doi.org/10.1007/978-3-319-54157-0_5
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICSE.2001.919133
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/TKDE.2010.172
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s10994-006-8364-x
https://doi.org/10.1016/j.jss.2006.07.009
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/792550.792552
https://doi.org/10.1016/S0010-4485(00)00076-2

134

Burgess, C. (1998). From simple associations to the building blocks of language: Modeling meaning in

memory with the HAL model. Behavior research methods, instruments, & computers, 30(2),

188-198. DOI: https://doi.org/10.3758/BF03200643

Calders, T., & Verwer, S. (2010). Three naive Bayes approaches for discrimination-free classification.

Data Mining and Knowledge Discovery, 21(2), 277-292. DOI:

https://doi.org/10.1007/s10618-010-0190-x

Carod, N. M., & Cechich, A. (2010, 22-27 Aug. 2010). Cognitive Profiles in Understanding and

Prioritizing Requirements: A Case Study. Paper presented at the 2010 Fifth International

Conference on Software Engineering Advances. DOI: 10.1109/ICSEA.2010.58

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning

algorithms. Paper presented at the 23rd international conference on Machine learning. DOI:

10.1145/1143844.1143865

Chea, R. S., Morris, J., & Prabhu, G. (2009). System for dynamic product summary based on consumer-

contributed keywords: Google Patents. Retrieved from: https://tinyurl.com/y6fdcqmz

Chen, N., Lin, J., Hoi, S. C. H., Xiao, X., & Zhang, B. (2014). AR-miner: mining informative reviews

for developers from mobile app marketplace. Paper presented at the 36th International

Conference on Software Engineering, Hyderabad, India. DOI:

https://doi.org/10.1145/2568225.2568263

Chen, Y. Z., & Yu, Q. (2014, 17-19 Aug. 2014). A fuzzy game approach to prioritize customer

requirements in Quality Function Deployment. Paper presented at the 2014 International

Conference on Management Science & Engineering 21th Annual Conference Proceedings.

DOI: 10.1109/ICMSE.2014.6930230

Chopra, R. K., Gupta, V., & Chauhan, D. S. (2016). Experimentation on accuracy of non functional

requirement prioritization approaches for different complexity projects. Perspectives in

Science, 8, 79-82. DOI: https://doi.org/10.1016/j.pisc.2016.04.001

Ciurumelea, A., Panichella, S., & Gall, H. C. (2018, 27 May-3 June 2018). Poster: Automated User

Reviews Analyser. Paper presented at the 2018 IEEE/ACM 40th International Conference on

Software Engineering: Companion (ICSE-Companion). DOI:

https://doi.org/10.1145/3183440.3194988

Ciurumelea, A., Schaufelbühl, A., Panichella, S., & Gall, H. C. (2017, 20-24 Feb. 2017). Analyzing

reviews and code of mobile apps for better release planning. Paper presented at the 2017 IEEE

https://doi.org/10.3758/BF03200643
https://doi.org/10.1007/s10618-010-0190-x
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICSEA.2010.58
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/1143844.1143865
https://tinyurl.com/y6fdcqmz
https://doi.org/10.1145/2568225.2568263
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICMSE.2014.6930230
https://doi.org/10.1016/j.pisc.2016.04.001
https://doi.org/10.1145/3183440.3194988

135

24th International Conference on Software Analysis, Evolution and Reengineering (SANER).

DOI: 10.1109/SANER.2017.7884612

Cleland-Huang, J., & Mobasher, B. (2008). Using data mining and recommender systems to scale up

the requirements process. Paper presented at the 2nd international workshop on Ultra-large-

scale software-intensive systems, Leipzig, Germany. DOI: 10.1109/RE.2008.47

Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated classification of non-functional

requirements. Requir. Eng., 12(2), 103-120. DOI: 10.1007/s00766-007-0045-1

Collins, M. (2012). The Naive Bayes Model, Maximum-Likelihood Estimation, and the EM algorithm.

Lecture Notes. Retrieved from: https://tinyurl.com/y5zpfooy

Cysneiros, L. M., & do Prado Leite, J. C. S. (2004). Nonfunctional requirements: From elicitation to

conceptual models. IEEE Transactions on Software Engineering, 30(5), 328-350. DOI:

10.1109/TSE.2004.10

Das, A., Bandyopadhyay, S., & Gambäck, B. (2012). Sentiment analysis: what is the end user's

requirement? Paper presented at the 2nd International Conference on Web Intelligence, Mining

and Semantics. DOI: https://doi.org/10.1145/2254129.2254173

Dasgupta, P., Chakrabarti, P., & DeSarkar, S. (2013). Multiobjective heuristic search: An introduction

to intelligent search methods for multicriteria optimization: Springer Science & Business

Media. DOI: 10.1007/978-3-322-86853-4

De Jong, T. (2010). Cognitive load theory, educational research, and instructional design: some food

for thought. Instructional Science, 38(2), 105-134. DOI: https://doi.org/10.1007/s11251-009-

9110-0

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by

latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-

407. DOI: https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-

9

del Campo, C., Pauser, S., Steiner, E., & Vetschera, R. (2016). Decision making styles and the use of

heuristics in decision making. Journal of Business Economics, 86(4), 389-412. DOI:

10.1007/s11573-016-0811-y

Delia Ilie, U. L., & Andreas Kain. (2009). Evaluation And Prioritization Of Cross Linked Requirements

In The Automotive Development Process. Paper presented at the International Design

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/SANER.2017.7884612
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RE.2008.47
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s00766-007-0045-1
https://tinyurl.com/y5zpfooy
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/TSE.2004.10
https://doi.org/10.1145/2254129.2254173
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/978-3-322-86853-4
https://doi.org/10.1007/s11251-009-9110-0
https://doi.org/10.1007/s11251-009-9110-0
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6%3c391::AID-ASI1%3e3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6%3c391::AID-ASI1%3e3.0.CO;2-9
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s11573-016-0811-y

136

Engineering Technical Conferences & Computers and Information in Engineering Conference,

San Diego, California, USA. DOI: 10.1115/DETC2009-87249

Dhinakaran, V. T., Pulle, R., Ajmeri, N., & Murukannaiah, P. K. (2018, 20-24 Aug. 2018). App Review

Analysis Via Active Learning: Reducing Supervision Effort without Compromising

Classification Accuracy. Paper presented at the 2018 IEEE 26th International Requirements

Engineering Conference (RE). DOI: 10.1109/RE.2018.00026

Di Sorbo, A., Panichella, S., Alexandru, C. V., Shimagaki, J., Visaggio, C. A., Canfora, G., & Gall, H.

C. (2016). What would users change in my app? summarizing app reviews for recommending

software changes. Paper presented at 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering. DOI: http://dx.doi.org/10.1145/2950290.2950299

Di Sorbo, A., Panichella, S., Alexandru, C. V., Visaggio, C.A., & Canfora, G., (2017) SURF:

Summarizer of User Reviews Feedback, Paper presented at 39th International Conference on

Software Engineering Companion (ICSE-C): Buenos Aires, Argentina. DOI: 10.1109/ICSE-

C.2017.5

Diebold, P., Schmitt, A., & Theobald, S. (2018). Scaling agile: how to select the most appropriate

framework. Paper presented at the 19th International Conference on Agile Software

Development: Companion, Porto, Portugal. DOI: https://doi.org/10.1145/3234152.3234177

Dillon, J. T. (1984). The Classification of Research Questions. Review of Educational Research, 54(3),

327-361. DOI: 10.3102/00346543054003327

Elsood, M. A. A., Hefny, H. A., & Nasr, E. S. (2014, 15-17 Dec. 2014). A goal-based technique for

requirements prioritization. Paper presented at the 2014 9th International Conference on

Informatics and Systems. DOI: 10.1109/INFOS.2014.7036697

Erk, K. (2010). What is word meaning, really?:(and how can distributional models help us describe

it?). Paper presented at the 2010 Workshop on Geometrical Models of Natural Language

Semantics. DOI: 10.5555/1870516.1870519

Evangelopoulos, N., Zhang, X., & Prybutok, V. R. (2012). Latent Semantic Analysis: five

methodological recommendations. European Journal of Information Systems, 21(1), 70-86.

DOI: 10.1057/ejis.2010.61

Evans, I. S. (1977). The selection of class intervals. Transactions of the Institute of British Geographers,

98-124. DOI: 10.2307/622195

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1115/DETC2009-87249
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RE.2018.00026
http://dx.doi.org/10.1145/2950290.2950299
10.1109/ICSE-C.2017.5
10.1109/ICSE-C.2017.5
https://doi.org/10.1145/3234152.3234177
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.3102/00346543054003327
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/INFOS.2014.7036697
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/1870516.1870519
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1057/ejis.2010.61
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.2307/622195

137

Fabio, P., M. L.-V., G. Bavota, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia. (2015). User

reviews matter! Tracking crowdsourced reviews to support evolution of successful apps. Paper

presented at the 2015 IEEE International Conference on Software Maintenance and Evolution

(ICSME), Bremen, Germany. DOI: 10.1109/ICSM.2015.7332475

Fadhl Hujainah, Rohani Binti. A. B., Basheer Al-Haimi and Abdullah B. (2016). Analyzing

Requirement Prioritization Techniques Based on the Used Aspects. Research Journal of

Applied Sciences, 11, 327-332. DOI: 10.3923/rjasci.2016.327.332

Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1),

5. DOI: https://doi.org/10.1186/s40537-015-0015-2

Felfernig, A., & Ninaus, G. (2012, 4-4 June 2012). Group recommendation algorithms for requirements

prioritization. Paper presented at the 2012 Third International Workshop on Recommendation

Systems for Software Engineering (RSSE). DOI: 10.1109/RSSE.2012.6233412

Filcek, G., Hojda, M., & Żak, J. (2017). A heuristic algorithm for solving a Multiple Criteria Carpooling

Optimization (MCCO) problem. Transportation Research Procedia, 27, 656-663. DOI:

https://doi.org/10.1016/j.trpro.2017.12.108

Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation

coefficient as measures of reliability. Educational and psychological measurement, 33(3), 613-

619. DOI: https://doi.org/10.1177/001316447303300309

Forouzani, S., Ahmad, R., & Gazerani, N. (2012, 24-26 April 2012). Design of a teaching framework

for software requirement prioritization. Paper presented at the 2012 8th International

Conference on Computing Technology and Information Management (NCM and ICNIT).

Retrieved from: https://ieeexplore.ieee.org/document/6268608

Forrester, A., Sobester, A., & Keane, A. (2008). Engineering design via surrogate modelling: a

practical guide: John Wiley & Sons. DOI: 10.1002/9780470770801

Forrester, A. I., Sóbester, A., & Keane, A. J. (2007). Multi-fidelity optimization via surrogate

modelling. Proceedings of the royal society a: mathematical, physical and engineering

sciences, 463(2088), 3251-3269. DOI: https://doi.org/10.1098/rspa.2007.1900

Franceschini, F., Galetto, M., Maisano, D., & Mastrogiacomo, L. (2015). Prioritisation of engineering

characteristics in QFD in the case of customer requirements orderings. International Journal

of Production Research, 53(13), 3975-3988. DOI: 10.1080/00207543.2014.980457

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICSM.2015.7332475
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.3923/rjasci.2016.327.332
https://doi.org/10.1186/s40537-015-0015-2
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RSSE.2012.6233412
https://doi.org/10.1016/j.trpro.2017.12.108
https://doi.org/10.1177/001316447303300309
https://ieeexplore.ieee.org/document/6268608
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1002/9780470770801
https://doi.org/10.1098/rspa.2007.1900
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1080/00207543.2014.980457

138

Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., & Sadeh, N. (2013). Why people hate your app: making

sense of user feedback in a mobile app store. Paper presented at the 19th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA.

DOI: https://doi.org/10.1145/2487575.2488202

Fuchs, D., & Fuchs, L. S. (2006). Introduction to response to intervention: What, why, and how valid

is it? Reading research quarterly, 41(1), 93-99. DOI: 10.1598/RRQ.41.1.4

Fung, R. Y. K., Shouju, R., & Jinxing, X. (1996, 14-17 Oct 1996). The prioritisation of attributes in

customer requirement management. Paper presented at the 1996 IEEE International Conference

on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat.

No.96CH35929). DOI: 10.1109/ICSMC.1996.571198

Galvis Carreño, L. V., & Winbladh, K. (2013). Analysis of user comments: an approach for software

requirements evolution. Paper presented at the 2013 International Conference on Software

Engineering. DOI: 10.5555/2486788.2486865

Ganu, G., Elhadad, N., & Marian, A. (2009). Beyond the stars: improving rating predictions using

review text content. Paper presented at the WebDB. Retrieved from:

https://tinyurl.com/y5ns2rk7

Gao, C., Wang, B., He, P., Zhu, J., Zhou, Y., & Lyu, M. R. (2015). Paid: Prioritizing app issues for

developers by tracking user reviews over versions. Paper presented at the 2015 IEEE 26th

International Symposium on Software Reliability Engineering (ISSRE). DOI:

10.1109/ISSRE.2015.7381797

Gao, C., Zeng, J., Lo, D., Lin, C.-Y., Lyu, M. R., & King, I. (2018). INFAR: Insight extraction from

app reviews. Paper presented at the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. DOI:

https://doi.org/10.1145/3236024.3264595

Garg, N., Sadiq, M., & Agarwal, P. (2017). GOASREP: Goal Oriented Approach for Software

Requirements Elicitation and Prioritization Using Analytic Hierarchy Process, Singapore.

DOI: https://doi.org/10.1007/978-981-10-3156-4_28

Garg, U., & Singhal, A. (2017, 12-13 Jan. 2017). Software requirement prioritization based on non-

functional requirements. Paper presented at the 2017 7th International Conference on Cloud

Computing, Data Science & Engineering - Confluence. DOI:

10.1109/CONFLUENCE.2017.7943258

https://doi.org/10.1145/2487575.2488202
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1598/RRQ.41.1.4
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICSMC.1996.571198
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/2486788.2486865
https://tinyurl.com/y5ns2rk7
file:///C:/Sherlock/University_Work/Otago%20Supervision/Saurabh/2021/Jan-Feb/10.1109/ISSRE.2015.7381797
https://doi.org/10.1145/3236024.3264595
https://doi.org/10.1007/978-981-10-3156-4_28
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/CONFLUENCE.2017.7943258

139

Gärtner, S., & Schneider, K. (2012, 2-2 June 2012). A method for prioritizing end-user feedback for

requirements engineering. Paper presented at the 2012 5th International Workshop on Co-

operative and Human Aspects of Software Engineering (CHASE). DOI:

10.1109/CHASE.2012.6223020

Ghose, A., & Ipeirotis, P. G. (2011). Estimating the Helpfulness and Economic Impact of Product

Reviews: Mining Text and Reviewer Characteristics. IEEE Transactions on Knowledge and

Data Engineering, 23(10), 1498-1512. DOI: 10.1109/TKDE.2010.188

Goul, M., Marjanovic, O., Baxley, S., & Vizecky, K. (2012, 4-7 Jan. 2012). Managing the Enterprise

Business Intelligence App Store: Sentiment Analysis Supported Requirements Engineering.

Paper presented at the 2012 45th Hawaii International Conference on System Sciences. DOI:

10.1109/HICSS.2012.421

Gower, J. C., & Dijksterhuis, G. B. (2004). Procrustes problems (Vol. 30): Oxford University Press on

Demand. DOI: 10.1093/acprof:oso/9780198510581.001.0001

Grafton, J., Lillis, A. M., Ihantola, E. M., & Kihn, L. A. (2011). Threats to validity and reliability in

mixed methods accounting research. Qualitative Research in Accounting & Management. DOI:

https://doi.org/10.1108/11766091111124694

Greer, D., & Ruhe, G. (2004). Software release planning: an evolutionary and iterative approach.

Information and Software Technology, 46(4), 243-253. DOI:

https://doi.org/10.1016/j.infsof.2003.07.002

Groen, E., Doerr, J., & Adam, S. (2015). Towards Crowd-Based Requirements Engineering: A

Research Preview. DOI: https://doi.org/10.1007/978-3-319-16101-3_16

Hajič, J., Raab, J., & Spousta, M. (2009). Semi-supervised training for the averaged perceptron POS

tagger. Paper presented at the 12th Conference of the European Chapter of the Association for

Computational Linguistics. DOI: 10.3115/1609067.1609152

Hofmann, T. (1999). Probabilistic latent semantic analysis. Paper presented at the Fifteenth Conference

on Uncertainty in Artificial Intelligence. DOI: https://doi.org/10.1145/312624.312649

Hoon, L., Vasa, R., Schneider, J.G., & Grundy, J. (2013). An analysis of the mobile app review

landscape: trends and implications. Faculty of Information and Communication Technologies,

Swinburne University of Technology, Tech. Rep. Retrieved from:

http://hdl.handle.net/1959.3/352848

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/CHASE.2012.6223020
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/TKDE.2010.188
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/HICSS.2012.421
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1093/acprof:oso/9780198510581.001.0001
https://doi.org/10.1108/11766091111124694
https://doi.org/10.1016/j.infsof.2003.07.002
https://doi.org/10.1007/978-3-319-16101-3_16
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.3115/1609067.1609152
https://doi.org/10.1145/312624.312649
http://hdl.handle.net/1959.3/352848

140

Hosseini, M., Shahri, A., Phalp, K., Taylor, J., Ali, R., & Dalpiaz, F. (2015, 13-15 May 2015).

Configuring crowdsourcing for requirements elicitation. Paper presented at the 2015 IEEE 9th

International Conference on Research Challenges in Information Science (RCIS). DOI:

10.1109/RCIS.2015.7128873

Htay, S. S., & Lynn, K. T. (2013). Extracting product features and opinion words using pattern

knowledge in customer reviews. The Scientific World Journal, 2013. DOI:

https://doi.org/10.1155/2013/394758

Hutto, C. J., & Gilbert, E. (2015). VADER: A Parsimonious Rule-based Model for Sentiment Analysis

of Social Media Text. Retrieved from: http://eegilbert.org/papers/icwsm14.vader.hutto.pdf

Iacob, C., & Harrison, R. (2013, 18-19 May 2013). Retrieving and analyzing mobile apps feature

requests from online reviews. Paper presented at the 2013 10th Working Conference on Mining

Software Repositories (MSR). DOI: 10.1109/MSR.2013.6624001

Iacob, C., Harrison, R., & Faily, S. (2014). Online Reviews as First Class Artifacts in Mobile App

Development. DOI: https://doi.org/10.1007/978-3-319-05452-0_4

Inoki, M., Kitagawa, T., & Honiden, S. (2014, 26-26 Aug. 2014). Application of requirements

prioritization decision rules in software product line evolution. Paper presented at the 2014

IEEE 5th International Workshop on Requirements Prioritization and Communication

(RePriCo). DOI: 10.1109/RePriCo.2014.6895216

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol.

112): Springer. DOI: https://doi.org/10.1007/978-1-4614-7138-7

Jiang, H., Zhang, J., Li, X., Ren, Z., Lo, D., Wu, X., & Luo, Z. (2019). Recommending new features

from mobile app descriptions. ACM Transactions on Software Engineering and Methodology

(TOSEM), 28(4), 1-29. DOI: https://doi.org/10.1145/3344158

Jiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical

taxonomy. arXiv preprint cmp-lg/9709008. Retrieved from: https://arxiv.org/pdf/cmp-

lg/9709008.pdf

John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. Paper

presented at the Eleventh Conference on Uncertainty in Artificial Intelligence. DOI:

https://arxiv.org/abs/1302.4964

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RCIS.2015.7128873
https://doi.org/10.1155/2013/394758
http://eegilbert.org/papers/icwsm14.vader.hutto.pdf
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/MSR.2013.6624001
https://doi.org/10.1007/978-3-319-05452-0_4
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RePriCo.2014.6895216
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1145/3344158
https://arxiv.org/pdf/cmp-lg/9709008.pdf
https://arxiv.org/pdf/cmp-lg/9709008.pdf
https://arxiv.org/abs/1302.4964

141

Jung, Y. G., Kim, K. T., Lee, B., & Youn, H. Y. (2016, 19-21 Oct. 2016). Enhanced Naive Bayes

Classifier for real-time sentiment analysis with SparkR. Paper presented at the 2016

International Conference on Information and Communication Technology Convergence

(ICTC). DOI: 10.1109/ICTC.2016.7763455

Kadilar, C., & Cingi, H. (2003). Ratio estimators in stratified random sampling. Biometrical Journal:

Journal of Mathematical Methods in Biosciences, 45(2), 218-225. DOI:

https://doi.org/10.1007/978-3-642-71581-5_4

Kamvysi, K., Gotzamani, K., Andronikidis, A., & Georgiou, A. C. (2014). Capturing and prioritizing

students’ requirements for course design by embedding Fuzzy-AHP and linear programming

in QFD. European Journal of Operational Research, 237(3), 1083-1094. DOI:

https://doi.org/10.1016/j.ejor.2014.02.042

Karov, Y., & Edelman, S. (1998). Similarity-based word sense disambiguation. Comput. Linguist.,

24(1), 41-59. DOI: 10.5555/972719.972722

Katsanos, C., Tselios, N., & Avouris, N. (2009). Are Ten Participants Enough for Evaluating

Information Scent of Web Page Hyperlinks? Paper presented at the Human-Computer

Interaction – INTERACT 2009, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-

03655-2_45

Keertipati, S., Savarimuthu, B. T. R., & Licorish, S. A. (2016). Approaches for prioritizing feature

improvements extracted from app reviews. Paper presented at the 20th International Conference

on Evaluation and Assessment in Software Engineering, Limerick, Ireland. DOI:

https://doi.org/10.1145/2915970.2916003

Khalid, M., Shehzaib, U., & Asif, M. (2015). A case of mobile app reviews as a crowdsource. Int. J.

Inf. Eng. Electron. Business, 7(5). DOI: 0.5815/ijieeb.2015.05.06

Kim, J., Kim, C., Park, Y., & Lee, H. (2012). Trends and relationships of smartphone application

services: Analysis of apple app store using text mining-based network analysis. Paper presented

at the 4th ISPIM Innovation Symposium, Wellington, New Zealand. Retrieved from:

https://tinyurl.com/yxfzbb8h

Kim, S. M., Pantel, P., Chklovski, T., & Pennacchiotti, M. (2006). Automatically assessing review

helpfulness. Paper presented at the 2006 Conference on Empirical Methods in Natural

Language Processing. DOI: 10.5555/1610075.1610135

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICTC.2016.7763455
https://doi.org/10.1007/978-3-642-71581-5_4
https://doi.org/10.1016/j.ejor.2014.02.042
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/972719.972722
https://doi.org/10.1007/978-3-642-03655-2_45
https://doi.org/10.1007/978-3-642-03655-2_45
https://doi.org/10.1145/2915970.2916003
file:///C:/Users/malsa876/Desktop/Final_Thesis/0.5815/ijieeb.2015.05.06
https://tinyurl.com/yxfzbb8h
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/1610075.1610135

142

Kiremire, A. R. (2011). The application of the pareto principle in software engineering. Consulted

January, 13, 2016. Retrieved from: https://tinyurl.com/y5g3o8vp

Kitchenham. (2007). Guidelines for performing Systematic Literature Reviews in Software

Engineering. Retrieved from: https://tinyurl.com/y682jy48

Ko, Y., Park, S., & Seo, J. (2000). Web-based requirements elicitation supporting system using

requirements categorization. Paper presented at the Twelfth International Conference on

Software Engineering and Knowledge Engineering (SEKE 2000), Chicago, USA. Retrieved

from: http://home.donga.ac.kr/yjko/papers/ic2.pdf

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection. Paper presented at the IJCAI. DOI: 10.5555/1643031.1643047

Konkol, M., Brychcín, T., & Konopík, M. (2015). Latent semantics in named entity recognition. Expert

Systems with Applications, 42(7), 3470-3479. DOI:

https://doi.org/10.1016/j.eswa.2014.12.015

Košmerlj, A., Belyaeva, E., Leban, G., Grobelnik, M., & Fortuna, B. (2015). Towards a complete event

type taxonomy. Paper presented at the 24th International Conference on World Wide Web. DOI:

https://doi.org/10.1145/2740908.2742005

Kozima, H., & Furugori, T. (1993). Similarity between words computed by spreading activation on an

English dictionary. Paper presented at the sixth conference on European chapter of the

Association for Computational Linguistics, Utrecht, The Netherlands. DOI:

10.3115/976744.976772

Kravchenko, T.K., & Sergey, B. (2017). Prioritization of requirements for effective support of the

communication process with customers of a commercial bank. Business Informatics, 2(40), 7-

16. DOI: 10.17323/1998-0663.2017.2.7.16

Kukreja, N., Boehm, B., Payyavula, S. S., & Padmanabhuni, S. (2012, 24-28 Sept. 2012). Selecting an

appropriate framework for value-based requirements prioritization. Paper presented at the

2012 20th IEEE International Requirements Engineering Conference (RE). DOI:

10.1109/RE.2012.6345819

Landauer, T. K., & Dumais, S. (2008). Latent semantic analysis. Scholarpedia, 3(11), 4356. DOI:

https://doi.org/10.1002/0470018860.s00561

https://tinyurl.com/y5g3o8vp
https://tinyurl.com/y682jy48
http://home.donga.ac.kr/yjko/papers/ic2.pdf
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/1643031.1643047
https://doi.org/10.1016/j.eswa.2014.12.015
https://doi.org/10.1145/2740908.2742005
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.3115/976744.976772
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.17323/1998-0663.2017.2.7.16
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RE.2012.6345819
https://doi.org/10.1002/0470018860.s00561

143

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data.

biometrics, 159-174. DOI: 10.2307/2529310

Laurent, P., Cleland-Huang, J., & Duan, C. (2007, 15-19 Oct. 2007). Towards Automated Requirements

Triage. Paper presented at the 15th IEEE International Requirements Engineering Conference

(RE 2007). DOI: 10.1109/RE.2007.63

Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense

identification. WordNet: An electronic lexical database, 49(2), 265-283. Retrieved from:

https://ieeexplore.ieee.org/document/6287675

Lehtola, L. (2017). Towards a Research Framework on Requirements Prioritization. Retrieved from:

https://tinyurl.com/y4jxamh8

Lehtola, L., & Kauppinen, M. (2006). Suitability of requirements prioritization methods for market-

driven software product development. Software Process: Improvement and Practice, 11(1), 7-

19. DOI: 10.1002/spip.249

Leksin, V., & Vorontsov, K. (2008). The overfitting in probabilistic latent semantic models. Pattern

Recognition and Image Analysis: new information technologies (PRIA-9-2008): Nizhni

Novgorod, Russian Federation, 1, 393-396. Retrieved from: https://tinyurl.com/yygx7cft

Li, J., Jeffery, R., Fung, K. H., Zhu, L., Wang, Q., Zhang, H., & Xu, X. (2012). A Business Process-

Driven Approach for Requirements Dependency Analysis, Berlin, Heidelberg. DOI:

https://doi.org/10.1007/978-3-642-32885-5_16

Licorish, S. A., Savarimuthu, B. T. R., & Keertipati, S. (2017). Attributes that Predict which Features

to Fix: Lessons for App Store Mining. Paper presented at the 21st International Conference on

Evaluation and Assessment in Software Engineering, Karlskrona, Sweden. DOI:

https://doi.org/10.1145/3084226.3084246

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman

problem. Operations research, 21(2), 498-516. DOI: https://doi.org/10.1287/opre.21.2.498

Liu, K. (2000). Semiotics in information systems engineering: Cambridge University Press. DOI:

10.1017/CBO9780511543364

Lorigo, L., Haridasan, M., Brynjarsdóttir, H., Xia, L., Joachims, T., Gay, G., & Pan, B. (2008). Eye

tracking and online search: Lessons learned and challenges ahead. Journal of the American

Society for Information Science and Technology, 59(7), 1041-1052. DOI: 10.1002/asi.20794

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.2307/2529310
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RE.2007.63
https://ieeexplore.ieee.org/document/6287675
https://tinyurl.com/y4jxamh8
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1002/spip.249
https://tinyurl.com/yygx7cft
https://doi.org/10.1007/978-3-642-32885-5_16
https://doi.org/10.1145/3084226.3084246
https://doi.org/10.1287/opre.21.2.498
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1017/CBO9780511543364
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1002/asi.20794

144

Lowd, D., & Domingos, P. (2005). Naive Bayes models for probability estimation. Paper presented at

the 22nd International Conference on Machine learning. DOI:

https://doi.org/10.1145/1102351.1102418

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-

occurrence. Behavior research methods, instruments, & computers, 28(2), 203-208. DOI:

https://doi.org/10.3758/BF03204766

Luo, Q., Xu, W., & Guo, J. (2014). A Study on the CBOW Model's Overfitting and Stability. Paper

presented at the 5th International Workshop on Web-scale Knowledge Representation Retrieval

& Reasoning. DOI: https://doi.org/10.1145/2663792.2663793

Maalej, W., Kurtanović, Z., Nabil, H., & Stanik, C. (2016a). On the automatic classification of app

reviews. Requirements Engineering, 21(3), 311-331. DOI: https://doi.org/10.1007/s00766-

016-0251-9

Maalej, W., Nayebi, M., Johann, T., & Ruhe, G. (2016b). Toward Data-Driven Requirements

Engineering. IEEE Software, 33(1), 48-54. DOI: 10.1109/MS.2015.153

Maedche, A., & Staab, S. (2000). Discovering conceptual relations from text. Paper presented at the

ECAI. DOI: 10.5555/3006433.3006501

Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering.

Structural and multidisciplinary optimization, 26(6), 369-395. DOI:

https://doi.org/10.1007/s00158-003-0368-6

Mayring, P. (2004). Qualitative content analysis. A companion to qualitative research, 1, 159-176.

Retrieved from: https://tinyurl.com/yyzkulsq

McCallum, A., & Nigam, K. (2001). A Comparison of Event Models for Naive Bayes Text

Classification, In AAAI-98 workshop on learning for text categorization (Vol. 752, No. 1, pp.

41-48). Retrieved from: https://tinyurl.com/h3z2hxe

Mccallum, M. L., & Bury, G. W. (2013). Google search patterns suggest declining interest in the

environment. Biodiversity and conservation, 22(6-7), 1355-1367. DOI:

https://doi.org/10.1007/s10531-013-0476-6

McIlroy, S., Ali, N., Khalid, H., & E. Hassan, A. (2016). Analyzing and automatically labelling the

types of user issues that are raised in mobile app reviews. Empirical Software Engineering,

21(3), 1067-1106. DOI: 10.1007/s10664-015-9375-7

https://doi.org/10.1145/1102351.1102418
https://doi.org/10.3758/BF03204766
https://doi.org/10.1145/2663792.2663793
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1007/s00766-016-0251-9
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/MS.2015.153
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/3006433.3006501
https://doi.org/10.1007/s00158-003-0368-6
https://tinyurl.com/yyzkulsq
https://tinyurl.com/h3z2hxe
https://doi.org/10.1007/s10531-013-0476-6
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s10664-015-9375-7

145

McIlroy, S., Shang, W., Ali, N., & Hassan, A. E. (2015). Is it worth responding to reviews? studying

the top free apps in google play. IEEE Software, 34(3), 64-71. DOI: 10.1109/MS.2015.149

McZara, J., Sarkani, S., Holzer, T., & Eveleigh, T. (2015). Software requirements prioritization and

selection using linguistic tools and constraint solvers—a controlled experiment. Empirical

Software Engineering, 20(6), 1721-1761. DOI: 10.1007/s10664-014-9334-8

Michie, D., Spiegelhalter, D. J., & Taylor, C. (1994). Machine learning. Neural and Statistical

Classification, 13. DOI: 10.2307/1269742

Mihalcea, R., Corley, C., & Strapparava, C. (2006). Corpus-based and knowledge-based measures of

text semantic similarity. Paper presented at the AAAI. DOI: 10.5555/1597538.1597662

Misaghian, N., & Motameni, H. (2016). An approach for requirements prioritization based on tensor

decomposition. Requirements Engineering. DOI: 10.1007/s00766-016-0262-6

Morse, J. M. (2000). Determining sample size: Sage Publications Sage CA: Thousand Oaks, CA. DOI:

https://doi.org/10.1177/104973200129118183

Myers, L., & Sirois, M. J. (2004). Spearman correlation coefficients, differences between. Encyclopedia

of Statistical Sciences, 12. DOI: https://doi.org/10.1002/0471667196.ess5050.pub2

Nepal, B., Yadav, O. P., & Murat, A. (2010). A fuzzy-AHP approach to prioritization of CS attributes

in target planning for automotive product development. Expert Systems with Applications,

37(10), 6775-6786. DOI: https://doi.org/10.1016/j.eswa.2010.03.048

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic

regression and naive bayes. Paper presented at the Advances in Neural Information Processing

Systems. DOI: 10.5555/2980539.2980648

Nidhra, S., Satish, L. P. K., & Ethiraj, V. S. (2012, 5-7 Sept. 2012). Analytical Hierarchy Process issues

and mitigation strategy for large number of requirements. Paper presented at the 2012 CSI

Sixth International Conference on Software Engineering (CONSEG). DOI:

10.1109/CONSEG.2012.6349467

Nigam, K., Mccallum, A. K., Thrun, S., & Mitchell, T. (2000). Text Classification from Labeled and

Unlabeled Documents using EM. Machine Learning, 39(2), 103-134. DOI:

10.1023/a:1007692713085

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/MS.2015.149
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s10664-014-9334-8
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.2307/1269742
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/1597538.1597662
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s00766-016-0262-6
https://doi.org/10.1177/104973200129118183
https://doi.org/10.1002/0471667196.ess5050.pub2
https://doi.org/10.1016/j.eswa.2010.03.048
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/2980539.2980648
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/CONSEG.2012.6349467
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1023/a:1007692713085

146

Ninaus, G. (2012). Using group recommendation heuristics for the prioritization of requirements. Paper

presented at the sixth ACM conference on Recommender Systems, Dublin, Ireland. DOI:

https://doi.org/10.1145/2365952.2366034

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: a roadmap. Paper presented at the

Conference on The Future of Software Engineering, Limerick, Ireland. DOI:

https://doi.org/10.1145/336512.336523

Oliveira, R. P., & Almeida, E. S. (2015, 21-22 Sept. 2015). Requirements Evolution in Software Product

Lines: An Empirical Study. Paper presented at the 2015 IX Brazilian Symposium on

Components, Architectures and Reuse Software. DOI: 10.1109/SBCARS.2015.11

Pagano, D., & Maalej, W. (2013, 15-19 July 2013). User feedback in the appstore: An empirical study.

Paper presented at the 2013 21st IEEE International Requirements Engineering Conference

(RE). DOI: 10.1109/RE.2013.6636712

Palma, F., Susi, A., & Tonella, P. (2011). Using an SMT solver for interactive requirements

prioritization. Paper presented at the 19th ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of software engineering, Szeged, Hungary. DOI:

10.1145/2025113.2025124

Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A., Canfora, G., & Gall, H. C. (2016). Ardoc:

App reviews development oriented classifier. Paper presented at the 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. DOI:

10.1145/2950290.2983938

Panichella, S., Sorbo, A. D., Guzman, E., Visaggio, C. A., Canfora, G., & Gall, H. C. (2015, Sept. 29

2015-Oct. 1 2015). How can i improve my app? Classifying user reviews for software

maintenance and evolution. Paper presented at the 2015 IEEE International Conference on

Software Maintenance and Evolution (ICSME). DOI: 10.1109/ICSM.2015.7332474

Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv preprint

arXiv:1503.06462. DOI: 10.17148/IARJSET.2015.2305

Peng, W., Sun, T., Revankar, S., & Li, T. (2012). Mining the Voice of the Customer for Business

Prioritization. ACM Trans. Intell. Syst. Technol., 3(2), 1-17. DOI: 10.1145/2089094.2089114

Pergher, M., & Rossi, B. (2013, 15-15 July 2013). Requirements prioritization in software engineering:

A systematic mapping study. Paper presented at the 2013 3rd International Workshop on

Empirical Requirements Engineering (EmpiRE). DOI: 10.1109/EmpiRE.2013.6615215

https://doi.org/10.1145/2365952.2366034
https://doi.org/10.1145/336512.336523
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/SBCARS.2015.11
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RE.2013.6636712
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/2025113.2025124
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/2950290.2983938
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICSM.2015.7332474
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.17148/IARJSET.2015.2305
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/2089094.2089114
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/EmpiRE.2013.6615215

147

Perini, A., Susi, A., & Avesani, P. (2013). A Machine Learning Approach to Software Requirements

Prioritization. IEEE Transactions on Software Engineering, 39(4), 445-461. DOI:

10.1109/TSE.2012.52

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic mapping studies in software

engineering. Paper presented at the 12th International Conference on Evaluation and

Assessment in Software Engineering, Italy. DOI: 10.5555/2227115.2227123

Petrakis, E. G., Varelas, G., Hliaoutakis, A., & Raftopoulou, P. (2006). X-similarity: Computing

semantic similarity between concepts from different ontologies. Journal of Digital Information

Management, 4(4). DOI: https://tinyurl.com/y5p3b5vw

Philip Achimugu. (2014). Applying Fuzzy-TOPSIS Algorithm in Prioritizing Software Requirements.

New Trends in Software Methodologies, Tools and Techniques (pp. 659-671): IOS Press. DOI:

10.3233/978-1-61499-434-3-659

Popli, R., Chauhan, N., & Sharma, H. (2014, 7-8 Feb. 2014). Prioritising user stories in agile

environment. Paper presented at the 2014 International Conference on Issues and Challenges

in Intelligent Computing Techniques (ICICT). DOI: 10.1109/ICICICT.2014.6781336

Potts, C. (1993). Software-engineering research revisited. IEEE Software, 10(5), 19-28. DOI:

https://doi.org/10.1109/52.232392

Reisinger, J., & Mooney, R. J. (2010). Multi-prototype vector-space models of word meaning. Paper

presented at the 2010 Annual Conference of the North American Chapter of the Association

for Computational Linguistics, Los Angeles, California. DOI: 10.5555/1857999.1858012

Ren, J., Lee, S. D., Chen, X., Kao, B., Cheng, R., & Cheung, D. (2009). Naive bayes classification of

uncertain data. Paper presented at the 2009 Ninth IEEE International Conference on Data

Mining. DOI: 10.1109/ICDM.2009.90

Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor assumptions of naive

bayes text classifiers. Paper presented at the 20th International Conference on Machine

Learning (ICML-03). DOI: 10.5555/3041838.3041916

Rényi, A. (1961). On measures of entropy and information. Paper presented the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory

of Statistics. Retrieved from: https://projecteuclid.org/euclid.bsmsp/1200512181

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/TSE.2012.52
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/2227115.2227123
https://tinyurl.com/y5p3b5vw
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.3233/978-1-61499-434-3-659
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICICICT.2014.6781336
https://doi.org/10.1109/52.232392
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/1857999.1858012
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICDM.2009.90
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/3041838.3041916
https://projecteuclid.org/euclid.bsmsp/1200512181

148

Robillard, M. P., Maalej, W., Walker, R. J., & Zimmermann, T. (2014). Recommendation Systems in

Software Engineering: Springer Publishing Company, Incorporated. DOI: 10.1007/978-3-642-

45135-5

Rodrigues, P., Silva, I. S., Barbosa, G. A. R., Coutinho, F. R. D. S., & Mourão, F. (2017). Beyond the

stars: towards a novel sentiment rating to evaluate applications in web stores of mobile apps.

Paper presented at the 26th International Conference on World Wide Web Companion. DOI:

10.1145/3041021.3054139

Rohde, D. L., Gonnerman, L. M., & Plaut, D. C. (2006). An improved model of semantic similarity

based on lexical co-occurrence. Communications of the ACM, 8(627-633), 116. Retrieved from:

https://tinyurl.com/y4r27zz4

Roma, P., & Ragaglia, D. (2016). Revenue models, in-app purchase, and the app performance: Evidence

from Apple’s App Store and Google Play. Electronic Commerce Research and Applications,

17, 173-190. DOI: https://doi.org/10.1016/j.elerap.2016.04.007

Rowley, J., & Slack, F. (2004). Conducting a literature review. Management research news. DOI:

10.1108/01409170410784185

Ryan, K., & Karlsson, J. (1997). Prioritizing software requirements in an industrial setting. Paper

presented at the 19th International Conference on Software Engineering, Boston,

Massachusetts, USA. DOI: https://doi.org/10.1145/253228.253453

Sadiq, M. (2017). A Fuzzy Set-Based Approach for the Prioritization of Stakeholders on the Basis of

the Importance of Software Requirements. IETE Journal of Research, 63(5), 616-629. DOI:

10.1080/03772063.2017.1313140

Sadiq, M., Ghafir, S., & Shahid, M. (2009, 27-28 Oct. 2009). An Approach for Eliciting Software

Requirements and its Prioritization Using Analytic Hierarchy Process. Paper presented at the

2009 International Conference on Advances in Recent Technologies in Communication and

Computing. DOI: 10.1109/ARTCom.2009.58

Sadiq, M., Hassan, T., & Nazneen, S. (2017, 9-10 Feb. 2017). AHP_GORE_PSR: Applying analytic

hierarchy process in goal oriented requirements elicitation method for the prioritization of

software requirements. Paper presented at the 3rd International Conference on Computational

Intelligence & Communication Technology (CICT). DOI: 10.1109/CIACT.2017.7977366

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/978-3-642-45135-5
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/978-3-642-45135-5
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/3041021.3054139
https://tinyurl.com/y4r27zz4
https://doi.org/10.1016/j.elerap.2016.04.007
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1108/01409170410784185
https://doi.org/10.1145/253228.253453
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1080/03772063.2017.1313140
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ARTCom.2009.58
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/CIACT.2017.7977366

149

Sánchez, D., Batet, M., & Isern, D. (2011). Ontology-based information content computation.

Knowledge-Based Systems, 24(2), 297-303. DOI:

https://doi.org/10.1016/j.knosys.2010.10.001

Santos, R., Albuquerque, A., & Pinheiro, P. R. (2016). Towards the Applied Hybrid Model in

Requirements Prioritization. Procedia Computer Science, 91, 909-918. DOI:

https://doi.org/10.1016/j.procs.2016.07.109

Schaffer, C. (1993). Selecting a classification method by cross-validation. Machine Learning, 13(1),

135-143. DOI: https://doi.org/10.1007/BF00993106

Shah, F. A., Sirts, K., & Pfahl, D. (2018). Simple App Review Classification with Only Lexical Features.

Paper presented at the ICSOFT. DOI: 10.5220/0006855901120119

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal,

27(3), 379-423. DOI: 10.1002/j.1538-7305.1948.tb00917.x

Shao, P. (2008). Sample selection: an algorithm for requirements prioritization. Paper presented at the

46th Annual Southeast Regional Conference, Auburn, Alabama. DOI:

10.1145/1593105.1593248

Sharma, J. R. (2007). Prioritizing customers requirements in QFD by integrating their interrelationship

with the raw weights. Journal of the Institution of Engineers, 88, 7-11. DOI:

https://doi.org/10.1080/10686967.2007.11918046

Sher, F., Jawawi, D. N. A., Mohamad, R., & Babar, M. I. (2014, 23-24 Sept. 2014). Requirements

prioritization techniques and different aspects for prioritization a systematic literature review

protocol. Paper presented at the 2014 8th. Malaysian Software Engineering Conference

(MySEC). DOI: 10.1109/MySec.2014.6985985

Sheskin, D. J. (2003). Handbook of parametric and nonparametric statistical procedures: Chapman

and Hall/CRC. DOI: https://doi.org/10.1201/9781420036268

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning

algorithms. Paper presented at the Advances in Neural Information Processing Systems. DOI:

10.5555/2999325.2999464

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification

tasks. Information Processing & Management, 45(4), 427-437. DOI:

https://doi.org/10.1016/j.ipm.2009.03.002

https://doi.org/10.1016/j.knosys.2010.10.001
https://doi.org/10.1016/j.procs.2016.07.109
https://doi.org/10.1007/BF00993106
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5220/0006855901120119
file:///C:/Sherlock/University_Work/Otago%20Supervision/Saurabh/2021/Jan-Feb/10.1002/j.1538-7305.1948.tb00917.x
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/1593105.1593248
https://doi.org/10.1080/10686967.2007.11918046
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/MySec.2014.6985985
https://doi.org/10.1201/9781420036268
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/2999325.2999464
https://doi.org/10.1016/j.ipm.2009.03.002

150

Solemon, B., Sahibuddin, S., & Abdul Azim Abd, G. (2008, 26-28 Aug. 2008). Requirements

engineering problems in 63 software companies in Malaysia. Paper presented at the 2008

International Symposium on Information Technology. DOI: 10.1109/ITSIM.2008.4631911

Solow, D. (2007). Linear and nonlinear programming. Wiley Encyclopedia of Computer Science and

Engineering. DOI: https://doi.org/10.1002/9780470050118.ecse219

Sommervile, I. (2009). Software Engineering (9 ed.). DOI:

http://doi.ieeecomputersociety.org/10.1109/MC.1987.1663532

Somprasertsri, G., & Lalitrojwong, P. (2008). A maximum entropy model for product feature extraction

in online customer reviews. Paper presented at the 2008 IEEE Conference on Cybernetics and

Intelligent Systems. DOI: 10.1109/ICCIS.2008.4670882

Sorbo, A. D., Panichella, S., Alexandru, C. V., Shimagaki, J., Visaggio, C. A., Canfora, G., & Gall, H.

C. (2016). What would users change in my app? summarizing app reviews for recommending

software changes. Paper presented at the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, Seattle, WA, USA. DOI:

https://doi.org/10.1145/2950290.2950299

Storjohann, A. (2001). Deterministic computation of the Frobenius form. Paper presented at the 42nd

IEEE Symposium on Foundations of Computer Science. DOI:

https://doi.org/10.1109/SFCS.2001.959911

Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich, T., Sullivan, E., & Herlocker, J. (2007). Toward

harnessing user feedback for machine learning. Paper presented at the 12th international

conference on Intelligent user interfaces.DOI: https://doi.org/10.1145/1216295.1216316

Sundaram, S. K., Hayes, J. H., & Dekhtyar, A. (2005). Baselines in requirements tracing. SIGSOFT

Softw. Eng. Notes, 30(4), 1-6. DOI: 10.1145/1082983.1083169

Sureka, A. (2014, 7-10 April 2014). Requirements Prioritization and Next-Release Problem under Non-

additive Value Conditions. Paper presented at the 2014 23rd Australian Software Engineering

Conference. DOI: 10.1109/ASWEC.2014.12

Syarifah Fazlin, & Seyed Fadzir. (2016). Requirement Prioritization Approaches and Evaluation

Strategies: A Systematic Literature Review. Journal of Engineering and Applied Sciences,

11(6), 1201-1205. DOI: 10.1109/ACCESS.2018.2881755

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ITSIM.2008.4631911
https://doi.org/10.1002/9780470050118.ecse219
http://doi.ieeecomputersociety.org/10.1109/MC.1987.1663532
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ICCIS.2008.4670882
https://doi.org/10.1145/2950290.2950299
https://doi.org/10.1109/SFCS.2001.959911
https://doi.org/10.1145/1216295.1216316
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/1082983.1083169
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ASWEC.2014.12
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/ACCESS.2018.2881755

151

Takahira, R., Tanaka-Ishii, K., & Dębowski, Ł. (2016). Entropy rate estimates for natural language—a

new extrapolation of compressed large-scale corpora. Entropy, 18(10), 364. DOI:

https://doi.org/10.3390/e18100364

Thabane, L., Ma, J., Chu, R., Cheng, J., Ismaila, A., Rios, L. P., Goldsmith, & C. H. (2010). A tutorial

on pilot studies: the what, why and how. BMC medical research methodology, 10(1), 1. DOI:

10.1186/1471-2288-10-1

Thakurta, R. (2013). A framework for prioritization of quality requirements for inclusion in a software

project. Software Quality Journal, 21(4), 573-597. DOI: 10.1007/s11219-012-9188-5

Thew, S., & Sutcliffe, A. (2017). Value-based requirements engineering: method and experience.

Requirements Engineering. DOI: 10.1007/s00766-017-0273-y

Tian, J., Rudraraju, S., & Li, Z. (2004). Evaluating web software reliability based on workload and

failure data extracted from server logs. IEEE Transactions on Software Engineering, 30(11),

754-769. DOI: 10.1109/TSE.2004.87

Turner, C. R., Fuggetta, A., Lavazza, L., & Wolf, A. L. (1999). A conceptual basis for feature

engineering. Journal of Systems and Software, 49(1), 3-15. DOI:

https://doi.org/10.1016/S0164-1212(99)00062-X

Voola, P., & Babu, A., V. (2017). Study of aggregation algorithms for aggregating imprecise software

requirements’ priorities. European Journal of Operational Research, 259(3), 1191-1199. DOI:

https://doi.org/10.1016/j.ejor.2016.11.040

Voola, P., & Babu, A. V. (2013). Comparison of requirements prioritization techniques employing

different scales of measurement. SIGSOFT Softw. Eng. Notes, 38(4), 1-10. DOI:

10.1145/2492248.2492278

Vu, P. M., Nguyen, T. T., & Nguyen, T. T. (2019). On building an automated responding system for

app reviews: What are the characteristics of reviews and their responses?. arXiv preprint

arXiv:1908.10816.

Walid Maalej., & Haader Nabil. (2015). Bug report, feature request, or simply praise? On automatically

classifying app reviews. Paper presented at the 2015 IEEE 23rd International Requirements

Engineering Conference (RE), Ottawa, Canada. DOI: 10.1109/RE.2015.7320414

Wang, C., Zhang, F., Liang, P., Daneva, M., & Sinderen, M. V. (2018). Can app changelogs improve

requirements classification from app reviews?: an exploratory study. Paper presented at the

https://doi.org/10.3390/e18100364
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1186/1471-2288-10-1
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s11219-012-9188-5
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s00766-017-0273-y
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/TSE.2004.87
https://doi.org/10.1016/S0164-1212(99)00062-X
https://doi.org/10.1016/j.ejor.2016.11.040
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/2492248.2492278
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/RE.2015.7320414

152

12th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, Oulu, Finland. DOI: https://doi.org/10.1145/3239235.3267428

Wessing, S., Pink, R., Brandenbusch, K., & Rudolph, G. (2017). Toward Step-Size Adaptation in

Evolutionary Multiobjective Optimization. DOI: https://doi.org/10.1007/978-3-319-54157-

0_45

Wibisono, A., Zhao, Z., Belloum, A., & Bubak, M. (2008). A Framework for Interactive Parameter

Sweep Applications, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-540-69389-5_55

Wieringa, R., Maiden, N., Mead, N., & Rolland, C. (2005). Requirements engineering paper

classification and evaluation criteria: a proposal and a discussion. Requir. Eng., 11(1), 102-107.

DOI: 10.1007/s00766-005-0021-6

Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis testing: Academic press. DOI:

https://doi.org/10.1016/C2010-0-67044-1

Wnuk, K., Regnell, B., & Schrewelius, C. (2009). Architecting and Coordinating Thousands of

Requirements – An Industrial Case Study, Berlin, Heidelberg. DOI:

https://doi.org/10.1007/978-3-642-02050-6_10

Wu, H. C., Luk, R. W. P., Wong, K. F., & Kwok, K. L. (2008). Interpreting tf-idf term weights as

making relevance decisions. ACM Transactions on Information Systems (TOIS), 26(3), 13.

DOI: https://doi.org/10.1145/1361684.1361686

Xuemei, S., Dakun, Z., Xinming, D., & You, Z. (2008, 12-15 Oct. 2008). Prioritizing design

requirement in fuzzy quality function deployment. Paper presented at the 2008 IEEE

International Conference on Service Operations and Logistics, and Informatics. DOI:

10.1109/SOLI.2008.4682981

Yang, H., & Liang, P. (2015). Identification and Classification of Requirements from App User

Reviews. DOI: 10.18293/SEKE2015-063

Yuan, Q., Cong, G., & Thalmann, N. M. (2012). Enhancing naive bayes with various smoothing

methods for short text classification. Paper presented at the 21st International Conference on

World Wide Web. DOI: 10.1145/2187980.2188169

Yutao Ma, Y. L., Haisu Zhang, & Guisheng Chen. (2012). A Hybrid Method for Prioritizing Software

Requirements in terms of Use Cases. Journal of Convergence Information Technology(JCIT),

7(5). DOI: 10.4156/jcit.vol7.issue5.3

https://doi.org/10.1145/3239235.3267428
https://doi.org/10.1007/978-3-319-54157-0_45
https://doi.org/10.1007/978-3-319-54157-0_45
https://doi.org/10.1007/978-3-540-69389-5_55
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1007/s00766-005-0021-6
https://doi.org/10.1016/C2010-0-67044-1
https://doi.org/10.1007/978-3-642-02050-6_10
https://doi.org/10.1145/1361684.1361686
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/SOLI.2008.4682981
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.18293/SEKE2015-063
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1145/2187980.2188169
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.4156/jcit.vol7.issue5.3

153

Zha, Z. J., Yu, J., Tang, J., Wang, M., & Chua, T.-S. (2014). Product aspect ranking and its applications.

IEEE Transactions on Knowledge and Data Engineering, 26(5), 1211-1224. DOI:

10.1109/TKDE.2013.136

Zhang, C., Zhang, X., & Halstead-Nussloch, R. (2014). Assessment Metrics, Challenges And Strategies

For Mobile Health Apps. Issues in Information Systems, 15(2). Retrieved from:

https://tinyurl.com/y3v76su7

Zhang, L., & Liu, B. (2011). Identifying noun product features that imply opinions. Paper presented at

the 49th Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies: short papers-Volume 2. DOI: 10.5555/2002736.2002849

Zhang, R., & Tran, T. (2008, 9-12 Dec. 2008). An Entropy-Based Model for Discovering the Usefulness

of Online Product Reviews. Paper presented at the 2008 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology. DOI:

10.1109/WIIAT.2008.149

Zhaoling, L., Dongling, Z., & Qisheng, G. (2009, 17-19 June 2009). A grey method of prioritizing

engineering characteristics in QFD. Paper presented at the 2009 Chinese Control and Decision

Conference. DOI: 10.1109/CCDC.2009.5191557

Zhu, J., Wang, H., & Zhang, X. (2006). Discrimination-based feature selection for multinomial naïve

bayes text classification. Paper presented at the International Conference on Computer

Processing of Oriental Languages. DOI: https://doi.org/10.1007/11940098_15

Zowghi, D., & Coulin, C. (2005). Requirements elicitation: A survey of techniques, approaches, and

tools. Engineering and managing software requirements (pp. 19-46): Springer. DOI:

https://doi.org/10.1007/3-540-28244-0_2

file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/TKDE.2013.136
https://tinyurl.com/y3v76su7
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.5555/2002736.2002849
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/WIIAT.2008.149
file:///C:/Users/malsa876/Desktop/Final_Thesis/10.1109/CCDC.2009.5191557
https://doi.org/10.1007/11940098_15
https://doi.org/10.1007/3-540-28244-0_2

154

Appendices

A. List of shortlisted studies on requirements prioritisation

ID Authors Title Type Year
1 Peng Shao Sample Selection: An

Algorithm for

Requirements

Prioritization

Conference: Proceedings of

the 46th Annual Southeast

Regional Conference on XX

2008

2 Jane Cleland-

Huang, Bamshad

Mobasher

Using data mining

and recommender

systems to scale up

the requirements

process

Workshop: Proceedings of

the 2nd international

workshop on Ultra-large-

scale software-intensive

systems

2008

3 Zornitza Racheva

and Maya Daneva

and Andrea

Herrmann

A Conceptual Model

of Client-driven

Agile Requirements

Prioritization:

Results of a Case

Study

Symposium:

Proceedings of the 2010

ACM-IEEE International

Symposium on Empirical

Software Engineering and

Measurement

2010

4 Francis Palma and

Angelo Susi and

Paolo Tonella

Using an SMT Solver

for Interactive

Requirements

Prioritization

Conference: Proceedings of

the 19th ACM SIGSOFT

symposium and the 13th

European conference on

Foundations of software

engineering

2011

5 Gerald Ninaus Using Group

Recommendation

Heuristics for the

Prioritization of

Requirements

Conference: Proceedings of

the sixth ACM conference on

Recommender systems

2012

6 A. Felfernig and G.

Ninaus

Group

Recommendation

Algorithms for

Requirements

Prioritization

Workshop: Proceedings of

the Third International

Workshop on

Recommendation Systems

for Software Engineering

2012

7 Abdel Ejnioui and

Carlos Otero and

Luis Otero

 Simulation-based

Fuzzy Multi-attribute

Decision Making for

Prioritizing Software

Requirements

Conference: Proceedings of

the 1st Annual conference on

Research in information

technology

2012

8 Stefan Gartner and

Kurt Schneider

A Method for

Prioritizing End-user

Feedback for

Requirements

Engineering

Workshop: Proceedings of

the 5th International

Workshop on Co-operative

and Human Aspects of

Software Engineering

2012

9 Nupul Kukreja and

Barry Boehm

Integrating

Collaborative

Requirements

Negotiation and

Prioritization

Processes: A Match

Made in Heaven

Conference: Proceedings of

the 2013 International

Conference on Software and

System Process

2013

10 Persis Voola and

A. Vinaya Babu

Comparison of

Requirements

Prioritization

Techniques

Employing Different

Journal: ACM SIGSOFT

Software Engineering Notes

2013

155

ID Authors Title Type Year
Scales of

Measurement

11 Punam Bajaj and

Vineet Arora

Multi-person

Decision-making for

Requirements

Prioritization Using

Fuzzy AHP

Journal: ACM SIGSOFT

Software Engineering Notes

2013

12 Richard R. Maiti

and Frank J.

Mitropoulos

Prioritizing Non-

Functional

Requirements in

Agile Software

Engineering

Conference:

Proceedings of the SouthEast

Conference

2017

13 J. Karlsson Software

requirements

prioritizing

Conference: Proceedings of

the Second International

Conference on Requirements

Engineering

1996

14 P. Berander Using students as

subjects in

requirements

prioritization

Symposium: 2004

International Symposium on

Empirical Software

Engineering

2004

15 P. Avesani; C.

Bazzanella; A.

Perini; A. Susi

Facing scalability

issues in

requirements

prioritization with

machine learning

techniques

Conference: 13th IEEE

International Conference on

Requirements Engineering

2005

16 J. Cleland-Huang,

M. Denne

Financially informed

requirements

prioritization

Conference: 27th

International Conference on

Software Engineering

2005

17 A. Perini; A. Susi;

F. Ricca; C.

Bazzanella

Fondazione

An Empirical Study

to Compare the

Accuracy of AHP

and CBRanking

Techniques for

Requirements

Prioritization

Workshop: 2007 Fifth

International Workshop on

Comparative Evaluation in

Requirements Engineering

2007

18 P. Laurent; J.

Cleland-Huang; C.

Duan

Towards Automated

Requirements Triage

Conference: 15th IEEE

International Requirements

Engineering Conference

2007

19 D. Port; A. Olkov;

T. Menzies

Using Simulation to

Investigate

Requirements

Prioritization

Strategies

Conference: 2008 23rd

IEEE/ACM International

Conference on Automated

Software Engineering

2008

20 R. Beg; Q. Abbas;

R. P. Verma

Using Simulation to

Investigate

Requirements

Prioritization

Strategies

Conference : 2008 First

International Conference on

Emerging Trends in

Engineering and Technology

2008

21 T. M. Fehlmann New Lanchester

Theory for

Requirements

Prioritization

Workshop: 2008 Second

International Workshop on

Software Product

Management

2008

22 A. Herrmann; M.

Daneva

Requirements

Prioritization Based

on Benefit and Cost

Prediction: An

Conference : 2008 16th IEEE

International Requirements

Engineering Conference

2008

156

ID Authors Title Type Year
Agenda for Future

Research

23 Xuemei Sun,

Dakun Zhang,

Xinming Duan,

You Zhao

Prioritizing design

requirement in fuzzy

quality function

deployment

Conference: 2008 IEEE

International Conference on

Service Operations and

Logistics, and Informatics

2008

24 Zhaoling Li;

Dongling Zhang;

Qisheng Gao

A grey method of

prioritizing

engineering

characteristics in

QFD

Conference : 2009 Chinese

Control and Decision

Conference

2009

25 M. R. Beg; R. P.

Verma; A. Joshi

Reduction in number

of comparisons for

requirement

prioritization using

B-Tree

Conference: 2009 IEEE

International Advance

Computing Conference

2009

26 M. Sadiq; S.

Ghafir; M. Shahid

An Approach for

Eliciting Software

Requirements and its

Prioritization Using

Analytic Hierarchy

Process

Conference: 2009

International Conference on

Advances in Recent

Technologies in

Communication and

Computing

2009

27 M. Ramzan; M. A.

Jaffar; M. A. Iqbal;

S. Anwar; A. A.

Shahid

Value Based Fuzzy

Requirement

Prioritization and Its

Evaluation

Framework

Conference: 2009 Fourth

International Conference on

Innovative Computing,

Information and Control

2009

28 Amir Seyed

Danesh, Soolmaz

Mir Mortazavi,

Seyed Yahya

Seyed Danesh

Requirements

Prioritization in On-

line Banking

Systems: Using

Value-Oriented

Framework

Conference: 2009

International Conference on

Computer Technology and

Development

2009

29 Aaron K. Massey,

Paul N. Otto, Annie

I. Antón

Prioritizing Legal

Requirements

Workshop: 2009 Second

International Workshop on

Requirements Engineering

and Law

2009

30 P. Fitsilis; V.

Gerogiannis; L.

Anthopoulos; I. K.

Savvas

Supporting the

Requirements

Prioritization Process

Using Social

Network Analysis

Techniques

Workshop: 2010 19th IEEE

International Workshops on

Enabling Technologies:

Infrastructures for

Collaborative Enterprises

2010

31 S. A. Marjaie; V.

Kulkarni

Recognition of

Hidden Factors in

Requirements

Prioritization Using

Factor Analysis

Conference: 2010

International Conference on

Computational Intelligence

and Software Engineering

2010

32 C. E. Otero; E.

Dell; A. Qureshi; L.

D. Otero

A Quality-Based

Requirement

Prioritization

Framework Using

Binary Inputs

Conference: 2010 Fourth

Asia International

Conference on

Mathematical/Analytical

Modelling and Computer

Simulation

2010

33 M. Sadiq; J.

Ahmed; M. Asim;

A. Qureshi; R.

Suman

More on Elicitation

of Software

Requirements and

Conference: 2010

International Conference on

Data Storage and Data

Engineering

2010

157

ID Authors Title Type Year
Prioritization Using

AHP

34 P. Chatzipetrou; L.

Angelis; P.

Rovegard; C.

Wohlin

Prioritization of

Issues and

Requirements by

Cumulative Voting:

A Compositional

Data Analysis

Framework

Conference : 2010 36th

EUROMICRO Conference

on Software Engineering and

Advanced Applications

2010

35 N. M. Carod Cognitive-driven

requirements

prioritization: A case

study

Conference: 2010 9th IEEE

International Conference on

Cognitive Informatics (ICCI)

2010

36 N. M. Carod Cognitive Profiles in

Understanding and

Prioritizing

Requirements: A

Case Study

Conference: 2010 Fifth

International Conference on

Software Engineering

Advances

2010

37 Z. Racheva; M.

Daneva; A.

Herrmann; R. J.

Wieringa

A conceptual model

and process for

client-driven agile

requirements

prioritization

Conference: 2010 Fourth

International Conference on

Research Challenges in

Information Science

2010

38 Z. Racheva; M.

Daneva; K. Sikkel;

A. Herrmann; R.

Wieringa

Do We Know

Enough about

Requirements

Prioritization in

Agile Projects:

Insights from a Case

Study

Conference : 2010 18th IEEE

International Requirements

Engineering Conference

2010

39 M. Aasem; M.

Ramzan; A. Jaffar

Analysis and

optimization of

software

requirements

prioritization

techniques

Conference: 2010

International Conference on

Information and Emerging

Technologies

2010

40 M. A. Iqbal; A. M.

Zaidi; S. Murtaza

A New Requirement

Prioritization Model

for Market Driven

Products Using

Analytical

Hierarchical Process

Conference: 2010

International Conference on

Data Storage and Data

Engineering

2010

41 P. Tonella; A. Susi;

F. Palma

Using Interactive GA

for Requirements

Prioritization

Symposium : 2nd

International Symposium on

Search Based Software

Engineering

2010

42 A. Ahmad; A.

Shahzad; V. K.

Padmanabhuni; A.

Mansoor; S.

Joseph; Z. Arshad

Requirements

prioritization with

respect to

Geographically

Distributed

Stakeholders

Conference: 2011 IEEE

International Conference on

Computer Science and

Automation Engineering

2011

43 R. B. Svensson; T.

Gorschek; B.

Regnell; R. Torkar;

A. Shahrokni; R.

Feldt; A. Aurum

Prioritization of

quality requirements:

State of practice in

eleven companies

Conference: 2011 IEEE 19th

International Requirements

Engineering Conference

2011

158

ID Authors Title Type Year
44 M. I. Babar; M.

Ramzan; S. A. K.

Ghayyur

Challenges and

future trends in

software

requirements

prioritization

Conference: International

Conference on Computer

Networks and Information

Technology

2011

45 A. Ejnioui; C. E.

Otero; A. A.

Qureshi

Software

requirement

prioritization using

fuzzy multi-attribute

decision making

Conference: 2012 IEEE

Conference on Open Systems

2012

46 N. Kukreja; B.

Boehm; S. S.

Payyavula; S.

Padmanabhuni

Selecting an

appropriate

framework for value-

based requirements

prioritization

Conference : 2012 20th IEEE

International Requirements

Engineering Conference

2012

47 S. Nidhra; L. P.

Kelapanda Satish;

V. S. Ethiraj

Analytical Hierarchy

Process issues and

mitigation strategy

for large number of

requirements

Conference: 2012 CSI Sixth

International Conference on

Software Engineering

2012

48 S. Forouzani; R.

Ahmad; S.

Forouzani; N.

Gazerani

Design of a teaching

framework for

software requirement

prioritization

Conference: 2012 8th

International Conference on

Computing Technology and

Information Management

2012

49 Hans Christian

Benestad, Jo E.

Hannay

Does the

prioritization

technique affect

stakeholders'

selection of essential

software product

features?

Symposium: Proceedings of

the 2012 ACM-IEEE

International Symposium on

Empirical Software

Engineering and

Measurement

2012

50 M. Pergher; B.

Rossi

Requirements

prioritization in

software

engineering: A

systematic mapping

study

Workshop : 2013 3rd

International Workshop on

Empirical Requirements

Engineering

2013

51 M. W. Asghar; A.

Marchetto; A. Susi;

G. Scanniello

Maintainability-

Based Requirements

Prioritization by

Using Artifacts

Traceability and

Code Metrics

Conference: 2013 17th

European Conference on

Software Maintenance and

Reengineering

2013

52 A. Perini; A. Susi;

P. Avesani

A Machine Learning

Approach to

Software

Requirements

Prioritization

Journal: IEEE Transactions

on Software Engineering

2013

53 Nupul Kukreja

Decision theoretic

requirements

prioritization A two-

step approach for

sliding towards value

realization

Conference: 2013 35th

International Conference on

Software Engineering (ICSE)

2013

54 R. Ahmed; D.

Musleh; M.

Ahmed; M. El-

Attar

Use case

prioritization using

fuzzy logic system

Conference: 2014 IEEE 5th

International Conference on

2014

159

ID Authors Title Type Year
Software Engineering and

Service Science

55 Y. Z. Chen; Q. Yu A fuzzy game

approach to prioritize

customer

requirements in

Quality Function

Deployment

Conference : 2014

International Conference on

Management Science &

Engineering 21th Annual

Conference Proceedings

2014

56 F. Fellir; K. Nafil;

R. Touahni

System requirements

prioritization based

on AHP

Conference: 2014 Third

IEEE International

Colloquium in Information

Science and Technology

(CIST)

2014

57 R. Popli; N.

Chauhan; H.

Sharma

Prioritising user

stories in agile

environment

Conference: 2014

International Conference on

Issues and Challenges in

Intelligent Computing

Techniques (ICICT)

2014

58 A. Sureka Requirements

Prioritization and

Next-Release

Problem under Non-

additive Value

Conditions

Conference: 2014 23rd

Australian Software

Engineering Conference

2014

59 M. Inoki; T.

Kitagawa; S.

Honiden

Application of

requirements

prioritization

decision rules in

software product line

evolution

Workshop: 2014 IEEE 5th

International Workshop on

Requirements Prioritization

and Communication

2014

60 B. A. Mustafa; A.

Zainuddin

An experimental

design to compare

software

requirements

prioritization

techniques

Conference : 2014

International Conference on

Computational Science and

Technology

2014

61 R. Easmin; A. U.

Gias; S. M. Khaled

A partial order

assimilation

approach for

software

requirements

prioritization

Conference : 2014

International Conference on

Informatics, Electronics &

Vision

2014

62 F. Sher; D. N. A.

Jawawi; R.

Mohamad; M. I.

Babar

Multi-aspects based

requirements

priortization

technique for value-

based software

developments

Conference: 2014

International Conference on

Emerging Technologies

2014

63 F. Sher; D. N. A.

Jawawi; R.

Mohamad; M. I.

Babar

Requirements

prioritization

techniques and

different aspects for

prioritization a

systematic literature

review protocol

Conference : 2014 8th.

Malaysian Software

Engineering Conference

2014

64 N. Condori-

Fernandez; P. Lago

Can we know upfront

how to prioritize

Workshop: 2015 IEEE Fifth

International Workshop on

2015

160

ID Authors Title Type Year
quality

requirements?

Empirical Requirements

Engineering

65 J. M. Fernandes; S.

P. Rodrigues; L. A.

Costa

Comparing AHP and

ELECTRE I for

prioritizing software

requirements

Conference : 2015

IEEE/ACIS 16th

International Conference on

Software Engineering,

Artificial Intelligence,

Networking and

Parallel/Distributed

Computing

2015

66 N. Garg; P.

Agarwal; S. Khan

Recent

advancements in

requirement

elicitation and

prioritization

techniques

Conference : 2015

International Conference on

Advances in Computer

Engineering and

Applications

2015

67 R. R. Maiti; F. J.

Mitropoulos

Capturing, eliciting,

predicting and

prioritizing (CEPP)

non-functional

requirements

metadata during the

early stages of agile

software

development

Conference: SoutheastCon

2015

2015

68 M. A. Abou-

Elseoud; E. S.

Nasr; H. A. Hefny

Enhancing

requirements

prioritization based

on a hybrid technique

Conference: 2016 11th

International Conference on

Computer Engineering &

Systems

2016

69 J. R. F. D. Santos;

A. B. Albuquerque;

P. R. Pinheiro

Requirements

Prioritization in

Market-Driven

Software: A Survey

Based on Large

Numbers of

Stakeholders and

Requirements

Conference: 2016 10th

International Conference on

the Quality of Information

and Communications

Technology

2016

70 M. Yousuf; M. U.

Bokhari; M.

Zeyauddin

An analysis of

software

requirements

prioritization

techniques: A

detailed survey

Conference : 2016 3rd

International Conference on

Computing for Sustainable

Global Development

2016

71 R. M. Liaqat; M. A.

Ahmed; F. Azam;

B. Mehboob

A Majority Voting

Goal Based

technique for

Requirement

Prioritization

Conference : 2016 22nd

International Conference on

Automation and Computing

2016

72 S. Dhingra;

Savithri G; M.

Madan; Manjula R

Selection of

prioritization

technique for

software requirement

using Fuzzy Logic

and Decision Tree

Conference: 2016 Online

International Conference on

Green Engineering and

Technologies

2016

73 M. Sadiq; T.

Hassan; S. Nazneen

AHP_GORE_PSR:

Applying analytic

hierarchy process in

goal oriented

requirements

Conference: 2017 3rd

International Conference on

Computational Intelligence

& Communication

Technology (CICT)

2017

161

ID Authors Title Type Year
elicitation method for

the prioritization of

software

requirements

74 Morales-Ramirez;

D. MuÃ±ante; F.

Kifetew; A. Perini;

A. Susi; A. Siena

Exploiting User

Feedback in Tool-

Supported Multi-

criteria Requirements

Prioritization

Conference: 2017 IEEE 25th

International Requirements

Engineering Conference

2017

75 B. B. Jawale; G. K.

Patnaik; A. T.

Bhole

Requirement

Prioritization Using

Adaptive Fuzzy

Hierarchical

Cumulative Voting

Conference: 2017 IEEE 7th

International Advance

Computing Conference

2017

76 U. Garg; A. Singhal Software

requirement

prioritization based

on non-functional

requirements

Conference : 2017 7th

International Conference on

Cloud Computing, Data

Science & Engineering

2017

77 A. R. Asghar; A.

Tabassum; S. N.

Bhatti; A. M. Jadi

Impact and

challenges of

requirements

elicitation &

prioritization in

quality to agile

process: Scrum as a

case scenario

Conference: 2017

International Conference on

Communication

Technologies

2017

78 Emitza Guzman,

Mohamed Ibrahim,

Martin Glinz

Prioritizing User

Feedback from

Twitter: A Survey

Report

Workshop : 2017

IEEE/ACM 4th International

Workshop on

CrowdSourcing in Software

Engineering (CSI-SE)

2017

79 Perini, Anna;

Ricca, Filippo;

Susi, Angelo

Tool-supported

requirements

prioritization:

Comparing the AHP

and CBRank

methods

Journal: Information and

Software Technology

2009

80 Berander, Patrik;

Svahnberg, Mikael

Evaluating two ways

of calculating

priorities in

requirements

hierarchies – An

experiment on

hierarchical

cumulative voting

Journal: Journal of Systems

and Software

2009

81 Bimal Nepal, Om

P.Yadav, Alper

Muratc

A fuzzy-AHP

approach to

prioritization of CS

attributes in target

planning for

automotive product

development

Journal: Expert Systems with

Applications

2010

82 Riņķevičs, K.;

Torkar, R.

Equality in

cumulative voting: A

systematic review

with an improvement

proposal

Journal:

Information and Software

Technology

2013

162

ID Authors Title Type Year
83 Tonella, Paolo;

Susi, Angelo;

Palma, Francis

Interactive

requirements

prioritization using a

genetic algorithm

Journal:

Information and Software

Technology

2013

84 AL-Ta’ani, Rami

Hasan; Razali,

Rozilawati

Prioritizing

Requirements in

Agile Development:

A Conceptual

Framework

Conference: 4th International

Conference on Electrical

Engineering and Informatics,

ICEEI 2013

2013

85 Kukreja, Nupul;

Payyavula, Sheetal

Swaroop; Boehm,

Barry;

Padmanabhuni,

Srivinas

Value-Based

Requirements

Prioritization: Usage

Experiences

Conference: 2013

Conference on Systems

Engineering Research

2013

86 Liu, Yuanyuan;

Zhou, Jian; Chen,

Yizeng

Using fuzzy non-

linear regression to

identify the degree of

compensation among

customer

requirements in QFD

Journal : Neurocomputing 2014

87 Konstantina

Kamvysi, Katerina

Gotzamani,

Andreas

Andronikidis,

Andreas

C.Georgiou

Capturing and

prioritizing students’

requirements for

course design by

embedding Fuzzy-

AHP and linear

programming in QFD

Journal:European Journal of

Operational Research

2014

88 Pitangueira,

Antônio Mauricio;

Maciel, Rita

Suzana P.; Barros,

Márcio

Software

requirements

selection and

prioritization using

SBSE approaches: A

systematic review

and mapping of the

literature

Journal: Journal of Systems

and Software

2015

89 Santos, Rômulo;

Albuquerque,

Adriano; Pinheiro,

Plácido Rogerio

Towards the Applied

Hybrid Model in

Requirements

Prioritization

Conference : Promoting

Business Analytics and

Quantitative Management of

Technology: 4th

International Conference on

Information Technology and

Quantitative Management

2016

90 Raj KumarChopra,

Varun Gupta, Durg

Singh Chauhan

Experimentation on

accuracy of non

functional

requirement

prioritization

approaches for

different complexity

projects

Journal: Perspectives in

Science

2016

91

Hosna Pakizehkar,

Mohammad

Mirmohammadi

Sadrabadi, Rasool

ZareMehrjardi,

The Application of

Integration of Kano's

Model, AHP

Technique and QFD

Matrix in Prioritizing

Conference: 3rd International

Conference on New

Challenges in Management

and Business: Organization

and Leadership

2016

163

ID Authors Title Type Year
Amir Ehsan

Eshaghieh

the Bank's

Substructions

92 Shao, Fei; Peng,

Rong; Lai, Han;

Wang, Bangchao

DRank: A semi-

automated

requirements

prioritization method

based on preferences

and dependencies

Journal: Journal of Systems

and Software

2017

93 Achimugu, Philip;

Selamat, Ali;

Ibrahim, Roliana;

Mahrin, Mohd

Naz’ri

A systematic

literature review of

software

requirements

prioritization

research

Journal: Information and

Software Technology

2017

94 Daneva, Maya; van

der Veen, Egbert;

Amrit, Chintan;

Ghaisas, Smita;

Sikkel, Klaas;

Kumar, Ramesh;

Ajmeri, Nirav;

Ramteerthkar,

Uday; Wieringa,

Roel

Agile requirements

prioritization in

large-scale

outsourced system

projects: An

empirical study

Journal:Journal of Systems

and Software

2017

95 Anand, R. Vijay;

Dinakaran, M.

andling stakeholder

conflict by agile

requirement

prioritization using

Apriori technique

Journal: Computers &

Electrical Engineering

2017

96 Persis Voola,

Vinaya Babu

Study of aggregation

algorithms for

aggregating

imprecise software

requirements’

priorities

Journal:European Journal of

Operational Research

2017

97 Wasserman, G.S. On how to prioritize

design requirements

during the qfd

planning process

Journal: IIE Transactions

(Institute of Industrial

Engineers)

1993

98 Armacost, R.L.,

Componation, P.J.,

Mullens, M.A.,

Swart, W.W.

An AHP framework

for prioritizing

customer

requirements in

QFD: An

industrialized

housing application

Journal:IIE Transactions

(Institute of Industrial

Engineers)

1994

99 Franceschini, F.,

Rossetto, S.

QFD: The problem of

comparing

technical/engineering

design requirements

Journal: Research in

Engineering Design

1995

100 Fung, Richard

Y.K., Ren, Shouju,

Xie, Jinxing

Prioritisation of

attributes in customer

requirement

management

Conference:Proceedings of

the IEEE International

Conference on Systems, Man

and Cybernetics

1996

101 Park, Taeho, Kim,

Kwang-Jae

Integrative

prioritization process

in QFD with

Conference: Proceedings -

Annual Meeting of the

Decision Sciences Institute

1996

164

ID Authors Title Type Year
modified house of

quality

102 Ryan, Kevin,

Karlsson, Joachim

Prioritizing software

requirements in an

industrial setting

Conference: Proceedings -

International Conference on

Software Engineering

1997

103 Wang, H., Xie, M.,

Goh, T.N.

A comparative study

of the prioritization

matrix method and

the analytic hierarchy

process technique in

quality function

deployment

Journal: Total Quality

Management

1998

104 Avesani, P.,

Bazzanella, C.,

Perini, A., Susi, A.

Exploiting domain

knowledge in

requirements

prioritization

Conference: 17th

International Conference on

Software Engineering and

Knowledge Engineering

2005

105 Karlsson, L., Host,

M., Regnell, B.

Evaluating the

practical use of

different

measurement scales

in requirements

prioritisation

Symposium:Proceedings of

the 5th ACM-IEEE

International Symposium on

Empirical Software

Engineering

2006

106 Lehtola, L.,

Kauppinen, M.

Suitability of

requirements

prioritization

methods for market-

driven software

product development

Journal:Software Process

Improvement and Practice

2006

107 Sharma, J.R.,

Pimplapure, S.R.,

Rawani, A.M.

Prioritizing

customers

requirements in QFD

by integrating their

interrelationship with

the raw weights

Journal:Journal of the

Institution of Engineers

(India), Part PR: Production

Engineering Division

2007

108 Karlsson, L.,

Thelin, T., Regnell,

B., Berander, P.,

Wohlin, C.

 Pair-wise

comparisons versus

planning game

partitioning-

experiments on

requirements

prioritisation

techniques

Journal:Empirical Software

Engineering

2007

109 Mohamed, A.S.I.,

El-Maddah, B.I.A.,

Wahba, C.A.M

Criteria-based

requirements

prioritization for

software product

management

Journal:Proceedings of the

2008 International

Conference on Software

Engineering Research and

Practice

2008

110 Hoff, G., Fruhling,

A., Ward, K.

Requirement

prioritization

decision factors for

agile development

environments

Conference: 14th Americas

Conference on Information

Systems

2008

111 Li, Y.-L., Tang, J.-

F., Yao, J.-M., Luo,

X.-G., Jiao, M.-H.,

Xu, J.

Integration

methodology for

prioritizing customer

requirements in

house of quality for

product improvement

Journal:Computer Integrated

Manufacturing Systems,

CIMS

2008

165

ID Authors Title Type Year
112 Svahnberg, M.,

Karasira, A.

A study on the

importance of order

in requirements

prioritisation

Workshop: 2009 3rd

International Workshop on

Software Product

Management, IWSPM 2009

2009

113 Sharma, J.R.,

Rawani, A.M.

Linking company

with customers and

competitors: A

comprehensive QFD

model and its post-

matrix analysis

Journal: International Journal

of Modelling and Simulation

2009

114 Danesh, A.S.,

Ahmad, R.

Study of

prioritization

techniques using

students as subject

Conference: Proceedings -

2009 International

Conference on Information

Management and

Engineering, ICIME 2009

2009

115 Berander, P.,

Svahnberg, M.

Evaluating two ways

of calculating

priorities in

requirements

hierarchies - An

experiment on

hierarchical

cumulative voting

Journal:Journal of Systems

and Software

2009

116 Eben, K.G.M.,

Daniilidis, C.,

Lindemann, U.

Interrelating and

prioritising

requirements on

multiple hierarchy

levels

Conference: 11th

International Design

Conference

2010

117 Agheri, E., Asadi,

M., Gasevic, D.,

Soltani, S.

Stratified analytic

hierarchy process:

Prioritization and

selection of software

features

Journal: Lecture Notes in

Computer Science (including

subseries Lecture Notes in

Artificial Intelligence and

Lecture Notes in

Bioinformatics)

2010

118 Bebensee, T., Van

De Weerd, I.,

Brinkkemper, S.

Binary priority list

for prioritizing

software

requirements

Journal: Lecture Notes in

Computer Science (including

subseries Lecture Notes in

Artificial Intelligence and

Lecture Notes in

Bioinformatics)

2010

119 Cordeiro, A.G.,

Freitas, A.L.P.

Prioritizaion of

requirements and

evaluation of

software quality

according to the

users' perspective

Journal: Ciencia da

Informacao

2011

120 Koziolek, A. Architecture-driven

quality requirements

prioritization

Workshop: 2012 1st IEEE

International Workshop on

the Twin Peaks of

Requirements and

Architecture

2012

121 Nidhra, S.,

Kelapanda Satish,

L.P., Ethiraj, V.S.

Analytical Hierarchy

Process issues and

mitigation strategy

for large number of

requirements - An

experimental study

Conference: 2012 CSI 6th

International Conference on

Software Engineering

2012

166

ID Authors Title Type Year
122 Sharma, A.K.,

Sharma, J., Mehta,

I.C.

A novel fuzzy

integrated technical

requirements

prioritization

software system for

quality function

deployment

Journal: International Journal

of Computers and

Applications

2012

123 Ejnioui, A., Otero,

C.E., Otero, L.D.

A Simulation-based

fuzzy multi-attribute

decision making for

prioritizing software

requirements

Conference: Proceedings of

the ACM Research in

Information Technology

2012

124 Reichel, T.,

Rünger, G.

Prioritization of

product requirements

using the analytic

hierarchy process

Conference:Proceedings of

the 14th International

Conference on Enterprise

Information Systems

2012

125 Ma, Y., Liu, Y.,

Zhang, H., Chen,

G.

A hybrid method for

prioritizing software

requirements in terms

of use cases

Journal: Journal of

Convergence Information

Technology

2012

126 Koziolek, A Research preview:

Prioritizing quality

requirements based

on software

architecture

evaluation feedback

Conference: 18th Working

Conference on Requirements

Engineering: Foundation for

Software Quality

2012

127 Peng, W., Sun, T.,

Revankar, S., Li,

T.

Mining the "voice of

the customer" for

business

prioritization

Journal:ACM Transactions

on Intelligent Systems and

Technology

2012

128 Kassab, M. An integrated

approach of AHP and

NFRs framework

Conference: Proceedings -

International Conference on

Research Challenges in

Information Science

2013

129 Ejnioui, A., Otero,

C.E., Otero, L.D.

Prioritisation of

software

requirements using

grey relational

analysis

Journal: International Journal

of Computer Applications in

Technology

2013

130 Sadiq, M., Jain,

S.K.

A fuzzy based

approach for

requirements

prioritization in goal

oriented

requirements

elicitation process

Conference: Proceedings of

the International Conference

on Software Engineering and

Knowledge Engineering

2013

131 Achimugu, P.,

Selamat, A., Azar,

A.T.,

Vaidyanathan, S.

A hybridized

approach for

prioritizing software

requirements based

on k-means and

evolutionary

algorithms

Journal:Studies in

Computational Intelligence

2014

132 Kamvysi, K.,

Gotzamani, K.,

Andronikidis, A.,

Georgiou, A.C.

Capturing and

prioritizing students'

requirements for

course design by

embedding Fuzzy-

Journal: European Journal of

Operational Research

2014

167

ID Authors Title Type Year
AHP and linear

programming in QFD

133 Achimugu, P.,

Selamat, A.,

Ibrahim, R

A clustering based

technique for large

scale prioritization

during requirements

elicitation

Journal:Advances in

Intelligent Systems and

Computing

2014

134 Achimugu, P.,

Selamat, A.,

Ibrahim, R.

Applying fuzzy-

TOPSIS algorithm in

prioritizing software

requirements

Chapter:Frontiers in

Artificial Intelligence and

Applications

2014

135

Singh, D.E,

Sharma, A.

Software

requirement

prioritization using

machine learning

Conference:Proceedings of

the International Conference

on Software Engineering and

Knowledge Engineering

2014

136 Achimugu, P.,

Selamat, A.,

Ibrahim, R

A preference weights

model for prioritizing

software

requirements

Journal:Lecture Notes in

Computer Science (including

subseries Lecture Notes in

Artificial Intelligence and

Lecture Notes in

Bioinformatics)

2014

137 Parthasarathy, S.,

Daneva, M.

Customer

requirements based

ERP customization

using AHP technique

Journal:Business Process

Management

2014

138 Babar, M.I.,

Ghazali, M.,

Jawawi, D.N.A.,

Shamsuddin, S.M.,

Ibrahim, N.

PHandler: An expert

system for a scalable

software

requirements

prioritization process

Journal: Knowledge-Based

Systems

2015

139 Franceschini,

F.Email Author,

Galetto, M.,

Maisano, D.,

Mastrogiacomo, L.

Prioritisation of

engineering

characteristics in

QFD in the case of

customer

requirements

orderings

Journal:International Journal

of Production Research

2015

140 Valsala, S., Nair,

A.R.

Requirement

prioritization in

software release

planning using

enriched genetic

algortihm

Journal:International Journal

of Applied Engineering

Research

2015

141 Jakub Duda,

Maciej Rostański,

Wojciech Borczyk,

Krzysztof Grochla

Applying Kano

model into

goal/requirements

elicitation for

crossplatform mobile

content technology

Conference:Proceedings of

the 11th International

Conference on Strategic

Management and Its Support

by Information Systems

2015, SMSIS 2015

2015

142 Devulapalli, S.,

Rao, O., Khare, A.

Requirements

prioritization-

parameters of

relevance-An

empirical study

across 3 datasets

Conference:ACM

International Conference

Proceeding Series

2016

168

ID Authors Title Type Year
143 Achimugu, P.,

Selamat, A.,

Ibrahim, R.

ReproTizer: A fully

implemented

software

requirements

prioritization tool

Journal: Lecture Notes in

Computer Science (including

subseries Lecture Notes in

Artificial Intelligence and

Lecture Notes in

Bioinformatics)

2016

144 Hujainah, F., Abu

Bakar, R.B., Al-

Haimi, B., Nasser,

A.B.

Analyzing

requirement

prioritization

techniques based on

the used aspects

Journal: Research Journal of

Applied Sciences

2016

145 Al-Ta'ani, R.H.,

Razali, R.

A framework for

requirements

prioritisation process

in an agile software

development

environment:

Empirical study

Journal: International

Journal on Advanced

Science, Engineering and

Information Technology

2016

146 Devulapalli, S.,

Rao, O.R.S.,

Khare,

Mathematical

treatment of ABC

framework for

requirements

prioritization

Conference: Smart

Innovation, Systems and

Technologies

2016

147 Seyed Fadzir, S.F.,

Ibrahim, S.,

Mahrin, M.N

Requirement

prioritization

approaches and

evaluation strategies:

A systematic

literature review

Journal: Journal of

Engineering and Applied

Sciences

2016

148 Thakurta, R. A specification of

principles governing

the design of

requirement

prioritisation

approaches

Journal: International Journal

of Business Information

Systems

2016

149 Viswanathan, A.,

Nair, S.R.,

Krishnan, S.M.

Solution model for

requirement

prioritization

Journal: International

Journal of Control Theory

and Applications

2016

150 Keertipati, S.,

Savarimuthu,

B.T.R., Licorish,

S.A.

Approaches for

prioritizing feature

improvements

extracted from app

reviews

Conference:20th

International Conference on

Evaluation and Assessment

in Software Engineering

2016

151 Sadiq, M. A Fuzzy Set-Based

Approach for the

Prioritization of

Stakeholders on the

Basis of the

Importance of

Software

Requirements

Journal: IETE Journal of

Research

2017

152 Dhir, S., Kumar,

D., Singh, V.B.

Requirement

paradigms to

implement the

software projects in

agile development

using analytical

hierarchy process

Journal: International

Journal of Decision Support

System Technology

2017

169

ID Authors Title Type Year
153 Anand, R.V.,

Dinakaran, M.

Multi-voting and

binary search tree-

based requirements

prioritisation for e-

service software

project development

Journal: Electronic

Government

2017

154 Barbosa, P.A.M.,

De Vasconcelos

Silveira, F.R.,

Pinheiro, P.R.,

Filho, M.S.

Selection and

prioritization of

software

requirements using

the Verbal Decision

Analysis paradigm

Journal: Proceedings of the

International Conference on

Software Engineering and

Knowledge Engineering

2017

155 Garg, N., Sadiq,

M., Agarwal, P.

GOASREP: Goal

oriented approach for

software

requirements

elicitation and

prioritization using

analytic hierarchy

process

Chapter: Advances in

Intelligent Systems and

Computing

2017

156 Nazir, F., Butt,

W.H., Anwar,

M.W., Khan

Khattak, M.A.

The applications of

natural language

processing (NLP) for

software requirement

engineering - A

systematic literature

review

Chapter: Lecture Notes in

Electrical Engineering

2017

157 Khan, S.U.R., Lee,

S.P., Dabbagh, M.,

Tahir, M., Khan,

M., Arif, M.

RePizer: a

framework for

prioritization of

software

requirements

Journal: Frontiers of

Information Technology and

Electronic Engineering

2017

158 Busetta, P.,

Kifetew, F.M.,

Munante, D.,

Perini, A., Siena,

A., Susi, A.

Tool-Supported

Collaborative

Requirements

Prioritisation

Conference: Proceedings -

International Computer

Software and Applications

2017

159 Sadiq, M., Hassan,

T., Nazneen, S

AHP-GORE-PSR:

Applying analytic

hierarchy process in

goal oriented

requirements

elicitation method for

the prioritization of

software

requirements

Conference: 3rd IEEE

International Conference on

"Computational Intelligence

and Communication

Technology"

2017

160 Licorish, S.A.,

Savarimuthu,

B.T.R., Keertipati,

S.

Attributes that

predict which

features to fix:

Lessons for app store

mining

Conference: 21st

International Conference on

Evaluation and Assessment

in Software Engineering

2017

161 Vinodh, S,

Manjunatheshwara,

K.J., Karthik

Sundaram, ,

Kirthivasan, V

Application of fuzzy

quality function

deployment for

sustainable design of

consumer electronics

products: a case

study

Journal: Clean Technologies

and Environmental Policy

2017

170

ID Authors Title Type Year
162 Kifetew, F.M.,

Susi, A., Muñante,

D., Perini, A.,

Siena, A., Busetta,

P.

Towards multi-

decision-maker

requirements

prioritisation via

multi-objective

optimisation

Workshop: CEUR Workshop

Proceedings

2017

163 Seyff, N., Stade,

M., Fotrousi, F.,

Glinz, M.,

Guzman, E.,

Kolpondinos-

Huber, M.,

Arzapalo, D.M.,

Oriol, M.f,

Schaniel, R.

End-user driven

feedback

prioritization

Workshop: CEUR Workshop

Proceedings

2017

164 Laura Lehtola,

Marjo Kauppinen,

Sari Kujala

Requirements

Prioritization

Challenges in

Practice

Conference: International

Conference on Product

Focused Software Process

Improvement

2004

165 Laura Lehtola,

Marjo Kauppinen

Empirical Evaluation

of Two Requirements

Prioritization

Methods in Product

Development

Projects

Conference: European

Conference on Software

Process Improvement

2004

166 Patrik Berander,

Anneliese Andrews

Requirements

Prioritization

Chapter:Engineering and

Managing Software

Requirements

2005

167 Daniel Port, Tung

Bui

Simulating mixed

agile and plan-based

requirements

prioritization

strategies: proof-of-

concept and practical

implications

Journal: European Journal of

Information Systems

2009

168 Chuan Duan, Paula

Laurent,Jane

Cleland-Huang,

Charles

Kwiatkowski

Towards automated

requirements

prioritization and

triage

Journal:Requirements

Engineering

2009

169 Gaur Vibha, Soni

Anuja

Identifying an

Appropriate

Requirements

Prioritization

Methodology Using

Fuzzy Decision-

Making

Chapter: Computer Networks

and Intelligent Computing

2011

170 Dayvison Chaves

Lima, FabrÃcio

Freitas, Gutavo

Campos, Jerffeson

Souza

A Fuzzy Approach to

Requirements

Prioritization

Symposium: International

Symposium on Search Based

Software Engineering

2011

171 Zornitza Bakalova,

Maya Daneva,

Andrea Herrmann,

Roel Wieringa

Agile Requirements

Prioritization: What

Happens in Practice

and What Is

Described in

Literature

Conference: International

Working Conference on

Requirements Engineering:

Foundation for Software

Quality

2011

171

ID Authors Title Type Year
172 Persis Voola, A.

Vinaya Babu

Interval Evidential

Reasoning Algorithm

for Requirements

Prioritization

Conference: Proceedings of

the International Conference

on Information Systems

Design and Intelligent

Applications

2012

173 Philip Achimugu,

Ali Selamat,

Roliana Ibrahim

A Web-Based Multi-

Criteria Decision

Making Tool for

Software

Requirements

Prioritization

Conference: International

Conference on

Computational Collective

Intelligence

2014

174 Philip Achimugu,

Ali Selamat,

Roliana Ibrahim,

Mohd Nazâri

Mahrin

An Adaptive Fuzzy

Decision Matrix

Model for Software

Requirements

Prioritization

Chapter:

Advanced Approaches to

Intelligent Information and

Database Systems

2014

175 Zhixiang Tong,

Qiankun

Zhuang,Qi Guo,

Peijun

Research on

Technologies of

Software

Requirements

Prioritization

Conference:

International Conference on

Trustworthy Computing and

Services

2014

176 Mohd Sadiq,S. K.

Jain

Applying fuzzy

preference relation

for requirements

prioritization in goal

oriented

requirements

elicitation process

Journal: International Journal

of System Assurance

Engineering and

Management

2014

177 Panagiota

Chatzipetrou,

Christos

Karapiperis,

Chrysa

Palampouiki,

Lefteris Angelis

Statistical Analysis

of Requirements

Prioritization for

Transition to Web

Technologies: A

Case Study in an

Electric Power

Organization

Conference: International

Conference on Software

Quality

2014

178 Jenjira Jaimunk,

Pradorn

Sureephong

A Comparison

Approach for

Accuracy Feature of

Requirements

Prioritization Models

Chapter: Industrial

Engineering, Management

Science and Applications

2015

179 Norman

Riegel,Joerg Doerr

A Systematic

Literature Review of

Requirements

Prioritization Criteria

Conference:International

Working Conference on

Requirements Engineering:

Foundation for Software

Quality

2015

180 Mohamad Kassab,

Nil Kilicay-Ergin

Applying analytical

hierarchy process to

system quality

requirements

prioritization

Journal: Innovations in

Systems and Software

Engineering

2015

181 McZara, J.,

Sarkani, S., Holzer

Software

requirements

prioritization and

selection using

linguistic tools and

constraint solvers—a

controlled

experiment

Journal: Empirical Software

Engineering

2015

172

ID Authors Title Type Year
182 Sita Devulapalli,

Akhil Khare, O. R.

S. Rao

Requirements

Prioritization: Survey

and Analysis

Conference: Proceedings of

the International Congress on

Information and

Communication Technology

2016

183 Mohammad

Dabbagh, Sai Peck

Lee, Reza

Meimandi Parizi

Functional and non-

functional

requirements

prioritization:

empirical evaluation

of IPA, AHP-based,

and HAM-based

approaches

Chapter:

Soft Computing

2016

184 Misaghian, N. &

Motameni, H.

An approach for

requirements

prioritization based

on tensor

decomposition

Journal: Requirements

Engineering

2016

185 Sita Devulapalli, O

R S Rao, Akhil

Khare

Comparison of ABC

Framework with

AHP, Wiegers

Method, Cost-Value,

Priority Groups for

Requirements

Prioritization

Conference: Proceedings of

International Conference on

Communication and

Networks

2017

186 Estefanía Serral,

Paolo Sernani,

Aldo Franco

Dragoni, Fabiano

Dalpiaz

Contextual

Requirements

Prioritization and Its

Application to Smart

Homes

Journal: European

Conference on Ambient

Intelligence

2017

187 Luay Alawneh Requirements

Prioritization Using

Hierarchical

Dependencies

Chapter:

Information Technology -

New Generations

2017

188 erander, Patrik;

Jonsson, Per

Hierarchical

Cumulative Voting

(HCV) prioritization

of requirements in

hierarchies

Journal :INTERNATIONAL

JOURNAL OF SOFTWARE

ENGINEERING AND

KNOWLEDGE

ENGINEERING

2006

189 Azar, J, Smith, RK,

Cordes, D

Value-oriented

requirements

prioritization in a

small development

organization

Journal:IEEE software 2007

190 Daneva, Maya;

Herrmann, Andrea

Requirements

Prioritization Based

on Benefit and Cost

Prediction: A Method

Classification

Framework

Conference:

PROCEEDINGS OF THE

34TH EUROMICRO

CONFERENCE ON

SOFTWARE

ENGINEERING AND

ADVANCED

APPLICATIONS

2008

191 Ilie, D ;

Lindemann, U ;

Kain, A

EVALUATION

AND

PRIORITIZATION

OF CROSS-

LINKED

REQUIREMENTS

Conference: ASME

INTERNATIONAL

DESIGN ENGINEERING

TECHNICAL

CONFERENCES AND

COMPUTERS AND

2009

173

ID Authors Title Type Year
IN THE

AUTOMOTIVE

DEVELOPMENT

PROCESS

Conference:

INFORMATION IN

ENGINEERING

192 Ramzan,

Muhammad; Jaffar,

M. Arfan; Shahid,

Arshad Ali

VALUE BASED

INTELLIGENT

REQUIREMENT

PRIORITIZATION

(VIRP): EXPERT

DRIVEN FUZZY

LOGIC BASED

PRIORITIZATION

TECHNIQUE

Journal: INTERNATIONAL

JOURNAL OF

INNOVATIVE

COMPUTING

INFORMATION AND

CONTROL

2011

193 Payyavula, SS,

Jahagirdar, SS,

Kumar, M

Application of Value

Based Requirement

Prioritization in a

Banking Product

implementation

Conference: 3rd International

Conference on Services in

Emerging Markets

2012

194 Azzolini, Martin;

Isabel Passoni,

Lucia

Prioritization of

Software

Requirements: a

Cognitive Approach

Workshop:4th International

Workshop on Knowledge

Discovery, Knowledge

Management and Decision

Support

2013

195 Thakurta, R A framework for

prioritization of

quality requirements

for inclusion in a

software project.

Journal: SOFTWARE

QUALITY JOURNAL

2013

196 Dabbagh,

Mohammad; Lee,

Sai Peck

An Approach for

Integrating the

Prioritization of

Functional and

Nonfunctional

Requirements

Journal: SCIENTIFIC

WORLD JOURNAL

2014

197 Elsood, Mukhtar A.

Abo; Hefny,

Hesham A.; Nasr,

Eman S.

A Goal-Based

Technique for

Requirements

Prioritization

Conference: 9th International

Conference on Informatics

and Systems

2014

198 Fadzir, Syarifah

Fazlin Seyed;

Ibrahim, Suhaimi;

Mahrin, Mohd

Naz'ri

Requirement

prioritization

approaches and

evaluation strategies:

A systematic

literature review

Conference:

INTERNATIONAL

JOURNAL OF

ADVANCED COMPUTER

SCIENCE AND

APPLICATIONS

2015

199 McZara, Jason;

Sarkani, Shahryar;

Holzer, Thomas;

Eveleigh, Timothy

Software

requirements

prioritization and

selection using

linguistic tools and

constraint solvers-a

controlled

experiment

Journal : EMPIRICAL

SOFTWARE

ENGINEERING

2015

200 Franceschini,

Fiorenzo; Maisano,

Domenico

Prioritization of QFD

Customer

Requirements Based

on the Law of

Comparative

Judgments

Journal:QUALITY

ENGINEERING

2015

174

ID Authors Title Type Year
201 Franceschini,

Fiorenzo; Maisano,

Domenico;

Mastrogiacomo,

Luca

Customer

requirement

prioritization on

QFD: a new proposal

based on the

generalized Yager's

algorithm

Journal: RESEARCH IN

ENGINEERING DESIGN

2015

202 Achimugu, Philip;

Selamat, Ali;

Ibrahim, Roliana

USING THE FUZZY

MULTI-CRITERIA

DECISION

MAKING

APPROACH FOR

SOFTWARE

REQUIREMENTS

PRIORITIZATION

Journal: JURNAL

TEKNOLOGI

2015

203 Salado, A,

Nilchiani, R

Adaptive

Requirements

Prioritization (ARP):

Improving Decisions

between Conflicting

Requirements

Journal:SYSTEMS

ENGINEERING

2015

204

Choochotkaew, S,

Yamaguchi, H,

Higashino, T,

Shibuya, M

Requirement-Based

Prioritization system

in Multi-user IoT

World Forum:2015 IEEE

2nd World Forum on Internet

of Things

2015

205 Asghar, Aneesa

Rida; Bhatti,

Shahid Nazir;

Tabassum, Atika;

Sultan, Zainab;

Abbas, Rabiya

Role of

Requirements

Elicitation &

Prioritization to

Optimize Quality in

Scrum Agile

Development

Journal: INTERNATIONAL

JOURNAL OF

ADVANCED COMPUTER

SCIENCE AND

APPLICATIONS

2016

206 J Khan, JA; Izaz-

ur-Rehman; Khan,

SP; Afzal, W;

Qasim, I; Khan,

YH

An Evaluation of

Requirement

Prioritization

Techniques with

ANP

Journal: INTERNATIONAL

JOURNAL OF

ADVANCED COMPUTER

SCIENCE AND

APPLICATIONS

2016

207 J dos Santos, JRF;

Albuquerque, AB;

Pinheiro, PR

Requirements

Prioritization in

Market-Driven

Software A survey

based on large

numbers of

stakeholders and

requirements

Conference:

PROCEEDINGS 2016 10TH

INTERNATIONAL

CONFERENCE ON THE

QUALITY OF

INFORMATION AND

COMMUNICATIONS

TECHNOLOGY

2016

208 Abou-Elseoud,

MA; Nasr, ES;

Hefny, HA

Enhancing

Requirements

Prioritization Based

on Hybrid Technique

Conference :

PROCEEDINGS OF 2016

11TH INTERNATIONAL

CONFERENCE ON

COMPUTER

ENGINEERING &

SYSTEMS

2016

209 Atukorala,

Nimanthi L.;

Chang, Carl K.;

Oyama, Katsunori

Situation-Oriented

Evaluation and

Prioritization of

Requirements

Symposium : 3rd Asia-

Pacific Requirements

Engineering Symposium

2016

210 Ahuja, H; Sujata;

Purohit, GN

Understanding

Requirement

Conference : IEEE

International Conference on

2016

175

ID Authors Title Type Year
Prioritization

Techniques

Computing, Communication

and Automation

211 Kravchenko, TK

and Sergey B

Prioritization of

requirements for

effective support of

the communication

process with

customers of a

commercial bank

Journal:BIZNES

INFORMATIKA-

BUSINESS INFORMATICS

2017

B. Web crawler to extract app reviews from Google Play Store

'''

Python Script to extract reviews of an app hosted on Google Play Store

'''

#load webdriver function from selenium

from selenium import webdriver

import bs4

import pandas as pd

from selenium.webdriver.common.keys import Keys

from webdriver_manager.chrome import ChromeDriverManager

import time

x = 100

link="https://play.google.com/store/apps/details?id=nz.co.zenergy.loyaltycard.android&showAllRevi

ews=true"

driver = webdriver.Chrome(ChromeDriverManager().install())

driver.get(link + '&showAllReviews=true')

num_clicks = 0

num_scrolls = 0

while num_clicks <= x and num_scrolls <= x*10:

 try:

 show_more=driver.find_element_by_xpath('//*[@id="fcxH9b"]/div[4]/c-

wiz/div/div[2]/div/div[1]/div/div/div[1]/div[2]/div[2]/div/span/span')

 # Change accordingly if GooglePlay is updated

 show_more.click()

 num_clicks += 1

 print ("num_clicks =", num_clicks)

 except:

 html = driver.find_element_by_tag_name('html')

 html.send_keys(Keys.END)

 num_scrolls +=1

 time.sleep(3)

 print("num_scrolls =", num_scrolls)

176

File mode

with open('F:/final.html', encoding='utf-8') as source:

source_content = source.read()

try:

soup = bs4.BeautifulSoup(source_content, 'html.parser')

h2 = soup.find_all('h2')

except Exception as e:

print(e)

raise e

Live mode

try:

 soup = bs4.BeautifulSoup(driver.page_source.encode('utf-8'), 'html.parser')

 h2 = soup.find_all('h2')

except Exception as e:

 print(e)

 raise e

results_df = pd.DataFrame()

blocks = soup.findAll('div', {'class':'zc7KVe'})

print('blocks :', len(blocks))

for one_block in blocks: # Change accordingly if GooglePlay is updated

 name = one_block.find('span', {'class':'X43Kjb'})

 rate = one_block.find('div', {'class':'pf5lIe'})

 try:

 rate = len(rate.findAll('div', {'class':'vQHuPe'}))

 except AttributeError:

 rate = ''

 date = one_block.find('span', {'class':'p2TkOb'})

 review = one_block.find('div', {'class':'UD7Dzf'})

 try:

 temp_df = pd.DataFrame([[date.text, rate, name.text, review.text]], columns =

['Date','Rating','User','Review'])

 results_df = results_df.append(temp_df)

 except:

 continue

results_df = results_df.reset_index(drop=True)

results_df.to_csv('F:/ZappNZ.csv', index=False)

driver.close()

177

C. University of Otago Human Ethics Committee application

178

179

180

181

D. External evaluation details

182

183

184

185

186

187

188

189

190

191

E. List of requirements prioritisation methods

ID. Method Number

of studies

1 Analytical Hierarchical Process 42

2 Cumulative Voting 13

3 Quality Function Deployment 12

4 Numerical Assignment 11

5 Planning Game 10

6 Hierarchical Cumulative Voting 9

7 Cost Value 8

8 Fuzzy Analytical Hierarchical Process 7

9 Priority Groups 7

10 Ranking 7

11 Binary Search 6

12 Case Base Ranking 6

13 Cost and Benefit Prediction 6

14 EVOLVE 6

15 Hierarchy Analytical Hierarchical Process 6

16 Pairwise Comparison 6

17 Top 10 6

18 Value Oriented Prioritization 6

19 B – Tree (Binary Tree) 5

20 Cognitive Approach 5

21 FUZZY Logic 5

22 Minimal Spanning Tree 5

23 MosCoW 5

24 Bubble Sort 4

25 Fuzzy Multi Attribute/Criteria Decision Making 4

26 Kano Model 4

27 SERUM(Software Engineering Risk: Understanding

and Management)

4

28 Value Based Requirements Prioritization 4

29 AGORA(Attribute Goal Oriented Requirements

Analysis)

3

30 Binary Priority List 3

31 Conceptual Model 3

32 Interactive Genetic Algorithm 3

33 Minimal Marketable Features 3

34 Multi Criteria Decision 3

35 Value Based Intelligent Requirements Prioritization 3

36 Weiger’s Method 3

37 Win Win 3

38 ABC Framework 2

39 Automated Requirements Triage 2

40 Dot Voting 2

41 Eclipse Process Framework 2

42 Extensive Numerical Assignment 2

43 Group Recommendation Heuristics 2

44 Hybrid Assessment Method (HAM) 2

45 Internal Evident Reasoning 2

46 Lanchester Theory 2

192

ID. Method Number

of studies

47 Larman 2

48 Linear Programming-GW-Analytical Hierarchy

Process

2

49 Linear Regression 2

50 Mathematical Programming Technique 2

51 Multi Criteria Preference Analysis Requirements

Negotiation

2

52 Multi Objective Next Release Problem 2

53 Multi Voting System 2

54 Other (Plan Based + Agile) 2

55 PHandler 2

56 Ping Pong Balls 2

57 Quality Function Deployment – Linear

Programming

2

58 Ranking based on product definition 2

59 Relative Weighting 2

60 Requirements uncertainty prioritization approach 2

61 SNIPR 2

62 Theme Screening/Scoring 2

63 Theory W 2

64 TOPSIS 2

65 Weiger’s Matrix Method 2

66 Weighted Sum Method 2

67 100 Points 1

68 100$ Method 1

69 Adaptive Fuzzy Decision Matrix Model 1

70 Adaptive Fuzzy Hierarchy Cumulative Voting 1

71 Adaptive Requirements Prioritization 1

72 Adhoc Prioritization 1

73 AHP-GORE-PSR 1

74 Alpha – Beta – Gamma Framework 1

75 Analytic Network Process (ANP) 1

76 Apriori Technique 1

77 Architecture Driven 1

78 Binary Inputs 1

79 ConTexter 1

80 Contextual Requirements Prioritization 1

81 Correlation Based Assessment Framework 1

82 Cost of Delay 1

83 Decision Weighted Matrix 1

84 DRank 1

85 Dynamic Reprioritization of requirements in Agile

Development

1

86 ELECTRE - I 1

87 Enhanced Genetic Algorithm 1

88 Evolutionary Algorithms 1

89 Fuzzy Hierarchy Cumulative Voting 1

90 Fuzzy Quality Function Deployment 1

91 Fuzzy TOPSIS 1

92 Game Theory 1

93 Genetic Algorithm 1

193

ID. Method Number

of studies

94 Goal Based Technique 1

95 Goal Skill Preferences 1

96 GOASREP (Goal Oriented Software Requirements

Elicitation & Prioritization)

1

97 Gradient Descent Ranking 1

98 Grey Relational Analysis 1

99 GW- Analytical Hierarchy Process 1

100 Hierarchical Dependencies 1

101 Importance Performance Analysis 1

102 Incomplete Analytical Hierarchy Process 1

103 Incremental Funded Methodology 1

104 Individual Attribute Based Ranking 1

105 Integrated Prioritization Approach (IPA) 1

106 K-Means 2

107 Laplace Evidential Reasoning 1

108 Maintainability Based 1

109 Majority Voting Goal Based 1

110 Meta Networks Based 1

111 MPRAN 1

112 Multi Attribute Utility Theory 1

113 NAcAHP (Numerical Assignment + Analytical

Hierarchy Process)

1

114 Natural Language Processing 1

115 New Lanchester Theory 1

116 Other (Cumulative Voting + Decision Weighted

Matrix)

1

117 Other (Data Mining + Machine Learning) 1

118 Other (Lagrange Function + Group Decision

Making)

1

119 Other (Multi Voting + Binary Search) 1

120 Other (Quality function Deployment + Yager’s

Algorithm)

1

121 Other(Data Mining + Recommender System) 1

122 Other(Satisfactory Modulo Theory + Pairwise

Comparison)

1

123 Others(Multi Criteria + Automated Reasoning) 1

124 Outranking 1

125 Partial Order Assimilation 1

126 PGcAHP (Planning Game + Analytical Hierarchy

Process)

1

127 Planning Poker 1

128 Preference Weights 1

129 Prioritization of Stakeholder Values using Metric 1

130 Priority ranking using topological potential 1

131 PROMETHEE 1

132 Psychotherapy For System Requirements 1

133 Purpose Alignment Model 1

134 Quantitative Framework 1

135 REMBRANDT (Multi Criteria Decision Analysis

based)

1

136 RepiZer 1

194

ID. Method Number

of studies

137 RepoTizer 1

138 Requirements Interdependencies Technique 1

139 Round the group prioritization 1

140 Sample Selection 1

141 SELRank 1

142 Simple Additive Weighting Rating Technique 1

143 Single Multi Criteria Rating Technique 1

144 Situation Oriented Evaluation 1

145 Stratified Analytical Hierarchy Process 1

146 Technique for ordering from similarity to ideal

solution

1

147 Technique of bucketing requirements 1

148 Tensor Decomposition 1

149 Thurston’s Law of Competitive Judgement 1

150 Value Based Fuzzy Requirements Prioritization 1

151 Value Oriented Framework 1

152 Value Oriented Hierarchical Cumulative Voting 1

153 Verbal Decision Analysis 1

154 Visualization Technique 1

155 Weighted Critical Analysis 1

156 Meta Model Based Requirements Prioritization 1

157 Market Driven 1

F. Screenshots based walkthrough of operational demonstration

F.1 Reviews upload page

After accessing the link to RECP (RECP - Reviews Elicitation Classification Prioritisation) web tool

via a web browser and successfully completing the registration process, the end-user can login and

select the 'TRY IT' option to visit the reviews upload page. This page provides the necessary options

for the end-user to upload the CSV containing only reviews in its first column. The end-user needs to

select 'Upload' button after providing the CSV file to the web tool.

195

F.2 Manually tagging 50% reviews for filtering

After the CSV file containing the reviews has been successfully uploaded, the end-user will be directed

to a page where the end-user needs to tag 50% of the reviews as 'Useful' or 'Non-Useful'. The end-user

needs to click the appropriate buttons as mentioned below to tag a particular review as 'Useful' or 'Non-

Useful'. Once the end-user has tagged 50% of the reviews, the end-user will be presented with a

'Continue' button to proceed with the filtering of remaining useful reviews. The end-user needs to click

this button to proceed with the filtering task. This filtering task depicts the phase 2 of the undertaken

research work.

196

F.3 Filtered useful reviews

Once the filtering process is completed, the end-user is directed to a page where the end-user can view

the classified 'Useful' and 'Non-Useful' reviews. Along with this, the end-user is provided with three

options - Classification, Individual Prioritisation and Group-based prioritisation to select. These options

(i.e., Classification, Individual Prioritisation and Group-based Prioritisation) reflect phase 3 and phase

4 of the undertaken research respectively.

197

F.4 Classified useful reviews

When the end-user selects the 'Classification' option, the end-user is directed to a page that displays the

results of classification method. Initially, the end-user is presented with a list of groups. In the display

list, the name of the group is followed by the number of useful reviews it holds. When the end-user

clicks a particular group, a list of useful reviews the group holds is displayed as shown below.

198

F.5 Individual prioritisation

When the end-user selects the 'Individual Prioritisation' option, the end-user is directed to a page that

displays the results of individual prioritisation method. The end-user is presented with a list of

prioritised useful reviews. In the display list, the particular useful review is accompanied by its

associated priority as shown below.

199

F.6 Group-based prioritisation

When the end-user selects the 'Group-based Prioritisation' option, the end-user is directed to a page that

displays the results of group-based prioritisation method. Initially, the end-user is presented with a list

of groups along with their generated priorities. In the display list, the name of the group is followed by

the number of useful reviews it holds along with its associated priority. When the end-user clicks a

particular group, a list of useful reviews the group holds is displayed along with the priorities of those

useful reviews as shown below.

	Abstract
	Acknowledgement
	List of Acronyms
	Publications
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Aim
	1.3 Research Outline
	1.4 Research Questions
	1.5 Thesis Structure

	2 Background
	2.1 App Domain Studies
	2.2 Next Release Problem (NRP)
	2.3 Requirements Prioritisation

	3 Systematic Mapping Study on Requirements Prioritisation
	3.1 Introduction
	3.2 Background and Related Studies
	3.3 Research Questions
	3.4 Methodology
	3.4.1 Classification Schemes (RQ1.2 and RQ1.3)

	3.5 Results
	3.5.1 Interest, Publication Venues and Disciplines (RQ1.1)
	3.5.2 Requirements Prioritisation Approaches (RQ1.2)
	3.5.3 Requirements Prioritisation Contributions (RQ1.3)
	3.5.4 Requirements Prioritisation Methods (RQ1.4)
	3.5.5 Dimensions of evaluated requirement prioritisation solutions (RQ1.5)
	3.5.6 Performance Outcomes and Relationship between Attributes and Outcomes (RQ1.6)

	3.6 Remaining Overarching RQs
	3.7 Discussion
	3.7.1 RQ1.1 What has been the interest in requirements prioritisation over time, what are the different publication venues and what are the various disciplines in which the application of requirements prioritisation exist?
	3.7.2 RQ1.2. What approaches have been used to study requirements prioritisation?
	3.7.3 RQ1.3 What form did the contributions of the requirements prioritisation studies take?
	3.7.4 RQ1.4 What prioritisation methods have been studied or developed?
	3.7.5 RQ1.5 What are the dimensions that were evaluated for requirements prioritisation methods?
	3.7.6 RQ1.6 What are the performance outcome of the evaluations, and is there evidence of relationships between attributes of requirements prioritisation methods and their performance outcomes?
	3.7.7 Summary of the way evaluated requirements prioritisation dimensions influence each other

	3.8 Threats to Validity

	4 Filtering of Useful Reviews
	4.1 Introduction
	4.2 Related Studies
	4.3 Methods and Concepts
	4.3.1 Reviews Pre-Processing
	4.3.2 Multinomial Naïve Bayes
	4.3.3 Complement Naïve Bayes
	4.3.4 Laplace Smoothing
	4.3.5 Expectation Maximisation

	4.4 Multinomial Naïve Bayes Variants
	4.5 Experimental Settings
	4.6 Results
	4.6.1 My Tracks Dataset
	4.6.2 Flutter Dataset

	4.7 Discussion
	4.7.1 RQ2.1 What are the performances of Multinomial Naïve Bayes variants when extracting useful reviews, and are there differences in outcomes of the different implementations?

	4.8 Threats to Validity
	4.8.1 Internal Validity
	4.8.2 External Validity
	4.8.3 Construct Validity

	5 Classification of Useful Reviews
	5.1 Introduction
	5.2 Related Studies
	5.3 Classification Approach (RQ3.1)
	5.3.1 Feature Engineering
	5.3.2 Semantic Similarity Methods
	5.3.3 Pareto Principle
	5.3.4 Keyword Lookup Classifying Mechanism
	5.3.5 Generated Taxonomy Evaluation

	5.4 Experimental Settings
	5.4.1 Dataset
	5.4.2 Useful Reviews Pre-processing and POS Tagging

	5.5 Results
	5.6 Automatically Generated Taxonomy Validity
	5.7 Discussion
	5.7.1 RQ3.1 How can an approach be developed to automatically generate a taxonomy for classifying useful reviews, and how will such taxonomy compare to a manually developed one?

	5.8 Threats to Validity
	5.8.1 Internal Validity
	5.8.2 External Validity
	5.8.3 Construct Validity

	6 Prioritisation of Useful Reviews
	6.1 Automated Prioritisation Methods (RQ4)
	6.1.1 Group-based Prioritisation Method
	6.1.1.1 Keywords of Interest
	6.1.1.2 Methods
	6.1.1.2.1 Entropy
	6.1.1.2.2 Frequency
	6.1.1.2.3 TF-IDF
	6.1.1.2.4 Sentiment Analysis

	6.1.1.3 Multi-Criteria Heuristic Function
	6.1.1.4 Group Priority
	6.1.1.5 Elimination of Duplicate Useful Reviews

	6.1.2 Experimental Settings (Group-based Prioritisation Method)
	6.1.2.1 Dataset
	6.1.2.2 Useful Reviews Pre-processing and POS Tagging
	6.1.2.3 Group-based Prioritisation Method Evaluation
	6.1.2.3.1 Time
	6.1.2.3.2 Accuracy

	6.1.3 Individual Prioritisation Method
	6.1.4 Experimental Settings (Individual Prioritisation Method)
	6.1.4.1 Datasets
	6.1.4.2 Individual Prioritisation Method Evaluation

	6.2 Results
	6.2.1 Group-based Prioritisation Results
	6.2.2 Individual Prioritisation Method

	6.3 Discussion
	6.3.1 RQ4.1 What is the performance of the developed group-based prioritisation method?
	6.3.2 What is the performance of the developed individual prioritisation method?
	6.3.3 Automated Parameter Fine Tuning
	6.3.3.1 Surrogate Modelling Approach
	6.3.3.2 Parameter Sweeping Approach
	6.3.3.3 Orthogonal Procrustes Problem Approach

	6.4 Threats to Validity
	6.4.1 Internal Validity
	6.4.2 External Validity
	6.4.3 Construct Validity

	7 Conclusion
	7.1 Summary of Outcomes
	7.1.1 Phase 1 - Systematic Mapping Study (RQ1)
	7.1.2 Phase 2 - Useful Reviews Filtering (RQ2)
	7.1.3 Phase 3 - Classification of Useful Reviews (RQ3)
	7.1.4 Phase 4 - Automated Prioritisation of Useful Reviews (RQ4)

	7.2 Contributions
	7.3 Implications and Future Work

	References
	Appendices

