
 

 

 

Clarifying the waters: A critical analysis of 

turbidity and its role in environmental monitoring 

in New Zealand 
 

 

“The real dirt in turbidity” 
 

 

 

 

Christina Bright 
 

 

A thesis submitted in fulfilment for the degree of Doctor of Philosophy at the 
University of Otago, Dunedin, New Zealand. 

 

2019  



 ii  

  



 iii  

Abstract 
 
Turbidity is widely-used as a water quality indicator to infer the mass of suspended sediment 

(SS) transported through riverine systems, and is inexpensive, readily available, and can be 

easily deployed to record continuous measurements. However, using turbidity as a surrogate 

for SS concentration (SSC) is frequently confounded by the composition of riverine 

suspended material, and the particle size and shape of sediments. Presented as a series of 

research papers, this thesis provides a distinctly Southern Hemisphere perspective of 

sediment, organic matter, organic carbon, and turbidity across southern New Zealand, and 

offers a critical reflection on the role of turbidity in environment monitoring. The suspended 

material of southern New Zealand rivers under base flow was mostly comprised of inorganic 

suspended material, although the total composition also includes variable amounts of organic 

material (<10%, and up to 50 – 80%). The proportion of organic to inorganic particulate 

material in southern New Zealand is significant under certain land covers, and contributes a 

significant proportion of particulate organic carbon flux to the Southern Oceans (0.04 – 2.7 

t km-1 a-1). In addition, different catchment morphologies and lithologies have a propensity 

to discharge different particle size distributions of inorganic sediment. These differences in 

particle sizes are most likely a function of underlying lithology from in channel attrition. 

This thesis has also identified that specific turbidity (turbidity normalised to mass 

concentration of particulates) is a potentially effective metric to indicate a ‘non-standard’ 

light attenuation response (that is, greater turbidity per mass of SS). Specific turbidity is 

shown through both in-field measurements and laboratory experiments to be affected by 

organic composition (particulate and dissolved) and the particle size distribution. Multiple 

regression analysis of catchment characteristics show that suspended particulate material 

composition and particle size are linked to discharge and flow behaviour, landcover, and 

lithology. The application of these findings is applied to monitoring SSC with turbidity 

across New Zealand by examining the specific turbidity for 77-monitoring stations. It is 

evident that organic composition and particle size have a notable effect on SS-turbidity 

ratings across New Zealand, which has limitations for the comparability, and relevance of 

SS data derived from turbidity when used as a regulatory tool. This thesis shows that 

although turbidity is pragmatic, its use in SS monitoring is problematic.  



 iv  

  



 v  

Acknowledgments 
 

A profound thankyou to my primary supervisor, Dr Sarah Mager, without whom this thesis 
would have not been possible. Thank you for the five years of constant learning and laughter. 
The hours we have been together in the field, the late night emails, and constant support, I 
am forever grateful. The days spent in freezing cold water at Glendhu, cups of tea and coffee, 
home baking, and pasta-le-disaster, are all very much appreciated. You have allowed the 
true scientist within me to breathe and find joy over the small wins for science, and have had 
a profound impact on my ability and confidence as a field hydrologist. 
 
Thanks must be given to the support of co-supervisors, Professor Russell Frew, and Dr Ralf 
Ohlemüller, who have provided valuable insights, and Emeritus Professor Richard Morgan 
for assistance in the early days of doctoral study. Russell – thank you for your persistence in 
the laboratory, and taking the time to show me new techniques. Ralf – thank you for the 
morning tea time conversations and insightful feedback and review of the thesis. Richard – 
your early inputs into the research project helped me grow and establish myself as a doctoral 
candidate. 
 
A warm thank you to the army of field assistants that have been involved with the many trips 
to the Glendhu Catchments, through to Ranfurly and back on a monthly basis, the long 
winded drives to Southland and the Upper Clutha, and the sometimes unorthodox trips to 
random locations in between. Alice, Emily, Matt, Alex, Kenzie, Josie, Florence, Henrietta, 
and Ben, and Sophie – thank you. 
 
Julie Clark, Douglass Fraser, Nigel McDonald and Chris Garden, your willingness to support 
and offer guidance has been very much appreciated. A particular thankyou to Julie for all 
your assistance in the laboratory, enabling the analysis of many hundred samples. Thank you 
to Nicola McHugh from the Zoology Department for assistance with analysis, and Amandine 
Sabadel in the Chemistry Department for analytical support. 
 
My forever thanks must go to Alexandra King and Sophie Horton. Without the endless 
support from you both during all aspects of doctoral life, I would not be where I am. Alex – 
you have been there from day one and I will always cherish the laughs had on many field 
trips. Your profound confidence in me and ability to pick me up and help me keep going 
never waivered. Sophie – we have been a team over the years, and I have had the privilege 
of working alongside you in the field and as a co-author. Your enthusiasm for hydrology is 
contagious and I will forever be grateful for the hours of support. 
 
A special thank you to Barry Fahey and John Payne for their ongoing support for the 
Glendhu Experiment Catchments, and Dr Rob Davies-Colley for insightful discussions on 
turbidity, visual clarity, sediment, and all optical matters in between. 
 
Finally, my family, my partner Sean and his family, friends – thank you. Mum and Dad your 
unwavering confidence in me to achieve, and endless love and support has without doubt 
kept me going. Sean – you have been my rock and I am forever grateful for your persistent 
support and encouragement. Di and Al – you welcomed me into your home and allowed it 
to be my home away from home. Emily, Kate, and Reba – the time spent dragging me away 
from my computer was all worth it, thank you for your endless support.  



 vi  

  



 vii  

Table of Contents 
 

 
Abstract……………………………………………………………………………………………..iii 
Acknowledgements……………………………………………………………………….................v 
Table of Contents…………………………………………………………………………………..vii 
Common Abbreviations………………………………………………………………….................xi 
List of Tables………………………………………………………………………………………xiii 
List of Figures.……………………………………………………………………………………...xv 
 
 
1 Introduction ................................................................................................................................ 1 

1.1 Thesis Overview ................................................................................................................ 3 

2 Muddying the Waters: A Review of Suspended Particulate Material in Rivers ........................ 5 

2.1 Riverine Suspended Particulate Material .......................................................................... 5 
2.2 Particulate Organic Matter ................................................................................................. 9 
2.3 Water Clarity and Surrogate Technologies ..................................................................... 12 
2.4 Turbidity and Light Attenuation ...................................................................................... 16 
2.5 Suspended Sediment in New Zealand ............................................................................. 19 
2.6 Thesis Aim and Research Questions ............................................................................... 22 
2.7 Research Strategy ............................................................................................................ 24 

3 Contribution of Particulate Organic Matter to Riverine Suspended Material in the Glendhu 
Experimental Catchment .......................................................................................................... 27 

3.1 Abstract ............................................................................................................................ 27 
3.2 Introduction ..................................................................................................................... 28 
3.3 Method ............................................................................................................................. 32 
3.4 Results ............................................................................................................................. 34 

3.4.1 Assessing the Relationship Between Suspended Material and Turbidity ................... 37 

3.5 Discussion ........................................................................................................................ 41 
3.5.1 Particle properties and water colour ............................................................................ 42 
3.5.2 POC in New Zealand Rivers ....................................................................................... 43 
3.5.3 Source of particulate organic matter ........................................................................... 45 

3.6 Conclusion ....................................................................................................................... 46 

4 Catchment-Scale Influences on Riverine Organic Matter in Southern New Zealand .............. 49 

4.1 Abstract ............................................................................................................................ 49 
4.2 Introduction ..................................................................................................................... 50 
4.3 Methods ........................................................................................................................... 53 
4.4 Results and Discussion .................................................................................................... 56 

4.4.1 How Much POM is cycled through southern New Zealand Rivers? .......................... 56 
4.4.2 How much Organic Carbon is fluxed through southern New Zealand Rivers? .......... 62 
4.4.3 Intrinsic and extrinsic catchment characteristics influence on POM .......................... 65 
4.4.4 Uncertainties of the stepwise method for model prediction ........................................ 71 

4.5 Conclusion ....................................................................................................................... 71 

5 Predicting suspended sediment concentration from nephelometric turbidity in organic-rich 
waters ....................................................................................................................................... 73 

5.1 Abstract ............................................................................................................................ 73 



 viii  

5.2 Introduction ...................................................................................................................... 74 
5.3 Methods ........................................................................................................................... 78 
5.4 Results .............................................................................................................................. 81 

5.4.1 Turbidity and suspended sediment .............................................................................. 81 
5.4.2 Effect of fine particulates on turbidity ........................................................................ 84 
5.4.3 Performance of different turbidimeters ....................................................................... 86 

5.5 Discussion ........................................................................................................................ 87 
5.5.1 Turbidity, suspended sediment, particulate organic matter ......................................... 87 
5.5.2 Effect of fine particulates on turbidity ........................................................................ 88 
5.5.3 Turbidimeter performance ........................................................................................... 89 
5.5.4 Future research and conclusion ................................................................................... 90 

6 Response of Nephelometric Turbidity to Hydrodynamic Particle Size of Suspended Fine 
Sediments ................................................................................................................................. 93 

6.1 Abstract ............................................................................................................................ 93 
6.2 Introduction ...................................................................................................................... 94 
6.3 Method and Materials ...................................................................................................... 96 

6.3.1 Field site ...................................................................................................................... 96 
6.3.2 Sediment collection and particle size analysis ............................................................ 98 

6.4 Results ............................................................................................................................ 100 
6.4.1 General characteristics of event flow suspended sediment ....................................... 100 
6.4.2 Specific turbidity across hydrodynamic particle size classes .................................... 101 
6.4.3 Composition effects on SSC – turbidity .................................................................... 103 
6.4.4 Specific turbidity during event flow .......................................................................... 105 

6.5 Discussion ...................................................................................................................... 109 
6.5.1 Specific turbidity during event flow .......................................................................... 109 
6.5.2 Specific turbidity response to particle size ................................................................ 109 
6.5.3 Influence of composition on specific turbidity .......................................................... 111 
6.5.4 Turbidimeter sensitivity to particle size .................................................................... 112 
6.5.5 SSC – Turbidity slopes are driven by UFPM ............................................................ 113 

6.6 Conclusions .................................................................................................................... 114 

7 Turbidity Dependence on Particle Size and Composition of Riverine Suspended Material 
Across New Zealand’s NRWQN ........................................................................................... 117 

7.1 Abstract .......................................................................................................................... 117 
7.2 Introduction .................................................................................................................... 118 
7.3 Method ........................................................................................................................... 120 

7.3.1 NRWQN data ............................................................................................................ 120 
7.3.2 Specific turbidity and statistical analyses .................................................................. 121 

7.4 Results ............................................................................................................................ 122 
7.4.1 Catchment influences on specific turbidity ............................................................... 122 
7.4.2 Organic influences on specific turbidity clusters ...................................................... 125 
7.4.3 Optical properties and catchment characteristics as predictors ................................. 127 
7.4.4 Particle size distribution effects on specific turbidity ............................................... 128 

7.5 Discussion ...................................................................................................................... 129 
7.5.1 Influence of intrinsic catchment variables on specific turbidity ............................... 129 
7.5.2 Optical properties control specific turbidity .............................................................. 130 
7.5.3 Lithological attrition effect particle size and specific turbidity ................................ 131 

7.6 Conclusions .................................................................................................................... 133 

8 Synthesis ................................................................................................................................. 135 

8.1 Research Summary ........................................................................................................ 135 



 ix  

8.2 Future Work ................................................................................................................... 141 
8.3 Turbidity and Environmental Monitoring in New Zealand ........................................... 143 

9 Conclusion .............................................................................................................................. 149 

10 References .............................................................................................................................. 153 

11 Appendix ................................................................................................................................ 171 

11.1 Research Outputs During PhD ...................................................................................... 173 
11.2 Research Papers ............................................................................................................. 175 
11.3 Raw Data ....................................................................................................................... 185 

  



 x  

  



 xi  

Common Abbreviations 
 

CDOM 

DOM 

DOC 

FPM 

POC 

POM 

PSD 

SS 

SSC 

SSY 

TOC 

TSM 

UFPM 

Coloured dissolved organic matter 

Dissolved organic matter 

Dissolved organic carbon 

Fine particulate matter 

Particulate organic carbon 

Particulate organic matter 

Particle size distribution 

Suspended sediment 

Suspended sediment concentration 

Suspended sediment yield 

Total organic carbon 

Total suspended material 

Ultra-fine particulate material 

 

  



 xii  

  



 xiii  

List of Tables 
Table 2.1 Summary of surrogate technologies for monitoring suspended sediment (Sources: Gray & 

Glysson, 2003; Gray & Landers, 2014). .................................................................................. 15	
Table 3.1 Components of total suspended material (TSM): Dissolved Organic Matter; Particulate 

Organic Matter (POM); and Suspended Sediment (SS) and how these variables affect turbidity 
(Adapted from: Gippel (1989) and USGS (2005)). .................................................................. 30	

Table 3.2 Concentration (in mg L-1) of the organic and inorganic portions of water samples in the 
Glendhu Experimental Catchments, turbidity as measured on a portable nephelometer, 
suspended sediment concentration and portion of particulate organic matter (POM) as a 
percentage of total suspended material (TSM) dry weight (POM %). ..................................... 34	

Table 3.3 Spearman’s correlation coefficient of the association between turbidity (NTU) and 
concentration of particulate material, as particulate organic matter (POM), suspended sediment 
(inorganic, SSC), and total suspended material (TSM). All reported correlation coefficients 
were statistically significant at the 95% confidence level, and n.s. indicates no significant 
correlation was observed. No seasonal data for summer is available due to insufficient data 
points. ....................................................................................................................................... 41	

Table 4.1 Catchment characteristics for the seven high order catchments sampled for suspended 
sediment, particulate organic matter, and turbidity across southern New Zealand. ................. 55	

Table 4.2 Basin, lithological, soil, and land cover catchment variables used in multiple regression 
modelling. ................................................................................................................................. 56	

Table 4.3 Hierarchical cluster analysis of particulate organic matter (POM) as a proportion of total 
suspended material (POM%) for southern New Zealand. Suspended sediment concentration 
(SSC as mg L-1), POM (as mg L-1) and POM% across the 6 clusters with statistical difference 
determined by Kruskall-Wallace z-test (p-value <0.05 at 95%). Mean catchment modelled 
mean flow (Q, m3 s-1), and modelled suspended sediment yield (SSY as t km-2 a-1) for each 
cluster are also summarised. ..................................................................................................... 60	

Table 4.4 Median turbidity (as NTU), suspended sediment concentration (SSC mg L-1), particulate 
organic matter (POM as mg L-1 and as a percentage POM%), and dissolved organic carbon 
(DOC mg L-1) and particulate organic carbon (POC mg L-1), with van Bemmelen factor (VBf). 
DOC as percentage of total organic carbon (TOC) and POC as percentage of TOC, and yields 
for DOC and POC (as t km-2 a-1) across dominant vegetation classes for southern New Zealand.
 .................................................................................................................................................. 63	

Table 4.5  Independent catchment characterises listed in hierarchal order of importance in linear 
model (determined by stepwise linear multivariate regression), with slope coefficients (b), 
model fit (r2) and D-W (Durbin-Watson statistic) used to determine statistical significance (*). 
Showing turbidity (as NTU and FNU), suspended sediment concentration (SSC), total 
suspended material (TSM), POM as a percentage of TSM (POM%), particulate organic carbon 
(as mg L-1 and as a yield t km-1 a-1, and as a percentage of total organic carbon). ................... 67	

Table 5.1 Summary of the effects from different influences on accurate turbidity readings and the 
potential bias (positive or negative) effects. (Sources: Sadar, 1999: 2004). ............................ 77	

Table 5.2 Catchment characteristics for the rivers that were sampled for suspended sediment, 
particulate organic matter and turbidity. Land cover classifications from the Land Cover 
Database (v4.1) (Landcare, 2015). ........................................................................................... 79	

Table 5.3 Median suspended material concentration (suspended sediment concentration SSC; 
particulate organic matter POM) and turbidity (NTU) reported for alpine rivers in Otago 
observed over all flow conditions, and median suspended material concentration and turbidity 
reported for organic rich rivers under all flow conditions for other selected Otago catchments.
 .................................................................................................................................................. 83	

Table 5.4 Mean (± standard deviation (SD)) for turbidity measurements determined using the HACH 
2100P and HACH 2100Q-is turbidimeters showing within-meter and between-meter 
coefficient of variations (CV) for a dilution series of four formazin standards. ...................... 86	

Table 5.5 Mean (± standard deviation (SD)) turbidity values, and minimum and maximum values for 
the combined turbidity data from both the HACH 2100P and HACH 2100Q-is turbidimeters 



 xiv  

for different environmental samples and distilled deionised water (DDW), showing the 
between-meter and within-meter coefficient of variation (CV). .............................................. 87	

Table 6.1 Catchment characteristics. Mean annual discharge (Q) in m3 s-1, mean annual area-
weighted rainfall (P) in mm a-1 from modelled data (see: Tait et al., 2006). Suspended sediment 
yield (SSY) is from rated and modelled studies and reported in t km-2 a-1. ............................. 97	

Table 6.2 Particle size distribution of bulk suspended sediment samples during storm events as 
determined by laser diffraction particle size analysis. ............................................................ 101	

Table 6.3 Suspended sediment-turbidity relationship for bulk suspended sediment subsamples 
determined for discrete hydrodynamic grain size classes using two different turbidimeters. The 
sensitivity (Specific Turbidity as KN and KF, for turbidity in NTU and FNU units respectively) 
is the ratio of turbidity to suspended sediment concertation (SSC), which is the inverse of the 
regression slope coefficient (b). Each class statistic is derived from 30 measurements, apart 
from clay, which has 75 measurements. The goodness of fit coefficient (r2) is derived from the 
linear regression analysis of turbidity and SSC. ..................................................................... 103	

Table 6.4 Particulate organic matter (POM) as a percentage of total suspended material (i.e., POM%) 
for hydrodynamic particle size classes, Phi and µm, for three alpine rivers in southern New 
Zealand, and the division of fine particulate material (FPM, 6 – 63 µm) from ultra-fine 
particulate material (UFPM, <6µm). ...................................................................................... 105	

Table 7.1 National River Water Quality Network variables collected by NIWA Taihoro Nukurangi, 
that were used by the study, and the analytical methods. ....................................................... 121	

Table 7.2 Basin, lithological, soil, and land cover catchment variables used in multiple regression 
modelling, and data sources. .................................................................................................. 122	

Table 7.3 Summary statistics for 77 sites within the New Zealand NRWQN that are categorised as 
baseline and impacted. ........................................................................................................... 123	

Table 7.4 Catchment area (km2) and modelled runoff (R)(m/a), turbidity (NTU), suspended sediment 
(SS as mg L-1), volatile suspended sediment (VSS as mg L-1) and the proportion of VSS relative 
to total suspended solids (VSS%), specific turbidity (K), and the slope coefficient (b) of the 
SS–turbidity relationships, across the 6 clusters defined by hieratical cluster analysis and 
significance determined by Kruskall-Wallace (p-value < 0.05 at 95%) (*). .......................... 126	

Table 7.5 Independent catchment characteristics listed in hierarchal order of importance in linear 
model for specific turbidity (K)(determined by stepwise linear multivariate regression), with 
slope coefficients (Beta – b), model fit (r2) and Durbin-Watson statistic (D-W) used to 
determine statistical significance. ........................................................................................... 128	

Table 7.6 Dominant lithologies of New Zealand defined by Hicks et al. (2004) and the cumulative 
particle size distribution data as % weights, and percentage of fine particulate material (FPM) 
with median specific turbidity (K) and the slope coefficient (Beta - b) of the SS–turbidity 
relationships. ........................................................................................................................... 132	

  



 xv  

List of Figures 
Figure 2.1 The a ) Hjulström and b) Postma diagrams that describe the thresholds for entrainment 

and erosion according to particle size (Source: Grabowski et al., 2011). .................................. 6	
Figure 2.2 River Continuum Concept defining the coarse particulate organic matter (CPOM) and fine 

particulate organic matter (FPOM) that are derived from a number of terrestrial and in-stream 
sources longitudinally along a river channel (Adapted from: Vannote et al., 1980). .............. 10	

Figure 2.3 Common relationships between discharge (Q) and suspended sediment concentration 
(SSC) describing the a) linear trend, b) anti-clockwise, and c) clockwise hysteretic responses 
(Source: Hudson, 2003). ........................................................................................................... 13	

Figure 2.4 Relationship among catchment characteristics and independent processes that control 
optical water quality, and the related water quality outputs and applications of optical water 
quality data (Source: Julian et al., 2013). ................................................................................. 16	

Figure 2.5 The scattering and absorption effect of suspended particulates that define the light 
attenuation response of water (Source: Kitchener et al., 2017). .............................................. 17	

Figure 2.6 Typical optical design of turbidimeters (Source: Sadar, 1999). ...................................... 18	
Figure 2.7 Map showing distribution of high to low specific suspended sediment yield (as t km-2 yr-

1)  from New Zealand’s rivers (Source: Hicks et al., 2011). .................................................... 20	
Figure 2.8 Overview of thesis research strategy with research themes, and the experiments carried 

out to understand the behaviour of suspended sediment, particulate organic matter and turbidity 
in a variety of catchments across southern New Zealand, and nationally across New Zealand’s 
National River Water Quality Network (NRWQN). ................................................................ 25	

Figure 3.1 Diagram of dissolved and particulate constituents in river water with an emphasis on 
carbon contributions. The dissolved and particulate components comprise of organic and 
inorganic portions that may occur as dissolved (i.e., <0.7 µm) or particulate (>0.7 µm). 
Elements in the dashed box potentially affect turbidity. Abbreviations: DOM = dissolved 
organic matter, which comprises dissolved organic: nitrogen (DON), carbon (DOC), and 
phosphorus (DOP); TSM = total suspended material, which comprises particulate organic 
matter (POM) and (inorganic) suspended sediment (SS). POM also contains particulate 
organic: nitrogen (PON), carbon (POC), and phosphorus (POP), although POC is the dominant 
fraction. SS comprises dissolved elements, of which particulate inorganic carbon (PIC) is a 
small contributor. The dissolved fraction is usually referred to as total dissolved solids (TDS) 
and comprises many ions including nutrients (e.g., dissolved inorganic: nitrogen (DIN), carbon 
(DIC), and phosphorus (DRP)). ............................................................................................... 28	

Figure 3.2 Location of the Glendhu Experimental Catchments in the Lammerlaw Ranges in Otago. 
The smaller catchment (GH1) is tussock grassland with mānuka scrub, and the larger catchment 
(GH2) is plantation forestry (Pinus radiata). ............................................................................ 32	

Figure 3.3 Portion of total suspended material as particulate organic matter (POM) (as a percentage 
of dry weight) plotted relative to stream flow at time of sample collection.  Median daily stream 
flow over the 18-month study period is indicated by the dotted line (tussock catchment, GH1) 
and the dashed line (forested catchment, GH2). ...................................................................... 35	

Figure 3.4 Particulate organic matter concentration (POM as mg L-1) relative to daily precipitation 
(mm/d) for the tussock (circles) and forestry (triangles) Glendhu Experimental Catchments. 36	

Figure 3.5 Variations in particulate organic matter (POM) concentration (mg L-1) prior to, and during, 
a small rainfall event in August 2016, where: a) shows the POM concentration in the tussock 
(circles) and forestry (triangles catchment) and b) shows the discharge for this period (L s-1).
 .................................................................................................................................................. 37	

Figure 3.6 Variations in particulate organic matter (POM as mg L-1) prior to, and during, a rainfall 
event in September 2016, where: a) shows the POM concentration in the tussock catchment 
(circles) and b) shows the POM concentration in the forested catchment (triangles), both 
relative to stream discharge (L s-1). .......................................................................................... 38	

Figure 3.7 Variability in: a) total suspended material; b) suspended sediment; and c) particulate 
organic matter concentrations (mg L-1) relative to turbidity in the tussock and forestry 
catchments.  Fitted lines indicate the predicted regression relationships between the variables, 
and n.s. indicates no statistically significant regression relationship. ...................................... 39	



 xvi  

Figure 3.8 Particulate organic matter relative to total suspended material, indicating a strong linear 
relationship (e.g., as total suspended material increases so too does the concentration of organic 
matter) in the tussock (circles) and forested (triangles) catchments. ....................................... 40	

Figure 3.9 Streamflow through the v-notch weir draining the Glendhu experimental tussock 
catchment (GH1). The water shows a distinct yellow hue that is frequently observed in both 
GH1 and GH2 catchments. ....................................................................................................... 43	

Figure 4.1 Map of southern New Zealand showing the 134 locations within 84 sub-catchments of 
seven high order catchments that are the focus for this study. ................................................. 54	

Figure 4.2 a) Suspended sediment concentration (SSC); b) particulate organic matter (POM) 
concentration; c) POM as a percentage of total suspended material (TSM); d) hierarchical 
clusters for POM%; for 84 sub-catchments across southern New Zealand catchments. ......... 57	

Figure 4.3: Seasonal median suspended sediment concentration (SSC), particulate organic matter 
(POM) and POM as a percentage of total suspended material (POM%) and particulate organic 
carbon (POC) as a percentage of total organic carbon (TOC) (POC% of TOC) for six dominant 
land use types across 84 southern New Zealand sub-catchments. ........................................... 59	

Figure 4.4 Particulate organic carbon (POC) yields for 84 catchments across southern New Zealand.
 .................................................................................................................................................. 63	

Figure 4.5 Particulate organic carbon (POC) as percentage of total organic carbon (TOC) (POC% of 
TOC) for 84 southern New Zealand catchments classified by dominant vegetation class versus 
turbidity measured in units FNU. ............................................................................................. 65	

Figure 4.6 Predictive models for suspended sediment concentration (SSC) and particulate organic 
matter (POM), total suspended material (TSM) as concentration, the proportion that is POM of 
TSM (POM%), and particulate organic carbon (POC) concentration, POC as a percentage of 
total organic carbon (TOC) (POC % of TOC), and POC Yield, for 84 catchments across 
southern New Zealand. ............................................................................................................. 70	

Figure 5.1 Relation of suspended matter metrics to turbidity for an organic-rich stream. Linear 
regression relationship between turbidity (in FNU (triangle) and NTU (circle) units) relative to 
a) suspended sediment concentration (SSC), b) total suspended material (TSM), and c) 
particulate organic matter (POM) for 78 samples from the Glendhu Experimental Catchment 
GH2, which is undergoing forest clearance. ............................................................................ 82	

Figure 5.2 Suspended sediment concentration versus turbidity for three alpine rivers. Linear 
regression relationship for three alpine rivers in Otago, New Zealand showing a strong 
relationship between turbidity (as NTU) and suspended sediment concentration (SSC).  Data 
taken from 15 discrete sampling times between 2012 and 2017 and includes storm flow events 
for a) Dart/Te Awa Whakatipu, b) Shotover/Kimi-ākau, and c) Rees/Pua Hiri. ...................... 84	

Figure 5.3 Influence of small particulates on turbidity measurements. Comparison of turbidity of 
natural river samples relative to the amount of particulate organic matter (POM% of total 
suspended material, TSM) and the residual effect of CDOM or small particulates (< 0.7 µm) 
on turbidity. .............................................................................................................................. 85	

Figure 6.1 Location map for the Dart/Te Awa Whakatipu, Shotover/Kimi-ākau and Rees/Pua Hiri 
and the Haast/Awarua rivers. ................................................................................................... 98	

Figure 6.2 Cumulative particle size distribution for bulk suspended sediment samples collected from 
five New Zealand alpine rivers. Fine particulates (< 63 µm) comprised of at least 70% of the 
cumulative weight of suspended sediment, although the proportion of sand in suspension was 
highly variable between rivers (10–30%). ............................................................................. 100	

Figure 6.3 Suspended sediment concentration and turbidity relationships for coarse silts, and clay 
size particles derived from bulk suspended sediments collected from three alpine headwater 
catchments in southern New Zealand. Turbidity is reported in units of NTU and FNU. ...... 102	

Figure 6.4 Specific turbidity (as KN  and KF) follows a linear increasing trend with decreasing particle 
size, showing that the relationship between turbidity and suspended sediment when measured 
in either NTU or FNU is mostly linear for fine particulate matter (FPM).  However, when 
particle size is < 6 µm (ultra-fine particulate matter, UFPM) there is no systematic relationship 
between turbidity and suspended sediment (as expressed as specific turbidity). ................... 104	

Figure 6.5 Plots of a) turbidity, b) suspended sediment, c) specific turbidity (as KN  and KF), and d) 
particulate organic matter (POM) as a percentage of total suspended sediment for hydrographic 



 xvii  

events (September 2018 and March 2019) in the Ahuriri Catchment, and Haast/Awarua 
(February 2019) and the relation of these trends to discharge showing distinct hydrographic 
response of all variables. ........................................................................................................ 106	

Figure 6.6 Hysteric response of suspended sediment concentration (SSC), turbidity (in NTU), 
specific turbidity (as KN  ) and particulate organic matter (POM) as a percentage of total 
suspended material for an event in the Ahuriri in March 2019 (Ahuriri Event 2) and the 
Haast/Awarua in February 2019. Distinct hysteric response of the variables is clear with 
clockwise (CW) and anti-clockwise (ACW) behaviour representing changes in the parameters 
relative to discharge during hydrographic response. .............................................................. 108	

Figure 6.7 Plot of suspended sediment samples collected over two hydrographic events (Haast in 
February 2019, and Ahuriri in March 2019). As the percentage of POM increases in suspended 
sediment, there is a decrease in the stability of the specific turbidity (as KN) (that is, the ratio of 
turbidity (NTU) to suspended sediment concentration). ........................................................ 112	

Figure 6.8 Plot of the regression slope coefficient (beta) for hydrodynamically-derived particle size 
classes derived from 5 replicate runs of different concentration doses of suspended sediment 
during a settling tube experiment. The larger the particle size (PS), the higher the slope 
coefficient (beta) between turbidity (in NTU) and suspended sediment. .............................. 114	

Figure 7.1 Specific turbidity (K) for 77 catchments from New Zealand National River Water Quality 
Network (NRWQN) derived from suspended sediment and turbidity data sourced from NIWA 
Taihoro Nukurangi. ................................................................................................................ 124	

Figure 7.2 Hierarchical cluster membership dendrogram for 6 specific turbidity (K) clusters derived 
from 77 sites from the New Zealand National River Water Quality Network (NRWQN). ... 125	

Figure 7.3 Median specific turbidity (K) relative to a) clay (as % weight of particle size distribution); 
and to b) sand (as % weight of particle size distribution) for the seven common lithology types 
across New Zealand, as defined by Hicks et al. (2004). ........................................................ 129	

Figure 8.1 Synthetic suspended sediment concentration (SSC) and turbidity for two different possible 
relationships, where the estimation of SSC from the same value of turbidity is different. .... 145	

  



 xviii  

 



 1  

 

1 Introduction 
 

Human agency has had a pervasive influence on the state of waterways globally, through 

extensive land use transformation, intensification, and displacement of indigenous 

vegetation covers. The consequence of such changes has resulted in substantial degradation 

of waterways globally (e.g., Peters & Meybeck, 2000; Walling, 2008; Rodriguez-Blanco et 

al., 2013), and these effects have been acutely felt across New Zealand (e.g., Quinn et al., 

1997; Basher, 2013; Larned et al., 2016; Julian et al., 2017). Threats to water security for 

human use, and for habitat protection have never been greater, with all major indigenous 

freshwater species in New Zealand now listed as either endangered or under threat (Dunn et 

al., 2017). The disturbance of the land, through anthropogenic transformation, is particularly 

acute and degrades water quality, especially as an increase in particulate material is displaced 

from hillslopes into the conveyance systems of the dense network of rivers and streams 

across New Zealand. 

 

Particulate material transported by rivers is comprised of inorganic and organic materials, 

and is indicative of the processes affecting the terrestrial environment (e.g., physical 

weathering, biological production, anthropogenic disturbance) and the processes controlling 

the amount and timing of material carried by rivers to other water bodies (e.g., climate, 

hydrology, seasonality) (Schlesinger & Melack, 1981; Meybeck, 1982; Hope et al., 1994). 

It is important to understand how particulate materials are transported by rivers over these 

different spatial and temporal scales, during land use disturbance, and the effect this has on 

yields of particulate material that cascade through the fluvial system. Soil loss and the 

associated transport of nutrients have serious impacts on downstream environments and 

water quality, namely water clarity, and as such has received considerable attention (e.g., 

Walling, 1988; Wood & Armitage, 1997; Owens et al., 2005; Hicks et al., 2011; Wohl et 

al., 2015; Upadhayay et al., 2017). Particulate material in rivers, therefore, is a reflection of 

soil loss, bank and gully erosion, and landslides, as the armouring vegetation is degraded 

through forest clearance, heavy grazing, or mechanical disturbance (e.g., Ryan, 1991; Glade, 

2003; Croke & Hairsine, 2006; Hughes et al., 2012; Kamarinas et al., 2016).  
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Evidently, ensuring good land use management can, in part, be achieved by managing how 

much particulate material is transported through river networks. The objective of this thesis 

is to examine, in detail, how much particulate material is conveyed through rivers in southern 

New Zealand in relation to inorganic suspended sediment, and how different landscape units 

contribute to the overall suite of particulate materials in rivers, how it is monitored, and how 

the use of surrogates of particulate material may be affected by differences in particulate 

composition, size, and optical properties. The surrogates (turbidity and specific turbidity) 

are the focus of this work as the current environmental management framework in Aotearoa 

New Zealand is specified in terms of turbidity in regional water plans (Harding et al., 2016). 

Through this thesis the applicability and limitations of turbidity are explored, although it is 

recognised that turbidity is a pragmatic surrogate for quantifying suspended sediment, and 

by inference, land disturbance. 

 

Suspended sediment is not easily measured, and several surrogate technologies have been 

developed to infer suspended sediment, typically optical water quality and visual clarity 

indices. Turbidity is one of the most common surrogates, as it is easy to measure with readily 

available sensors that are cost efficient and easy to install in-situ, with suitable laboratory 

based portable instruments available (Ankcorn, 2003; Kitchener et a., 2017; Rymszewicz et 

al., 2017). The term turbidity describes the optical clarity of river water (Gao et al., 2008; 

Kamarinas et al., 2016; Kitchener et al., 2017), and distinctly differs from its common 

counterpart, visual clarity (Davies-Colley et al., 2014). Despite being deployed in similar 

applications, both are used in different environmental monitoring scenarios, and the uptake 

and use of turbidity is more common. The most appropriate use of turbidity is to develop a 

site-specific and bespoke rating of suspended sediment concentration to turbidity (herein 

referred to as an SSC-turbidity rating) by pairing concurrent in-situ measurements of 

turbidity and SSC. However, when turbidity is used in this way as a surrogate, little regard 

is given to the organic matter, dissolved substances, and particle properties that control the 

optical expression of river water. This presents a significant challenge to obtaining 

continuous records of suspended sediment, particularly if the intrinsic characteristics of 

suspended sediment are not static over time, or space, and therefore can introduce noise in 

SSC-turbidity relationships (Collins et al., 2011; Grove et al., 2015). Noise leads to bias in 

the delineation of the landscape controls on suspended sediment generation and transport at 

spatial and temporal scales. These measurement discrepancies are largely manageable when 

using turbidity as a bespoke surrogate for one location. But when SSC-turbidity ratings are 



 3  

extended to greater spatial scales, particularly where there may be heterogeneity in landscape 

units, sediment supply, and in-channel attrition, it may not be appropriate to translate SSC-

turbidity ratings to other locations or events within the same catchment, let alone, to other 

catchments. Of greater concern, however, is when turbidity is used as an absolute threshold 

for environmental compliance that is common practice across New Zealand (Ryan, 1991; 

ANZECC, 2000). Thus, this thesis also provides a critical rationale for why turbidity may 

not be suitable as an absolute measure of suspended sediment and is highly susceptible to 

interference from other riverine material, namely organic particulates, coloured dissolved 

organic matter or changes in particle size. 

 

There is, therefore, a growing tension between the pragmatic use of turbidity in 

environmental management situations, and what are understood as the science deficiencies 

of the method. Turbidity is an efficient surrogate for suspended sediment (with caveats), but 

a lack of understanding for when turbidity is not an appropriate metric has resulted in the 

default use of turbidity across different landscape units, and for regulatory frameworks in 

New Zealand. This thesis addresses these gaps in knowledge by exploring the environmental 

characteristics that lead to imperfect suspended sediment and turbidity monitoring, and 

provides a critical rationale for when and where turbidity is an appropriate surrogate.  

 

1.1 Thesis Overview 
Chapter Two is a broad introduction to suspended sediment and particulate organic matter, 

light attenuation, and turbidity and the relevant theory of their use and derivation; and 

surmises the relevant suspended sediment research within the New Zealand context. The 

chapter concludes with a description of the research strategy for this thesis and the specific 

research questions. The specific research questions are addressed in Chapters Three to Seven 

and are written as stand-alone journal articles. Each of these articles contains specific theory 

and methods as relevant to the specific research question being addressed. As research 

articles these chapters also include stand-alone results and discussion sections. The 

references, however, are compiled together at the end of the thesis. It should be noted that 

each of these individual article chapters has some duplication of introductory and theoretical 

content and methods across the chapters. 
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Chapter Three addresses the relevance of turbidity interference from POM in an indigenous 

tussock grassland catchment (Chionochloa rigida) and a catchment undergoing forest 

clearance in the Glendhu Experimental Catchments, Eastern Otago. This chapter sets the 

scope for the subsequent chapters and research projects that were developed, and was 

published in the Journal of Hydrology (New Zealand) in 2016. Chapter Four describes how 

the organic component of suspended sediment flux varies between agricultural and 

indigenous land covered catchments, from a region wide study of POM during baseflow 

conditions across southern New Zealand. The paper has been accepted for publication in 

Geomorphology (December 2019). 

 

Chapters Five and Six both describe the effect of turbidimeter interferences and different 

light attenuation responses. Chapter Five evaluates the effect of organic matter on light 

attenuation and turbidity and quantifies the effect of POM and CDOM on SSC-turbidity 

relationships. The influence of particle size and shape, and their influence on nephelometric 

turbidity is discussed in Chapter Six. Chapter Five was published as a research article in 

River Research and Applications (2018), and Chapter Six was submitted to the International 

Journal of Sediment Research in 2019 and is currently under review. The final research 

article is presented in Chapter Seven, and examines turbidity, suspended sediment and other 

optical measures of water clarity measured as part of the New Zealand National River Water 

Quality Network (NRWQN). The article examined the influence of catchment 

characteristics on suspended sediment–turbidity ratings across New Zealand. Chapter Seven 

was submitted to River Research and Applications in 2019, and is currently under review. 

 

The significance and key findings of the thesis are summarised in Chapter Eight, which 

provides a synthesis of the five research articles, and bridges the individual research papers 

together. The synthesis also considers future research opportunities and critically reflects on 

the limitations of turbidity and its application in environmental monitoring in New Zealand. 

The continued use of turbidity for monitoring suspended sediment is discussed, particularly 

with respect to generating greater awareness for the trade-off between pragmatic use of 

turbidity and its methodological limitations. The research questions, and the outcomes of the 

thesis are summarised in Chapter Nine (Conclusions).  
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2 Muddying the Waters: A Review of 

Suspended Particulate Material in 

Rivers 
 

Catchments and their rivers are dynamic and respond to both natural and anthropogenic 

impacts and are the primary transport pathway within catchments (Hedges, 1992; Belmont 

et al., 2014). Therefore, the particulate materials transported by rivers can be indicators of 

disturbance across spatial and temporal scales, and reflect the response of natural 

vulnerability to erosion, or erosion that is enhanced by anthropogenic disturbance. The 

following sections describe the inorganic (Section 2.2) and organic (Section 2.3) 

components of the particulate material transported by rivers and identify where 

understanding is lacking. How these parameters are measured is described, particularly in 

relation to turbidity that is used in suspended sediment monitoring (Section 2.4). The general 

implications described are that turbidity responds to more than the presence of just sediment 

in river waters (Section 2.5). This observation is often stated, but is not well explained, and 

has critical implications to the use of turbidity that must be better understood. An account of 

suspended sediment research in New Zealand is provided, identifying a critical need for 

further research (Section 2.6). The chapter concludes with a statement of the research 

questions (Section 2.7) and research strategy (Section 2.8). 

 

2.1 Riverine Suspended Particulate Material  
Suspended inorganic sediment and particulate organic matter (POM) are the two 

components of riverine suspended particulate material and their relative proportions in any 

given catchment are dependent on a number of factors, including catchment characteristics 

(e.g., topography, soil and regolith type), climate (e.g., amount and timing of precipitation, 

seasons), and catchment hydrology (e.g., storm flows), although inorganic material (i.e., 

suspended sediment) is usually dominant (Hicks et al., 2004). The release of suspended 

sediment to waterways from outside the fluvial environment relies on supply, and occurs 

primarily due to physical weathering processes, such as erosion; or human disturbance like 
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road construction, forest clearance, and land tilling (e.g., Dymond et al., 2017). This material 

is then mobilised by surface water via overland flow pathways to surface waterways; but can 

also be temporarily stored, held in transit on riverbeds, banks and floodplains, before being 

re-entrained when storage zones are inundated by river flows, and critical transport 

thresholds are reached (Grabowski et al., 2011). Instream stored sediment is preferentially 

sorted based on sediment properties (e.g., particle size and mineralogy, that control the mass, 

density, and settling velocity), so that for material in suspension sand will settle first 

followed by silt and clay. In this way, hydrodynamics controls the particle size distribution 

of sediments in suspension based on thresholds for entrainment and deposition (McCave, 

1984; Grabowski et al., 2011; Koiter et al., 2013) (Figure 2.1 a-b). 

 

 

 
Figure 2.1 The a) Hjulström and b) Postma diagrams that describe the thresholds for 
entrainment and erosion according to particle size (Source: Grabowski et al., 2011).  
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The residence time of sediment within a river channel operates in equilibrium between in-

channel sediment, and adjacent sediment stores, with processes that control transport 

competence and entrainment (Phillips et al., 2007; Belmont et al., 2014). Often the processes 

that cause a shift in this equilibrium are of most importance to environmental managers. For 

example, sediment transported by riverine systems has the potential to accumulate behind 

dams and other structures, where a reduction in stream flow velocity reduces stream 

competence. Such features operate to dampen or accelerate the occurrence of erosion, scour, 

and deposition. The effects of changing sediment fluxes is frequently observed at the coast, 

as beach erosion is linked to a reduction in riverine sediment supply, whereas excessive 

loading of riverine sediment can cause smothering of estuaries and the sea floor (Hicks et 

al., 2004). Excess fine sediment either in fluvial, estuarine, or near shore zones therefore 

represents a natural hazard (Anthony & Julian, 1999) by either: 

• clogging riverbed sediments and reducing habitat function (Ryan, 1991; Wood & 

Armitage, 1997); 

• silting up harbours and estuaries affecting shipping and navigation (Rovira et al., 

2014); or  

• degrading cultural and social values and use of fresh and coastal waters (Newcombe 

& Jensen, 1996).  

For these reasons, suspended sediment is a key water quality indicator for human use of 

rivers and harbours, as well as understanding ecosystem decline. Additionally, sediment 

flux and yields are the indices used to understand physical weathering processes and 

catchment denudation (e.g., Carey et al., 2006; Larsen et al., 2014), as well as land use 

disturbance impacts (e.g., Ryan, 1991; Hicks et al., 2000; Basher, 2013; Croke & Hairsine, 

2006). 

 

Globally, the delivery of suspended sediment to oceans has been estimated in the order of 

15–20 x109 t per year (Holeman, 1968; Milliman & Syvitski, 1992; Walling & Webb, 1996; 

Ludwig & Probst, 1998; Farnsworth & Milliman, 2003; Syvitski et al., 2003). High relief 

islands in the Asia and the Oceanic regions are considered significant sediment producers, 

due to active tectonic margins that are dominated by small mountainous rivers (Milliman & 

Syvitski, 1992; Ludwig & Probst, 1998). In recent global assessments, sediment delivery by 

rivers to the coastal ocean is recognised as being controlled by both natural and 

anthropogenic influences (Walling, 2008; Vanmaercke et al., 2015; Wohl et al., 2015). 

However, such anthropogenic impacts were not considered in early assessments, and 
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therefore assessments of 10–15 x109 t per year are conservative predictions of global yields 

(Milliman & Meade, 1983; Milliman & Syvitski, 1992; Ludwig & Probsts, 1998). 

Anthropogenic influence can also mediate sediment yields, for example, it is estimated that 

15% of global discharge is impounded by large dams, therefore stalling the delivery of 

sediment (Nilsson et al., 2005). In contrast, increases in yield from areas disturbed by 

industries, such as agriculture, forestry, mining, and construction are likely exacerbating 

sediment yields (Walling & Webb, 1996; Krishnappan et al., 2009). Ultimately, the 

variability in global suspended sediment yields will likely increase as climate change alters 

precipitation patterns, the severity of storms, and reduce snow accumulation and melt 

seasons, that will result in deviations from current suspended sediment yields (e.g., Walling, 

2008; Lewis & Lamoureux, 2012; Rodriguez-Blanco et al., 2016; Zhou et al., 2017). 

 

Growing interest in the use of suspended sediment data has focused on understanding the 

physical and chemical properties of fine grained-sediment, soil erosion and supply 

limitations, sediment transport pathways, and in-channel storage and remobilisation, which 

are all essential to the efficient implementation of soil loss and erosion mitigation 

programmes. Research related to acquiring accurate sediment data has recognised the 

relationships between sediment and important sediment-related attributes, such as suspended 

sediment concentration, deposited sediment, visual clarity and turbidity, and light 

penetration (Foster, 1992; Clifford et al., 1995; Davies-Colley & Smith, 2001). The 

properties of suspended sediment that allow the transport of other environmental nutrients 

and contaminants has raised interest in establishing the supply or transport limitations on 

particulate materials, employing new sediment source tracking technologies for sediment 

source discrimination in non-homogenous environments (e.g., Gibbs, 2008; Walling, 2013; 

Belmont et al., 2014). These studies generally apply source-tracing techniques on land use 

types (e.g., Gibbs, 2008; Upadhayay et al., 2018), or geochemical properties (e.g., Collins 

et al., 2017; Koiter et al., 2013; Vale et al., 2016), and specific assessment of the processes 

that control concomitant transport is scant. Additionally, the approach is generalised to 

defining source end-members and constructing mixing models to explain sediment origin in 

the landscape, but generally do not account for in-channel attenuation, abrasion, or attrition 

that may transform the sedimentary signatures. Despite these limitations, suspended 

sediment is regarded as a complex mixture of terrestrially-derived material with important 

biogeochemical functions, behaving as a vector for transport of eroded mineral material and 
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the associated transport of nutrients, and organic compounds (Baldwin et al., 2002; Owens 

et al., 2005).  

2.2 Particulate Organic Matter  
The migration of organic matter from hillslopes (primarily as soil organic matter) with other 

organic litter and leaf debris occurs simultaneously with the erosion of mineral material (e.g., 

soil and regolith), resulting in the delivery of both particulate materials to the fluvial 

environment (Hicks et al., 2004; Sanchez-Vidal et al., 2013). Consequently, total riverine 

suspended material contains portions of both particulate inorganic and organic material. The 

relative proportions of each informs the understanding of water quality parameters like water 

clarity, the processes of erosion and deposition, biological cycling, ecological function, 

chemical transformations, and the flux of nutrients and contaminants. Riverine organic 

material transported with sediment contains organic nutrients that accounts for 90 – 240 

Mt a-1 of carbon globally (Schlesinger & Melack, 1981; Lyons et al., 2002) and is a 

significant component of the global carbon budget.  

 

Particulate organic matter (POM) yields are less well documented than suspended sediment 

and are often implicitly described in carbon flux studies that report yields of particulate 

organic carbon (POC) and dissolved organic carbon (DOC) (e.g., Meybeck, 1982; Ittekkot, 

1988). Understanding POM flux and dissolved organic matter species has played a 

significant role in developing the River Continuum Concept (Figure 2.2). The concept 

provides a framework for understanding the regulatory mechanisms for biological 

equilibrium (Vannote et al., 1980), although does not specify the key landscape 

characteristics that enable delivery of organic matter from the terrestrial environment. While 

the River Continuum concept is highly cited, the concept has also been widely criticized 

(e.g., Winterbourn et al., 1981).  What is known is inferred from carbon cycle studies that 

describe the ratio of DOC to POC as a means of establishing the dominant forms of carbon 

flux (Schlesinger & Melack, 1981; Meybeck, 1982), and by doing so have identified the 

proportion of POM that comprises the suspended load in rivers primarily in relation to 

hydrological variations only. This is a considerable gap within the existing knowledge, as 

understanding POM and POC flux in association to landscape types and land use practices 

is particularly relevant in disturbed landscape, like New Zealand, and informs Research 



 10  

Questions Two, Three, and Four which aims to connect fluvial POM to POC yield across 

diverse catchments (see: Section 2.6). 

 
Figure 2.2 River Continuum Concept defining the coarse particulate organic matter 
(CPOM) and fine particulate organic matter (FPOM) that are derived from a number of 
terrestrial and in-stream sources longitudinally along a river channel (Adapted from: 
Vannote et al., 1980). 

 

 

Particulate organic matter is most easily determined by a loss-on-ignition method whereby 

suspended material samples are dried at 105ºC in a convection oven for up to 24 hours, 

followed by weighing, and then incinerated in a muffle furnace at temperatures between 375 

and 600 ºC, and reweighed (Grove & Bilotta, 2014). Weight lost is equivalent to the organic 

portion of the total sample. POM proportions of TSM vary significantly, being as low as 1–

2.5% (e.g., Ittekkot, 1988; Ittekkot & Arain, 1996; Lyons et al., 2002; Gomez et al., 2003; 

Wu et al., 2007; Zhang et al., 2009), or much higher at 45–70% (e.g., Naiman, 1982; Hasholt 

& Madeyski, 1998; La Husen, 1994; Golladay, 1997; Schallenberg & Burns, 2003; Madej, 

2015). Those studies showing higher proportions of organic matter are usually observed in 

forested catchments with a higher availability of organic material (e.g., Golladay, 1997). 

Specific yields of carbon (and organic matter) are highly dependent on ecosystem type and 

specific environmental characteristics, therefore large variability in specific yields are 
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observed globally; 1.0 – 23.4 g C m-2 yr-1 is estimated across global forests (tropical, 

temperate, boreal), grasslands, tundra, and wetlands (Schlesinger & Melack, 1981).  

Global carbon fluxes include both dissolved and particulate forms, which are regulated by 

atmospheric processes, vegetation and soil production, biogeochemical exchanges, 

hydrology, in – stream retention and production, climate, and geology. The effect of these 

complex interactions between the atmosphere-hydrosphere-lithosphere-biosphere all 

influence the amount of POC produced within and alongside river corridors, and DOC-POC 

ratios (Hope et al., 1994). As POM is incredibly important to the provision of POC (and 

DOC) in the fluvial system, understanding the POM transported by rivers, therefore, has 

important applications to the study of biological systems, nutrient cycles, and study of fluvial 

suspended sediment behaviour (Golladay, 1997; Goni, 2006; Hatten et al., 2012; Madej, 

2015). Particulate carbon can also be analytically determined using a total carbon analyser, 

by measuring in duplicate the same sample, one with a pre-treatment of filtering through a 

0.45 µm glass fibre filter to determine the dissolved organic carbon (DOC); and the second 

sample analysed without filtering to determine the total organic carbon (TOC) (see: Standard 

Method 5310B, Reckhow, 2006). The POC is determined as the difference between the total 

and dissolved carbon measurements. If all components are known (including POM), then 

this data can then be used to calculate the van Bemmelen factor, which is the ratio of POC 

to POM (Pribyl, 2010). The van Bemmelen factor ranges from 1.4 – 2.5, with a value of 2 

typical of most organic matter, that is approximately half of the organic matter is comprised 

of carbon (Pribyl, 2010). Therefore, studies that focus on POC and DOC can be used to infer 

yields of POM. The use of van Bemmelen factors to estimate POC in New Zealand is limited, 

and in general this technique has more commonly been applied to global soil organic carbon 

assessments (Pribly, 2010; Grove & Bilotta, 2014). In Pribyl’s (2010) review of studies 

reporting global van Bemmelen conversion factors, no examples were reported for New 

Zealand. This is a considerable limitation associated with understanding carbon export in 

association to fluvial POM across New Zealand, as others have shown that carbon export is 

highly relevant in New Zealand, particularly in POC form (e.g., Gomez et al., 2003; Carey 

et al., 2005).  

 

To better understand carbon flux from organic matter, this thesis calculates a van Bemmelen 

factor for southern New Zealand and estimates carbon yields (see: Research Question Three 

in Section 2.6). Furthermore, there is a disconnect between studies focused on suspended 

sediment and organic particulates as there is little overlap between studies that focus on both 
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fluxes. Most often sediment related research is concerned with environmental impacts, and 

catchment denudation (e.g., Croke & Hairsine, 2006; Larsen et al., 2014), whereas organic 

matter and carbon studies are concerned with carbon cycling processes, sequestration and 

carbon burial (Schlesinger & Melack, 1981; Lyons et al., 2002; Gomez et al., 2003; Carey 

et al., 2005). There is a need for greater understanding of the relationship between fluvial 

sediment and organic matter, and the processes that control the inorganic-organic mix of 

riverine suspended particulate matter, and informs the development of Research Questions 

One and Two, that are addressed in Chapter Four. 

 

2.3 Water Clarity and Surrogate Technologies 
The concentration of sediment and other fine materials determines water clarity and visual 

appearance, ultimately affecting the provisioning of ecosystem services, such as the 

penetration of light and photosynthesis. Insufficient light in riverine ecosystems can result 

in fish mortality and affect macroinvertebrate community composition (Davies-Colley & 

Smith, 2001; Wood & Armitage, 1997; Davies-Colley & Wilcock, 2004; Krishnappan et al., 

2009; Julian et al., 2013; Osadchyy et al., 2016). In addition, reduced visual range has a 

considerable effect on the human perception of recreational water bodies, cultural and 

aesthetic values, and human health, and therefore limits are often set on optical clarity related 

parameters in regulatory frameworks (Davies-Colley & Close 1990; Smith et al., 1997; 

Davies-Colley & Smith, 2001; Sadar 2004). Optical clarity and suspended sediment are 

monitored primarily using proxies, as to observe and collect sufficient suspended sediment 

data is a resource intensive process. Manual collection of sediment data requires frequent 

site visits, particularly at higher flows, followed by time-consuming laboratory processing 

(Larsen et al., 2001).  

 

Early approaches to estimating sediment yields were to rate sediment concentration to 

discharge through simultaneous sediment and stream flow gaugings, and were used to 

develop SSC-discharge rating curves (e.g., Adams, 1979; Adams, 1980; Duvert et al., 2012). 

These approaches are convenient, since subsequent estimations of sediment transport can be 

made from discharge measurements alone, but have considerable sources of uncertainty, in 

particular, because suspended sediment does not peak concurrently with peak discharge 

(Wass & Leeks, 1999). It is common for suspended sediment to peak prior to peak discharge 
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and is the basis of hysteresis analysis of suspended sediment concentrations over 

hydrographs (Hughes et al., 2012; Landers & Strum, 2013; Harington & Harington, 2014; 

Pietron et al., 2015) (Figure 2.3b). In some instances, however, sediment supply and delivery 

conditions within a catchment may equally produce a sediment peak after peak discharge 

(e.g., Hafia, 1984; Walling & Webb, 1986; Harington & Harington, 2014; Pietron et al., 

2015) (Figure 2.3c), so that even a sediment rating that just considers the ascending limb of 

a hydrograph may substantially underestimate sediment concentrations. As such, the 

suspended sediment-discharge relationships within rivers are controlled by many complex 

processes (Hudson, 2003; Lefrançois et al., 2007; Harington & Harington, 2014). In these 

regards discharge is a flawed surrogate for suspended sediment transport (Warrick, 2015). 

Rather, continuous in-field techniques that can determine changes in suspended sediment 

over hydrographs have greater application for quantifying suspended sediment where 

hysteretic responses occur. The most common of these surrogates is turbidity, as opposed to 

other optical water quality parameters, such as visual clarity, which have successfully been 

assessed for use as a surrogate for SSC but are harder to monitor over continuous time scales 

(Davies-Colley et al., 2014; Slates et al., 2014). 

 
Figure 2.3 Common relationships between discharge (Q) and suspended sediment 
concentration (SSC) describing the a) linear trend, b) anti-clockwise, and c) clockwise 
hysteretic responses (Source: Hudson, 2003). 
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Turbidity is the most common surrogate technology that allows for continuous monitoring, 

however, other techniques include laser diffraction, pressure difference and acoustic sensors 

(Gray & Landers, 2014) (Table 2.1). Laser diffraction is used to measure the particle size 

distribution of suspended sediment and infers SSC based on scattering angles. Pressure 

difference methods requires simultaneous measures of pressure, and the difference is 

converted to a density value used to infer SSC, whereas acoustic sensors use the backscatter 

generated from acoustic waves to infer sediment characteristics (SSC, particle size 

distribution, and shape) (Larsen et al., 2001; Gray & Glysson, 2003; Gray & Landers, 2014) 

(Table 2.1). Not one single surrogate is suited to the application of all continuous sediment 

monitoring needs, and no one technique is necessarily capable of estimating SSC under all 

conditions (Gray & Glysson, 2003; Gray & Lander, 2014). However, surrogates do provide 

a means of collecting data at higher temporal and spatial resolutions, and likely proves more 

useful to researchers and regulators than a limited number of more accurate suspended 

sediment measurements (Gray & Glysson, 2003), therefore this trade-off is typically made. 

Of all surrogates, turbidity offers a relatively rapid and inexpensive method for determining 

water clarity and suspended sediment concentration in comparison to the other surrogates 

described above, and is used extensively in environmental monitoring (Gippel, 1995; 

Ziegler, 2002; Ankcorn 2003; Gray & Glysson, 2003). Given the wide use of turbidity in 

New Zealand in regulatory monitoring (e.g., Hicks, 2011b) and sediment research (e.g., 

Ryan, 1991; Ballantine et al., 2015), there is a need to assess the reliability and validity of 

using turbidity as a surrogate for suspended sediment across national-level monitoring 

networks (see: Chapter 7).  
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Table 2.1 Summary of surrogate technologies for monitoring suspended sediment (Sources: 
Gray & Glysson, 2003; Gray & Landers, 2014). 

Description Advantages Disadvantages 
Turbidity 
 
Optical expressions of a sample that 
causes light rays to be scattered and 
absorbed rather than transmitted in 
straight lines. 

Ubiquitous; Technology is 
well established; Calibration is 
straightforward; Most 
affordable; Laboratory and in-
situ measurement 

Unrepresentative of cross-
sectional SSC variability 
Saturation of turbidity signal 
common; Sensitive to 
biological fouling and grain 
size composition colour 
shape of sediments; Lack of 
consistency between 
commercially available 
instruments 
 

Laser Diffraction 
 
Instruments exploit the principles of 
small angle forward scattering angles to 
infer particle size distribution (PSD) 
 
Using PSD sediment concentration 
(SSC) can be inferred. 
 

Continuous PSD 
measurements; Calculated SSC 
are not affected by variability 
in PSD; Laboratory and in-situ 
measurement; Unaffected by 
changes in particle size 

Biological fouling; 
Unrepresentative of cross-
sectional SSC variability; 
Saturation of laser-optic 
signal; Cost 

Pressure Difference 
 
Simultaneous measurements from 
pressure transducer sensors arrayed at 
different depths in a water column. E.g., 
bubbler technology. 
 
Pressure difference is converted to a 
water density which SSC is inferred 
from after correcting for water 
temperature. 
 

Representative of a vertical 
column’s SSC; Robust 
technology; Accuracy 
improves with SSC; Simple 
and straightforward theory 

Unrepresentative of cross-
sectional SSC variability; 
Assumes near constant SSC 
in the vertical; Less suited to 
low SSC environments; 
Sensors must be submerged, 
and therefore vulnerable to 
flow level changes; Spurious 
data with turbulent flow 

Acoustic 
 
SSC determined using back scatter and 
attenuation of acoustic signals. E.g., 
acoustic doppler velocity. 
 
Acoustic waves passing through water-
sediment mixture will scatter and 
attenuate. Backscatter and attenuation 
relate functionally to sediment 
characteristics (SSC, PSD, and shape). 
 

Acoustic meters are robust; 
Require little cleaning and 
maintenance; Measure a large 
portion of the flow; Can 
measure a high temporal 
resolution; Multifrequency can 
quantify PSD and SSC 

Sensitive to biological 
fouling, PSD, grain size, 
composition, colour and 
shape; Wavelength defines 
sensitivity to sediment 
parameters – limited range; 
Limited at low 
concentration; Complex 
algorithms 
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2.4 Turbidity and Light Attenuation 
Turbidity describes the optical clarity of water measured by light attenuation and the degree 

of light scattering caused by suspended materials in a water sample (e.g., clay, silt, sand, and 

organic matter, CDOM, and other micro-organisms) (Gippel 1995; Sadar, 1999; Sadar 2004; 

Ankcorn 2003; Kitchener et al., 2017; Rymszewicz et al., 2017). The particulate materials 

that give a scattering effect, and light attenuation (as measured by turbidity) are controlled 

by a range of catchment characteristics (i.e., physiography in Figure 2.4) and human 

activities, that have distinct water quality implications. Therefore turbidity and light 

attenuation are a useful and important metric of stream health (Figure 2.4). In environmental 

management, turbidity is used as a ‘first warning’ indicator for identifying areas in 

catchments where targeted soil erosion may be required. Or, is also used to assess where risk 

associated with soil erosion may be elevated. Environmental scientists use turbidity to derive 

SSC and study ecological processes, as changes in turbidity typically relate to predictable 

changes in suspended particulate matter concentration (Gray & Glysson, 2003). 

 

 

 
Figure 2.4 Relationship among catchment characteristics and independent processes that 
control optical water quality, and the related water quality outputs and applications of 
optical water quality data (Source: Julian et al., 2013). 
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Turbidimeters vary in the type of light source used (e.g., infra-red LED versus tungsten white 

light) and the position of the detectors in relation to the incident light that define the degree 

of scatter and light attenuation (Figure 2.5). Instruments with different optical design 

therefore may yield different results (Figure 2.6) (Sadar, 1999). Nephelometric turbidity 

sensors are a popular optical sensor used as the measurement of light scattering at 90º (± 

30º) (Figure 2.6) to the light source increases linearly as SSC increases (Sadar 1999; Davies-

Colley & Smith, 2001; Sadar, 2004). Nephelometric turbidimeters are calibrated to a 

formazin standard made from a synthetic polymer and measured in units specific to the 

method and light source type (e.g., NTU, FNU, FAU) (Sadar, 1999; Ankcorn, 2003). Two 

international methods specify the general regulatory methods available, EPA 180.1 and ISO 

7027, although other methods include GLI Method 2, which is less frequently used as it 

applies to a specific type of instrument (Ankcorn, 2003). Method EPA 180.1 specifies a 

white light tungsten filament lamp that measures light attenuation within the visible light 

spectrum at 400 – 600 nm, whereas method ISO 7027 specifies use of an infrared LED light 

at 860 nm (Sadar, 1999), and there are a number of instruments available that meet 

requirements of either EPA 180.1 or ISO 7027 methods.  

 

 

 

 
Figure 2.5 The scattering and absorption effect of suspended particulates that define the 
light attenuation response of water (Source: Kitchener et al., 2017). 
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Figure 2.6 Typical optical design of turbidimeters (Source: Sadar, 1999). 

 

 

Turbidimeters and the sensors used to measure turbidity can be more or less sensitive to the 

non-homogenous and optically distinct components of the suspended particulate matter and 

CDOM depending on the optical design of the instrument, as shown in turbidimeter sensor 

comparison studies (e.g., Gippel, 1995; Davies-Colley & Smith, 2001; Ziegler, 2002; Barter 

& Dees, 2003; Lewis et al., 2007; Rymszewicz et al., 2017). Optical effect, and light 

attenuation is sensitive to differences in composition, size, shape, density and refractive 

index of suspended materials (Sadar, 1998; Gippel, 1995; Davies-Colley & Smith 2001; 

Ziegler, 2002; Sadar, 2004; Omar & MatJafir, 2009) (Figure 2.5). Organic and inorganic 

material range from clay sized plate-shaped minerals < 1 µm, to sand sized spherical 

minerals and irregular shaped organic debris (> 63 µm) (Hicks et al., 2004), and therefore 

the light attenuation effect of inorganic suspended sediment (clay, silt, and sand), POM, and 

CDOM contribute to turbidity differently. Turbidity is not directly related to, nor calibrated 

with, a particular type of particle, and rather measures the net combined optical effect of 

particulate and dissolved materials in relation to formazin standards (Gray & Glysson, 2003). 

The formazin standard therefore does not reflect the range of particles that exist in the 

environment and poses issues when using turbidity to infer the characterises of natural 

suspended particulates (Gippel, 1995; Davies-Colley & Smith, 2001). Therefore, the 

relationship between turbidity and SSC, and use of turbidity as a surrogate for SSC, depends 

strongly on composition and the particle size distribution of suspended materials, and is often 

catchment or location specific (Gippel, 1989; Lewis et al., 2007). Non-linearity and noise of 

SSC and turbidity relationships is the result of optical variability (La Hussen, 1994; Ziegler, 

2002; Davies-Colley & Nagels 2008; Omar & MatJafir, 2009). This inherently produces 

interference when the desired use of turbidity measurement is to predict SSC.  
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Variability in turbidity response is an acknowledged limitation of turbidimeter instruments 

by manufacturers (e.g., Sadar, 1999; Sadar 2004; Gray & Landers, 2014), however, it is 

generally overlooked by users (Gippel, 1989). Recognition for the practical limitations of 

nephelometry is growing (e.g., Ziegler, 2002; Kitchener et al., 2017; Rymszewicz et al., 

2017) although in limited uptake since few studies quantify the impacts of noise in SSC-

turbidity relationships on suspended sediment monitoring (Barter & Dees, 2003; Hicks et 

al., 2004; Lewis et al., 2007; Dymond et al., 2017). Furthermore, there is no comprehensive 

account in current research of the effect that problematic turbidity measurement has on use 

of turbidity in suspended sediment monitoring, and where this is most influential. Therefore, 

Research Questions One and Five (Section 2.6) address these concerns directly and links the 

problematic use of turbidity to environments where these impacts are most profound. In 

particular, the scale of effect that irregular turbidity scatter caused by mixed sample 

composition, particle size and the shape can have on SSC-turbidity relationships is explored. 

Understanding these behaviours is crucial to understanding the relationship between 

turbidity and suspended sediment that is otherwise subjective and not well understood. 

 

2.5 Suspended Sediment in New Zealand 
New Zealand produces high riverine loads of sediment, even by global standards, due to the 

supply-dominated landscape and history of land disturbance since European settlement 

(Hicks et al., 2011; Dymond et al., 2017). Subsequently, significant work has attempted to 

quantify the yields of sediment and the temporal and spatial variation of suspended sediment 

since the late 1970s (e.g., Adam, 1978; Griffiths, 1981; Griffiths, 1982; Griffiths & Glasby, 

1985; Dymond, 2010; Hicks et al., 2004; Hicks et al., 2011; Dymond et al., 2017). Early 

studies of New Zealand’s sediment yield were estimated at 389 Mt a-1 using annual 

suspended sediment yields determined from regional studies (Griffiths, 1982; Griffiths & 

Glasby, 1985). Hicks and others expanded on this approach by developing a NZ-wide 

sediment model that linked landscape units, rainfall, and geology to a generalised sediment 

yield model (Hicks et al., 1996; Hicks et al., 2003; Hicks et al., 2011). By using an adjusted 

empirical method with additional data, a revised estimate of New Zealand’s sediment yield 

was downscaled to 209 Mt a-1 that amounts to approximately 1.7% of global sediment 

delivery to the ocean (Hicks et al., 2011) (Figure 2.7).  
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Rainfall variation in the South Island is a significant contributor to sediment yield (Hicks et 

al., 1996), whereas in the North Island where rainfall variation is less, geological factors 

have more control over sediment yield. Relative to global standards (e.g., Holeman, 1968; 

Millian & Meade, 1983; Ludwig & Probst, 1998), New Zealand is a significant contributor 

of suspended material to the ocean on a unit area basis (Hicks et al., 2011). In terms of total 

flux, Asia and the larger Pacific islands contribute around 70% of the global sediment 

budget, as sediment yields are much higher than for other global drainage basins due to high 

rainfall and tectonism (Griffiths & Glasby, 1985). A comprehensive review of suspended 

sediment research in New Zealand by Hicks et al., (2004) summarised that land use, 

vegetation cover, and land disturbance were likely the main factors underpinning sediment 

yields. Despite the acknowledged variations due to rainfall and geological factors, national 

sediment yields incorporating land use or vegetation cover factors has not occurred. 

Improved understanding on the generation and transport of fluvial suspended sediment based 

on such catchment characteristics is crucial to understanding the erosivity parameters that 

exert control over sediment yield, for example land disturbance.  

 

 
Figure 2.7 Map showing distribution of high to low specific suspended sediment yield (as t 
km-2 yr-1)  from New Zealand’s rivers (Source: Hicks et al., 2011). 
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Monitoring for suspended sediment across New Zealand began in the 1950s and was carried 

out by the Ministry of Works as a way of understanding soil loss and erosion. Focus shifted 

to hydroelectric generation in the 1960s and 1970s (Hicks et al., 2004), and in the 1980s and 

1990s research was more focused on understanding sediment yields associated with land 

disturbance from land cover conversions in small catchments and the impact of soil loss on 

terrestrial landscapes (e.g., Quinn & Stroud, 2002). Up until the late 1990s there was a 

general gap in the collection of nationwide sediment data. In response to this, the New 

Zealand suspended sediment record was expanded and the New Zealand National River 

Water Quality Network (NRWQN) was established in 1989 measured sediment mass 

concentration although it was quickly switched out for cheaper alternatives like turbidity 

(Smith & Maasdam, 1994; Ballantine et al., 2014). In recognition of a lack of suspended 

sediment data, monitoring for total suspended solids (TSS) was temporarily added back into 

the NRWQN network in 2011. Turbidity and visual clarity were related to TSS across the 

national record and proved useful as surrogates for TSS (or SSC) across New Zealand 

(Davies-Colley, 2013; Ballantine et al., 2014). However still, these studies recognised scatter 

in relationships between TSS and turbidity (Davies-Colley, 2013; Ballantine et al., 2014). 

Suspended sediment data is now more readily available throughout New Zealand, although 

largely through specific research projects focused at the catchment scale (Hicks et al., 2004), 

and this data is sporadic in space and time (e.g., Griffiths, 1982).  

 

Recent efforts in New Zealand to control the amount of anthropogenic sediment transported 

by fluvial systems and reduce impacts on downstream receiving environments has focused 

on reducing soil erosion at the catchment scale, employing mitigation techniques at targeted 

locations, such as riparian management and erosion control planting (Dymond et al., 2017). 

More recent sediment yield estimation models such as SPARROW (e.g., Elliott et al., 2008) 

and SedNetNZ (e.g., Hughes & Croke, 2011) have been developed with rainfall and geology 

as main controls, but also include other recognised controls on sediment yield. Nevertheless, 

there is still paucity in the collection of national sediment data (Ballantine et al., 2014), and 

surrogates like turbidity are used despite little understanding of the challenges associated 

with the use of different turbidity methods.  

 

The recognised need for a national approach for improved management interventions was 

reflected in the development of the National Policy Statement for Freshwater Management 

(2014) (NPS-FM) (Harding et al., 2016). As part of this strategic environmental 
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management framework a National Objectives Framework (NOF) set limits on identified 

water quality variables, although sediment was not included as an attribute with set limits, 

rather the water quality implications related to reduced water clarity from increased sediment 

are recognised (Rouse & Norton, 2017). Sediment became the focus of the 2017 amended 

NPS-FM, followed by further recognition of the gap in understanding New Zealand’s 

vulnerability to soil loss and increased sedimentation in rivers, signifying the lack of 

information still surrounding the impacts of sediment in New Zealand freshwater systems 

(Ministry for the Environment & Stats NZ, 2018). The ‘Action for Healthy Freshwaters’ 

package released by the Government in late 2019 includes proposed amendments to the 

NPS-FM and NOF that would see a limit set on suspended sediment as measured by 

turbidity. Furthermore, a National Environmental Monitoring Standard (NEMS) has been 

developed to support turbidity data collectors and users and sets protocols for the 

measurement of turbidity. Therefore, New Zealand provides a setting in which the use of 

turbidity for monitoring suspended sediment can be examined and evaluated. Despite 

movement towards standardised measurement, there remains a dearth of information related 

to the relevance of where and when turbidity is an appropriate surrogate for suspended 

monitoring. The present study addresses this gap in understanding and investigates the use 

of turbidity in suspended sediment monitoring for New Zealand.  

 

2.6 Thesis Aim and Research Questions 
There is a clear divide in the understanding of suspended sediment and organic particulates 

as separate components within fluvial systems. A growing body of research has identified 

the relevancy of both components in relation to water clarity and the optical expression of 

water, although much remains to be understood with regards to the landscape characteristics 

that control the inorganic-organic mix of suspended particulate matter, and the combination 

of catchment processes. Therefore, this thesis assesses the implication that suspended 

sediment is only one component of riverine suspended material that is fluxed through 

riverine systems, and the organic component (known as POM), can be a significant portion 

of the suspended flux across certain landscapes. Given its high sediment yields, New 

Zealand therefore provides a case for the study of both inorganic and organic fluxes that are 

particularly relevant to assessing the environmental impacts of riverine suspended material. 
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The compositional variations within riverine suspended material gives rise to suspensions 

with different particle sizes and shape that controls light attenuation and, therefore, turbidity 

measurement. Although these effects are acknowledged, there is a dearth of information that 

quantifies the effect these have to the use of turbidity as a surrogate in suspended sediment 

monitoring. Despite the considerable investment in monitoring with surrogates like 

turbidity, to improve the relevancy of sediment data more information on sediment 

properties and optical nature of the organic component is required. New Zealand’s 

freshwater community is moving towards improved monitoring strategies, with focus being 

placed on sediment as a major water quality contaminant. New Zealand currently uses 

turbidity to monitor SSC and is in the process of establishing more regulated methods for 

the use of turbidity in suspended sediment monitoring (as discussed in Section 8.3), as such 

this research provides a useful contribution to the regional management of suspended 

sediment in New Zealand rivers, with applications to global use of turbidity in monitoring 

and research programmes. Therefore, this thesis aims to validate the effects of riverine 

suspended material composition and particle size on light attenuation responses and 

turbidity, and the general implication of this on use of turbidity in suspended sediment 

monitoring. 

 

The specific research questions posited in this thesis are: 

RQ1: Is POM an important component of stream suspended load, and does it affect 
suspended sediment-turbidity relationships? 

 
RQ2: How much POM is fluxed by southern New Zealand rivers, and what is the 

association of this POM to suspended sediment and carbon flux? 
 
RQ3: How much POC is discharged through rivers in Southern New Zealand and what 

is the POC yield for 84 southern New Zealand catchments? 
 
RQ4: What extrinsic and intrinsic catchment characteristics control POM concentration 

and POM proportions? 
 
RQ5: What effect do organic composition and particle size have on turbidity 

measurements derived from different nephelometric methods (EPA 180.1 and ISO 
7027)? 

 
RQ6: What influence do catchment characteristics have on suspended sediment–

turbidity ratings across New Zealand? 
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2.7 Research Strategy  
The approach of this thesis is to examine the relationships between suspended sediment, 

turbidity, and organic matter through a multiscalar, field-based approach. Previous research 

(Bright, 2015) was a pilot study into assessing changes in suspended sediment and nutrients 

associated with forest clearance, using the Glendhu Experimental Catchments in Eastern 

Otago, as a case study. Through this work, it became evident there was a poor relationship 

between turbidity and suspended sediment, and this directed further research into the nature 

of particulate material, its organic components, and how different types of carbon may act 

as interferences to establishing SSC-turbidity ratings. The findings from this initial small-

scale study were then used to frame the main research agenda for this thesis. Scaling up from 

the pilot study, the approach of this thesis has been to conduct a series of investigations that 

highlight the scenarios in which turbidity is an imperfect predictor of SSC, and determines 

the landscape characteristics under which POM is most relevant (Figure 2.8).  

 

As a part of a regional-scale assessment of SSC, POM and turbidity, seven high order 

southern New Zealand catchments were sampled to link in-river measurements of particulate 

material with variations in land use. Field based-studies were carried out to highlight the 

challenges of measuring SSC in landscapes displaying different characteristics. 

Additionally, laboratory experiments were employed to draw connections between the broad 

fluxes of suspended sediment and POM, and the properties of these particulate materials that 

give water a characteristic optical effect. Laboratory based experiments were carried out to 

mimic the conditions under which natural suspended material varies in controlled settings. 

The combined approach of field based and laboratory studies employed in this thesis allow 

for an examination of the effect that organic matter, coloured dissolved organic matter 

(CDOM), and particle size and shape have on light attenuation and turbidity measurement. 
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Figure 2.8 Overview of thesis research strategy with research themes, and the experiments 
carried out to understand the behaviour of suspended sediment, particulate organic matter 
and turbidity in a variety of catchments across southern New Zealand, and nationally across 
New Zealand’s National River Water Quality Network (NRWQN). 
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As explained in this chapter, there is a clear mandate for research within New Zealand to 

examine the role of turbidity within regulatory settings, its use as proxy for suspended 

sediment, and to illustrate the potential factors that make turbidity a poor surrogate. 

Furthermore, investigation of the organic matter fluxes in relation to carbon export and the 

concomitant transport of this with inorganic suspended sediment is required, and crucial to 

the further understanding of suspended riverine materials. The following five chapters 

explore these issues as a series of research papers. 
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3 Contribution of Particulate Organic 

Matter to Riverine Suspended Material 

in the Glendhu Experimental 

Catchment 
 

Research article published in the Journal of 
Hydrology (NZ) in 20161. See Appendix 11.2. 

3.1 Abstract 
Turbidity is a widely-used water quality indicator that is used to infer the volume of 

suspended sediment transported through riverine systems. In New Zealand, regional limits 

on turbidity are a component of water plans, where excessive turbidity is often used to 

indicate land disturbance. Turbidity of river water is a function of both organic and inorganic 

constituents. Measurement of inorganic suspended sediment is common; however, to date 

there has been little work determining how much of the total suspended material in rivers 

may be organic material, and how this affects relationships between suspended particulates 

and turbidity.  The objective of this study was to determine what portion of total suspended 

material occurs as particulate organic matter and what effect this has on the relationship 

between suspended sediment and turbidity. Particulate organic matter was determined by a 

loss on ignition method that supplemented traditional methods for determining suspended 

sediment concentration. In the Glendhu Experimental Catchments, Otago, New Zealand, 

particulate organic matter contributed 45% of the total suspended material from a tussock 

catchment and 60% of the total suspended material from a forested catchment, although 

concentrations were highly variable: 0.6–20.3 mg L-1 (equivalent to 10-80%) in the tussock 

catchment and 0.7–39.7 mg L-1 (equivalent to 23-95%) in the partially cleared forested 

catchment. These data suggest that particulate organic matter can represent a large portion 

of total suspended material in these catchments. The presence of dissolved organic material 

 
1 Minor changes to the narration of this research article have been made to improve coherency between chapters. 
The use of ‘proxy’ has been replaced with ‘surrogate’, for where turbidity is described in the use of estimating suspended 
sediment concentration. 



 28  

may also interfere with turbidity measurements, and contribute to uncertainty in deriving 

turbidity-suspended sediment relationships in organic-rich rivers. 

 

3.2 Introduction 
Quantifying the amount of particulate material in rivers and streams is an important aspect 

of monitoring water quality because it is associated with the transport of nutrients, 

contaminants, pesticides, heavy metals, and pathogens (Griffiths, 1981; Walling, 2005; Gray 

& Gartner, 2009; Hughes et al., 2012). Total suspended material (TSM) is composed of 

organic and inorganic fractions, and both types of suspended material are important 

contributors to stream water turbidity (Figure 3.1).  

 

 

 

 
Figure 3.1 Diagram of dissolved and particulate constituents in river water with an 
emphasis on carbon contributions. The dissolved and particulate components comprise of 
organic and inorganic portions that may occur as dissolved (i.e., <0.7 µm) or particulate 
(>0.7 µm). Elements in the dashed box potentially affect turbidity. Abbreviations: DOM = 
dissolved organic matter, which comprises dissolved organic: nitrogen (DON), carbon 
(DOC), and phosphorus (DOP); TSM = total suspended material, which comprises 
particulate organic matter (POM) and (inorganic) suspended sediment (SS). POM also 
contains particulate organic: nitrogen (PON), carbon (POC), and phosphorus (POP), 
although POC is the dominant fraction. SS comprises dissolved elements, of which 
particulate inorganic carbon (PIC) is a small contributor. The dissolved fraction is usually 
referred to as total dissolved solids (TDS) and comprises many ions including nutrients (e.g., 
dissolved inorganic: nitrogen (DIN), carbon (DIC), and phosphorus (DRP)). 
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Turbidity is an inverse measure of water clarity, therefore turbidity increases due to the 

presence of suspended material, gases and some dissolved substances (Ziegler, 2002). The 

scattering, or attenuation, of light caused by the suspended material in a water column 

provides a basis for turbidity measurements (Ziegler, 2002; Jastram et al., 2010). Unlike 

suspended sediment concentration (SSC), turbidity is relatively easy to measure and 

determined using turbidimeters in the laboratory, or in situ via a range of instruments. Three 

basic types of turbidity instruments are typically used: turbidimeters (nephelometers), 

spectrophotometers, and multiparameter instruments with submersible sondes that can 

accommodate a turbidity sensor (USGS, 1998).  How turbidity data are applied (e.g., for 

assessing drinking water quality) and the specific site characteristics often define what type 

of instrument is most suitable (USGS, 2005). In New Zealand turbidity is commonly 

employed by unitary and regional authorities to assess the clarity of rivers for recreational, 

habitat and cultural use, as mandated by the National Policy Statement for Freshwater 

Management (NPS-FM) (2014). Turbidity is also commonly used as a surrogate for 

determining the SSC of stream water as changes in turbidity relate to a predictable change 

in SSC (Gippel, 1989; Gippel, 1995, Gray & Gartner, 2009; Hicks et al., 2011), which is 

important for water uses where sedimentation is a concern (e.g., hydroelectricity generation, 

irrigation, fisheries management and ecosystem health). However, the organic and inorganic 

components of TSM affect measurements of turbidity differently (Table 3.1), and the use of 

turbidity to predict changes in SSC should be approached cautiously. Riverine sediment is 

recognised as an attribute that needs to be managed as a part of regional resource 

management plans (as outlined in the National Objectives Framework supplement to the 

NPS-FM, 2014).  As a result, regional authorities use turbidity as a water quality attribute in 

their monitoring of freshwater systems and limit setting in regional plans. 
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Table 3.1 Components of total suspended material (TSM): Dissolved Organic Matter; 
Particulate Organic Matter (POM); and Suspended Sediment (SS) and how these variables 
affect turbidity (Adapted from: Gippel (1989) and USGS (2005)). 

Component of Total Suspended 
Material (TSM) Examples Effect on turbidity 

Dissolved Organic Matter  

Fluvic acid, humic acid, 
lignosulphonic acid, tannic acid 

Taint water with a characteristic 
yellow-brown colouration. 
Affects absorption of light 
 

Ionic forms of minerals Nil effect 

Suspended/Particulate Organic 
Matter (POM) 

Pollen, micro-organisms, seeds Variation in colour, shape, size, 
surface area, density and 
refractive index.  
Affects wavelength of light. 

Suspended Sediment/Inorganic 
Matter (SS) 

Products of weathering  
(e.g., quartz, kaolinite) 

Variation in colour, shape, size, 
surface area, density and 
refractive index. 
Affects wavelength of light. 

 

In New Zealand several studies have drawn attention to the use of turbidity as a surrogate 

measure for suspended sediment (SS) (e.g., Davies-Colley & Close, 1990) and have 

demonstrated the use of a number of other surrogate variables for determining SSC, like 

visual clarity (e.g., Davies-Colley, 1988; Davies-Colley & Close, 1990; Davies-Colley et 

al., 1997; Ballantine et al., 2015; Hughes et al., 2015). These studies have identified that the 

relationship between turbidity and suspended material is complex, and that other variables 

such as water colour, presence of organic acids, and organic detritus affect the accurate 

measurement of SSC (e.g., US-EPA, 1993; Gippel, 1995). Therefore, the optical properties 

of water are not only dependent on the SSC, but also the presence of organic material. 

 

Scatter in SSC-turbidity relationships results from a number of variables, including sediment 

properties such as shape, surface area and density, as well as the organic matter content of 

suspended load (USGS, 2005). Furthermore, these variables also depend on hydrologic 

factors such as season and discharge (Gippel, 1989; Gippel, 1995; Jastram et al., 2010). In 

addition, the colour of stream water produced by the presence of dissolved organic material 

also affects turbidity by altering the wavelength of light detected by turbidimeters (Gippel, 

1989; Davies-Colley & Close, 1990). Organic acids are readily leached from peaty soils 

(Fiedler et al., 2008) and wetlands, and are a feature of acidic brownwater streams that drain 

indigenous forests on the West Coast of the South Island (Collier, 1987; 1988), and in the 

peat-rich areas of the North Island of New Zealand. Thus, the relationship between SSC and 

turbidity is typically bespoke to each catchment contingent on its rainfall, weathering 

resistance and soil characteristics (Gippel, 1989; Griffiths, 1981; Hicks et al., 2011); 
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however, most established relationships between turbidity and SSC rarely account for how 

much of the suspended portion occurs as organic material. Thus, work is required to assess 

whether organic material is a significant portion of suspended load, and what effect this may 

have on turbidity measurements. 

 

Studies that have assessed the concentration or portion of suspended material as particulate 

organic matter (POM) have mostly focussed on the contribution of particulate organic 

carbon (POC, which is a subset of POM; Figure 3.1) to determine the flux of carbon to the 

oceans and sequestration (e.g., Scott et al., 2004; Coynel et al., 2005a; Hilton et al., 2008). 

A preliminary study of the POC portion of total suspended material (TSM) in New Zealand 

was undertaken by Lyons et al. (2002) by determining the portion of POC using a loss on 

ignition method. Three South Island rivers, the Cropp, Haast and Hokitika, were found to 

have <0.5% of TSM present as POC (Lyons et al., 2002). Similarly, a study of 10 large 

catchments in the North and South Islands quantified the portion of TSM as POC as less 

than 1%, with POC yield ranging from 1–81 t km-2 yr-1 (Carey et al., 2005). By comparison, 

Gomez et al. (2003) reported POC ranged from 0.4–4.0% of TSM concentration in the 

Waipaoa River, Gisborne.  These previous New Zealand studies typically investigated large, 

steep catchments that were generally >350 km2.  However, overseas studies have reported 

that POC may be dependent on catchment scale, declining as catchment size increases 

(Madej, 2015), so the New Zealand studies described above may not adequately reflect the 

POC flux in smaller headwater catchments. Furthermore, the studies by Lyons et al. (2002) 

and Carey et al. (2005) had small data sets, basing the calculations of POC on 16 and 12 

discrete grab samples, respectively, during summer in largely pristine alpine catchments, 

and may not be representative of different land uses or seasonal variations. Additionally, the 

few studies undertaken in New Zealand have not focussed on the potential relevance that 

POM and POC may have to measurements of turbidity and SSC.  

 

To investigate the potential influence of POM on turbidity records, as well as the temporal 

variations in POM concentration and portion of TSM, a study was undertaken in the 

Lammerlaw Ranges, Otago. In this paper, POM concentration, and POM as a percentage of 

TSM, is assessed to determine whether POM is an important component of stream suspended 

load, and whether it affects SSC-turbidity relationships. Additionally, factors that may 

control the percentage of TSM that is contributed as POC, such as rainfall, discharge and 

seasonal variations, are also considered. 
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3.3 Method 
The Glendhu Experimental Catchments were established in the Lammerlaw Ranges (Figure 

3.2) in 1979 by the New Zealand Forest Service to assess the impacts of converting native 

Otago tussock grassland to Pinus radiata plantation forestry. These catchments have been 

the focus of numerous studies on the effects of land use change on hydrology (e.g., 

O’Loughlin et al., 1984; Pearce et al., 1984; Fahey & Watson, 1991; Fahey & Jackson, 

1997). The experimental catchment design retained one catchment in indigenous tussock 

grassland (Chionochloa rigida) covering 2.1 km2, and another was planted in Pinus radiata 

(3.1 km2). The paired catchments are located 60 km due west of Dunedin City in the 

headwaters of the upper Waipori catchment (Figure 3.2), both facing north and ranging in 

elevation from 460 to 680 m above sea level. Clearance of the Pinus radiata catchment 

began in late 2014, with approximately 50% of the 3.1 km2 catchment cleared by March 

2016; earth works in preparation for further harvest were conducted in May 2016 and all 

activity paused over winter until harvest operations resumed in October 2016.  

 

 

 
Figure 3.2 Location of the Glendhu Experimental Catchments in the Lammerlaw Ranges in 
Otago. The smaller catchment (GH1) is tussock grassland with mānuka scrub, and the larger 
catchment (GH2) is plantation forestry (Pinus radiata). 

 



 33  

Discrete 500 mL samples were collected daily using ISCO automatic water samplers, and 1 

L grab samples were manually collected every two to four weeks, between January and 

October 2016. Water samples were collected upstream of the gauging weir at the bottom of 

each catchment. Turbidity was measured using a HACH portable nephelometer using a 

white-light tungsten bulb following US-EPA (1993) (method EPA 180.1) nephelometer 

specifications. Each subsample was measured five times and the results averaged. Water 

samples were weighed on a two decimal point balance to determine water volume (adjusted 

for water temperature) and filtered through pre-washed and dried 0.7 µm glass fibre filters 

and oven dried at 105°C for 24 hours to determine TSM in mg L-1. Filters were weighed on 

a four decimal point balance and re-dried three times. Subsequently, the glass fibre filters 

were then dried in a muffle furnace at 500°C for 30 minutes to determine the loss on ignition 

of the organic portion of the TSM. Organic matter is oxidised to CO2 and ash between 

temperatures of 500oC and 550oC, so that the loss of mass is equivalent to the loss of organic 

matter. The muffle furnace was set to the lower end of that temperature range because 

delicate felsic minerals (e.g., biotite mica) appeared singed at higher temperatures during 

preliminary analysis. A burn time of 30 minutes was sufficient for such small samples (<0.2 

g), but larger samples require longer burn times (Heiri et al., 2001). To convert the loss on 

ignition mass from POM to POC requires some knowledge about the ratio of organic carbon 

to organic matter (Grove & Bilotta, 2014). The standard approach is to apply a van 

Bemmelen factor, which ranges from 1.4 – 2.5, with a value of 2 typical of most organic 

matter; that is, approximately half of the organic matter mass is comprised of carbon (Pribyl, 

2010). In this study, values are reported as POM since the specific van Bemmelen factor for 

this catchment is unknown (see Grove and Bilotta (2014) for the limitations of the loss on 

ignition method for estimation of POC). Where POC has been stated for this case study it 

has been estimated by using a van Bemmelen factor of 2 following the recommendation of 

Pribyl (2010). 

 

The filters were reweighed to determine the mass loss, equivalent to the organic portion, 

which was assumed to be 50% carbon. The difference in mass by the loss on ignition method 

was recorded as POM in mg L-1.  In total, 91 samples were analysed from the tussock 

catchment (GH1) and 124 samples from the forested catchment (GH2). Samples that had a 

SSC below the method detection limit (0.3 mg L-1, due to the analytical errors associated 

with the precision of the balance) were excluded from the data set. 
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3.4 Results 
Water samples from the Glendhu Experimental Catchments show that on average 45% of 

the TSM was present as POM in the tussock catchment and 60% in the forested catchment. 

Under base flow conditions there was high variability in POM, both as a percentage of TSM 

and as a portion of overall flux. For example, in the tussock catchment POM ranged from 

0.6–20.3 mg L-1 (equivalent to 10 – 86% of TSM), and 0.7 – 39.7 mg L-1 (23–95% of TSM) 

in the forested catchment (Table 3.2). Turbidity, POM, TSM, and percentage of TSM as 

POM (POM %wt) differed significantly between the two Glendhu study catchments (using 

the Mann-Whitney U-Test). However, there was no significant difference in SSC between 

the catchments (Table 3.2), indicating that differences in turbidity and TSM between the two 

catchments are likely attributable to the organic portion of suspended material. A wide range 

of POM as a percentage of TSM values existed (15 – 95%) for samples collected at median 

stream flow (Figure 3.3), highlighting the variability of POC in the Glendhu catchments; the 

results also show that POM is usually a higher proportion of TSM in the forested catchment 

than in the tussock catchment.  

 

 

Table 3.2 Concentration (in mg L-1) of the organic and inorganic portions of water samples 
in the Glendhu Experimental Catchments, turbidity as measured on a portable 
nephelometer, suspended sediment concentration and portion of particulate organic matter 
(POM) as a percentage of total suspended material (TSM) dry weight (POM %). 

 Mean Median Max Min Count 
Tussock GH1 
   Turbidity (NTU)  1.2   1.0   5.6   0.3  77 
   POM   5.8   4.7   20.3   0.6  60 
   POC   2.9  2.4 10.2  0.3 60 
   SSC   6.3   3.8   32.8   0.5  91 
   TSM   10.2   6.5   37.3   0.5  91 
   POM %  46.0    45.0   86.0    10.0  60 
Forest GH2 
   Turbidity (NTU)  5.5   3.0   47.3   0.8  94 
   POM   8.9   6.4   39.7   0.7  124 
   POC   4.5  3.2 19.8  0.4 124 
   SSC   7.8   4.3   52.8   0.2  124 
   TSM   16.8   11.2   74.5   1.5  124 
   POM %  60.0   60.0    95.0    23.0   124 
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No correlation was evident between POC concentration and rainfall. Time series analysis of 

the rainfall record and the POM concentration showed no strong seasonal trends, or any 

consistent response to large rainfall events (Figure 3.3 and 3.4). For example, the largest 

three rainfall events during the study period occurred on 22 May 2016 (50 mm over 19 

hours), 18 February 2016 (46 mm over 8 hours), and 28 May 2016 (45 mm over two days). 

During the two storm events in May, the concentration of POM was higher in the forested 

catchment than the tussock. For example, on 28 May 2016, POM concentration was 26.5 

mg L-1 in the forested catchment and 1.1 mg L-1 in the tussock catchment. The storm in 

February 2016, when 39 mm fell over 8 hours on 17 February followed by 46 mm the next 

day, represents an intense rainfall event but POM remained less than 2.7 mg L-1 in the 

forested catchment (no data for the tussock catchment). Smaller events (e.g., 10–20 mm d-1) 

similarly showed inconsistent changes in POM concentration relative to rainfall (Figure 3.4). 

The data suggest that intense storms do not necessarily lead to high POM concentrations, 

and therefore POM in these streams likely reflects the availability of the material, rather than 

storm characteristics.   

 

 
Figure 3.3 Portion of total suspended material as particulate organic matter (POM) (as a 
percentage of dry weight) plotted relative to stream flow at time of sample collection.  
Median daily stream flow over the 18-month study period is indicated by the dotted line 
(tussock catchment, GH1) and the dashed line (forested catchment, GH2). 
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Figure 3.4 Particulate organic matter concentration (POM as mg L-1) relative to daily 
precipitation (mm/d) for the tussock (circles) and forestry (triangles) Glendhu Experimental 
Catchments. 

 

To evaluate the impact of rainfall on POM, three storm events between August and October 

2016 (transition to spring) were examined in closer detail. Daily rainfall totals for an event 

between 5 and 8 October 2016 were 12.4 mm, 16.6 mm, 0 mm and 14.0 mm, resulting in a 

small hydrographic response with a peak discharge of ~100 L s-1. In the two-week period 

prior to this event, both rivers were at base flow (~ 50 L s-1); however, POM ranged between 

1–10%, and did not appear to respond to the increase in flow. Furthermore, the highest POM 

value (7% on 22 September 2016 in the forestry catchment) did not correspond to any rain 

or change in discharge.  A similar lack of POM response to rainfall and increase in discharge 

was observed on 25–27 August 2016, when 16 mm of rain fell over two days and stream 

flow increased to ~150 L s-1 (Figure 3.5).  In this instance, POM for the tussock catchment 

never exceeded 5%, and POM for the forested catchment ranged between 5–15%, a decrease 

from 22% on 21 August 2016 (which was also not associated with any hydrographic 

response).  A significant rainfall event occurred on 4–6 September 2016, with 35 mm falling 

over 13 hours late on the evening of 4 September 2016, and a further 11 mm falling on 6 

September 2016 over 8 hours. Both catchments responded rapidly, peaking at 1,300 L s-1 in 

the tussock catchment and 700 L s-1 in the forested catchment.  During this larger event, 

there appeared to be a distinct increase in POM in the tussock catchment, peaking two days 

after peak discharge at 12 mg L-1; whereas the forested catchment showed no clear response 

with POM ranging from 5–15% over the period and peaking on 11 September 2016 (Figure 

3.6). 
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Figure 3.5 Variations in particulate organic matter (POM) concentration (mg L-1) prior to, 
and during, a small rainfall event in August 2016, where: a) shows the POM concentration 
in the tussock (circles) and forestry (triangles catchment) and b) shows the discharge for 
this period (L s-1).  

 

3.4.1 Assessing the Relationship Between Suspended Material and Turbidity 

For each catchment TSM, SSC and POM were plotted against turbidity and tested with linear 

regression to assess whether there was a statistically significant relationship (Figure 3.7).  

The presence of outliers and clustering of values suggests that there is no predictive pattern 

to the data; that is, turbidity cannot be used to predict the concentration of POM, SSC or 

TSM in the forestry catchment under base flow conditions (Figure 3.7a–c).  There was a 

weak relationship between TSM, SSC and turbidity in the tussock catchment, and no 

relationship between POM and turbidity in the tussock catchment (Figure 3.7a–c). The 

turbidity, SSC and POM data from the tussock and forestry catchments are highly variable 

suggesting that there may be different factors influencing concentrations of SS and POM 

(although the relationships of SS and POM to turbidity are not statistically significant). 

Clearly under base flow conditions a predictive model of suspended material from turbidity 

cannot be established in these study catchments. Interestingly, the POM concentration is 

significantly related to TSM (Figure 3.8).  
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Figure 3.6 Variations in particulate organic matter (POM as mg L-1) prior to, and during, 
a rainfall event in September 2016, where: a) shows the POM concentration in the tussock 
catchment (circles) and b) shows the POM concentration in the forested catchment 
(triangles), both relative to stream discharge (L s-1). 
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Figure 3.7 Variability in: a) total suspended material; b) suspended sediment; and c) 
particulate organic matter concentrations (mg L-1) relative to turbidity in the tussock and 
forestry catchments.  Fitted lines indicate the predicted regression relationships between the 
variables, and n.s. indicates no statistically significant regression relationship. 



 40  

 
Figure 3.8 Particulate organic matter relative to total suspended material, indicating a 
strong linear relationship (e.g., as total suspended material increases so too does the 
concentration of organic matter) in the tussock (circles) and forested (triangles) catchments. 

 

 

To assess whether the lack of any linear relationships between turbidity and suspended 

material was a function of temporal changes in the land system related to changes in soil 

moisture and plant growth, a simple seasonal analysis was undertaken. Data were aggregated 

into meteorological seasons, and then analysed using Spearman’s Correlation. Correlation 

analysis revealed that TSM and turbidity are strongly correlated at the seasonal level (Table 

3.3). In spring, in the forested catchment there was a moderate correlation of all variables, 

whereas in the tussock catchment, POM and SSC did not correlate with turbidity. On the 

basis of this analysis it suggests that not only is land cover a controlling variable, but also 

time of year; for example, the variables are more strongly correlated during winter in the 

tussock catchment than in the forested catchment.  
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Table 3.3 Spearman’s correlation coefficient of the association between turbidity (NTU) and 
concentration of particulate material, as particulate organic matter (POM), suspended 
sediment (inorganic, SSC), and total suspended material (TSM). All reported correlation 
coefficients were statistically significant at the 95% confidence level, and n.s. indicates no 
significant correlation was observed. No seasonal data for summer is available due to 
insufficient data points. 

 

 POM : NTU SSC : NTU TSM : NTU POM : TSM Count 
      
Forestry (all data) 0.24 n.s. 0.21 0.94 94 

Autumn 0.34 n.s. n.s. 0.91 35 
Winter 0.44 0.68 0.53 0.98 29 
Spring 0.59 0.45 0.58 0.91 30 

      
Tussock (all data) n.s. n.s. 0.33 0.85 61 

Autumn n.s. n.s. n.s. n.s. 5 
Winter 0.46 0.35 0.42 0.79 33 
Spring n.s. n.s. 0.57 0.91 26 

      
 

 

3.5 Discussion 
The data presented above illustrate that POM can contribute a large portion of the TSM in 

runoff from both tussock and forested catchments, comprising on average 45% and 60%, 

respectively. These data indicate that the organic portion of TSM is significant, but also 

highly variable under base flow conditions. Such an observation is not unique to the Glendhu 

catchments; for example, a pilot study conducted over 2002 to 2003 by Madej (2015) 

suggested that the organic content of sediment loads in streams draining old-growth redwood 

forests could be as high as 65%, but is highly variable. The high POM content is likely a 

contributor to the absence of any statistically significant relationships between turbidity and 

SSC under baseflow, in conjunction with the potential confounding effects that water 

discoloration may have on turbidity readings.   
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3.5.1 Particle properties and water colour 
The use of turbidity as a surrogate for determining SSC relies on the assumption that 

suspended particles do not alter in physical properties as concentration varies (Gippel, 1989). 

A similar study of five small forested catchments also found that turbidity and suspended 

sediment relationships were weak, but improved somewhat when consideration of particle 

characteristics (e.g., size, shape) and water colour were taken into account (Gippel, 1989). 

Although in Gippel (1995) that furthered earlier work of Gippel (1989), correction factors 

for water colour and particle size did not improve significantly the variance of SSC-turbidity 

and concluded that variance was due to other factors. This aligns with the assumption that 

the physical properties of suspended material must remain consistent for a linear relationship 

to be produced. The presence (or otherwise) of organic debris along with inorganic 

suspended sediment complicates this assumption, as organic and inorganic particles have 

vastly different hydrodynamic properties, particularly in shape and density (Omar & 

MatJafri, 2009). Furthermore, water discoloration also affects turbidity causing a potential 

interference in establishing SSC from turbidity measurements (US-EPA, 1993). When 

flowing water contains organic and inorganic suspended material, the scattering (attenuation 

effect) of light in a turbidimeter’s response is different between the materials. Inorganic 

material causes hard scattering, compared to organic particles that have a lower specific 

gravity and a larger scattering surface area for a given mass (Gippel, 1995; USGS, 2005; 

Jastram et al., 2010). These responses of turbidity to particle properties help validate the 

need to understand the proportions of POM and SSC of TSM in streams, as turbidity does 

not accurately reflect the concentrations of each suspended material type. 

 

Water colour indicates the presence (or not) of dissolved organic carbon (DOC), which 

absorbs the blue part of the visible spectrum and shifts the perceived colour of water towards 

longer wavelengths of light, giving a yellow-brown colouration (Gippel, 1995). The DOC 

from dissolved organic matter includes organic acids such as fluvic or humic acid, and 

tannins derived from organic decay, described most commonly as coloured dissolved 

organic matter (CDOM). Gippel (1995) suggests altered water colour from DOC is not a 

problem for the measurement of just turbidity, but is problematic when using turbidity as a 

surrogate for determining SSC. When water appears a yellow-brown colour there is a 

reduction in turbidity and scattered light is partly absorbed when using white-light tungsten-

type nephelometer lamps (US-EPA, 1993; Omar & MatJafri, 2009). The Glendhu 

catchments episodically show a yellow-brown water colour (Figure 3.9), which is attributed 
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to organic acids leaching from peat-rich wetland soils. This may be an important 

confounding factor for why turbidity was not related to changes in POM and SSC. In the 

extreme case, it may be that when significant portions of both CDOM and POM are present, 

it may produce an SSC-turbidity relationship with a much steeper slope, than when low 

portions of organic matter are present. Thus, it is possible for multiple regression slopes to 

occur depending on the nature of the particulate material in suspension. Relationships 

established between SSC and turbidity over events may show a strong relationship between 

the two variables but are unlikely to be the same under base flow conditions.  In situations 

where there may be interference from organic acids and water coloration (i.e., CDOM), 

turbidity may need to be measured by alternative methods, such as infrared LED lamps, 

which are not affected by coloration but have less sensitivity at lower ranges and poor 

detection of fine particles (Omar & MatJafir, 2009).  

 

 

 
Figure 3.9 Streamflow through the v-notch weir draining the Glendhu experimental tussock 
catchment (GH1). The water shows a distinct yellow hue that is frequently observed in both 
GH1 and GH2 catchments. 

 

3.5.2 POC in New Zealand Rivers 
In the wider Waipori Catchment, of which the Glendhu Experimental Catchments are in the 

headwaters, there are two previous studies that have included measurements of SSC. 
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Suspended material concentration and turbidity data for the Waipori River at its inflow into 

the Lake Waihola-Waipori Wetland Complex was measured by Schallenberg and Burns 

(2003). Their study reported a high percentage of POC relative to SSC, with an average 

value of 54% and a range of 34–100%, and POC concentrations varied from 2 – 28.7 mg L- 1, 

which is similar to our values (range of 0.4–19.8 mg L-1). Turbidity ranged 2 – 7 NTU with 

an average of 4 NTU, which is also consistent with the range of values observed in the 

Glendhu catchments under baseflow conditions. The alignment of the results between 

Schallenberg and Burns (2003) and this study suggests that high POC extends beyond the 

Glendhu catchments and is typical of the wider Waipori Catchment.  

 

The lack of a relationship between turbidity and SSC was also observed by Lovett (2009), 

whose investigation in the lower Waipori Catchment similarly failed to develop any 

significant relationship between SSC and turbidity (r2 = 0.044).  Numerous turbidity values 

were observed for single values of SSC, and it appeared as though two different relationships 

existed within the dataset. By comparing the two apparently different relationships, Lovett 

(2009) determined there was no difference between SSC of the two subgroups, but that 

turbidity varied significantly, and was likely a contributing factor to the inability of turbidity 

to predict SSC. In the Glendhu catchments, similar issues were apparent in the turbidity 

dataset, although variability in SSC measurements for the same turbidity was observed. This 

‘stacking’ of values suggests that for any given turbidity there is a range of SSC values that 

may be potentially detected, and vice versa. The presence of this problem identified by 

Lovett (2009) further downstream indicates that the observed non-significant turbidity and 

SSC relationships are not confined to the headwaters, and that potentially SSC and turbidity 

behaviour is inconsistent catchment wide.  

 

Compared to other New Zealand studies of POC in surface water, the results from the 

Glendhu catchments appear high. Lyons et al. (2002) established a value of <0.5% of TSM 

as POC, and Carey et al. (2005) identifying a value of <1%. Gomez et al. (2003) is the only 

study to report slightly higher values, with POC being 0.4-4% of TSM. Additionally, in a 

review of organic carbon inputs to the ocean, Ludwig and Probst (1996) synthesised data 

from some of the world’s largest rivers, and reported POC portions of TSM ranging from 

0.3%–10.1%. These values are much lower than observed in the Glendhu catchments (23% 

and 30% of TSM). This raises the question of why the POC portion of TSM is much higher 

in the Glendhu catchments and wider Waipori Catchment compared to these other studies. 
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The three previous New Zealand studies focused on steep catchments with catchment areas 

>350 km2, and the international studies were larger still, with catchment areas > 9,000 km2. 

Larger catchments have much lower portions of suspended material as POC (Madej 2015). 

Smaller catchments have a lower competency for transporting material, so that under base 

flow conditions POC can be easily transported compared to the entrainment of inorganic 

sediment, and thus POC represents a higher overall portion of load. Larger catchments 

mobilise inorganic sediment from bedload, bank collapse and deep landslides, whereas 

smaller headwater catchments are dominated by shallow sheet flow and other shallow 

pathways that are typically responsible for transport of organic debris (Gomez et al., 2003). 

Furthermore, the stability created by established vegetation cover reduces the occurrence of 

deep erosion from gullies, landslides, and deep regolith limiting the mobilisation of 

inorganic mineral material, favouring erosion from organic rich top soil layers (Madej, 

2015). The inconsistent response of POM in the Glendhu catchments to both precipitation 

and discharge can be at least partially explained by the small catchment size. In small 

catchments, turbidity and organic content depend partly on processes independent of 

discharge, with litter fall, entrainment and transport of surface soil organic matter more 

important; whereas in larger catchments discharge is the controlling variable of suspended 

material (Coynel et al., 2005b; Madej, 2015). In addition, the source of organic material can 

change over a hydrograph, and may differ between base flow and event flow (Gomez et al., 

2003; Coynel et al., 2005b; Wheatcroft et al., 2010), potentially explaining the lack of any 

systematic response of POM to event discharge and the observed variability of POM over 

low flows in the Glendhu catchments. Further work is required to resolve what other 

processes are the controlling variables of POM concentration and proportions, particularly 

in relation to identifying the sources of POM and how these sources are attenuated during 

storm events.  

 

3.5.3 Source of particulate organic matter 
One objective of this study was to assess whether POM was a significant contributor to 

suspended material in headwater catchments, which it was in the two Glendhu catchments. 

However, the research has not established the source of POM, and how that differs in small 

headwater catchments. POC in the Waipaoa Catchment was identified using δ13C as being 

sourced from gully erosion (Gomez et al., 2003). The POC was identified to be 

allochthonous carbon, which is consistent with the observation that mountain streams export 
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allochthonous POC, mostly derived from the erosion of surface soils and poorly weathered 

regolith (Komada et al., 2004). However, seasonal variations in the source of POC to rivers 

may occur, with an increase in autochthonous carbon during spring and summer from 

diatoms and phytoplankton blooms, as well as detritus from periphyton and macrophyte 

growth, which has been attributed to changes in POC to TSM ratios in the Columbia River, 

North America (Sullivan et al., 2001). From a river management perspective allochthonous 

POC is indicative of landscape disturbance, principally as surficial soils are lost from the 

terrestrial domain, and are of limited biological availability.  However, autochthonous POC 

is readily available for biological uptake and is an important food source for aquatic species.  

Further work is needed to ascertain the source of the POC in the Glendhu catchments and 

whether it is a sensitive measure of soil disturbance.  In the Glendhu catchments, it is 

apparent that the portion of suspended material exported as POM is higher in the forested 

catchment, which was undergoing clearance during this study, and is likely a more sensitive 

indicator of the effects of forest clearance compared to the (inorganic) SSC, which was not 

statistically different to the concentration measured in the tussock control catchment. 

 

3.6 Conclusion 
In the headwaters of the Waipori Catchment, Otago, a significant portion of TSM comprises 

organic material (45% in a tussock catchment and 60% in a forested catchment).  Although 

these values are much higher than previously reported for other New Zealand river systems, 

they are consistent with other studies undertaken in the Waipori Catchment. The inability to 

produce any statistically robust relationship between turbidity and SSC in both the tussock 

and forested catchments has implications for monitoring strategies in this catchment. The 

high POM component of TSM contributes to the poor relationships between turbidity and 

suspended material. However, even when the organic component is subtracted from the 

suspended material component to determine the (inorganic) SSC, there is no improvement 

in the relationship between turbidity and SSC. It is likely that regular discoloration of the 

water by CDOM alters the light-attenuating properties of the water column when tested 

using tungsten-type white light turbidimeters. This results in a range of turbidity values when 

there is no significant concomitant change in the concentration of suspended (inorganic) 

material.  In catchments where organic material contributes to both the dissolved and 

particulate load of the water column this potentially interferes with the standard method of 
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determining SSC from turbidity records, particularly under base flow conditions. During 

higher flow events the data show the portion of organic material tends to decline, meaning 

the effect of low goodness of fit measures between turbidity and SSC are particularly acute 

under base flow conditions. These results indicate that turbidity is a poor indicator of SSC 

in some catchments. Even when the POM component is accounted for in SSC calculations, 

the presence of dissolved organic acids may still contribute to inaccurate records of turbidity. 

In such instances, it may be worth assessing alternatives to tungsten-type nephelometers for 

measuring turbidity. It must be considered that these instruments are subject to other 

limitations.  

 

Sediment in streams and rivers is recognised in New Zealand’s NPS-FM (2014) as an 

important attribute in terms of monitoring and managing stream quality and ecosystem 

health. At a local level, regional authorities are tasked with monitoring water clarity, and 

turbidity is an effective way to monitor water clarity. The current research demonstrates, 

however, that the measurement of suspended material and its impact on water quality is 

confounded by the presence of organic material, both in terms of impacts on calculating 

suspended load and interference with turbidity measurement. A number of potential factors 

contribute to the variability in POM concentrations under base flow. Under some 

circumstances there may be flushing and dilution effects associated with hydrographic 

responses, and seasonality may affect what particulate (either organic or inorganic) 

dominates TSM. Further work is needed in the Glendhu Experimental Catchments to 

determine the sources of POC, whether it is allochthonous or autochthonous, and whether 

POC is a sensitive indicator of soil and land disturbance. 
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4 Catchment-Scale Influences on Riverine 

Organic Matter in Southern New 

Zealand 
 

Research article published in Geomorphology in 
December 20192. See Appendix 11.2. 

 

4.1 Abstract  
Riverine particulate organic matter (POM) is a critical vector for nutrient cycling of carbon 

at both regional and global scales. POM and suspended sediment (SS) are transported 

concomitantly through rivers, and their concentrations change in association with landscape 

transformations and natural fluctuations. The proportion of POM to SS mobilised in rivers 

under baseflow is an important component of carbon flux to oceans, and is a useful metric 

for understanding hillslope–river coupling and hydraulic connectivity.  POM was quantified 

during baseflow conditions in southern New Zealand to assess the role of different catchment 

characteristics that control the spatial variability of organic matter in the fluvial environment. 

The proportion of POM to total suspended material (TSM) can be <5%, or much higher at 

50 – 80% across southern New Zealand, with the highest concentrations associated with 

lowland agricultural catchments. Particulate organic carbon yields were estimated to be 

between 0.04 – 2.7 t km-2 a-1 discharged into the Pacific Ocean. The POM% responds to both 

intrinsic and extrinsic catchment characteristics, affecting the availability of organic material 

and mechanisms for transport including vegetation cover, topographic controls, and 

hydrological controls. Across southern New Zealand it is evident that riverine organic matter 

is spatially organised and connected to broader hillslope processes, albeit difficult to predict 

at the catchment scale.   

 

 
2 Minor changes to the narration of this research article have been made to improve coherency between chapters. 
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4.2 Introduction 
Riverine particulate organic material (POM) sequesters 90 – 240 Mt a-1 of carbon globally 

and is a small, but significant, component of the global carbon budget (Hope, 1997; Lyons 

et al., 2002). It is estimated that POM accounts for up to 20% of total carbon export, 60% of 

total nitrogen export, and 90% of total phosphorus export (Meybeck, 1982; Sanchez-Vidal 

et al., 2013). Thus, riverine POM is a critical vector for nutrient cycling at both regional and 

global scales, particularly in carbon cycle studies with an emphasis on determining 

particulate organic carbon (POC) fluxes (e.g., Meybeck, 1993; Ludwig & Probst, 1996; 

Robertson et al., 1999; Lyons et al., 2002; Wu et al., 2007). POC is a subset of total organic 

carbon (TOC), with the other component being dissolved organic carbon (DOC). POM flux 

is connected to hillslope processes, denudation, and suspended sediment (SS) flux; so that 

understanding the flux of POC (as a subset of POM) requires consideration of extrinsic 

(external to the catchment, e.g., rainfall) and intrinsic (within catchment, e.g., landcover and 

hydrology) catchment characteristics to inform source land uses and pathways. 

 

Discharge is a critical intrinsic catchment variable driven by rainfall in catchments, although 

the observed behaviour of organic matter with discharge is complex, often confounded by 

antecedent conditions and storm fluctuations (Hope et al., 1994; Coynel et al., 2005; Sabater 

et al., 2006). Catchment hydrology, including runoff generation and hydrological flow 

pathways affect the quantity and quality of organic matter by controlling the contribution of 

allochthonous or autochthonous sources (Hope et al., 1994; Robertson et al., 1999; Sanchez-

Vidal et al., 2013). POM concentration typically increases with discharge, although the 

relationship is often weak as organic matter can be delivered to, or become, temporarily 

diluted as flow changes (e.g., Zhang et al., 2009). Consequently, base flow and event flow 

POM responses are typically observed separately (Meybeck, 1982; Coynel et al., 2005; 

Zhang et al., 2009; Sanchez-Vidal et al., 2013; Madej, 2015), although focus is primarily on 

event flow behaviour. Discharge typically explains less than 30% of the variation in 

concentration and ratio of POM to suspended material, and unit stream power explains less 

than 20%; suggesting that there are other more significant controls (Naiman, 1982; Madej, 

2015). 
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Carbon supply is affected by season, influencing sediment and organic matter storage and 

their release into the fluvial environment (Hope et al., 1994). Season controls the timing of 

organic matter availability, and the input to streams depends on biological demand. The 

release of carbon from catchments is strongly controlled by the effects temperature and 

rainfall impart on biological production (Meybeck, 1982; Hope et al., 1994; Robertson et 

al., 1999; Wu et al., 2007); therefore, global variability in the regulation of these controls on 

organic matter is observed between hemispheres (Hope et al., 1994). Thus, differences exist 

between the Northern Hemisphere where there are large changes in carbon pools between 

seasons relative to the Southern Hemisphere, which is dominated by evergreen forest, and 

as a result seasonal shifts in carbon cycling are not as strong (Keeling & Whorf, 2004).  

 

Additional intrinsic catchment controls on carbon (and organic matter) flux are related to the 

type of land cover, disturbance patterns, soil type, catchment size, and topography. For 

example, anthropogenic disturbances increase organic matter concentrations in fluvial 

environments (e.g., Zhang et al., 2009) and engineered structures (e.g., dams and reservoirs) 

may reduce organic matter concentrations (e.g., Ittekkot & Arain, 1996; Wu et al., 2007). 

Similarly, disturbances in forested catchments cause increased riverine concentrations of 

organic matter, in both particulate and dissolved forms (e.g., Bormann et al., 1974; Hedges 

et al., 2000; Zhang et al., 2009). Catchment size and topography, including slope, control 

stream flow generation and stream response to storm flow. Smaller catchments, for example, 

have higher proportions and concentrations of organic matter due to shorter residence times 

and direct coupling of hillslopes with streams (e.g., Schlesinger & Melack, 1981; Hope et 

al., 1994; Robertson et al., 1999; Coynel et al., 2005; Madej, 2015). 

 

The proportion of POM to total suspended material (TSM) is a function of organic matter 

migration (e.g., organic litter and leaf debris) that occurs simultaneously with the erosion of 

inorganic mineral material (e.g., mineral soil and regolith), resulting in the delivery of both 

organic and inorganic particulate materials to the fluvial environment (Sanchez-Vidal et al., 

2013). Consequently, fluvial TSM contains both particulate organic and inorganic material, 

of variable proportions, over space and time. Spatio-temporal drivers inherently affect the 

composition of stream flow particulates, although the connections between the two are rarely 

explained (Sanchez-Vidal et al., 2013). The proportion of POM to the total suspended flux 

globally is highly variable, and has been reported to be as low as 1 – 2.5% (e.g., Ittekkot & 

Arain, 1996; Ittekkot, 1988; Lyons et al., 2002; Gomez et al., 2003; Wu et al., 2007; Zhang 



 52  

et al., 2009), or much higher at 45 – 70% (e.g., Naiman, 1982; Hasholt & Madeyski, 1998; 

Golladay, 1997; Schallenberg & Burns, 2003; Madej, 2015). Those studies showing higher 

proportions of organic matter are typically observed in forested catchments with a higher 

availability of organic material (e.g., Golladay, 1997; Madej, 2015), or in waterways 

draining organic-rich wetlands (e.g., Schallenberg & Burns, 2003). Low proportions of POM 

to total suspended material, however, are more likely observed in inorganic sediment-rich 

environments, like alpine regions (e.g., Carey et al., 2005; Lyons et al., 2005; Bright et al., 

2018 (see: Chapter Five)) where information pertaining to POM is sourced primarily from 

organic carbon assessments (e.g., Gomez et al., 2003).  

 

The objective of this paper is to determine the contribution of POM to suspended material 

across spatial scales at base flow and explore the dependence on certain catchment 

characteristics that control the variability in the ratio of POM to SS in the Southern 

Hemisphere, by using southern New Zealand catchments as a case study. Our paper seeks to 

establish: 

1. How much POM is fluxed by southern New Zealand rivers, and the association of 

this POM to suspended sediment and carbon flux;   

2. How much POC is discharged through rivers in southern New Zealand in association 

to POM, and the estimated POC yields for 84 southern New Zealand catchments;  

3. If known extrinsic and intrinsic controls associated with POM concentration differ 

to the independent controls that affect POM proportions.  

Our approach quantifies suspended sediment, POM, total organic carbon (TOC) and the 

dissolved organic carbon (DOC) portion of TOC, and turbidity across seven high order 

catchments in southern New Zealand with a total coverage of 67,800 km2. Such research is 

important to elucidate the linkage between the terrestrial environment and rivers, and the 

influence of catchment scale characteristics on organic fluxes. Examining these processes at 

the catchment scale provides the opportunity to assess the role of source-to-sink principles 

across different scales that often define and constrain the management of environmental 

issues. 
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4.3 Methods  
Discrete grab samples (in 1 – 5 L HDPE containers) were collected under base flow 

conditions from 134 sampling points across 7 high order catchments in southern New 

Zealand (Aparima, Clutha/Mata-Au, Mataura, Oreti, Taieri, Waiau, and Waitaki) (Figure 

4.1). Samples were analysed for SSC (mg L-1), POM (mg L-1 and as a percentage of total 

suspended material, i.e., POM%), and turbidity (FNU, NTU). Suspended sediment and POM 

concentrations were calculated by filtering water samples through pre-washed and dried 

0.7 µm glass fibre filters following standard methods (see: ATSM, 2002). Filters were oven-

dried at 105°C for 24 hours, then weighed and re-dried at least three times, or until filter 

weights converged to determine the total suspended sediment concentration. The glass fibre 

filters were burned in a muffle furnace at 500°C for 30 minutes, to incinerate the organic 

portion, then reweighed to determine the loss on ignition, which is an index of POM (see: 

Grove & Bilotta, 2014). Samples below the method detection limit of 0.3 mg L-1 were 

excluded from the data set. 

 

DOC and TOC (in mg C L-1) were collected in 20 mL amber glass vials and measured using 

a Shimadzu Total Carbon Analyser with an analytical precision of 0.2 mg C L-1. These 

measurements were used to derive the POC concentration (where POC = TOC – DOC). If 

POC and POM are known from measurements, these data can be used to calculate the van 

Bemmelen factor (VBf) (see: Pribyl, 2010); where VBf = POM/POC, and was used to 

convert all POM concentrations where POC was not directly measured. For southern New 

Zealand, the mean VBf was 1.3 (n = 84). Dissolved and total recoverable metals were 

measured on a Spectro-Blue ICP-OES. Ten mL sub-samples for dissolved metals were 

filtered using 0.22 µm nylon filters and pre-treated with 100 µL of ultra pure HNO3 used as 

a carrier solution. Total recoverable metals used 20 mL subsamples treated with 200 µL 

ultrapure HNO3 and 200 µL ultrapure HCl then digested at 95°C for 2 hours following 

method EPA 200.8. Particle loading coefficients were calculated using the method outlined 

by Nasrabadi et al. (2018). 

 

Grab samples were collected from a small unnamed headwater stream in the Taieri 

Catchment and sampled fortnightly to monthly, from August 2015 to February 2018 

(Glendhu GH1) (see: Chapter Three, Bright & Mager, 2016). The longer record of sample 

collection provided the opportunity to examine variations in organic matter between events 



 54  

and seasons and complement the seasonal samplings in the Taieri, Clutha/Mata-Au, and 

Waitaki catchments (Table 4.1).	Twenty-eight sub-catchments that drain the eastern margin 

of the axial Southern Alps into the Clutha/Mata-Au and Waitaki catchments were sampled 

15 times from 2012 – 2017 to assess seasonal changes in POM under base flow. Twelve 

sites in the Taieri catchment were sampled monthly from July 2017 to October 2018. The 

remaining 56 sampling sites from the Waiau, Aparima, Oreti, and Mataura catchments were 

collected during the austral summer of 2017 – 2018 to provide a geographical expansion of 

the temporal datasets.  

 

 

 
Figure 4.1 Map of southern New Zealand showing the 134 locations within 84 sub-
catchments of seven high order catchments that are the focus for this study. 
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Table 4.1 Catchment characteristics for the seven high order catchments sampled for 
suspended sediment, particulate organic matter, and turbidity across southern New Zealand. 

Catchment No. 
Sites 

Area 
(km2) 

Stream 
Order 

Mean 
Annual 

Discharge 
(m3 s-1) 

Rainfall 
(mm/a) Land cover 

Aparima 9 806 6 17.3 1,081 Pasture (55%), indigenous (19%) and 
exotic forest (16%) 

Clutha/Mata-
Au 

41 5,343 8 1,327 1,168 Pasture (35%) tall tussock (20%) and low 
producing grassland (17%). 

Mataura 15 2,694 7 76.7 1,084 Pasture (80%), and indigenous (6%) and 
exotic (4%) forest. 

Oreti 10 1,390 7 51.5 1,116 Pasture (80%), exotic forest (8%), low 
producing grassland (4%). 

Taieri 22 5,706 6 35.6 2,018 Pasture (47%), tussock (22%) and grazed 
tussock (14%). Pockets of exotic forestry 
(5%). 

Waiau 9 2,557 7 564 1,451 Pasture (33%), indigenous forest (33%), 
tall tussock (10%). Pockets of exotic 
forestry (7%). 

Waitaki 26 6,262 8 621 805 Low producing grassland (24%) and tall 
tussock grassland (21%). Depleted 
grassland (15%) and pasture (15%).  

 

 

Existing geospatial datasets (Table 4.2) were used to extract metrics of catchment land use, 

lithology, soil order, climate conditions, and topography for all catchment areas above each 

sampling location (Table 4.1) and used as independent input variables for multiple linear 

regression using SPSS (v22). The parameters (Table 4.2) were selected as predictors based 

on previous research that has broadly identified these types of landscape characteristics that 

predispose catchments to losses of soil, sediment, and organic matter (e.g., Naiman, 1982; 

Hope et al., 1994; Robertson et al., 1999; Madej, 2015), since the flux of POM was likely 

linked to terrestrial denudation processes.  Spatial patterns in observed variables (POC, 

POM) were mapped using ArcGIS (v15) and grouped using Hierarchical Cluster Analysis 

(HCA) using Ward’s linkage and squared Euclidean distance in SPSS (v22). Ward’s method 

and squared Euclidean distance was selected as the most suitable linkage method as it defines 

clusters by minimising difference in variance and constrains the number of defined clusters 

using in-built SPSS agglomeration coefficient thresholds (Blashfield, 1976). Cluster 

membership was validated by differences in median particulate organic matter concentration 

with a Kruskall-Wallis z-score. 
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Table 4.2 Basin, lithological, soil, and land cover catchment variables used in multiple 
regression modelling. 

Type Predictor Units Source 
Basin Catchment Size 

Mean Flow 
Stream Order 
FRE3 
Mean annual rainfall 
Suspended sediment yield (SSY) 
Slope 

km2 
m3s-1 

 
 
mm a-1 

t -1 km-2 
a-1 

% 

Catchment polygons, mean flow, stream order, 
and FRE3 sourced from NZ River Environment 
Classification.1 

Rainfall calculated from MfE average rainfall 
1972-2013, based on NIWA virtual climate 
station network.2 

SSY from NIWA SSY estimator.3 

Slope defined from LRIS NZLRI database 
(v3). 4  

Lithology Lithology (NZLRI ED1) 
 

% Lithology extracted from NZLRI database data 
(v3). 4 

Soil Soil Type (NZSC) 
Carbon Content 
Erosion 

% 
 

Soil type from LRIS FSL defined in NZLRI 
database (v3). 4 

Carbon content (% estimate) from LRIS FSL 
defined in NZLRI (v3). 4 

Erosion categories defined by LRIS NZLRI 
database (v3). 4 

Landcover Alpine vegetation, crop, exotic 
forest, indigenous forest, 
grassland, pasture, scrub, shrub, 
snow and ice, tall tussock 
grassland, urban, gravel rock and 
landslide, lake river and pond. 

% Landcovers defined by LRIS Land Cover 
Database (v4.1). 5  

 

Note: All variables with % are calculated as % of catchment area. 
1 New Zealand River (MfE) Environment Classification (2016). Ministry for the Environment Online Data Portal. See also Booker 
(2015). 
2 Average Annual Rainfall, 1972 – 2013 (2015). Ministry for the Environment Online Data Portal. 
3 Suspended Sediment Yield Estimator (Hicks et al., 2011). 
4 NZLRI New Zealand Soil Classification (v3) (2010). Landcare Research NZ LRIS Online Portal. 
5Landcover Database (v4.1) (2015). Landcare Research NZ LRIS Online Portal. 

 

4.4 Results and Discussion  
4.4.1 How Much POM is cycled through southern New Zealand Rivers? 

POM and SSC were highly variable across Southern New Zealand (median POM ranges 

BDL – 58.4 mg L-1; median SSC ranges BDL – 513 mg L-1) (Figure 4.2a – b). Median 

concentrations of POM are moderate to low (< 5 mg L-1) through most of southern New 

Zealand, with the exception of the Otautau Stream (9.5 mg L-1) and the Hopkins River (58.4 

mg L-1). Areas of high median SSC were observed in alpine headwater catchments that drain 

the Southern Alps (e.g., Shotover Kimi-ākau, Dart/Te Awa Whakatipu, Tasman, Hooker, 

Godley), and the Mataura, which was in spate at the time of sampling. POM as a percentage 

of total suspended material (POM%) was highly variable (Figure 4.2c), with percentages 

generally low in alpine areas (<5%), and highest in small non-alpine headwater catchments 

(e.g., Glendhu, Upper Waipori, Lowburn, Bannockburn and Fraser) or larger catchments on 
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the central plains of Southland (e.g., the lower Waiau and Oreti that are dominated by 

agricultural farming). 

 

 

Figure 4.2 a) Suspended sediment concentration (SSC); b) particulate organic matter 
(POM) concentration; c) POM as a percentage of total suspended material (TSM); d) 
hierarchical clusters for POM%; for 84 sub-catchments across southern New Zealand 
catchments. 

 

 

The spatial distribution of POM% is complex and higher POM% is unrelated to high 

concentrations of POM, but is concomitant with areas of low SSC under baseflow (Figure 

4.2c). POM concentrations are mediated by the regulatory role of in-stream biological 

processes that are determined by catchment characteristics (e.g., soil and land cover) and 

temporal controls (e.g., temperature) (e.g., Robertson et al., 1999). The river continuum 

concept suggests the mechanisms that control biological equilibrium through loading, 
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transport, use, and storage of organic matter occurs longitudinally through river channels 

(Vannote et al., 1990; Battin et al., 2008). Downstream organic matter is dependent on an 

upstream supply and therefore is supply limited (Robertson et al., 1999; Battin et al., 2008). 

However, under baseflow conditions no systematic changes in POM concentration 

downstream in southern New Zealand could be detected. Winterbourn et al. (1981) outlined 

a number of cases in New Zealand and elsewhere where the river continuum concept was 

not applicable. Organic matter fluctuated throughout the catchments, downstream, and was 

typically higher in the headwaters and smaller tributaries, but these rivers do not appear to 

be organically limited. In organic-rich environments, like southern New Zealand, where 

there is a dense network of small headwater river catchments, the typical conditions on 

organic matter limits may not apply, as there is continued supply of organic material 

throughout the stream network and validates the assumptions of Winterbourn et al. (1981). 

 

For catchments draining the Southern Alps there were seasonal shifts in median POM 

concentration or POM% (Figure 4.3). Variations in POM concentration were often lower in 

winter and highest in autumn, although did not vary significantly across land use types, 

except for alpine and agricultural land uses. The observed autumnal increase in POM (mg 

L-1) is likely attributable to increased transport of organic material due to a reduction in 

biological demand and seasonal litter fall (Robertson et al., 1999). The observed variations 

in POM concentration were also likely related to changes in flow; when sampled in spate, 

for example, POM concentrations increase, but the POM% reduces to <10% (Bright et al., 

2020a (see: Chapter Six)). Non-alpine catchments also displayed stronger seasonal shifts, 

for example, the Taieri (an agriculture dominated catchment) had a median spring and 

summer concentration of 1.4 mg L-1, compared to 2.6 mg L-1 for autumn and winter, and 

contributed 13 – 22 POM%. The Taieri is an organic-rich catchment, so the observed POM 

increase during winter may also be due to a seasonal reduction in biological demand for 

carbon (e.g., Robertson et al., 1999). POM concentrations had a median absolute deviation 

(MAD) of 0.4 mg L-1 (Taieri), and 1.0 mg L-1 (for Clutha/Mata-Au and Waitaki). Similarly, 

the MAD for the POM% was 4.8 (Clutha/Mata-Au), 9.8 (Taieri), and 12.5 (Waitaki). 

Therefore, the uncertainty (as 2 deviations) associated with the POM concentrations 

approximates ± 2 mg L-1, and POM% of TSM ±25%. These uncertainties are of a similar 

magnitude as the modelled suspended sediment yields, and modelled discharges, which are 

in the order of ±20 – 25% (Hicks et al., 2011). Where seasonal shifts were not observed, for 

example, the Dart/Te Awa Whakatipu (an alpine-dominated catchment) (seasonal POM 
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ranged from 3.1 – 3.8 mg L-1) POM% was only a small portion of total suspended material 

(1 – 3 %). 

 

POM as a percentage of total suspended material (POM%) was classified into 6 discrete 

clusters using HCA (Table 4.3). These data showed that POM concentrations are statistically 

different between small headwater catchments, which had very low POM and SSC 

concentrations, but that most of the particulate load was as POM (Clusters 1, 5 and 6). Alpine 

headwater catchments (Cluster 2) and higher stream ordered catchments (Clusters 3 and 4) 

had lower POM% (<30%), and higher concentrations of POM (~1.5 mg L-1), suggestive of 

combined processes of organic material availability and increased stream competence for 

inorganic particulate transport. The spatial distribution of POM% clusters were aggregated 

spatially (Figure 4.2d) and likely responding to underlying lithological, topographical, and 

land use catchment characteristics related to geographical location. 

 

 
Figure 4.3: Seasonal median suspended sediment concentration (SSC), particulate organic 
matter (POM) and POM as a percentage of total suspended material (POM%) and 
particulate organic carbon (POC) as a percentage of total organic carbon (TOC) (POC% 
of TOC) for six dominant land use types across 84 southern New Zealand sub-catchments.  
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Table 4.3 Hierarchical cluster analysis of particulate organic matter (POM) as a proportion 
of total suspended material (POM%) for southern New Zealand. Suspended sediment 
concentration (SSC as mg L-1), POM (as mg L-1) and POM% across the 6 clusters with 
statistical difference determined by Kruskall-Wallace z-test (p-value <0.05 at 95%). Mean 
catchment modelled mean flow (Q, m3 s-1), and modelled suspended sediment yield (SSY as 
t km-2 a-1) for each cluster are also summarised. 

POM% 
Cluster Count Q SSY SSC POM POM% Description 

Cluster 1 
Low SSC 
Low POM 
High POM% 

9 69 55 1.9 0.7 42.0 Low Order Catchments + 
Brown and pallic soils; steep catchments; 
indigenous grassland cover and schist 
basement lithology. 
+ Lower Waiau Exception 
e.g., Lug Creek, Silver Stream 

Cluster 2 
High SSC 
Low POM% 

26 46 326 15.3 1.5 6.4 Alpine Headwater Catchments 
Brown, pallic and recent soil types; very steep 
catchments; glacial landforms, alpine 
headwaters with hill country agriculture; schist 
and semi-schist lithology. 
e.g., Upper Ahuriri, Dart/Te Awa Whakatipu, 
Manuherikia 

Cluster 3 
Moderate 
SSC, POM 
and POM% 

20 44 103 4.1 1.4 27.6 Mixed higher order and alpine catchments 
Brown, pallic and raw soil types; rolling hills; 
mostly grassland agricultural catchments with 
forest, some alpine areas; schist and 
greywacke lithology. 
e.g., Waiau, Oreti, Routeburn 

Cluster 4 
Moderate 
SSC, POM 
and POM% 

20 107 72 5.4 1.2 17.7 High order catchments 
Brown, pallic and recent soil types; flat 
undulating catchments with steeper 
headwaters; mostly agriculture; schist and 
greywacke lithology. 
e.g., Taieri, Clutha/Mata-Au, Aparima 

Cluster 5 
Low SSC 
Low POM 
Very High 
POM% 

3 1 77 0.2 0.6 88.5 Small headwater Otago catchments 
Brown soil type; rolling to steep topography of 
thrust-block morphology; some agriculture; 
Caples schist. 
e.g., Lowburn, Bannockburn, Upper Waipori 

Cluster 6 
Low SSC 
Low POM 
High POM% 

6 5 59 1.6 0.9 53.9 Small headwater catchments 
Brown soil type; steep fluvially bisected 
headwater catchments; agricultural land use 
with indigenous grassland and forest; schist 
and greywacke lithology.  
e.g., Birch Hill, Glendhu 

 

In alpine catchments (e.g., Tasman, Hooker, Dart/Te Awa Whakatipu, Shotover Kimi-ākau, 

upper Ahuriri – Cluster 2 Figure 4.2d) mineral material was dominant (POM <10%) due to 

intense physical weathering through high rainfall, freeze-thaw, landsliding, and glaciation; 

as well as a plentiful supply of alluvium associated with intense fluvial dissection of 

Quaternary landforms including relict moraines, alluvial fans, and scree slopes. The thin 

alpine soils, plentiful sources of fine-grained inorganic sediment, and steep cascading and 

braided river forms lead to higher sediment transport competence and higher SSC under base 
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flow conditions. The alpine regions were also areas of the highest POM concentrations; even 

though POM is only a small percentage of TSM. New Zealand alpine soils are thin and 

exhibit a profile indicative of frequent rejuvenation (Larson et al., 2014) as soil material is 

displaced readily from the hillslopes and transported to stream channels. In this way, POM 

is transferred regularly from the terrestrial surface to stream channels and drives the higher 

POM concentrations observed in alpine environments.  

 

Clusters 1 and 6 were clusters that specifically exclude alpine catchments; these clusters 

comprise low and high intensity pastoral agriculture. For example, Cluster 1 contains 

catchments within eastern Otago (i.e., Deep Stream, Last Creek, Sow Burn) and the Waiau 

in Southland; whereas Cluster 6 contains central Otago dryland catchments (i.e., Bannock 

Burn, upper Waipori River, and Low Burn). These non-alpine catchments generally have 

low SSC mg L-1, low POM mg L-1, but a higher POM% (>40%), relative to the alpine 

catchments. The catchments within clusters 1 and 6 are notable in that they are covered in 

indigenous snow tussock (Chionochloa rigida), a resilient tall grass distinctive to the lower 

part of the South Island, New Zealand, and the low-intensity agriculture it sustains, and 

therefore represent a landscape unit conducive to low in-stream concentration of particulates, 

but higher overall proportions of POM relative to inorganic suspended sediment. Previous 

work has shown that small headwater catchments in the upper Waipori with significant 

tussock grassland cover have unusually high POM% (see: Chapter Three, Bright & Mager, 

2016), likely attributable to the ability of tussock grasslands to retain large proportions of 

carbon and produce a rich source of organic material (Tate et al., 2000; Mark et al., 2013). 

The seasonal changes in biomass mean that tussock litter is a readily available source of 

POM, particularly in early spring. Similarly, agricultural grasslands, particularly those under 

year-round grazing accumulate organic nutrients, namely carbon in the soil organic matter 

that is ploughed, cultivated and cropped, maintaining a high level of soil organic material 

that is available throughout the year (Jackman, 1964). Under intensive pastoralism, for 

example, ovine and bovine farming systems that are extensive in southern New Zealand, 

effluent from free range grazed animals allows for soil organic matter and organic carbon to 

be mobilised through soil chemical changes (Schipper et al., 2010), providing a mechanism 

for higher organic matter inputs to fluvial environment.  
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4.4.2 How much Organic Carbon is fluxed through southern New Zealand Rivers? 
POC yields ranged from < 1 – 100 t km-2 a-1 across southern New Zealand, with higher yields 

along the arch of Southern Alps, and lower yields in the lowlands and near the coast (Figure 

4.4). For the higher ordered catchments POC yields were: Aparima (0.04 t km-2 a-1), Waiau 

(0.18 t km-2 a-1), Oreti (0.37 t km-2 a-1), Waitaki (0.42 t km-2 a-1), Mataura (0.44 t km-2 a-1), 

Taieri (1.61 t km-2 a-1), and Clutha/Mata-Au (2.72 t km-2 a-1). These data suggest that POC 

yields exported to the coast were typically < 1 t km-2 a-1 into Fouveaux Strait, and between 

0.4 – 2.7 t km-2 a-1 into the south-east Pacific Ocean. Substantially more organic carbon was 

delivered to the ocean as DOC, ranging from 1.3 – 16.2 t km-2 a-1 for Fouveaux Strait, and 

1.7 – 16.9 t km-2 a-1 for the south-east Pacific Ocean, with the greatest fluxes from the Waiau 

and Clutha/Mata-Au. It should be noted, however, that these data are derived from baseflow 

organic carbon concentrations, weighted to mean annual stream flow, with a conservative 

uncertainty of ±25% and do not account for the fluxes of carbon that may be mobilised 

during event flows. 

 

The proportion contribution of DOC to TOC (DOC% of TOC) showed that across southern 

New Zealand DOC was the main flux of organic carbon. It was only in alpine catchments 

with indigenous vegetation cover that the export of organic carbon was higher as POC (Table 

4.4). The POC% of TOC was weakly associated with SSC since POC may be sourced from 

recently deposited organic debris on the terrestrial surface, and not older, deep-seated 

organic carbon pools that are only shifted during periods of deeper mass movements (Gomez 

et al., 2010). Shallower erosion processes acting on hillslopes direct organic debris to stream 

channels that contain modern plant derived carbon (e.g., allochthonous POM) (Gomez et al., 

2010). Turbidity (as NTU) and POC% of TOC were positively correlated, suggesting that 

turbidity may be a useful metric for the estimation of POC in catchments (Figure 4.4).  
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Figure 4.4 Particulate organic carbon (POC) yields for 84 catchments across southern New 
Zealand. 

 

 

Table 4.4 Median turbidity (as NTU), suspended sediment concentration (SSC mg L-1), 
particulate organic matter (POM as mg L-1 and as a percentage POM%), and dissolved 
organic carbon (DOC mg L-1) and particulate organic carbon (POC mg L-1), with van 
Bemmelen factor (VBf). DOC as percentage of total organic carbon (TOC) and POC as 
percentage of TOC, and yields for DOC and POC (as t km-2 a-1) across dominant vegetation 
classes for southern New Zealand. 

 NTU SSC POM 
POM

% DOC POC VBf 

DOC 
% of 
TOC 

POC 
% of 
TOC 

DOC 
Yield 

POC 
Yield 

Indigenous Vegetation Class 
Alpine 6.8 11.6 1.9 9.6 1.1 1.2 1.4 40.7 59.3 5.8 15.7 
Forests 1.5 4.1 0.8 18.9 1.7 0.5 2.0 81.0 19.0 5.1 2.5 
Grassland 2.3 6.1 1.2 18.8 2.3 0.7 1.1 64.3 35.7 2.1 2.2 
Anthropogenic Vegetation Class 
Agriculture 3.4 6.1 1.5 18.2 3.7 0.7 1.4 80.6 19.4 1.9 0.7 
Forests 
(plantation) 1.8 1.6 1.0 52.5 2.6 0.7 1.0 76.3 23.7 1.1 0.3 

Mixed 2.7 2.9 0.8 27.5 2.3 0.4 1.1 85.7 14.3 6.6 0.6 
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Higher POC yields occurred along the Southern Alps, and lower yields were observed across 

the lowlands, near the coast, and where anthropogenic activity was most concentrated 

(Figure 4.4). These observations concur with the observed behaviour of alpine catchments 

across global high relief islands (e.g., Lyons et al., 2002; Gomez et al., 2003), like the South 

Island of New Zealand. High gradient alpine catchments with high annual rainfall enable 

rapid transport of sediment, whereas floodplains store sediments and act to minimise the flux 

of POC even when there is high erosion rates within the catchment, so that longitudinally, 

there is a general decrease in POC yield (Robertson et al., 1999; Lyons et al., 2002; Carey 

et al., 2005). No systematic downstream decline in POC in southern New Zealand rivers was 

observed, rather changes in POC concentration reflected a general decrease in POM% 

downstream and a switch between POC to DOC associated to changes in land cover from 

indigenous vegetation in headwater catchments to anthropogenic modification on the 

lowlands (Figure 4.5). Previous assessments of POC yields in New Zealand (e.g., Gomez et 

al., 2003; Carey et al., 2005; Lyons et al., 2005) have focused on high denudation and low 

anthropogenic disturbance areas; Carey et al.  (2005), for example, reported POC yields of 

1.3 – 168 t km-2 a-1 from 13 alpine catchments. Of the southern New Zealand catchments 

measured in this study, 90% had a POC yield of < 10 t km2 a-1. Catchments with yields > 10 

t km2 a -1 were only typical of high denudation catchments subject to frequent stochastic 

slope failure, and high rainfall that leads to higher POC yields (e.g., Lyons et al., 2002). 

Overall the POC yields of southern New Zealand are relatively modest compared to 

assessments of other high relief islands (see: Lyons et al., 2002).  
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Figure 4.5 Particulate organic carbon (POC) as percentage of total organic carbon (TOC) 
(POC% of TOC) for 84 southern New Zealand catchments classified by dominant vegetation 
class versus turbidity measured in units FNU. 

 

 

Of the 555 global rivers in the GEMS-GLORI database 54 had POC concentrations, these 

varied from 0.3 – 13.0 mg L-1; and equivalent yields of 0.0 – 6.2 t km-2 a-1, and 68% were 

<1 t km-2 a-1. DOC yields ranged from 0 – 16.1 t km-2 a-1, with a median of 1.4 t km-2 a-1, 

and POC contributed on average 37% of TOC (see: Meybeck & Ragu, 2012). By comparison 

to the major rivers discharging to oceans globally, southern New Zealand POC yields are 

similar to the global median of 0.4 t km-2 a-1. This distinctly Southern Hemisphere example 

illustrates that our POC yields are consistent with those of the Northern Hemisphere (e.g., 

Naiman & Sedell, 1979; Naiman & Sibert, 1978; Coynel et al., 2005; Wu et al., 2007; Zhang 

et al., 2009; Madej, 2015). 

 

4.4.3 Intrinsic and extrinsic catchment characteristics influence on POM  
Twelve independent variables (Table 4.2) were used as independent predictors in stepwise 

multiple regression modelling to build a predictive model for riverine particulate 

concentrations and carbon under baseflow (Table 4.5). POM concentration and SSC were 

predicted by a model that included lithology type, with schist lithology and mean annual 

rainfall explaining 26% of the variation in POM concentration and 22% of the variation in 

SSC. The weak model response observed here is due to the emphasis on baseflow generation 
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of material and is decoupled from SSC and suspended sediment yields (SSY) that are almost 

exclusively entrained during event flow (e.g., Mager et al., 2018). Even under baseflow, 

lithology influences SS and POM, but explains very little of the variation in the 

concentration of these particulates. Initial model outputs suggested that lithology 

confounded the results by priming the model output for dependence on lithological type. 

Geology across most of southern New Zealand is geographically constrained by the Southern 

Alps and tectonic metamorphism of silt and mudstones, and as such promotes a highly 

erodible environment which is a primary control on suspended sediment yield (Bloomberg 

et al., 2011; Hicks et al., 2011; Basher, 2013). Lithology in these initial runs is likely acting 

as a proxy indicator of autocorrelated landform elements i.e., terrain steepness, soil type, 

preservation and availability of unconsolidated alluvium and colluvium landforms, that 

contribute to sediment delivery (Hicks et al., 2004). To account for this, lithological 

categories were removed from subsequent model runs to explore the relevance of other 

controlling variables exclusive of the concomitant transport effect that lithology has on SS 

and POM. 

 

Rainfall was a common predictor for all particulate concentrations and POC yield (Table 

4.5; Figure 4.6) and confirms that like SS, POM is associated with reduced shear stress in 

wet conditions. Rainfall drives physical weathering of (inorganic) sediment and annual SSY 

across New Zealand (see: Hicks et al., 2011); and suggests co-dependence of organic matter 

concentrations on SS for transport under baseflow. Also plausible however, is a dependence 

on the same processes that control transport ability, for example, rainfall splash and overland 

hydrological pathways that lead to surface erosion (Gomez et al., 2003). Rainfall determines 

the level of field saturation, soil water contact time, and detachment potential, that prime 

hillslopes for erosion via surface and sub-surface processes (Hope et al., 1994; Hope et al., 

1997; Dawson et al., 2002; Aiken, 2014). In locations where high POM concentrations were 

observed without high SS, the dependence on rainfall is likely a representation of wetter 

catchments having a higher organic pool, for example, cool temperate forests or pastoral 

catchments at lower elevations on a catchment rainfall gradient (e.g., Gomez et al., 2010). 
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Table 4.5  Independent catchment characterises listed in hierarchal order of importance in 
linear model (determined by stepwise linear multivariate regression), with slope coefficients 
(b), model fit (r2) and D-W (Durbin-Watson statistic) used to determine statistical 
significance (*). Showing turbidity (as NTU and FNU), suspended sediment concentration 
(SSC), total suspended material (TSM), POM as a percentage of TSM (POM%), particulate 
organic carbon (as mg L-1 and as a yield t km-1 a-1, and as a percentage of total organic 
carbon). 

 
 Model Parameter b r2 D-W 
Turbidity (NTU) Severe Erosion 2.88 0.10 1.97 
Turbidity (FNU) Soil Type: Podzol 

Carbon Content: High 
5.44 

-4.73 
0.38 2.20 

SSC (mg L-1) Rain (mm a-1) 0.02 0.09 2.19 
TSM  
(mg L -1) * 

Soil Type: Podzol 
Carbon Content: High 
Rain (mm a-1) 
Snow and Ice (% cover) 
Soil Type: Raw 

24.02 
-13.50 
-0.15 
22.6 
4.96 

0.70 2.12 

POM% * Stream Order 
Slope: Rolling 10-20° 

Grassland (% cover) 
FRE3 
Rain (mm a-1) 

-7.49 
0.31 
0.41 
2.86 

-0.01 

0.46 2.03 

POC  
(mg L -1) 

SSY 
FRE3 

0.001 
-0.08 

0.27 1.47 

POC Yield  
(t km2 a-1) 

Rain (mm a-1) 0.003 0.15 2.09 

POC % of TOC * Gravel, Rock, Landslide (% cover) 
SSY (t km2 a-1) 
Erosion Moderate (% cover) 
Catchment Area (km2) 

0.57 
0.01 
0.24 

-0003 

0.54 0.93 

 

 

Soil characteristics were important variables for predicting TSM in southern New Zealand, 

in particular the presence of podzol and raw soil types, and high soil carbon. Podzol soils in 

New Zealand occur in high rainfall areas and, in combination with forest cover, leach organic 

acids releasing aluminium and iron complexes from soil organic matter (Hewitt, 2010). 

Podzols across southern New Zealand also have a thick humus layer with plentiful organic 

material that protects lower mineral horizons, although are susceptible to sheet erosion, and 

likely explains relevancy of high soil organic carbon soils (NZ Soil Bureau, 1968; Hewitt, 

2010). To assess the connection between TSM and podzol type soils, Particle Loading 

Coefficients (PLC) for SS and POM were calculated for aluminium (Al2+) and total iron 

(FeT). The PLC is a metric used to quantify particulate-bound nutrients and pollutants 

transported within the suspended load of rivers (Rügner et al., 2013). Metals are commonly 

particulate bound during transport due to charge affinity to the surface of suspended 
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particulates, especially clay-sized material, but also to organic materials like humic acids 

and organic coatings (Balkis et al., 2009; Citeau et al., 2003).  Al and Fe are dominant in 

podzol soils but also relevant to most common soils types that have high background levels 

of Al2+ and FeT due to their affinity with organic humic complexes (Juo et al., 1974; Drever 

& Stillings, 1997; Steffen et al., 2002; Hewitt, 2010; Buurman & Jongmans, 2005), and 

therefore provide opportunity to assess role of soil in transport of inorganic suspended 

sediment and POM. Median PLC of Al2+ and FeT for POM (0.06 and 0.19 respectively) were 

greater than the PLC of SS (0.02 and 0.08 respectively). Al2+ and FeT are associated closely 

to clays or organic matter by forming metal oxides (Buurman & Jongmans, 2005). The co-

migration of Al2+ and FeT complexes with POM suggests that the riverine POM may be 

associated to organic soil complexes at baseflow; but as PLC for SS were also significant, it 

cannot be discounted that Al and Fe may also have a mineral contribution from amorphous 

and crystalline inorganic oxides (Juo et al., 1974). 

 

Land cover types also influenced model ability to predict particulate concentrations, 

although it was only a modest contributor; snow and ice coverage, grasslands, and 

gravels/bare ground were the only land covers detected as being significant. The coverage 

of snow and ice was a strong predictor of TSM, due to intense physical weathering processes 

associated with alpine areas (Hales & Roering, 2005), and the ready supply of fine-grained 

material from glacial abrasion and rejuvenation of raw soils common in alpine environments 

(Larson et al., 2014).  Similarly, the positive relationship between catchment coverage of 

unconsolidated gravels, rock, and landslides to POC% of TOC suggests in areas of high 

denudation, the amount of organic carbon displaced from hillslopes is coupled to physical 

weathering processes. 

 

Slope of 10 – 20°, and grassland coverage both positively predicted POM% and although 

not statistically autocorrelated in the model, pastoral activity is common across rolling hill 

country with grassland cover that is less suited for more intensified land uses. Grassland 

types included low production (that is, non-irrigated) with short growing seasons and often 

managed for sheep and beef grazing, and depleted grasslands that are further limited by over 

grazing or burning (Thompson et al., 2003). These depleted grasslands often have bare soils, 

which can be easily mobilised and detached in storms, and the fluvially dissected rolling 

slope provides a short transport pathway for material delivery to streams. The lack of other 

land covers being associated as factors contributing to particulate concentrations in southern 
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New Zealand is likely a factor of the complex land use mosaic, where land cover elements 

like forest cover, or indigenous tussock grasslands are highly fragmented across sub-

catchments. 

 

Hydrological variables of stream order and flushing event frequency (FRE3) were predictors 

of POM%. Stream order had an inverse effect on the prediction of POM%: so that POM% 

was greatest in lower stream ordered catchments. Small tributaries have a higher degree of 

connection between hillslopes and stream channels, with higher potential for direct lateral 

contributions of organic material from riparian vegetation (Naiman, 1982; Robertson et al., 

1999; Madej, 2015). As stream order increases, the stream channel widens and reduces direct 

input from vegetation (Robertson et al., 1999; Wu et al., 2007). Wider lowland alluvial 

channels with significant portions of exposed riverbed material typically store fine sediments 

and provide readily available source of mineral material (Wohl et al., 2015), so that the effect 

is of increased storage potential, and a reduction in organic matter through biological uptake 

and reduced organic matter delivery.  

 

The other significant hydrological variable was the frequency of flushing flows (FRE3) that 

was positively related to POM%. The relationship between FRE3 and POM% suggests that 

POM transport is sensitive to the number of flow events in a catchment. The FRE3 is used 

as an index of flow-driven disturbance of ecological processes (Booker, 2015) and suggests 

POM% may rely on the frequent disturbance of the terrestrial surface to accumulate 

allochthonous organic material for transport between storms. Thus POM% to some degree 

may be hydrologically driven (e.g., weak response to rainfall). POM concentrations typically 

positively respond to discharge, that is increase under event flow (e.g., Hope et al., 1994; 

Coynel et al., 2005; Sabater et al., 2006; Hatten et al., 2012). Similarly, POM% increases as 

mean annual rainfall decreases because as catchments get drier POM becomes an 

increasingly dominant component of suspended load as inorganic denudation is reduced.  

 

The above analysis has illustrated that riverine organic matter is organised spatially and 

connected to broader hillslope processes, albeit difficult to predict at the catchment scale. 

Median POM concentrations across southern New Zealand demonstrate that organic matter 

in particulate form is persistently present under baseflow conditions and is a sustained flux 

of carbon to the ocean, at concentrations similar to the large global rivers. Organic matter is 

more conservative than SS (Naiman, 1982) and several factors determine the level that POM 
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accrues within a system; the type and amount of organic inputs, stream form, retention 

functions, and the frequency of events (Naiman & Sedell, 1979). TSM can be predicted by 

catchment characteristics at base flow, but the individual components of TSM (e.g., SSC 

and POM) are not as well predicted, and reflects the different sources, hillslope connectivity, 

and transport pathways of each particulate type relative to the other (Figure 4.6). 

 

 

 

Figure 4.6 Predictive models for suspended sediment concentration (SSC) and particulate 
organic matter (POM), total suspended material (TSM) as concentration, the proportion 
that is POM of TSM (POM%), and particulate organic carbon (POC) concentration, POC 
as a percentage of total organic carbon (TOC) (POC % of TOC), and POC Yield, for 84 
catchments across southern New Zealand. 
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4.4.4 Uncertainties of the stepwise method for model prediction 
The main uncertainties and potential sources of Type I errors in analysis are: 1) the number 

of predictors used in the stepwise regressions; 2) potentially inflated r2 values due to 

autocorrelations; and 3) the statistical inference processes of the stepwise procedure, 

whereby the algorithms operate by successive addition or removal of significant and non-

significant variables (see: Anderson & Burnham, 2002; Whittingham et al., 2006). Testing 

multiple predictors increases the risk of a spurious correlation (Type I error) as there is no 

error-level adjustment across the stepwise procedures (Mundry & Nunn, 2009). 

Furthermore, autocorrelation can inflate the r2 value and overestimate the fit of the model 

leading to misrepresented conclusions (Whittingham et al., 2006). Similarly, confidence in 

the final model can be affected by other models with similar r2 that were excluded by the 

stepwise produce (Whittingham et al., 2006). Some of these tendencies for stepwise 

regression to fit unusual predictors when a large number of predictors are input was reduced 

by running subsets of the data, that is, limiting to just lithological factors, or limiting to just 

land use factors, as to reduce the number of potential variables to less than the number of 

observations. The outputs were carefully examined for measures of correlation and 

multicollinearity coefficients, and rejected models that indicated high measures of 

autocorrelation. The authors recognise these limitations, and that these uncertainties are 

propagated through the potential selection of landscape controls on organic matter fluxes. 

The adopted approach remains broadly applied in similar research despite the limitations of 

the stepwise method (e.g., Williams et al., 2008; Wilson & Xenopoulos, 2008). Rather, the 

use of the stepwise method has been used here as an exploratory tool to identify potentially 

relevant landscape elements that influence particulate concentrations and organic flux, and 

that these landscape elements should be considered when directing future research into the 

controls on organic fluxes at regional and local scales.  

 

4.5 Conclusion 
Riverine organic matter concentrations across southern New Zealand are highly variable 

under baseflow, ranging from < 0.3 – 58.4 mg L-1, and are a small, but persistent component 

of total suspended material. The riverine organic flux contributes POC yields exported to the 

coast of 0.04 – 0.4 t km-2 a-1 into Fouveaux Strait, and between 0.4 – 2.7 t km-2 a-1 into the 

south-east Pacific Ocean. Under base flow, substantially more organic carbon was fluxed to 
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the ocean as DOC compared to POC. A a van Bemmelen factor of 1.3 is derived for southern 

New Zealand and determined that baseflow POC yields are largely consistent with 

previously reported global observations. Regression modelling revealed that under baseflow 

conditions the concentration of SS and POM is associated, albeit weakly, to lithology, 

rainfall, and transport competence that is typically controlled by event hydrology. Spatial 

variation in baseflow TSM was influenced by soil characteristics (especially the presence of 

podzol and raw soils types), mean annual rainfall, the presence of permanent snow and/or 

glacial ice. POM as a percentage of total suspended material is highly variable across 

southern New Zealand, ranging from <10%, or much higher at 50 – 80%, and controlled by 

both intrinsic and extrinsic catchment characteristics. POM as a percentage of TSM was 

controlled by stream order, rolling topography, grassland land cover, flooding frequency and 

mean annual rainfall.  

 

In southern New Zealand POM and SS are transported concomitantly within the fluvial 

system and at baseflow the concentration of each particulate is influenced by the same 

catchment characteristics. Organic carbon fluxes are associated strongly with denudation, so 

that areas of high physical weathering are also associated with higher particulate organic 

carbon fluxes. However, land cover type influences the type of organic carbon flux, with a 

switch to higher losses as dissolved carbon in anthropogenic-modified land covers (e.g., 

pastoral grasslands, compared to indigenous forests or grasslands). 
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5 Predicting suspended sediment 

concentration from nephelometric 

turbidity in organic-rich waters 
 

Research article published in River Research and 
Applications in 20183. See Appendix 11.2. 

 

5.1 Abstract 
Turbidity is an optical measure of water clarity, combining the net optical affect from the 

materials suspended and dissolved in a body of water. When a mixed composition of 

suspended inorganic and organic materials, and dissolved substances are present in a stream 

or river, turbidity measurements can be influenced by the interferences caused by the 

different organic and inorganic materials present; different turbidimeters are more or less 

sensitive to these interferences. Two different methods of turbidity measurement were 

assessed (EPA 180.1 and ISO 7027), and examined the effect of particulate organic matter, 

and dissolved colour from organic acids on the measurement of turbidity, and the ability to 

produce predictive relationships between turbidity and the suspended sediment 

concentration for a variety of Otago catchments, in the South Island of New Zealand. Results 

suggest that the presence of organic matter and dissolved colour causes interference with 

turbidity measurement, however turbidity measurement following ISO 7027 methods are 

less susceptible to interference for environmental monitoring purposes; but will yield 

significantly different rating equations between suspended sediment and turbidity compared 

to EPA 180.1 methods. 

 

 
3 Minor changes to the narration of this research article have been made to improve coherency between chapters. 
The use of ‘proxy’ has been replaced with ‘surrogate’, for where turbidity is described in the use of estimating suspended 
sediment concentration. 
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5.2 Introduction 
Turbidity, quantified in nephelometric units, is a widely used surrogate indicator of 

suspended particles in water bodies employed by researchers and environmental monitoring 

agencies (Kitchener et al., 2017). In the broadest sense water turbidity is inversely related to 

water clarity, in terms of light penetration and visual clarity, because the presence of 

suspended particles within a water column act to decrease light penetration and visual clarity, 

and cause light scattering, of which turbidity is a relative index of the side scattering of light 

(Davies-Colley & Smith, 2001). Poor water clarity diminishes light penetration through the 

water column and causes reduced photosynthesis and aquatic habitat quality. Whereas 

reduced visual clarity has a deleterious impact on recreational water use, aesthetic values 

and human health (Davies-Colley & Close, 1990; Smith et al., 1997; Davies-Colley & 

Smith, 2001; Sadar, 2004; Hughes et al., 2015). From an environmental monitoring 

perspective, turbidity is an inexpensive and convenient surrogate measure of the ‘cloudiness’ 

of water and provides an inexpensive relative index of the amount of particulate 

contaminants from land use disturbance, principally as suspended sediment concentration 

(SSC) (Ankcorn, 2003; Gray & Gartner, 2009). However, turbidity is not a physical quantity, 

rather, it is a convenient relative index, used to predict the quantity of suspended particulates 

in a water column (Davies-Colley & Smith, 2001; Kitchener et al., 2017). Its use is 

problematic, however, because particles have different light scattering properties, and these 

particulate properties (e.g., size, shape, and composition) contribute different amounts of 

light scatter that result in noisy or poor relationships between the physical quantity of 

suspended sediment (SS) and observed turbidity.  

 

Turbidimeters come in many different forms, but in principle operate by using a light-

emitting source that interacts with water and the materials suspended in the sample, with 

photons being absorbed or scattered (see: Omar & MatJafri, 2009). Typically, particulate 

material causes light scattering, whereas dissolved substances absorb light (Gippel, 1989). 

For example, organic particles and organic-coatings on inorganic sediments are strongly 

light absorbing, and this absorption is strongest on the shortwave length (blue) spectrum 

(Davies-Colley et al., 2014) resulting in a yellow-hue of the water body. However, the 

amount of light absorption from POM and dissolved substances depends on the light 

wavelengths used in the turbidimeters, so that not all instruments account for attenuation by 

POM and dissolved substances in the same way. Light attenuation may be especially 



 75  

problematic when dealing with stream water that contains a variety of particulate and 

dissolved substances, which vary with catchment characteristics and hydrology (Gippel, 

1989). As a result, there may be variability in turbidity response observed in natural water 

samples as result of changing sample composition, and is a long-recognised limitation of 

some turbidimeters (e.g., McCarthy et al., 1974; McCluney, 1975; USGS, 2005; Sadar, 

2004); however, such limitations and suitability of application are generally overlooked by 

users (Gippel, 1989). A comparison of twelve different nephelometric turbidimeters under 

laboratory conditions, for example, showed turbidity measurements varied five-fold between 

instruments (Rymszewicz et al., 2017).  Such limitations of turbidimeter suitability and 

vulnerability to dissolved optical properties are not an issue if turbidity is being used to 

assess suitability for drinking water; but this may be an issue when monitoring for 

environmental standards in natural river systems. For example, cool temperate rainforests 

leach organic acids and the resultant absorption of light in the blue spectrum, and resultant 

yellow hue may be inaccurately determined as elevated turbidity. Thus, turbidity is a 

complex indicator that is a function of light absorption and scatter and responds to both 

natural and disturbed elements in the water column, so collection of turbidity data needs to 

be carefully matched to the purpose of monitoring. 

 

Light absorption or scattering is a function of light transmittance through a fluid, the 

reflectivity of the material, and the particule size (Gippel, 1995; Ankcorn, 2003; Omar & 

MatJafri, 2009). Light is either absorbed or scattered through Rayleigh or Mie scattering, or 

geometric optics. These models of optical theory assume a spherical particle, where Rayleigh 

scattering is limited to small non-absorbing spherical particles (usually in the range of 2–75 

nm). More typical of the refraction that occurs in suspension in water is Mie scattering, 

where light is absorbed or scattered from non-absorbing spherical particles of unlimited 

sizes, but are usually in the size range of 20 nm – 765 µm (Kitchener et al., 2017). For 

particles > 200 µm light refraction, reflection, and absorption is explained through geometric 

optics theories, which are most applicable when the wave length of the light source is less 

than the particle size of the incipient surface (Kitchener et al., 2017). When translated to 

measurements of turbidity, these optical properties strongly influence the type and direction 

of light scattering, and are contingent on the light wavelength and detectors used in 

turbidimeters to measure the light scattering.   
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The relationship between turbidity and suspended particles, or the suspended sediment 

concentration (SSC), depends on the particle size distribution and other sediment 

characteristics of the suspended material (Lewis et al., 2007). If suspended particles do not 

differ in their physical properties, as their concentration varies, a linear relationship between 

turbidity and SSC should exist, as an increase in turbidity usually relates to a predictable 

increase in SSC (Gippel, 1989). In practice, however, non-linearity occurs between turbidity 

and SSC as a result of high scatter in turbidity data due to differing amounts of light side-

scattering from suspended particles. Such substances that are optically different to 

mineral/inorganic particulates include: organic matter and other floating debris, algae, air 

bubbles and coloured dissolved organic matter (CDOM) (Davies-Colley & Nagels, 2008; 

Omar & MatJafri, 2009). Thus, turbidity measurements combine the net optical effect of 

particulates (both organic and inorganic) as well as any dissolved material; resulting in 

interferences with the desired use of turbidity measurements is to predict the (inorganic) 

SSC.  

 

Clay, silt, organic and inorganic matter, soluble coloured organic compounds (i.e., CDOM), 

and plankton are all components present within natural flowing waters that contribute to 

turbidity, and each has distinctive optical properties that may influence turbidity 

measurements (Table 5.1) (Gippel, 1995; Sadar, 1999; Ankcorn, 2003). Dissolved organic 

acids and CDOM are particularly problematic to turbidity measurements. The presence of 

CDOM in terrestrial water bodies causes a yellow-tinted colour in the river waters, which 

has a negative influence on some turbidity measurements, although results vary depending 

on the CDOM concentration (Gippel, 1989; Gippel, 1995; Pavelich et al., 2002). Thus, if 

the amount of inorganic SS in a water sample is being predicted, it is contingent on turbidity 

data not being vulnerable to influences introduced by the presence of other light refracting 

or absorbing properties in the water.  When the optical characteristics of particles vary, the 

result is high scatter in plots between turbidity and SS, causing weak relationships and 

reducing the ability for turbidity to predict SSC (Gippel, 1989). These effects may be further 

influenced by the presence of particulate organic matter (POM), which have a different shape 

and density compared to inorganic minerals, and thus scatter light differently. Organic matter 

includes plant fragments, organic soils, colloids, faunal casings and a variety of other 

organically-derived components, that may be either allochthonous (e.g., in floods) or 

autochthonous (e.g., under base flow) in source. Inorganic particles scatter light, whereas 

organic particles tend to absorb light, particularly in the short-wave portion of the light 
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spectrum (Davies-Colley & Smith, 2001).  Thus, when rivers contain high levels of organic 

matter, particularly under event flow conditions, the result is for an opaque, brown, or 

‘muddy’ appearance. The amount of organic matter, as CDOM or POM, in rivers is highly 

specific to catchment characteristics, and may reflect land use disturbance associated with 

pastoralism or forest clearance, or natural processes of carbon cycling through wetlands, soil 

leaching, or high sources of particulate organic matter within the catchment (see Chapter 4). 

 

 

Table 5.1 Summary of the effects from different influences on accurate turbidity readings 
and the potential bias (positive or negative) effects. (Sources: Sadar, 1999: 2004). 

 
Influence  Details Effect on turbidity 
 
Light absorption 

 
Matrix of light absorbing particles prevent light 
reaching the detection system 
 

 
Negative bias 

Particle Size Larger particles scatter longer waves length of light 
more effectively 
 

Positive/negative bias 

Smaller particles scatter short wavelengths of light 
more effectively 
 

Positive/negative bias 
 

Bubbles Bubbles affect the measurement accuracy 
 

Positive bias 

Sample cell variation Scratches and imperfections on sample cells can cause 
light to be refractions and reflections 
 

Positive/negative bias 

Stray light Light that is measured by the detection because of 
sample cell imperfections, internal reflection, and 
contamination from dust or electronic noise 
 

Positive bias 

Particle settling Bias results from rapid settling and depends on the 
length of time to perform a measurement 
 

Positive/negative bias 

Instrument Degradation of instrument optical performance 
 

Positive/negative bias 

Contamination Introduction of stray matter from bed disturbance or 
other sources. 
 

Positive bias 

 

 

The objective of this study is to examine the effects of two turbidimeters on the ability to 

predict SSC from natural river samples with regards to differences in POM that occur in 

differently vegetated catchments. Previous studies have examined the variability between 

turbidimeters (e.g., Hongve & Akesson, 1998; Barter & Deas, 2003; Lewis et al., 2007; 

Rymszewicz et al., 2017); however, the effects of such interferences on predictive 
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relationships between SSC and turbidity have not been considered with regard to the 

influence of organic-rich riverine suspended loads. The study compares the response of two 

different turbidimeters and the predictive relationships between turbidity and SSC, for 

natural river samples that includes rivers under base flow and event flow conditions, as well 

as variable POM concentrations as a way to examine the effect of organic particulates on 

turbidity.   

 

5.3 Methods 
Seventy-eight samples were collected from a headwater catchment undergoing plantation 

forestry clearance in Otago, New Zealand (45.83oS 169.72oE).  The Glendhu (GH2) 

catchment is part of a long-term paired catchment study established to understand the effects 

of plantation forest development on ground formerly occupied by indigenous snow tussock 

(Chionochloa rigida) (see: Fahey & Payne, 2017). An ISCO automatic water sampler 

collected daily 500 mL water samples between April–September 2017, as a part of a high-

resolution study into SS and POM. A further eight catchments (Table 5.2) in Otago were 

also sampled that included a range of vegetation and land use covers, from relatively pristine 

alpine catchments (e.g., Dart/Te Awa Whakatipu, Rees/Pua Hiri, and Shotover/Kimi-ākau) 

to pastoral agricultural and native grassland catchments (e.g., Deep, Lee and Taieri 

catchments). The catchments range in area from a small headwater tussock catchment (2.1 

km2) in the Glendhu (GH1) catchment, up to the moderately-sized Taieri Catchment (5,706 

km2).  Grab samples (1.5 L) were collected from Deep Stream, Lee Stream, Taieri River, 

and the GH1 catchment during the austral winter and spring of 2017, whereas the four rivers 

that drain the Southern Alps of New Zealand were sampled (1–1.5 L) episodically between 

October 2012 and September 2017 over a range of flow conditions between October 2012 

and September 2017. 

 

The lithology of all catchments is comprised of Permian to Triassic aged schist (TZIII or 

TZIV) from the Caples and Rakaia terranes, except the Taieri, which has Miocene-Eocene 

terrestrial siltstones and sandstones in the north from the Hawkdun formation, and isolated 

Miocene extrusive volcanics from the Dunedin Volcanics Group (Edbrooke et al., 2014). 

The catchments were selected on the basis of their percentage cover of indigenous grassland 

(tall snow tussock), so that there was a selection of tussock dominated, mixed indigenous 
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vegetation, and exotic pasture catchments. A tussock land cover was selected specifically 

because previous work has observed frequent organic stained runoff, with a distinct yellow 

hue in GH1 (see: Chapter Three, Bright & Mager, 2016). 

 

 

Table 5.2 Catchment characteristics for the rivers that were sampled for suspended 
sediment, particulate organic matter and turbidity. Land cover classifications from the Land 
Cover Database (v4.1) (Landcare, 2015). 

River 
Area 
(km2) 

Stream 
Order 

Discharge 
(m3 s-1) 

Rainfall 
(mm a-1) Land Cover 

Dart/Te Awa 
Whakatipu 

586 5 76.7  4,065 Indigenous forest (30%), tussock (24%), 
herbfield (16%), bare ground (16%) and 
12% ice. 

Deep 412 5 4.5 725 Pasture (53%) with tussock (36%) and 
grazed tussock (7%). 

Glendhu (GH1) 2 2 0.06 1,300 Tussock (80%) with pockets of indigenous 
scrub. 

Glendhu (GH2) 3 2 0.04 1,300 Cleared ground (75%) and plantation forest. 
 
Lee 

 
314 

 
5 

 
2.6 

 
786 

 
Pasture (89%) with pockets of scrub, 
tussock and forestry. 

Rees/Pua Hiri 285 5 25.8 2,488 Tussock (57%) with indigenous forest 
(10%), herbfield and indigenous scrub. 
20% bare ground or alluvium. 

Routeburn 82 4 13.5 3,562 Tussock (32%), indigenous forest (30%) 
and herbfield (21%), bare ground/alluvium 
(11%). 

Shotover/Kimi-
ākau 

1099 6 49.6 2,018 Tussock (72%) with pockets of herbfield 
and indigenous forest. Bare 
ground/alluvium (8%). 

Taieri 5706 6 35.6 751 Pasture (47%) tussock (22%) and grazed 
tussock (14%). Pockets of exotic forestry 
(5%). 

 

 

 Suspended sediment and POM concentrations were calculated following standard methods 

(see: ATSM, 2002), of filtering water samples through pre-washed and dried 0.7 µm glass 

fibre filters.  These filters were oven-dried at 105°C for 24 hours, and weighed and re-dried 

three times. The glass fibre filters were dried in a muffle furnace at 500°C for 30 minutes, 

and reweighed to determine the loss on ignition, which is an index of POM (see: Grove & 

Bilotta, 2014). Samples below the method detection limit of 0.3 mg L-1 were excluded from 

the data set. 

 

Two nephelometric methods were used to determine turbidity following EPA 180.1, and 

ISO 7027 methods. EPA Method 180.1 uses a tungsten lamp light source, with a wavelength 
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of spectral peak response between 400–600 nm, whereas ISO 7027 uses a near infrared light 

source with a wavelength of 860 nm (Gippel, 1989; Hongve & Akesson, 1998; Ankcorn, 

2003; Sadar, 2004). The tungsten light source produces a number of light wavelengths that 

improves detection of smaller sized particles, but is susceptible to the effects of CDOM 

(Omar & MatJafri, 2009). The ISO 7027, however, uses a monochromatic light (e.g., a light 

emitting diode (LED)) that produces a narrow band of light and is less susceptible to 

inference from CDOM (Gippel, 1995; Sadar, 1999; Omar & MatJafri, 2009; Khairi et al., 

2015), however, the narrower light wavelengths of the ISO 7027 method is less sensitive to 

smaller particle sizes (Gippel 1989; Omar & MatJafri, 2009).  

 

Two turbidimeters are compared, HACH 2100P and HACH 2100Q-is, both calibrated to the 

manufacturers specifications with formazin standards. Calibration was determined by the 

arithmetic mean of 5 measurements of the 10, 20, 100, 800 NTU formazin standards, and 

repeated three times. Equipment accuracy and precision were determined using distilled 

deionized water (DDW) and a series of natural water samples ranging from low to high 

turbidity. Samples were agitated between readings to prevent particle settling. The reported 

units for the Hach 2100P is NTU, and FNU for the Hach 2100Q-is. Samples from the Dart/Te 

Awa Whakatipu, Rees/Pua Hiri, and Shotover/Kimi-ākau rivers collected during storm flow 

required dilution to accurately determine turbidity, and were diluted with ultrapure water 

through a series of 10 dilutions following the standard USGS (2005) method, so that 

turbidity was able to be determined in the range of < 40 NTU as recommended by the EPA 

180.1 method. 

 

Three of the alpine catchments (Dart/Te Awa Whakatipu, Rees/Pua Hiri, and 

Shotover/Kimi-ākau) were sampled under storm flow conditions. Forty litres of water were 

collected into a plastic container at each site, and a subsample retained for turbidity and SSC 

concentration measurements. The remainder of the storm flow samples were used for a 

settling experiment to assess the influence of fine particulate on turbidity. The settling 

velocity (w) was determined using a modified Stokes’ Law (from Ferguson & Church, 2004) 

(eq. 1).   
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𝑤 = !"#!

$"	%	'().+,$!!"#$)%.'	
         (eq. 1) 

   

where: R = 1.65 (ratio of fluid to particle densities)  
 g = acceleration of gravity (9.8 m s-2) 

D = particle diameter (in m) 
C1 = dimensionless constant of 18 
C2 = dimensionless constant of 1 for natural grains 
v = kinematic viscosity of water (1.235 x 10-6 m s-2 at 12ºC)  
w in units of m s-1 

 

 

Storm samples were left for 134 hours, which is the time required for an equidimensional 

quartz density particle of 1 µm particle to settle 0.35 m in a standing water column, as 

determined using equation 1. Once settled, a 100 mL sample was decanted from the top of 

the standing water and used as a naturally-settled sample for turbidity comparison with the 

filtrate water sample. The filtrate water samples are derived from the residual water retained 

from filtering sub-samples of river water through a 0.7 µm glass fibre filter. The turbidity of 

filtrates was determined using the HACH 2100P and HACH 2100Q-is turbidimeters and 

compared to the naturally-settled unfiltered samples. The percentage that fine particulates 

(FP) (e.g., < 0.7 µm filters, or < 1 µm for naturally settled water) contributed to the overall 

turbidity of the sample was determined using equation 2 from Gippel (1989): 

 

 

𝐹𝑃	𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 	
𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦	𝐹𝑖𝑙𝑡𝑟𝑎𝑡𝑒

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦	𝑇𝑜𝑡𝑎𝑙	𝑆𝑎𝑚𝑝𝑙𝑒 	× 	100									(𝑒𝑞. 2) 

 

5.4 Results 
5.4.1 Turbidity and suspended sediment 
The turbidity and SSC relationship at Glendhu (GH2) showed a poor statistical fit (see: 

Chapter Three, Bright & Mager, 2016) (Figure 5.1a). Under a range of flow conditions, there 

was a good relationship between total suspended material (TSM) and turbidity (NTU and 

FNU), (r2 = 73% and 75% respectively), however, there was a statistically significant 

difference in the slope coefficients of these regression relationships (2.73 for NTU compared 

to 0.49 FNU); signifying a different turbidity response dependent on nephelometric method 
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(Figure 5.1).  The regression relationships determined in the GH2 catchment between the 

different fractions of suspended load and turbidity (as NTU and FNU) are statistically 

different with turbidity as NTU producing steeper regression equation slope coefficients 

compared to the FNU coefficients (p value < 0.001 of slope test). The relationships between 

turbidity and POM are the strongest (81% and 79%, Figure 5.1c), suggesting that POM 

relates better to turbidity than the inorganic SS (Figure 5.1a versus Figure 5.1c). The 

relationship between TSM and turbidity (as NTU and FNU) likely reflects the high 

proportion of POM that is included as a component of TSM, because in the Glendhu 

catchment POM dominates particulate flow (Table 5.3). 

 

 
Figure 5.1 Relation of suspended matter metrics to turbidity for an organic-rich stream. 
Linear regression relationship between turbidity (in FNU (triangle) and NTU (circle) units) 
relative to a) suspended sediment concentration (SSC), b) total suspended material (TSM), 
and c) particulate organic matter (POM) for 78 samples from the Glendhu Experimental 
Catchment GH2, which is undergoing forest clearance. 
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The alpine rivers have a high suspended sediment load under base flow conditions (Table 

5.3) and POM is usually <5% of the TSM under all flow conditions, with the exception of 

the forested Routeburn catchment, which has a low SSC (< 2 mg L-1) that under base flow 

conditions is comprised of ~56% POM.  For the large alpine rivers, there is a strong 

relationship (r2 > 89%) between turbidity (as NTU) and SSC, with slope coefficients 

approximating 2 (Figure 5.2), a relationship typical of New Zealand rivers (see: Hicks et al., 

2004).  These relationships between turbidity (as NTU) and SSC for the Dart/Te Awa 

Whakatipu, Rees/Pua Hiri, and Shotover/Kimi-ākau rivers are strong relative to the SSC-

turbidity relationship observed at GH2. The regression slope coefficients of the relationships 

between turbidity (as NTU and FNU) with SSC in GH2 are 1.1 and 0.7 respectively, 

suggesting that these do not follow what is typically observed in alpine New Zealand rivers. 

Furthermore, the regression coefficients between turbidity (as NTU) and SSC for GH1, 

Deep, Lee, and Taieri rivers are 1.87, 0.98, 1.58, and 1.33 respectively; like GH2 these rivers 

have high POM export as a portion of TSM, which likely affects the predictive ability of 

SSC-turbidity relationships, even when accounting for organic matter through the laboratory 

methods. Non-parametric statistical analysis of the time series data from the GH2 catchment 

shows that the turbidity values determined using the HACH 2100Q-is are statistically higher 

(p-value <0.05) than the HACH 2100P, with median values of 3.06 and 1.96 respectively. 

Of the 145 samples collected between April and September 2017 (in GH2 catchment), there 

are 126 occurrences where the HACH 2100Q-is produced a higher turbidity value than the 

HACH 2100P, by 10% or more. 

 

Table 5.3 Median suspended material concentration (suspended sediment concentration 
SSC; particulate organic matter POM) and turbidity (NTU) reported for alpine rivers in 
Otago observed over all flow conditions, and median suspended material concentration and 
turbidity reported for organic rich rivers under all flow conditions for other selected Otago 
catchments. 

River 
SSC 

(mg L-1) 
POM 

(mg L-1) 
POM% 
of TSM 

Turbidity 
(NTU) 

Number of 
Samples 

Alpine Rivers      
Dart/Te Awa Whakatipu 193.2 3.4 <2% 85.9 11 
Rees/Pua Hiri 38.4 < 2.0 <5% 21.5 11 
Shotover/Kimi-ākau 59.2 2.5 <5% 21.0 11 
Routeburn 2.2 1.3 56 2.1 5 
Organic Rivers      
Glendhu (GH1) 4.7 2.9 39 1.6 376 
Glendhu (GH2) 7.2 6.0 56 3.6 445 
Deep 1.8 1.0 34 2.8 3 
Lee 7.7 2.3 24 6.8 4 
Taieri 16.4 1.4 8 14.0 17 
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Figure 5.2 Suspended sediment concentration versus turbidity for three alpine rivers. Linear 
regression relationship for three alpine rivers in Otago, New Zealand showing a strong 
relationship between turbidity (as NTU) and suspended sediment concentration (SSC).  Data 
taken from 15 discrete sampling times between 2012 and 2017 and includes storm flow 
events for a) Dart/Te Awa Whakatipu, b) Shotover/Kimi-ākau, and c) Rees/Pua Hiri. 

 

5.4.2 Effect of fine particulates on turbidity 
The two turbidimeters produced different turbidity values for natural waters, and showed 

different sensitivities to light scattering of colloidal-sized particles. A simple analysis was 

carried out to test the sensitivity of the two turbidimeters to sample filtrates where 

particulates > 0.7 µm had been removed by filtering through glass fibre filters. A series of 

samples from alpine rivers in Otago with high mineral components were compared to 

agricultural catchments within the Taieri Catchment, where POM was a significant source 

of TSM (Table 5.3). In these organic-rich environments, like the Deep Stream, POM 
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dominates the suspended load, and the effect of colloidal-sized particles on turbidity 

measurements was 7.5% for the HACH 2100P and 5.8% for the HACH 2100Q-is (Figure 

5.3). Where POM is an insignificant component of TSM (e.g., Dart/Te Awa Whakatipu, 

Rees/Pua Hiri, and Shotover/Kimi-ākau), the effect of colloidal-sized particles was minimal, 

being < 0.8% (Figure 5.3). For the forested Routeburn catchment, the effect of colloidal-

sized particles was 2.8% for the HACH 2100P and 2.1% for the HACH 2100Q-is. Thus, the 

effect of colloidal-sized particles on turbidity was lowest in alpine rivers, and increases in 

grassland-dominated catchments (Figure 5.3). 

 

 
Figure 5.3 Influence of small particulates on turbidity measurements. Comparison of 
turbidity of natural river samples relative to the amount of particulate organic matter 
(POM% of total suspended material, TSM) and the residual effect of CDOM or small 
particulates (< 0.7 µm) on turbidity. 

 

Rivers in flood are more turbid due to the entrainment of organic and inorganic particulates, 

and typically appear a ‘muddy brown’ colour. Suspended particles either absorb or reflect 

light proportional to their grain size and shape, and composition.  A further experiment was 

undertaken to assess the impact of fine material that occurs at the (arbitrary) dissolved-

particulate boundary (equivalent to 0.7 µm for filter pore size in this study) of flood-waters 

to assess the turbidity effect of non-settling particulates (i.e., < 1 µm for a spheroid quartz 

grain) on water turbidity, and the respective sensitivity of each turbidimeter to these 

suspensions. The flood samples from alpine rivers, when allowed to naturally settle, did not 
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exhibit the distinctive ‘yellow hue’ associated with CDOM, rather, a faint grey cloudiness 

was evident, suggesting that forward light scattering off mineral grains occurs systematically 

across all particulate sizes, even at the boundary between dissolved and particulate grains.  

The measured turbidity of the naturally settled samples (i.e., samples that were left for 134 

hours) ranged from 29–42 NTU and 32–58 FNU, and illustrated that particulates between 

the range of dissolved (0.7 µm) and in suspension (here defined as 1 µm) are very effective 

at light attenuation, and produced turbidity 5–10 times higher than that attributable to 

colloidal-sized particulates (i.e., < 0.7 µm).  The intense light scattering observed at < 1 µm 

is likely due to the high silicic mineral content of the clay particulates, being dominated by 

the mechanical disintegration of the indurated schist lithology, that is comprised of quartz 

and micaceous minerals. 

 

5.4.3 Performance of different turbidimeters 
Using a series of formazin standards, the turbidity values obtained from the two different 

meters showed reasonable between-meter numerical agreement, with higher uncertainty at 

the 800 turbidity standard (Table 5.4). The HACH 2100Q-is performed best over a series of 

replicates, compared to the HACH 2100P that showed some minor variation over all four 

formazin standards. In comparison to the manufacturers’ specifications for the two 

turbidimeters (Table 5.4), the precision or repeatability of instruments, and the accuracy is 

identical, except for the accuracy of the HACH 2100P being slightly lower than reported by 

the manufacturer. 

 

Table 5.4 Mean (± standard deviation (SD)) for turbidity measurements determined using 
the HACH 2100P and HACH 2100Q-is turbidimeters showing within-meter and between-
meter coefficient of variations (CV) for a dilution series of four formazin standards. 

 

 
HACH 2100P 

n=15 
Hach 2100Q-is 

n=15 
Within-meter CV 

(%)  
Turbidity 

(NTU FNU) 
Class 

Mean 
(±SD) Accuracy Precision 

Mean 
(±SD) Accuracy Precision 

HACH 
2100P 

HACH 
2100Q-is 

Between-
meter CV 

(%) 
10 10.3 

± 0.2 
0.2 0.1 10.1 

± 0.1 
0.2 0.1 2% 0% 1% 

20 20.4 
± 0.2 

0.4 0.2 19.9 
± 0.1 

0.4 0.2 1% 0% 1% 

100 99.9 
± 0.9 

2 1 99.1 
± 0.3 

2 1 1% 0% 1% 

800 836.3 
± 5.6 

17 8 794.2 
± 3.7 

16 8 1% 0% 3% 
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The turbidity values of the samples collected from the Otago rivers, including distilled 

deionised water (DDW) as an example of particle free water, shows that the variation 

between the different turbidimeters is less for samples of moderate to high turbidity, and that 

greater variability between meters is observed for low turbidity samples (Table 5.5), where 

a large amount of variability exists at the lower turbidity values. The within-meter coefficient 

of variation suggests a similar pattern, with samples of moderate to high turbidity showing 

less variation between replicates of the same sample. The HACH 2100P performed worse 

on the samples of DDW compared to the HACH 2100Q-is, but for the other samples, both 

meters showed similar within-meter variation.  

 

Table 5.5 Mean (± standard deviation (SD)) turbidity values, and minimum and maximum 
values for the combined turbidity data from both the HACH 2100P and HACH 2100Q-is 
turbidimeters for different environmental samples and distilled deionised water (DDW), 
showing the between-meter and within-meter coefficient of variation (CV). 

      Within-meter CV (%) 

Sample 
Turbidity 

Class 

Mean Turbidity 
(± SD) 
n=150 Min. Max. 

Between-
meter CV 

(%) 
HACH 
2100P 

HACH 
2100Q-is 

DDW Low 0.32 (0.2)  0.15 1.06 62% 49% 12% 
Glendhu (GH1) Low 0.44 (0.1) 0.24 0.85 22% 21% 22% 
Glendhu (GH2) Low 0.80 (0.17) 0.53 1.25 21% 12% 15% 
Routeburn Moderate 29.58 (5.4) 20.3 42.4 18% 10% 12% 
Deep Moderate 33.58 (3.7) 27.0 39.20 11% 4% 5% 
Lee High 176.63 (17.9) 140.0 208.0 10% 4% 5% 
Taieri 1 High 246.01 (24.9) 193.0 298.0 10% 6% 6% 
Dart 1 High 262.11 (21.3) 225.0 302.0 8% 3% 4% 
1Storm flow samples 
 

5.5 Discussion 
5.5.1 Turbidity, suspended sediment, particulate organic matter 
Given that turbidity is a commonly used surrogate for determining river SSC (e.g., Hughes 

et al., 2012) it is important to minimise any analytical uncertainty through methods and 

nephelometric applications. The potential influences of particle characteristics, CDOM, and 

fine particulates to turbidity measurements are well documented (e.g., Gippel, 1995; Hongve 

& Akesson, 1998) but are generally not considered in relation to the effects on determining 

turbidity and SSC relationships. As illustrated in the GH2 case study, there is a significant 

difference in the regression equations between riverine particulate concentrations and the 

two turbidimeters. The HACH 2100Q-is with its near infrared light source is less susceptible 

to organic matter influences on turbidity because light absorbance at these wavelengths is 
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minimal (Gippel, 1995; Sadar, 1999; Omar & MatJafri, 2009; Davies-Colley et al., 2014), 

whereas the HACH 2100P uses a wider range of visible wavelength light that is sensitive to 

the effects of organic matter, causing absorption and a potential negative bias influence on 

turbidity values (Omar & MatJafri, 2009). The steeper regression slope coefficients between 

the riverine particulates and turbidity (NTU) is likely a consequence of the disproportionally 

lower turbidity values, for the same particulate concentrations, compared to the turbidity 

(FNU) results, supporting the observation that the ISO 7027 method are less influenced by 

the absorption of light by CDOM. These results are consisted with previous field-based 

studies where different relationships between the SSC and turbidity in a variety of units have 

been observed (e.g., Hongve & Akesson, 1998; Barter & Deas, 2003; Lewis et al., 2007; 

Rymszewicz et al., 2017), although hydrological controls and variable sources are also key 

considerations (Gippel, 1995; Walling, 2005; Hughes et al., 2012).  Instrument variability is 

also a key source of potential uncertainty in monitoring programmes that rely on turbidity, 

because turbidity values are not transferable between instruments of different manufacture, 

as evident from the inter-instrument study of Rymszewicz et al. (2017). From a monitoring 

perspective, however, such influences are a commonly overlooked limitation on the use of 

turbidity as a predictor variable for SS, and must be considered prior to examining patterns 

of hysteresis or other environmental processes.  

 

5.5.2 Effect of fine particulates on turbidity  
The effect of fine particulates that occur at the dissolved-particulate boundary were 

examined by comparing the turbidity of filtered and unfiltered samples using two methods; 

filtration through a 0.7µm glass fibre filter, and by applying a settling velocity derivative of 

Stokes’ law. Results from this study showed that fine particulates contributed 1.2 – 7.5% of 

total turbidity and these were consistent with samples that contained a significant portion of 

POM. In samples where POM was < 5% of the suspended material, the effect of fine 

particulates to overall turbidity was <1%. Water (dis)colouration is primarily the result of 

dissolved CDOM and POM (e.g., humic substances and suspended organic debris) that 

absorbs blue light from the visible spectrum, shifting the perceived colour of the water to 

longer wavelengths, giving water a brown, yellow or red colour (Kirk, 1976; Timperley, 

1985; Smith et al., 1997; Davies-Colley & Close, 1990; Davies-Colley & Smith, 2001; 

Pavelich et al., 2002).  Such results are consistent with the work of Gippel (1989) who 

identified that CDOM contributed 20 – 60 % of sample turbidity at base flow, but during 
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events declined to < 10%. By accounting for the effects of CDOM, Gippel (1989) showed 

improvement in SSC–turbidity relationships when the turbidity of the filtrate was subtracted 

from the original turbidity value. Furthermore, Hogve and Akesson (1998) identified the 

reduction in turbidity values when using methods operating on light wavelengths 400–600 

nm, when adding humic acid (a type of CDOM) to samples. Although the contribution of 

CDOM was not as high in this study relative to previously reported values, the significance 

of absorption of light by CDOM remains evident through the differences observed between 

turbidimeters with SSC and POM, and the residue turbidity of filtered samples from organic-

rich rivers. 

 

The difference observed between the filtrate and naturally-settled samples is a function of 

the arbitrary boundary definition between particulate and dissolved load. Filter pore sizes 

range between studies, where pore sizes between 0.45 µm - 1.5 µm are common.  Based off 

these experimental observations, it is likely that material between the 0.7 – 1.0 µm size 

remained in suspension, and retained sufficient optical scattering to effect turbidity 

measurements. Material that comprises the fraction that passed through the 0.7 µm filter 

includes fluvic and humic acid, which comprise ~50 – 70% of the dissolved fraction, with 

other chemical compounds (e.g., fatty acids, amino acids, carbohydrates, and hydrocarbons 

(Hope et al., 1994)). Material >1 µm is arbitrarily defined as the particulate fraction, 

however, particulate material exists on a continuous scale and the 0.7 – 1.0 µm fraction is 

likely to comprise of very fine clay-humic-metal complexes (Hope et al., 1994), which are 

potentially responsible for the residual cloudiness of the naturally-settled samples.  Further 

work is warranted to explore what grain sizes have the greatest light scattering effects, but 

based on the observations here even fine granular material at the dissolved boundary has the 

potential to influence turbidity measurement. 

 

5.5.3 Turbidimeter performance 
This study showed that two turbidimeters, conforming to two different standard methods, 

performed well with numerically similar outputs on diverse river waters. Similar results were 

observed by Barter and Deas (2003) who identified minor variability between five different 

turbidimeters that all operated on different optical designs. However, the natural water 

samples collected by this study showed far more variation, particularly for low turbidity 

values. The precision of the HACH 2100P and HACH2100Q-is were similar for the low 
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turbidity samples; but the HACH2100P had much higher uncertainties when determining 

the turbidity of particle-free water (DDW). Particle free water (like DDW) is estimated to 

have a turbidity of 0.01 – 0.012 NTU, which is a consequence of molecular scatter that 

occurs as light interacts with water (Sadar, 1999). The average value across both 

turbidimeters obtained by this study of 0.32 is much higher, and perhaps reflects the 

impurities that can exist on the surface of the sample cell curvets that may cause additional 

scattering of light, and a positive bias (Sadar, 1999; Omar & MatJafri, 2009), this may have 

been a particular issue for the HACH 2100P which has an optical system designed to be 

more sensitive to low turbidity samples (USGS, 2005). Barter and Deas (2003) also 

identified variation ranging 6.6 – 44.1% over low to high turbidity samples, with variation 

between meters generally decreasing with increasing turbidity. The decreasing variation 

with higher turbidity was observed in the current study, and is likely the result of the 

turbidimeters optimal performance in the middle range of the 0 – 1,000 NTU and FNU 

operating range. 

 

5.5.4 Future research and conclusion 
The current study has identified that different nephelometric methods do not produce 

consistent predictive relationships to SSC in natural water samples. In particular, some 

turbidimeters are much more sensitive to CDOM, particularly in the presence of significant 

portions of POM. Turbidity in catchments with a high organic matter content do not produce 

strong predictive relationships to SSC, highlighting that for mixed composition samples, 

turbidity cannot be reliably used as a predictor for inorganic SSC. The suspended material 

composition (mineral inorganic material vs. organic material) of stream flow is rarely 

constant, and changes in response to numerous variations including the availability and 

transport of sediment and organic material; short-lived exhaustion over hydrographs, as well 

as connectivity to variable source areas. Therefore, the measurement of turbidity must 

consider the effects of a mixed composition, with emphasis given to the proportion of 

organic material being exhumed from the catchment. In catchments where organic matter is 

a significant component of the suspended load, turbidity may not be an effective indicator 

of SS, although accounting for some of the effects of dissolved organic substances may be 

possible by filtering samples, and retrospectively adjusting turbidity measurements. It may 

also be necessary that alternative indicators are needed to determine the SSC, such as 

developing rating curves between discharge and SSC, especially in catchments where SS 
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and POM are controlled by different hydrological processes. In situations where traditional 

turbidity to SSC relationships are used, it is imperative that the effect of various interferences 

on turbidity be considered.  
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6 Response of Nephelometric Turbidity to 

Hydrodynamic Particle Size of 

Suspended Fine Sediments 
Research article in published by International Journal 

of Sediment Research, 20194. See Appendix 11.2. 

6.1 Abstract 
Turbidity is used as a surrogate for suspended sediment concentration (SSC), and as a 

regulatory tool for indicating land use disturbance and environmental protection. Turbidity 

relationships to suspended material, however, show non-linear responses to particulate 

organic matter (POM), concomitant with changes in particle size distribution (PSD).  In this 

paper the influence of ultra-fine particulate matter (UFPM) on specific turbidity is shown, 

and its association with POM in suspended sediments from alpine rivers in the Southern 

Alps of New Zealand. The approach was two-fold: a field-based investigation of the 

relationships between SSC, POM, and turbidity sampled during event flow; and 

experimental work on hydrodynamic particle size effects on SSC, POM, PSD, and turbidity. 

Specific turbidity changes over event flow and are sensitive to increasing proportional 

amounts of sand, UFPM and POM in suspension. Furthermore, the UFPM is the size fraction 

(< 6 µm) where POM increases. The implications are that the slopes of SSC-turbidity 

relationships are fraught in locations that may be dominated by cyclic release of POM, or 

distinct pulses of fine-grained material. Locations where the SSC-turbidity slopes 

approximate 2, POM is usually < 10% of the total suspended load. However, when SSC-

turbidity slopes are < 1 this is likely caused by high amounts of side-scatter from UFPM 

concomitant with higher proportions of POM. Thus, the use of turbidity as a surrogate for 

determining SSC may have serious consequences to the measurement of representative 

suspended sediment data, particularly in locations where POM may be a significant 

contributor to overall suspended load. 

 
4 Minor changes to the narration of this research article have been made to improve coherency between chapters. 
The use of ‘proxy’ has been replaced with ‘surrogate’, for where turbidity is described in the use of estimating suspended 
sediment concentration. 
Since submission as a research paper, specific turbidity has been written as KN and KF to denotate the unitless nature of the 
metric, and represents turbidity measured from unit NTU and FNU. 
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6.2 Introduction 
Riverine suspended material is a mixture of mineral and biogenic material that are produced 

by catchment land disturbance and physical weathering. Understanding the sources and 

pathways of suspended sediment (SS) is one of the main approaches to determining physical 

weathering rates in geomorphology (e.g., Milliman & Meade, 1983; Walling & Fang, 2003; 

Turowski et al., 2010), however, quantifying material in suspension is also an indicator for 

environmental degradation (e.g., Davies-Colley et al., 2014). Thus, inquiry into suspended 

material in rivers operates principally in two ways: as a measure of erosion and mass wasting 

processes, and as an indicator of land disturbance, most often associated with the effects of 

land cover change (e.g., forest clearance) and ensuring aquatic ecosystem health (e.g., 

Davies-Colley & Smith, 2001). Quantifying SS is challenging, and standard methods require 

the collection of discrete grab samples and laboratory analysis; and so, its continuous 

measurement is laborious. Instead, researchers and environmental managers alike opt to 

quantify riverine SS using turbidity as a surrogate (e.g., Gippel, 1989; Foster et al., 1992), 

by establishing ratings between in situ turbidity and suspended sediment concentration 

(SSC) measurements. However, the physical characteristics of suspended material that is, 

particle size, shape, colour, density, and refractive index behave differently and produce 

different optical outputs, which undermine the precision of measured SS to turbidity 

relationships (Sadar, 1999; Kitchener et al., 2017). Despite the recognition of these different 

optical properties, nephelometric turbidity persists as a convenient measure in environmental 

monitoring programmes, as a surrogate indicator of land disturbance and SS. 

 

Suspended particulate load is usually < 2 mm in size, comprised mostly of silt (2 – 63 µm) 

and clay (< 2 µm) sized material (Owens et al., 2005; Omar & MatJafri, 2009). Of the 

material in suspension, it is the fine particulate material (< 63 µm) that is the major pollution 

concern, with fine particulates often produced by forest clearance, agriculture, construction, 

and mining (Wood & Armitage, 1997; Owens et al., 2005; Gray et al., 2010; Davies-Colley 

et al., 2014; Hughes et al., 2015). The fine particulate fraction, however, is a mixture of both 

inorganic (mineral) material (e.g., silt and clay), and colloidal organic matter composed of 

living organisms, organic waste, and degraded detrital organic material (Aiken, 2014; 

Slomber et al., 2016). Therefore, homogenous suspended material samples likely never exist 

in natural environments, rather a range of organic and mineral materials are always present 

due to terrestrial and fluvial processes, climate, and catchment characteristics (Stone & 
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Saunderson, 1992; Lewis, 1996; Walling, 2005; Bright & Mager, 2016 (see: Chapter Three); 

Bright et al., 2018 (see: Chapter Five)). Organic material has different optical properties 

compared to inorganic material, so optical measures, like turbidity, scatter light differently 

to organic particles, and introduce substantial uncertainties to the estimation of SSC. 

 

Such uncertainty arises because the degree of scattering caused by suspended particulates is 

controlled by particle properties size, shape, refractive index and density (Sadar, 1998). 

When particle properties vary significantly interference with a turbidimeter light source 

occurs, reflected as a negative or positive bias in the observed turbidity value (Gippel, 1989; 

Ziegler, 2002). Particles smaller than the wavelength of incident light exhibit a symmetrical 

scattering pattern with approximately equal amounts of light scattered both forward and 

backward, whereas larger particles scatter long wavelengths of light more readily (Sadar, 

1998; Sadar, 1999; Omar & MatJafri, 2009; Merten et al., 2014). Additionally, particle shape 

defines the type of scatter, in that the scattering created by plate shaped two-dimensional 

silicate crystals (i.e., phyllosilicates) are substantially higher than that of spheres of equal 

volume (Gippel, 1995; Davies-Colley & Smith 2001; Omar & MatJafri, 2009; Davies-

Colley et al., 2014). Therefore, when there are extreme variations in the composition of 

particle properties, precise turbidity measurements are likely impossible (e.g., Foster et al., 

1992; Clifford et al., 1995). 

 

The objective of this paper is twofold: firstly, to examine the importance and contribution of 

fine particulates (6 – 63 µm) and ultra-fine particulates (< 6 µm) on turbidity and the effect 

these have on turbidity measurements derived from different nephelometric methods (EPA 

180.1 and ISO 7027). Secondly, the study evaluates whether different size classes produce 

higher effective turbidity rating equations by examining specific turbidity over different 

particle size classes. Such work is needed to establish the effect of particle size and other 

interferences (e.g., organic material) on optical water quality and SS, which is acknowledged 

but rarely explained. Two approaches were employed; firstly, quantifying specific turbidity 

response over a hydrograph as a measure of natural changes in suspended load optical 

properties; and secondly, a laboratory-based settling experiment to examine specific particle 

size class effects on SSC-turbidity relationships. Actual riverine-derived SS collected under 

storm flow conditions were used in settling tube experiments, in contrast to previous studies 

that used deposited sediments (e.g., Gippel, 1995; Merten et al., 2014), and followed a 

procedure similar to that of Foster et al. (1992) and Holliday et al. (2003).  
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6.3 Method and Materials 
6.3.1 Field site 
The Southern Alps / Kā Tiritiri o te Moana are a rapidly uplifting mountain range in Aotearoa 

New Zealand that have some of the highest suspended sediment yields recorded globally 

(Hicks et al., 2011). These alpine catchments have a high instance of stochastic slope 

failures, which enhance the erosion potential of mineral-rich (inorganic) material. The 

lithology and metamorphism grade vary along the mountain range, but are principally 

composed of quartzo-feldspathic sandstone (greywacke), semi-schist, and schist of Permian 

to Triassic age (TZIII or TZIV) (Rattenbury et al., 2010; Edbrooke et al., 2014) (Table 6.1). 

All catchments in this region have been conditioned by past glaciation, but depositional 

glacial landforms are rare having been overprinted by mass movement and evacuation by 

subsequent fluvial processes.  

 

Data were collected from five headwater catchments (Dart/Te Awa Whakatipu, Rees/Pua 

Hiri, Shotover/Kimi-ākau, Ahuriri, and Haast/Awarua) in the southern portion of the 

Southern Alps, of New Zealand (Figure 6.1). The Dart/Te Awa Whakatipu, Rees/Pua Hiri, 

and Haast/Awarua catchments have small hanging alpine glaciers in their headwaters, which 

are a potential source of fine particulates. Additionally, fine sediment from the Te Horo 

landslip (reactivated December 2013) surges sediment into the Dart/Te Awa Whakatipu 

during heavy rain events (Cox et al., 2014). The Rees/Pua Hiri River sediments are also 

derived from slope failures, and pulses of sediment associated with creeping landslides 

(Cook et al., 2014). The Shotover/Kimi-ākau is underlain by highly fissile, fine-grained 

schists, which are easily eroded (Hicks, 1999; McSaveney & Glassey, 2002); 40% of its 

suspended load is likely from slope erosion attributable to high incidence of slow-creeping 

landslides (Crozier, 2010).  
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Table 6.1 Catchment characteristics. Mean annual discharge (Q) in m3 s-1, mean annual 
area-weighted rainfall (P) in mm a-1 from modelled data (see: Tait et al., 2006). Suspended 
sediment yield (SSY) is from rated and modelled studies and reported in t km-2 a-1. 

River 
Area 
(km2) 

Stream 
Order Q P SSY Main Lithology Land cover 

Dart/Te Awa 
Whakatipu 

586 5 52 4,065 2,2782 Rakaia terrane schist 
(41%), Caples terrane 
semi-schist (39%), 
Quaternary sediments 
(10%). Caples terrane 
unfoliated (9%). 

Te Horo Slip  

Indigenous forest (30%), 
tussock (24%), herb field 
(16%), bare ground (16%), 
snow and ice (8.9%). 

Main glaciers: Dart (7 km2), 
Whitbourn (4 km2), Hesse-
Marshall (3 km2), Curzon-
Hamilton (3 km2). 

Rees/Pua Hiri 285 5 261 2,488 1,1582 Rakaia terrane schist 
of Aspiring lithologic 
association (60%), 
Caples terrane semi-
schist (21%), Caples 
terrane schist (14%), 
Quaternary sediments 
(5%). 

Tussock (57%) with 
indigenous forest (10%), herb 
field, and indigenous scrub; 
20% bare ground or alluvium, 
snow and ice (3%). 

Main glaciers: Grant (2 km2), 
Jura (1 km2). 

Shotover / 
Kimi-ākau  
 

1,099 6 40 2,018 1,0193 

1,1862 

Rakaia terrane schist 
of Aspiring lithologic 
association (90%), 
quaternary sediments 
(6%). 

Tussock (72%) with pockets 
of herb field and indigenous 
forest. Bare ground/alluvium 
(8%), snow and ice (<1%). 

No glaciers. 

Ahuriri 1,284 7 24 1162 983 

1132 

Rakaia terrane semi-
schist (40%), 
unfoliated (28%), 
Quaternary sediments 
(29%). 

Tussock (65%) with scrub 
(4.7%), herb fields (5.2%) and 
forest (2.8%). Bare 
ground/alluvium (9.7%), snow 
and ice (<1%). 

No glaciers. 

Haast/Awarua 1,063 6 191 7617 4,0724 

4,2852 

 

Rakaia terrane schist 
(63%), Rakaia terrane 
semi-schist (31%), 
Quaternary sediments 
(5%) 

Forest cover (49%) with 
tussock (20.8%), herb fields 
(10%), and scrub (4%). Bare 
ground/alluvium (12.6%), 
snow and ice (4%, of which 
90% are in the Landsborough 
tributary). 

Main glaciers: Dechen (5 
km2), Strachan (4 km2), 
Hooker (4 km2), McCullaugh 
(3 km2), Brewster (3 km2). 

1 Rees/Pua Hiri is not gauged, this is an estimated mean annual flow. 
2 Modelled suspended sediment yield from SSY estimator of Hicks et al. (2011) 
3 Estimated suspended sediment yields from flow rating by Griffiths (1981) 
4 Measured suspended sediment yields reported by Hicks et al. (2011) 
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Figure 6.1 Location map for the Dart/Te Awa Whakatipu, Shotover/Kimi-ākau and Rees/Pua 
Hiri and the Haast/Awarua rivers. 

 

6.3.2 Sediment collection and particle size analysis 

A Sigma 900 automatic water sampler collected 0.5 L samples at 1-hourly intervals over 

three rainfall events: Ahuriri (Sep 2018 and March 2019) and Haast/Awarua (Feb 2019). 

Sample collection began prior to the onset of rainfall and sampled the ascending and 

descending limbs of the hydrograph. Samples were analysed for SSC, particulate organic 

matter (POM), and turbidity in units of NTU and FNU. Turbidity was determined using a 

HACH 2100P (method EPA 180.1) and HACH 2100Q-is (method ISO 7027) and reported 

in units of nephelometric turbidity units (NTU) and formazin nephelometric units (FNU), 

respectively, with an uncertainty of 1% (see: Chapter Five, Bright et al., 2018). These two 

nephelometric turbidimeters were selected as the different operating light sources provides 

opportunity for turbidimeter comparison, and referred to herein as turbidity (NTU) and 

turbidity (FNU). SSCs were determined using standard filtration methods (see: ATSM, 

2002) using prewashed and dried 0.7 µm glass fibre filters, dried at 105ºC, and weighed 3 

times or until filter weights converged.  POM was determined using a loss on ignition 

method where the glass fibre filters were furnaced at 500ºC for 30 minutes (see: Grove & 

Bilotta, 2014). All filter papers were weighed on a 4-point decimal balance, for a method 
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detection limit of 0.3 mg L-1 that represents the propagation of error through the consecutive 

weighing processes, due to the analytical errors associated with the precision of the balance.   

Bulk suspended sediment was collected from five rivers during the ascending limb of a 

hydrograph prior to peak flow, when peak suspended sediment was expected to occur. 

Material in suspension was left to settle for a minimum of 5 days, apropos to the amount of 

time required for a 1 µm spherical quartz particle to settle in standing water (see: Chapter 

Five, Bright et al., 2018). All collected sediment was dried at 40ºC, and a subset retained in 

river water. Particle size distribution (PSD) was measured using laser diffraction on a 

Malvern Panalytical Mastersizer 2000 and uptaken using a wet dispersion unit (Hydro2000) 

(see: Callesen et al., 2018). PSDs were calculated from dried bulk SS, and wet suspensions 

held within the original river water. Analysis of the PSD were run in triplicate and reported 

as an average. There were no significant shifts in distribution or percentage of ultra-fine 

particulate matter (UFPM) between wet and dry samples.  Comparisons of the cumulative 

frequency plots of the PSD of samples analysed with and without deflocculant showed no 

significant differences in overall PSD (as wt %), with a root mean square error <0.1. 

 

A settling tube experiment was implemented to sub-sample fine particulates of uniform 

hydrodynamic sizes. Each bulk SS sample dose was poured into a 1 L plastic tube filled with 

distilled and deionised water. Sediment samples were not pre-treated as flocculation was not 

observed during particle size analysis, as samples comprised of < 1% organic matter. To 

extract sub-samples of specific size intervals, Stokes’ Law (see: Ferguson & Church, 2004) 

was used to calculate the water depth and time needed to pipette a 20 mL sub-sample for 

each phi size (f) (where f = log2 mm) from 4.0 f (63 µm) to 10.0 f  (1 µm) in 0.5 f intervals. 

Sub-samples were analysed to determine turbidity (NTU and FNU), SSC (in mg L-1), and 

POM (in mg L-1) and as a % of total suspended material (POM%), and specific turbidity (K) 

that the ratio of turbidity (measured as NTU and FNU) to SSC, and therefore denoted as KN  

and KF for specific turbidity measured from NTU and FNU respectively (see: Gippel et al., 

2015). 

 

The dosage weight of sediment initially selected for the first experiment (15 – 20 g) was 

based on two requirements; firstly, a weight per volume of water that would return a SSC 

above the detection limit of the suspended sediment filtration method (0.3 mg L-1), and a 

weight per volume of water that would produce a turbidity value within the operating range 
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of the turbidimeters and limit the number of dilutions, with dilutions required at > 1,000 

NTU or FNU. The experiment was run five times at different dosage rates. The sand portion 

of the samples were not removed prior to the settling experiment to retain the natural PSD 

of the samples. 

 

6.4 Results 
6.4.1 General characteristics of event flow suspended sediment 
Fine particulate matter (FPM, < 63 µm) comprised a minimum 75% of the PSD of the bulk 

suspended sediment collected during storm events (Figure 6.2). The proportion of sand 

transported during discrete events varied between catchment samples and ranged from 7 – 

25%. The 10th percentile size fraction (D10) is a measure of the size profile of the smallest 

10% of particles; which ranged from 3 – 6 µm and suggests that UFPM constitute ~ 10% of 

the suspended load. Median particle sizes (D50) varied from 13 – 29 µm (Table 6.2). 

However, assuming the fixed density of quartz at 2.7 g cm-3 for sediment volume, the mean 

particle size as the mass moment (De Brouckere mean, D[4,3]) ranged from 25 – 56 µm and 

was larger than the D50, due to volumetric skewness of the PSD coarse (sand) tail. 

 

 
Figure 6.2 Cumulative particle size distribution for bulk suspended sediment samples 
collected from five New Zealand alpine rivers. Fine particulates (< 63 µm) comprised of at 
least 70% of the cumulative weight of suspended sediment, although the proportion of sand 
in suspension was highly variable between rivers (10–30%). 
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Table 6.2 Particle size distribution of bulk suspended sediment samples during storm events 
as determined by laser diffraction particle size analysis.  

River 
Sand 

(wt %) 
Silt  

(wt %) 
Clay  

(wt %) D10 D50 D90 D[4,3] D[3,2] 
Ahuriri [Sep-18] 13.3 76.8 10.0 3.8 16.5 73.9 38.1 7.8 
Ahuriri [Mar-19] 14.3 76.9 8.8 4.3 19.8 78.2 42.1 8.4 
Dart/Te Awa Whakatipu 12.4 80.2 7.4 4.7 20.1 67.1 36.2 9.4 
Haast/Awarua (Feb-19) 7.4 78.9 13.7 3.0 12.7 50.2 25.5 6.3 
Rees/Pua Hiri 24.4 70.6 5.0 6.2 28.9 103.5 55.7 12.9 
Shotover/Kimi-ākau 11.6 81.7 6.7 5.2 22.5 64.3 42.4 10.4 

 

 

6.4.2 Specific turbidity across hydrodynamic particle size classes 
To test the efficiency of the two turbidimeters, the bulk SS collected during three event flows 

from the Dart/Te Awa Whakatipu, Rees/ Pua Hiri, and Shotover/ Kimi-ākau rivers was used 

in settling tube experiments. The data from all settling tube experiments for all suspension 

size classes were pooled, and the linear relationships compared. Both turbidimeters 

demonstrated a strong linear response (r2 > 0.6 linear relationship) between SSC and 

turbidity (NTU and FNU) for the SS suspensions across the five different grain size 

categories (coarse silt to clay; 2 – 63 µm) (Table 6.3). The presence of fine particulates 

reduced the slope coefficient of the linear relationship for both turbidimeters (Table 6.3; 

Figure 6.3). The SSC-turbidity (as NTU and FNU) response for coarse silt (31 – 63 µm) and 

clay (< 3.9 µm) shows that turbidity as NTU and FNU behave similarly within particle size 

classes (Figure 6.3). However, there is a difference in SSC-turbidity (as NTU and FNU) 

slope coefficients for different particle size classes, where larger particle sizes produce 

greater SSC-turbidity coefficients. 
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Figure 6.3 Suspended sediment concentration and turbidity relationships for coarse silts, 
and clay size particles derived from bulk suspended sediments collected from three alpine 
headwater catchments in southern New Zealand. Turbidity is reported in units of NTU and 
FNU. 

 

 

The sensitivity of the two turbidimeters was calculated following the method of Merten et 

al. (2014) and calculated as the ratio of turbidity to the SSC. This ratio is more commonly 

referred to as specific turbidity (K), so that the greater K, the more sensitive the turbidity 

sensor is to changes in sediment concentration (Merten et al., 2014). Specific turbidity is 

inversely proportional to the regression slope coefficient of an SSC–turbidity plot, when the 

slope coefficient is linear and passes through the origin. Thus, changes in the specific 

turbidity likely reflect differences in particle size, mineralogy, or composition of the 

suspended material indicating a change in sediment properties (e.g., Wass & Leeks, 1999). 

Both turbidimeters showed increasing sensitivity as grain size decreased, (i.e., an increase 

in KN and KF as grain size decreased) although across all grain size categories the 

HACH2100Q-is turbidimeter generally had a greater sensitivity to changes in SSC. The 

standard deviations for turbidity (as NTU and FNU) were calculated for both turbidimeters 

(Table 6.3) and highlights the heterogeneous nature of the sediment used. Therefore, some 

variation in sensitivity for the HACH2100P and HACH 2100Q-is is likely due to remaining 

variation of the PSD after sorting in the settling tube and shape within each particle size class 

sampled; or water colour which is relevant for the HACH2100P turbidimeter. The standard 
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deviation was greatest for larger particle size classes which comprise of a wider band of 

particle sizes because phi classes are a log2 scale within each class (see: Table 6.3), 

highlighting the compounding effect caused by non-homogenous samples. 

 

 

Table 6.3 Suspended sediment-turbidity relationship for bulk suspended sediment 
subsamples determined for discrete hydrodynamic grain size classes using two different 
turbidimeters. The sensitivity (Specific Turbidity as KN and KF, for turbidity in NTU and FNU units 
respectively) is the ratio of turbidity to suspended sediment concertation (SSC), which is the 
inverse of the regression slope coefficient (b). Each class statistic is derived from 30 
measurements, apart from clay, which has 75 measurements. The goodness of fit coefficient 
(r2) is derived from the linear regression analysis of turbidity and SSC. 

Sensor Statistic 

Grain Size Class 
Coarse 

Silt 
Medium 

Silt Fine Silt 
Very Fine 

Silt Clay 

HACH2100P 

r2 0.81 0.88 0.95 0.98 0.96 
b 2.38 1.85 1.28 0.86 0.65 
Specific Turbidity (KN) 0.38 0.52 0.77 1.09 1.31 
Std Dev1 23.6 17.5 20.8 15.5 5.33 

HACH2100Q-is 

r2 0.83 0.90 0.95 0.97 0.96 
b 2.17 1.7 1.19 0.80 0.59 
Specific Turbidity (KF) 0.43 0.58 0.86 1.25 1.64 
Std Dev1 17.4 16.6 16.0 11.5 5.1 

1Average standard deviation for each size class as determined as the variation over 5 replicate turbidity measurements per sample.  

 

 

6.4.3 Composition effects on SSC – turbidity 

Particle size affected KN  and KF across the fine particle classes (6 – 63 µm), so that KN  and 

KF were inversely correlated with particle size and maintained a relatively consistent linear 

relationship to particle size (µm). The response of  KN  and KF to particle size does, however, 

became unstable at the UFPM boundary (< 6 µm, 7.5 f) (Figure 6.4). The UFPM boundary 

also corresponded to a notable increase in the POM% as particle size decreased. POM% was 

highest in the UFPM particle sizes (equivalent to fine silt and clay) and lowest for coarse silt 

(Table 6.4). This suggests that the high K  that occurs at the smaller particle grain size classes 

may not be solely an increase in turbidimeter sensitivity to small-grain particles but also a 

response to increasing amounts of organic particulates, which likely have asymmetrical 

shapes and different optical properties. The amount of POM% that occurs in a sample was 

variable, and clearly depended on catchment characteristics, for example, the Dart/Te Awa 

Whakatipu had a lower POM content in the UFPM classes (10.7%) compared to the 

Rees/Pua Hiri and Shotover/Kimi-ākau (17%) (Table 6.4). 
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Figure 6.4 Specific turbidity (as KN  and KF) follows a linear increasing trend with 
decreasing particle size, showing that the relationship between turbidity and suspended 
sediment when measured in either NTU or FNU is mostly linear for fine particulate matter 
(FPM).  However, when particle size is < 6 µm (ultra-fine particulate matter, UFPM) there 
is no systematic relationship between turbidity and suspended sediment (as expressed as 
specific turbidity).    
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Table 6.4 Particulate organic matter (POM) as a percentage of total suspended material 
(i.e., POM%) for hydrodynamic particle size classes, Phi and µm, for three alpine rivers in 
southern New Zealand, and the division of fine particulate material (FPM, 6 – 63 µm) from 
ultra-fine particulate material (UFPM, <6µm). 

 
Inorganic Size Class POM (%)  

Size Class Phi µm 
Dart/Te Awa  
Whakatipu 

Rees/ 
Pua Hiri 

Shotover/ 
Kimi-ākau  

Coarse silt 4 31.3–62.5 0.7 1.9 1.6 FPM 
Medium silt 5 15.6–31.3 0.7 1.0 1.9 
Fine Silt 6 7.8–15.6 0.7 1.2 3.0 
Very Fine Silt 7 3.9–7.8 1.9 4.6 7.9  

UFPM Clay > 8 < 3.9 10.9 17.8 17.0 
 

 

6.4.4 Specific turbidity during event flow 

Turbidity and suspended sediment were measured over three hydrographic events. Two 

events from the Ahuriri River in September 2018 (peak Q = 52.6 m3 s-1; median annual Q = 

18.7 m3 s-1) and March 2019 (peak Q = 49.9 m3 s-1); and one event from the Haast/Awarua 

River in February 2019 (peak Q = 788 m3 s-1; median annual Q = 126 m3 s-1) (Figure 5). 

These catchments are of similar catchment size (~1,000 km2) but have distinctly different 

hydroclimatology and vegetation cover (Table 6.1).  

 

POM as a percentage of total suspended material (POM%) was high under baseflow 

conditions, suggesting that organic material is diluted during storm flows (Figure 6.5d). 

During both Ahuriri events specific turbidity (as KN  and KF) was highly variable prior to the 

onset of hydrographic response and concomitant with the trend in POM%, where it 

decreased initially on the ascending limb, and then increased with a slight decrease after 

peak discharge (Figure 6.5d). For both events there was no difference in antecedent 

conditions or the scale of the rain event (upper 5th percentile of daily flow); event 1 had 27.5 

mm of rain (max intensity of 4.5 mm h-1) and event 2 had 21.5 mm of rain (max intensity of 

7.5 mm h-1). Although the SSC, POM and KN  and KF responded concordantly between 

events, the two events had a notably different SSC (event 1 maximum 193 SSC mg L-1; event 

2 maximum 618 SSC mg L-1) (Figure 6.5b). The sediment sources between these two events 

was likely similar, given the consistent pattern in hysteretic relationships in SSC, POM, and 

KN  and KF; and the difference in SSC was likely a function of differences in rainfall intensity. 

Similarly, in the Haast/Awarua River, POM% was higher under baseflow, being diluted 

during higher flow (Figure 6.5d). KN  and KF initially dipped before increasing as peak 
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discharge occurs (Figure 6.5c), a trend observed with both peaks in discharge during the 

event, suggesting a link between event intensity and the mobilisation of factors controlling 

specific turbidity. However, by comparison the peak in SSC occurred after peak discharge 

in the Haast/Awarua catchment suggesting a delay in the delivery of sediment likely due to 

scale of the catchment and order of sub-catchments. 

 

 

Figure 6.5 Plots of a) turbidity, b) suspended sediment, c) specific turbidity (as KN  and KF), 
and d) particulate organic matter (POM) as a percentage of total suspended sediment for 
hydrographic events (September 2018 and March 2019) in the Ahuriri Catchment, and 
Haast/Awarua (February 2019) and the relation of these trends to discharge showing 
distinct hydrographic response of all variables. 
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The events observed in the Ahuriri exhibited typical clockwise hysteretic responses of SSC, 

POM%, and turbidity, and a clockwise-anticlockwise response for specific turbidity (as KN) 

(Figure 6.6). The clockwise hysteresis suggests a ready supply of near-field material, either 

the mobilisation of in-channel sediment, or near-field supply of inorganic material; both of 

which are in plentiful supply within the multithreaded channel. Inorganic sediment is readily 

supplied from the highly erodible semi-schist lithology in the upland catchment, and 

remobilisation of Quaternary till and alluvium through the main stem; whereas organic 

material is plentiful within the river bed through the systemic incursion of invasive plant 

species Russell Lupin (Lupinus polyphyllus) and crack willow (Salix fragilis) onto the flood 

plain (Caruso et al., 2013). An initial clockwise direction in KN increased with discharge 

suggesting a change in sediment source or composition of the suspended flux with the onset 

of event flow. During the event, however, hysteresis direction switched to an anticlockwise 

loop, likely indicating temporary sediment exhaustion (Figure 6.6). By comparison, an 

anticlockwise hysteretic response was observed in the Haast/Awarua River for SSC and 

turbidity, and clockwise with an anticlockwise loop for POM% and KN (Figure 6.6). The 

width of the Haast/Awarua turbidity hysteresis loop was wider than for SSC, suggesting 

turbidity was responding to more than sediment alone, unlike in the Ahuriri hysteresis where 

the loops appear similar. Specific turbidity hysteresis followed a clockwise–anticlockwise 

behaviour, as did POM%, suggesting that specific turbidity may be sensitive to POM 

concentration in the Haast/Awarua catchment. Lastly, the timing and phasing of SSC 

delivery in the Haast/Awarua displayed anticlockwise hysteresis (i.e., SSC peaks after peak 

discharge), likely due to the delay of sediment delivery down the Landsborough tributary, 

which is the main source of inorganic sediment in the Haast/Awarua catchment. 
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Figure 6.6 Hysteric response of suspended sediment concentration (SSC), turbidity (in 
NTU), specific turbidity (as KN  ) and particulate organic matter (POM) as a percentage of 
total suspended material for an event in the Ahuriri in March 2019 (Ahuriri Event 2) and 
the Haast/Awarua in February 2019. Distinct hysteric response of the variables is clear with 
clockwise (CW) and anti-clockwise (ACW) behaviour representing changes in the 
parameters relative to discharge during hydrographic response. 
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6.5 Discussion 
6.5.1 Specific turbidity during event flow  
Specific turbidity is responsive to the heterogeneous nature of riverine suspended particulate 

load, which is a complex mixture of inorganic mineral and organic material with a distinct 

PSD and composition. The observed variability in specific turbidity over hydrographs 

illustrates the temporal-scale changes that occur between sediment concentration and 

turbidity, giving rise to specific turbidity values that differ between pre-event flow, and 

ascending and descending limbs. As demonstrated by the Ahuriri and Haast/Awarua event 

flows, an initial decrease in specific turbidity occurs on the rising limb suggesting that less 

efficient light attenuating material (e.g., sand) is entrained as flow increases and the 

entrainment threshold for coarser material is reached (Hughes et al., 2015). Specific turbidity 

increases as discharge falls due to increased presence of fine particulates (or light absorbing 

organic material) that dominates flow as sand settles out of suspension (Lewis, 1996; Hatten 

et al., 2012; Koiter et al., 2015). The response to discharge underscores the temporal 

variability in suspended material and hydrographic response, and that particle size and 

composition have an acute influence on turbidity (Foster, 1992; Lewis, 1996; Jastram et al., 

2010; Navratil et al., 2011). Therefore, the assumption that the PSD and composition 

remains stable at a specific location over time, or through the hydrograph, is not valid and is 

rarely explained in relation to SSC–turbidity behaviour (e.g., Gippel, 1995; Lewis, 1996; 

Wass & Leeks, 1999; Landers & Strum, 2013). 

 

6.5.2 Specific turbidity response to particle size 
The observed linear relationship between specific turbidity and particle size has been 

reported by previous studies (e.g., Foster et al., 1992; Lewis, 1996; Wass & Leeks, 1999), 

although is rarely explained. It is hypothesised here that the linear effect of particle size on 

specific turbidity observed with both turbidity as NTU and FNU (i.e., KN  and KF) is a 

function of the general principles of light scattering. For example, spherical particles of fine 

sand to clay (0.2 – 765 µm) produce a light attenuation effect consistent with regular scatter 

at 90° ±30° to the incident light source of a turbidimeter operating to a nephelometric 

method; at a wavelength (l) 400 – 600 nm for EPA 180.1 method and l 860 nm for method 

ISO 7027. Regular light scatter is produced by particles where the particle diameter is ten 

times greater than the incident l source, when there is little difference in the x, y, z axial 
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length of particles (Kitchener et al., 2017); and as such there will be a predictable 

relationship between specific turbidity and particle size. The results of the current study 

support this for the FPM range (63 – 6 µm), as observed for particles of medium-sized silts 

and larger, the response of specific turbidity to particle size was linear and reiterates the 

observation that particle size is a significant controlling variable that explains much of the 

variation in turbidity (NTU and FNU) across the FPM. 

 

However, in this study also observed is a notable change in the relationship between KN  and 

KF and particle size at the UFPM boundary, that is no longer linear for particles < 6 µm. It 

is proposed that for hydrodynamically-derived particle classes smaller than 6 µm, particle 

size is not the only factor that influences turbidity across the UFPM range. At these particle 

size classes (< 6 µm), the smaller particles scatter light irregularly and in all directions 

(Sadar, 1999; Omar & MatJafri, 2009; Merten et al., 2014). Therefore, at the UFPM 

boundary the particle sizes that are < 6µm approach the boundary where particle diameter 

(D) is less than ten times the source l, and therefore regular side scattering at 90° (± 30°) to 

the incident light source likely no longer describes the interaction between the light source 

and particle size. This, combined with the effects of irregular sized or shaped organic matter 

that occurs in the samples collected, increases the potential for multiple-scattering and 

forward-scattering light trajectories that are not at 90° to the incident source. For EPA 

Method 180.1 (l 400–600 nm) particle D becomes > 10l for particles between 4–6 µm, right 

at the boundary defined here as the UFPM. In comparison, for the ISO Method 7027 (l 860 

nm) particle D becomes > 10l at 8 µm. Thus, as particle size decreases more irregular scatter 

occurs, at 4 – 6 µm for method EPA 180.1 and at 8 µm for ISO 7027; irregular scatter results 

in a higher specific turbidity and commensurate increase in sensitivity to small particles.  

 

It should be noted, however, that KN  and KF are not only a function of particle size but also 

particle shape (Gippel, 1989; Gray & Gartner, 2009; Omar & MatJafri, 2009). For instance, 

clay minerals (< 2 µm) are typically plate-shaped and scatter light more intensely than 

spheres of equal volume (Sadar, 1998; Davies-Colley & Smith 2001; Davies-Colley et al., 

2014). When the x-axis of the particle is much greater than y and z axis, the effect is for 

greater amounts of forward-scattering (Kitchener et al., 2017), resulting in a different 

turbidity relative to incident volume of particles.  It is this multiple light scattering effect 

that likely explains the change in specific turbidity for UFPM for both KN and KF. 
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6.5.3 Influence of composition on specific turbidity 
The organic content of the suspended material of samples collected by present study (e.g., 

Table 6.4) increases as particle size decreases, commensurate with specific turbidity (as KN 

and KF) confirming that this organic material is strongly associated with the UFPM. Thus, 

different organic-to-inorganic composition affects specific turbidity, and contributes to the 

non-linearity across the UFPM fraction. The method used here did not explicitly measure 

the size of organic material, so the organic particles may be of variable shape and size based 

on the chosen inorganic particle size classes. These organic fragments will remain in 

suspension with fine (inorganic) material due to their density differences, and therefore 

behave like UFPM. The effect of organic matter on specific turbidity was not evident for the 

FPM sized material (i.e., 6 – 63 µm). POM interacts with light differently due to a lower 

refractive index relative to water meaning peak light attenuation occurs at larger particle 

sizes (Davies-Colley & Smith, 2001), and therefore the optical signal for a mixed 

composition sample is different to that of a homogenous sample of mineral material (e.g., 

Foster et al., 1992; Gippel, 1995; Sadar, 1998; Ziegler, 2002; Lewis et al., 2007; Gray & 

Gartner, 2009; Merten et al., 2014). Natural waters have a diverse range of organic materials 

that can be associated with the mineral phase, and therefore the association of organic matter 

with inorganic colloids is inevitable (Wilkinson et al., 1999; Owens et al., 2005; Grabowski 

et al., 2011). The UFPM size fraction (< 6 µm) traverses the particulate colloidal barrier 

(e.g., Aiken, 2014), so that organic matter in the UFPM likely includes organic coatings or 

mineral-organic colloids. The particulate size boundary selected by the method is 

constrained by the glass fibre filter pore dimension (0.7 µm) so most of the organic matter 

collected in the UFPM fraction is organic matter from clay–humic complexes, colloidal 

material or bacteria (Hope et al., 1994; Wilkinson & Lead, 2007; Aiken, 2014).  

 

The influence of POM on specific turbidity was most notable in the event flow analysis. 

During event flows of the Ahuriri and Haast/Awarua rivers, POM as a percentage of the total 

suspended material increased linearly with specific turbidity (as KN) for samples with >10% 

POM. The effect of increasing amounts of POM in suspension was a doubling or tripling of 

specific turbidity (Figure 6.7). Thus, over any given event, the specific turbidity is unlikely 

to be constant, as it responds to changes in PSD as well as delivery of organic matter. 
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Figure 6.7 Plot of suspended sediment samples collected over two hydrographic events 
(Haast in February 2019, and Ahuriri in March 2019). As the percentage of POM increases 
in suspended sediment, there is a decrease in the stability of the specific turbidity (as KN) 
(that is, the ratio of turbidity (NTU) to suspended sediment concentration).  

 

6.5.4 Turbidimeter sensitivity to particle size 
The sensitivity of a particular turbidimeter to particle size is determined by the wavelength 

of the light used that controls the scale of regular or irregular scatter. The HACH2100Q-is 

(measuring turbidity in units FNU) operates to the ISO7027 method using an infrared narrow 

band light source (860 nm) and is reportedly better suited to the measurement of small 

particle sizes since variation in instrument sensitivity is more common due to heterogeneous 

particle size (Clifford et al., 1995; Sadar, 1999; Omar & MatJafri, 2009). By comparison, 

the use of a wider band light source (400–600 nm) like the tungsten filament used by the 

HACH2100P (measuring turbidity in units NTU) is suited to detection of a greater range of 

particle sizes, but is less suitable for the detection of fine particulates (Sadar, 1999; Pavelich 

et al., 2002; Gray & Gartner, 2009; Merten et al., 2014). The experimental observations, 

however, suggest that both instruments show a marked change in response between specific 

turbidity (as KN and KF) and particles smaller than 6 µm. 

 

The settling experiment identified that the relationship between sediment and turbidity 

depends on the proportion of UFPM and its composition. As particle size decreases the 

specific turbidity increases. Specific turbidity (or sensitivity) is the inverse of the slope 

coefficient of the SSC-turbidity relationships and as the instrument sensitivity to fine 
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material increases (i.e., higher specific turbidity with finer material), the subsequent SSC-

turbidity slope (b) decreases. This is likely due to the intense scatter caused by fine particles 

that is largely undetected by the 90-degree nephelometric detectors, resulting in a low 

turbidity response. This effect is due to the use of side-scattering sensitive turbidimeters, 

when non-nephelometric methods i.e., optical backscatter sensors (e.g., Lewis et al., 1996) 

are used (that is they detect scattered light at 30 to 40 degrees from the incident light source) 

or dual-path sensors (turbidity in percentage units not necessarily calibrated to formazin), 

the effect of low turbidity response at UFPM is not generally observed (e.g., Foster et al., 

1992; Gippel, 1995). Therefore, turbidimeter sensitivity to particle size is highly dependent 

on instrumental method and may be an often-overlooked source of uncertainty when rating 

SSC to turbidity. 

 

The settling experiment purposely constrained particle size to hydrodynamic size classes to 

control the suspension of particles in a fluid. Therefore, the sensitivity determined here is 

relative to hydrodynamic particle sizes likely observed in field conditions and represents the 

response of turbidity to different shaped or compositional material that remains suspended 

in a water column proportional to that of a spherical quartz grain. 

 

6.5.5 SSC – Turbidity slopes are driven by UFPM 

The implications of turbidity being sensitive to variations in particle size and composition 

has a direct effect on SSC-turbidity relationships (e.g., Wass & Leeks, 1999). The settling 

experiments identified a reduction in the regression slope coefficient (b) of turbidity as NTU 

and FNU to SSC as the percentage of fines increased in a sample (Figure 6.7). Increased 

instrument sensitivity for UFPM highlights its influence on nephelometric turbidity 

measurement by both methods, and the subsequent SSC-turbidity relationships. For instance, 

turbidity better predicts the concentration of UFPM (< 6 µm) and contributes most to the 

turbidity of natural waters. Particulate material that is < 6 µm (i.e., the UFPM) can attenuate 

light up to 7.5 times more than the > 6 µm fraction as (e.g., Gippel, 1995; Lewis, 1996; 

Holliday et al., 2003) and therefore the experimental work carried out for New Zealand 

alpine rivers suggests a framework in which relationships with steeper slopes (~ 2, see Hicks 

et al., 2004) represent the dominance of sand- and silt- derived turbidity, whereas lower 

slopes (< 1) suggest the dominance of UFPM. Therefore, in natural waters it may be difficult 

to detect small changes in suspended sediment, unless they are related to changes in the 
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composition or concentration of fine material. Specific turbidity, however, may be a useful 

metric for examining potential changes in particle size, colour, organic matter composition, 

and minerology, and provide for better critical reflection on the appropriateness of 

developing SSC-turbidity relationships, specific to the nephelometric method chosen. 

 

 
Figure 6.8 Plot of the regression slope coefficient (beta) for hydrodynamically-derived 
particle size classes derived from 5 replicate runs of different concentration doses of 
suspended sediment during a settling tube experiment. The larger the particle size (PS), the 
higher the slope coefficient (beta) between turbidity (in NTU) and suspended sediment.   

 

6.6 Conclusions 
Observations made over hydrographic responses in southern New Zealand alpine catchments 

and laboratory settling experiments show that specific turbidity is responsive to 

heterogeneous suspended material. This heterogeneity is common in most rivers, 

highlighting that the acknowledged catchment characteristics that control variation in 

sediment concentration inherently cause variations in PSD and composition. The influence 

this has on specific turbidity is two-fold; increased sensitivity of specific turbidity is a 

function of particle size and shape, with the greatest variability observed at the UFPM 

boundary; and the influence of composition whereby increased sensitivity is observed with 

increasing proportions of organic material in the UFPM fraction. Shown here is the role of 

particle size and the fundamental controls on sediment entrainment, transport, and deposition 

inferred from specific turbidity trends. So that for sediment distributions with a higher 
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proportion of coarse silts and larger sand sized particles, there are fewer particles and a 

smaller ratio of surface area per unit mass, and thus less light is intercepted by a particle in 

suspension, and a lower specific turbidity response, the opposite is true for suspensions with 

higher proportions of fine material, particularly UFPM (63 – 6 µm). 

 

Specific turbidity as a metric should be used more routinely to identify the potential effects 

of UFPM and organic composition on SSC-turbidity relationships; and this may help 

understand where and when sediment concentration determined from turbidity needs to 

consider the effects of the local PSD and composition of the ultra-fine fraction. Such 

considerations are important as the effect of particle size variation and composition on the 

interaction between the concentration of sediment and turbidity could have deleterious 

effects on SSC-turbidity ratings, although acknowledgment is largely not documented. Here 

the present study suggests that implications for SSC-turbidity ratings are likely to be most 

acute in environments where there are distinct supply-related controls on the mobilization 

and suspension of UFPM (<6 µm) in the riverine environment, compared to coarser material 

that cause changes in PSD, or composition. 
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7 Turbidity Dependence on Particle Size 

and Composition of Riverine Suspended 

Material Across New Zealand’s 

NRWQN 
 

Research article published in River Research and 
Applications in 20195. See Appendix 11.2. 

 

7.1 Abstract 
Turbidity, an index of light side-scattering, depends on the mass concentration of suspended 

sediment (SS) within water. Turbidity of river waters is regulated by the presence of 

suspended particulate matter and is used to identify visual changes in response to SS. Data 

from the New Zealand National River Water Quality Network is used to calculate ‘specific 

turbidity’ (K; turbidity normalised to mass concentration of suspended particulates). Specific 

turbidity is shown here to be an effective metric to assess the effect of suspended material 

composition and particle size distribution of suspended particulate matter over different 

landscape characteristics. Of the catchment characteristics considered in this study, specific 

turbidity was most sensitive to lithological factors, and relatively insensitive to land use and 

soil parameters. Decreasing particle size has a positive linear response to K, attributed to the 

higher proportion of ultra-fine particulate material that is generated by certain lithologies, 

underscoring the lithological influence on K. 

   

 
5 Minor changes to the narration of this research article have been made to improve coherency between chapters. 
Title has been modified slightly to reflect contribution to doctoral thesis. Title of published article A national-scale study 
of spatial variability in the relationship between turbidity and suspended sediment concentration. 
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7.2 Introduction  
Turbidity is a useful continuous monitoring metric for understanding riverine visual clarity 

and suspended sediment (SS) fluctuations, but its use can be problematic (Rymszewicz et 

al., 2017). Turbidity is a measure of all light attenuation in water, and uses fixed angle 

sensors to detect the scattering caused by suspended particulates, and depending on the 

turbidity method used, the source light may be reduced by absorption caused by coloured 

dissolved organic matter (CDOM). Such interferences mean that when turbidity is used as a 

surrogate for suspended sediment there are potential limitations to its use to derive SSC-

turbidity ratings. Natural sediments are a complex mixture of sizes, shape and density, non-

spherical and/or organic composition, and non-standard suspended particles scatter light 

very differently to formazin calibration standards. For example, particle size and the particle 

size distribution (PSD) of fine SS has a significant effect on light attenuation and turbidity 

measurements (e.g., Foster et al., 1992; Davies-Colley & Smith, 2001; Holliday et al., 2003; 

Davies-Colley et al., 2014; Merten et al., 2014; Hughes et al., 2015; Bright et al., 2020a 

(see: Chapter Six)). Organic materials and CDOM, by comparison, are light absorbing 

(Gippel, 1995), so the presence of irregular shaped organic detritus, or organic coatings with 

different refractive properties interferes with turbidity measurements (Sadar, 1998). The 

cumulative effect of the heterogeneous size, shape, and composition of natural river 

sediments inevitably introduces noise into turbidity measurements, and may have the effect 

of making SS–turbidity ratings unstable (e.g., Gippel, 1989; Bright & Mager, 2016 (see: 

Chapter Three)). 

 

One approach to understanding the effect of suspended material particle size and 

composition on light scattering and turbidity is to derive the specific turbidity (K). Specific 

turbidity, as used by Foster et al. (1992) and Gippel (1995) as examples, is a parameter used 

to quantify the light attenuation effect of nephelometric turbidimeters and calculated as the 

ratio of attenuation turbidity per unit mass of suspended sediment) and is normally denoted 

as unitless, since it is equivalent to the inverse of the beta slope coefficient derived in SSC-

turbidity regression equations, when plotted through the origin. Although few studies 

explicitly use K, it is well documented that turbidity is highly responsive to differences in 

particle grain size, shape and composition (e.g., Wass & Leeks, 1999; Hughes et al., 2015). 

For example, increasing portions of fine material (< 63 µm, silts and clay) alter the behaviour 

of light scattering and will cause an increase in K because fine grained particles scatter light 
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more efficiently (e.g., Foster et al., 1992; Gippel, 1995; Lewis, 1996; Wass & Leeks, 1999; 

Davies-Colley & Smith, 2001; Holliday et al., 2003; Omar & Matjafri, 2009; Merten et al., 

2014). Conversely, particulate organic material and CDOM that occur when particulate 

concentrations of inorganic SS are low, cause absorption of light (Foster et al., 1992; Gippel, 

1995; Ziegler, 2002; Merten et al., 2014). Invariably, the nature of suspended riverine 

material reflects intrinsic and extrinsic catchment characteristics (e.g., soil order, land cover, 

climate, topography, and lithology) that regulates the inherent particle characteristics of 

material available to be transported through a river network. Therefore, the assumption that 

the PSD of SS remains stable across spatial scales and with flow conditions, or as sediment 

and soil erosion mitigation tools are implemented in environmental management 

interventions, may not be valid (e.g., Wass & Leeks, 1999; Landers & Strum, 2013, Dymond 

et al., 2017). The impacts of PSD (e.g., Clifford et al., 1995; Gippel, 1995; Merten et al., 

2014) or organic matter (e.g., Sadar, 1998; Ziegler, 2002; Hatten et al., 2012; Bright et al.,  

2018 (see: Chapter Five)) have typically been derived from catchment-specific assessments, 

or laboratory-based experiments that measure controlled changes in turbidity and sediment 

properties (e.g., Foster et al., 1992; Clifford et al., 1995; Hatten et al., 2012; Merten et al., 

2014; Bright & Mager, 2016 (see: Chapter Three); Rymszewicz et al., 2017). Thus the 

derivation of K has been mostly confined to laboratory-based observations of turbidity 

attenuation effects, and its application across regional scales to understand SSC-turbidity 

relationships is limited. Therefore, there is an opportunity to revisit the use of K, as a tool 

for understanding turbidity responses across a diverse range of landscape units.  

 

In New Zealand turbidity is a widely used regulatory tool for managing waterways and was 

included as one of three metrics that quantify water clarity in the National River Water 

Quality Network (NRWQN) routinely measured across 77 sites (Smith & Davies-Colley, 

1992). Suspended particulate material was not routinely measured as part of the NRWQN, 

but in 2011, total suspended solids (TSS) was included temporarily as part of a study focused 

on the visual clarity of New Zealand rivers (e.g., Davies-Colley et al., 2014). The NRWQN 

provides a valuable long-term record of visual clarity, turbidity, and light absorption (g440), 

and provides an opportunity to assess catchment-scale characteristics that control light 

attenuation, measurement of turbidity, and the use of K at regional scales.  

 

The aim of this paper is to examine the influence of catchment characteristics on suspended 

sediment concentration–turbidity (SSC–turbidity) ratings across New Zealand. In particular, 
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it is considered whether the relationship between SS and turbidity is a function of soil order, 

land cover, climate, topography, and/or lithology. Other indices of light attenuation (e.g., 

light beam attenuation, see: Davies-Colley et al. 2014) have previously been shown to be 

more successful at estimating concentrations of suspended particulate material, however, 

light beam attenuation is not yet a widely used tool in environmental monitoring. Rather, the 

focus here on turbidity because of its broad range of applications in river research and 

monitoring, and because a regulatory threshold for turbidity of 5 NTU applies (ANZECC, 

2000). It is examined whether the composition of the suspended material (as organic matter 

content indicated by absorption i.e., optical density measured by spectrophotometer), 

volatile suspended sediment (VSS) concentration; or particle size distributions, are more 

influential on SS–turbidity ratings.  The approach has been to derive this information from 

an existing nationally significant database (NRWQN), and examine the use of K as an 

indicative metric of SS–turbidity ratings; and more broadly assess the suitability of K for 

wider use as a metric to understand the controls on, and function of suspended sediment flux. 

 

7.3 Method 
7.3.1 NRWQN data  

New Zealand is environmentally diverse in terms of lithology, soils, land cover, and climate, 

and provides a ‘natural laboratory’ to assess the optical response of rivers. The National 

River Water Quality Network (NRWQN) ran from 1989 – 2015 and was comprised of 77 

sites from 35 large river systems across New Zealand that were monitored monthly by 

NIWA Taihoro Nukurangi for 14 water quality parameters (see: Davies-Colley et al., 2011). 

In 2011 suspended particulate material was analysed, with total suspended solids (TSS) and 

VSS included as part of monthly monitoring (see: Ballantine et al., 2014; Davies-Colley et 

al., 2014). The most recent five-year period of data (2011 – 2015) from the NRWQN was 

used as the basis of this paper (Table 7.1). Turbidity (measured in units NTU) and absorption 

coefficient data for g440 (m-1) was used. The absorption coefficient at 440 nm is directly 

relevant to the visual clarity of water as it relates to light absorption in the visible range of 

the spectrum (Davies-Colley & Vant, 1987). Data was used for the period of 2011 – 2015 

so that the results of this study were consistent with the land use conditions present for the 

study period when SS was collected.  
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Table 7.1 National River Water Quality Network variables collected by NIWA Taihoro 
Nukurangi, that were used by the study, and the analytical methods. 

Variable Count Record Method 
Flow (m3 s-1) 60 2011–2015 Instantaneous discharge determined from gauging or rating. 
Visual Clarity (m) 60 2011–2015 Visual water clarity determined in the field from horizontal 

black disc (see: Davies-Colley, 1988). 
Turbidity (NTU) 60 2011–2015 Nephelometer (HACH 2100A) to March 2012, thereafter Hach 

model 2100AN 
Abs g440 (m-1) 60 2011–2015 Absorption coefficient of a membrane filtrate @ 440 nm 

calculated from 440 & 740 nm absorbances. 1 (see: Davies-
Colley & Vant, 1987). 

TSS (mg L-1) 7 2011 TSS measured by standard gravimetric methods (see: APHA 
2005 Method 2540D; Davies-Colley et al., 2014) using glass 
fibre filters, that were subject to loss on ignitions at 400 ºC for 
6 hours to determine the inorganic SS and VSS components. 

Inorg. SS (mg L-1) 7 2011 
VSS (mg L-1) 7 2011 

1 740 nm absorbance is measured to provide a correction for residual filter-passing light scattering, because true absorption at 740 nm is 
negligible. 
 

 

There is a dearth of information about the composition and PSD of SS in New Zealand. 

Hicks et al. (2004) defined seven generalised PSDs for different lithology types for New 

Zealand as part of a New Zealand-wide suspended sediment yield predictive model. Given 

the lack of other comparative data, these PSDs were used to estimate the sand, silt, and clay 

fractions of the NRWQN suspended sediment (as % wt of sample). Unfortunately, the 

cumulative PSDs given by Hicks et al. (2004) exclude fine silt and clay material < 4 µm, 

and so do not bracket the optically most-efficient particles of around 1.2 µm size (see: 

Davies-Colley & Smith, 2001: Figure 3). 

 

7.3.2 Specific turbidity and statistical analyses 
Specific turbidity (K) was calculated as the ratio of turbidity (in units NTU and FNU) to the 

TSS (see: Merten et al., 2014). Spatial patterns in K were mapped using ArcGIS (v15) and 

grouped by Hierarchical Cluster Analysis (HCA) using Wards linkage and squared 

Euclidean distance in SPSS (v22). Existing geospatial datasets (Table 7.2) provided metrics 

of catchment land use, lithology, soil order, climate conditions, and topography for all 77 

NRWQN catchments and used as independent input variables for multiple linear regressions 

in SPSS (v22) (Table 7.2). 
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Table 7.2 Basin, lithological, soil, and land cover catchment variables used in multiple 
regression modelling, and data sources. 

Type Predictor Units Source 
Catchment Catchment Size 

Mean Flow 
Stream Order 
FRE3 
Mean annual rainfall 
Suspended sediment yield (SSY) 
Slope 

km2 
m3 s-1 

 
 
mm/a 

t km-2 a-1 

% 

Catchment polygons, mean flow, 
stream order, and FRE3 sourced 
from NZ River Environment 
Classification. 1 

Rainfall calculated from MfE 
average rainfall 1972–2013, based 
on NIWA virtual climate station 
network.2 

SSY from NIWA SSY estimator.3 

Slope defined from LRIS NZLRI 
database (v3). 4 

Lithology Lithology (NZLRI ED1) 
 

% Lithology extracted and 
consolidated into 24 lithology 
types from NZLRI database data 
(v3). 4 

Soil Soil Type (NZSC) 
Carbon Content 
Erosion 

% 
% 

Soil type from LRIS FSL defined 
in NZLRI database (v3). 4 

Carbon content (% estimate) from 
LRIS FSL defined in NZLRI 
(v3).4 

Erosion categories defined by 
LRIS NZLRI database (v3). 4 

Landcover Alpine vegetation, crop, exotic forest, 
indigenous forest, grassland, pasture, 
scrub, shrub, snow and ice, tall tussock 
grassland, urban, gravel rock and 
landslide, lake river and pond. 

% Landcovers defined by LRIS 
Land Cover Database and 
consolidated into 16 landcover 
types (v4.1). 5  

 
Note: All variables with % are calculated as % of catchment area. 
1 New Zealand River (MfE) Environment Classification (2016). Ministry for the Environment Online Data Portal. See also Booker 
(2015). 
2 Average Annual Rainfall, 1972 – 2013 (2015). Ministry for the Environment Online Data Portal. 
3 Suspended Sediment Yield Estimator (Hicks et al., 2011). 
4 NZLRI New Zealand Soil Classification (v3) (2010). Landcare Research NZ LRIS Online Portal. 
5 Landcover Database (v4.1) (2015). Landcare Research NZ LRIS Online Portal. 

  

 

7.4 Results 
7.4.1 Catchment influences on specific turbidity 

Median turbidity for the 77 NRWQN catchments ranged from < 1 NTU – 77 NTU, with 17 

of the 77 rivers (22%) showing median turbidity values greater than the local regulatory 5 

NTU threshold. Median inorganic SS from < 1 mg L-1 – 335 mg L-1 for the 2011 period. K 

values ranged 20-fold from 0.2 – 2.1, with the highest K occurring in the central South Island, 

for example in the Waitaki catchment (TK5, TK6) where headwater glacial lakes provide 

distinct pulses of fine material (Figure 1). The lowest values occurred in tributaries of the 
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upper Clutha/Mata-Au, Grey/Māwheranui (GY2, GY3) in the South Island, and Tarawera 

(RO1, RO2) and Rangitaiki (RO3, RO5) catchments in central North Island (Figure 7.1). 

The original framework of the NRWQN defined sites as having significant lowland impact 

from land use change and agriculture relative to ‘baseline’ sites with only small amounts of 

pastoralism. However, land use intensification has encroached into most of these baseline 

sites since inception, so that few are non-impacted or ‘pristine’ catchments. Despite 

transformations of land use change since the site classifications in 1989, sites classified as 

‘impacted’ by anthropogenic land uses in the NRWQN generally had higher SS, VSS, TSS, 

turbidity, and specific turbidity compared to ‘baseline’ sites (Table 7.3). 

 

Table 7.3 Summary statistics for 77 sites within the New Zealand NRWQN that are 
categorised as baseline and impacted. 

Variable Median Minimum Maximum 
Baseline 1 (n=32) 

Inorganic SS (mg L-1) 1.4 0.3 52.0 
VSS (mg L-1) 0.3 0.1 2.5 
TSS (mg L-1) 1.7 0.3 56.6 
Turbidity (NTU) 1.5 0.4 9.1 
Specific Turbidity (K) 0.8 0.2 1.9 
Impacted 2 (n=45) 
Inorganic SS (mg L-1) 7.1 0.3 335.0 
VSS (mg L-1) 0.8 0.1 3.3 
TSS (mg L-1) 8.0 0.4 349.0 
Turbidity (NTU) 4.1 0.7 76.8 
Specific Turbidity (K) 0.6 0.2 3.3 
1 Baseline – Upstream, lightly impacted sites 
2 Impacted – downstream affected by cumulative impacts of point discharges, pollution, and land use. 

 

 

Hierarchal cluster analysis of K across 77 sites identified 6 K clusters that ranged in median 

K from 0.6 – 2.0 (Figure 7.2; Table 7.4) and suggests that catchment characteristics affect 

K. Clusters 1 and 2, and 3 and 4 are more closely related to each other respectively, as are 

clusters 5 and 6, but are most different to clusters 1 to 4. The clusters are not based on 

geographical location, as only one of the identified clusters was specific to the North Island 

(e.g., Cluster 5, K of 2.0). The other five clusters showed a mix of North and South Island 

catchments, with no distinct east–west division. Land use, topography, soil type, and 

lithology differed between clusters, suggesting a general effect on K (Table 7.4). For 

example, clusters 4 (median K of 0.6) and 1 (median K of 0.8) both comprised of large, 

mixed land use catchments primarily with pasture or forest land cover, and collectively 

include 52 of the 77 catchments, but contained very different soil and lithology types. 
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Figure 7.1 Specific turbidity (K) for 77 catchments from New Zealand National River Water 
Quality Network (NRWQN) derived from suspended sediment and turbidity data sourced 
from NIWA Taihoro Nukurangi. 

 

 

Cluster 6 (median K of 1.5) was mostly agricultural catchments (e.g., Taieri DN2, Waiau 

DN10, Wairu WH4, Hoteo AK1), whereas Cluster 3 (median K of 0.2) was mostly tussock 

and former alluvial gold mining catchments (Shotover AX2, and Kawarau AX3) or 

plantation forestry (Rangitaiki RO3). Cluster 2 (median K of 1) includes steep catchments 

with mixed land use (e.g., Tukituki HV1, Hakatakamea TK5, Ruamahanga WH2). SS and 

VSS concentrations varied between the identified clusters (Table 7.4), as does the slope 

coefficient of the SS–turbidity relationships (that were derived for 66 of the 77 NRWQN 

sites). 
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Figure 7.2 Hierarchical cluster membership dendrogram for 6 specific turbidity (K) clusters 
derived from 77 sites from the New Zealand National River Water Quality Network 
(NRWQN). 

 

 

7.4.2 Organic influences on specific turbidity clusters 
VSS, as a measure of organic solids was strongly associated with turbidity (NTU) 

(Spearman’s r = 0.74 and p < 0.05) and suggests the organic component of suspended 

particulate material increases concomitantly with turbidity. Similarly, turbidity was 

associated with the absorption coefficient g440 (Spearman’s r = 0.60 and p < 0.05), so that 

as CDOM within the visible part of the light spectrum (400 – 600 nm) increases in the water 

column, there is a concordant response in turbidity. Thus, the underlying factors that release 

organic solids and CDOM into the environment contributes to the turbidity of river water; 

either as an associated effect, or that these parameters may be a source of interference with 

turbidity measurements. K was calculated as the ratio of turbidity (NTU) to inorganic SS 

(mg L-1), and therefore any response of K to VSS, or CDOM is a function of any remaining 

light attenuating material within a sample, when accounting for the mass concentration of 

organic material. K was inversely associated with VSS (Spearman’s r = -0.46 and P <0.05) 

and not associated with g440. Therefore, scattering as a result from VSS likely contributes to 

the turbidity of river water, and the effect of CDOM on K is insignificant, although may 

depend on turbidimeter method. Such associations are expected given that CDOM only 

generates an absorption response, whereas K responds to scattering caused by particulates.  
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Table 7.4 Catchment area (km2) and modelled runoff (R)(m/a), turbidity (NTU), suspended 
sediment (SS as mg L-1), volatile suspended sediment (VSS as mg L-1) and the proportion of 
VSS relative to total suspended solids (VSS%), specific turbidity (K), and the slope 
coefficient (b) of the SS–turbidity relationships, across the 6 clusters defined by hieratical 
cluster analysis and significance determined by Kruskall-Wallace (p-value < 0.05 at 95%) 
(*). 

Cluster n 
Area 
km2 * R NTU 

SS 
* 

VSS 
* 

VSS 
% K * b * Description 

1 
Low SS 
Low VSS 
Low VSS% 

22 1,390 1.0 3.0 3.6 0.3 10.0 0.8 1.6 Large mixed catchments 
with agriculture and forest. 
Steep slopes with moderate 
to severe erosion. Brown, 
recent, anthropic soils. 
Greywacke, ashes, alluvium. 
e.g., Wairau, Hurunui, 
Ngaruroro, Upper Buller 

2 
Low VSS 
Low SS 

13 458 1.0 1.5 0.9 0.2 13.0 1.0 1.8 Steep catchments with 
mixed use; indigenous 
forest, agriculture, tussock. 
Moderate to severe erosion. 
Brown, pumice, ultic soils. 
Greywacke and alluvium. 
e.g., Makaroro, 
Ruramahanga, Upper 
Motueka, Upper Oreti. 

3 
High SS 
Low VSS% 

4  1,112 1.2 3.6 18.9 1.5 7.1 0.2 4.1 Large forested catchments 
in NI1 or large tussock 
catchments in SI2 with 
minor agriculture. Steep 
slopes with moderate 
erosion. Brown, pallic, 
podzol soils. Schist and 
volcanic. 
e.g., Shotover, Tarawera  

4 
Moderate 
SS, and 
VSS% 

30 2,672 1.1 3.7 7.7 0.9 11.5 0.6 2.0 Large mixed catchments 
with agriculture and forest, 
primarily in North Island. 
Steep slope with moderate 
erosion. Brown, Podzol, 
Pumice soils. Ashes, 
alluvium, greywacke. 
e.g., Waiau, Lower Buller, 
Wanganui, Waikato 

5 
Low SS 
High VSS% 

2 102 0.9 4.2 1.4 0.5 24.1 2.0 1.3 Northland forest with 
urban settlement with 
rolling slope and negligible 
erosion. Brown and ultic 
soils. Sandstone and 
greywacke. 
e.g., Rangitopuni, Waipapa 

6 
High VSS% 

6 264 1.4 1.6 3.7 0.5 23.6 1.5 1.2 Agricultural catchments 
with indigenous forest. 
Rolling slopes, moderate 
erosion. Brown and Pallic 
soils. Sandstone and schist. 
e.g., Hoteoa, Sutton, Wairu 

1 NI – North Island of New Zealand 
2 SI – South Island of New Zealand 
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7.4.3 Optical properties and catchment characteristics as predictors 
Iterative regression models were run to explore the dependence of K on intrinsic and 

extrinsic catchment characteristics. Model 1 was based on catchment characteristics, 

including optical properties, rainfall (mm/a), runoff (m/a), suspended sediment yield (SSY) 

(t km-2 a-1), and catchment size (km2), but excluded lithology, vegetation class, and soil 

cover. The output showed that optical water properties provided a good linear fit (r2 = 0.47) 

dominated by three variables: absorption coefficient at 440 nm (g440), VSS (mg L-1), and 

visual clarity, suggesting that the underlying contributing factors to K also affect water 

colouration and organic particulates. 

 

A subsequent model run with catchment lithology only (Model 2) showed a good linear 

regression (r2 = 0.49) based on mixed lithologies, igneous rock types (ash, lapilli, and 

volcanic), greywacke and muds. However, strong autocorrelation amongst these variables 

(D-W 1.2) precludes further use of this model. When the lithological classes from Model 2 

were included in Model 1 (catchment characteristics and lithologic classes, excluding land 

cover and soil class data) a strong linear regression (r2 = 0.71) from 12 variables was derived 

(Model 3). These variables included optical properties, visual clarity and g440, and a subset 

of lithological classes, with igneous rock types dominating (including volcanic, plutonic, 

ultramafic and ash deposits), then metamorphic rock types (schist) and sedimentary (loess, 

and sandstone). Model 3 also included potential for extreme erosion and high suspended 

sediment yield, although these provided only a minimal contribution to the overall goodness 

of model fit. 

 

When land cover class was run through multiple regression, it produced a poor fit (r2 = 0.1) 

with K, and when combined with the catchment characteristics of Model 1, the model 

selected optical water properties over any land cover criteria. This suggests that land cover 

does not strongly influence K, as many of the catchments have mixed land use. Soil order 

similarly was a poor predictor of K (r2 = 0.3), derived from pumice, ultic, gley, and melanic 

soils. When soil classes were combined with the catchment characteristics from Model 1, a 

good linear regression model was produced (r2 = 0.61). The combination of all iterative 

model runs suggests that catchment characteristics and lithological classifications are far 

more influential predictors than either land cover or soil type. 
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When all variables were included, a strong linear regression model (the ‘best’) was produced 

(r2 = 0.81); containing: optical properties (visual clarity, g440, VSS); soil characteristics 

(recent soils, and medium soil carbon %); SSY, lithological classes (volcanic, sandstone, 

greywacke); topographic classes (extreme erosion potential, flat to undulating topography); 

and the presence of permanent snow and ice (Table 7.5). Of these variables only volcanic 

lithology, SSY and VSS concentration were inversely related to K (negative coefficients: 

Table 7.5). The iterative approach here to multivariate regression shows that K can be 

reasonably-well predicted from catchment characteristics and lithological classifications 

alone and is relatively insensitive to land cover and soil type; however, for a few catchments, 

like the Waitaki (TK4) glacial weathering that produces fine particulate material may be an 

important predictor. 

 

 

Table 7.5 Independent catchment characteristics listed in hierarchal order of importance in 
linear model for specific turbidity (K)(determined by stepwise linear multivariate 
regression), with slope coefficients (Beta – b), model fit (r2) and Durbin-Watson statistic (D-
W) used to determine statistical significance. 

 Model Parameter b r2 D-W 
Specific Turbidity  
(K) 

Visual Clarity (m) 
Recent soils1 

Volcanic lithology1 

SSY (t km-2 a-1) 
Sandstone lithology1 

Erosion extreme1 

Absorption g440 (m-1) 
Soil carbon medium level1 

VSS (mg L-1) 
Greywacke1 

Flat-undulating topography1 

Snow and ice1 

0.080 
0.010 

-0.010 
-0.001 
0.010 
0.020 
0.220 
0.003 

-0.070 
0.003 
0.004 
0.080 

0.81 2.1 

1 Indicates parameter expressed as a percentage of total catchment area 
 

 

7.4.4 Particle size distribution effects on specific turbidity 
K increases as the clay content (as % wt of PSD) increases (Figure 7.3a), whereas sand (as 

% wt of PSD) causes a reduction in K (Figure 7.3b). Catchments with siltstone and sandstone 

showed a greater proportion of clay in the PSD (e.g., Clusters 5 and 6) suggesting that the 

fine grain parent material undergoes comminution and ends up with an overall higher portion 

of clay. Volcanic and schist lithologies produce river sediments with relatively less clay and 

are associated with a lower specific turbidity (e.g., Cluster 3). Of the 77 NRWQN sites, 66 
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had sufficient data to derive SS–turbidity relationships where r2 > 0.40. Slope coefficients 

(b) of the SS–turbidity ratings for these 66 NRWQN sites showed the effect that increasing 

portions of sand have on the slope coefficients of SS–turbidity ratings. For example, when 

the % wt of sand increases in suspended sediment samples, the slope coefficient is steeper 

(e.g., Weak Volcaniclastic, Westland Schist, Fiordland Gneiss). The linear slope coefficient 

of SS–turbidity is inversely proportional to K, so that the relationship between % wt of sand 

and the slope coefficient (b) is the inverse to that of Figure 7.3b. 

 

 
Figure 7.3 Median specific turbidity (K) relative to a) clay (as % weight of particle size 
distribution); and to b) sand (as % weight of particle size distribution) for the seven common 
lithology types across New Zealand, as defined by Hicks et al. (2004). 

 

7.5 Discussion 
7.5.1 Influence of intrinsic catchment variables on specific turbidity 

K is unevenly distributed across New Zealand; however, the assessment here suggests that 

K responds mostly to catchment lithology and is underpinned by differences in organic 

composition and particle size distributions. Specific turbidity clusters also corresponded to 

landscapes that have higher levels of intensification from human activities (e.g., plantation 

forestry, or agriculture). Because specific turbidity is dependent on the PSD and composition 

of suspended sediments (e.g., Wass & Leeks, 1999; Hughes et al., 2015), the catchment 

characteristics identified through multiple regression modelling reflect the processes that 

regulate the composition of suspended materials and sediment grading through fluvial 

systems.   
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Catchment lithology provides a framework for understanding the conditions under which 

suspended material composition and particle size vary spatially and is particularly relevant 

for the rivers that show median turbidity above the regulatory threshold and understanding 

why this occurs. For example, volcanic, sandstone, and greywacke lithology units represent 

the different attrition rates (Attal & Lavé, 2009) of rock that have a direct effect of light 

attenuation from different sized particulates. In conjunction with SSY, organic particulates 

(VSS), visual clarity, and absorption coefficient underscore the dependence of particulate 

concentration and composition that directly control light attenuation. Whereas recent soils, 

erosivity, undulating topography, carbon content of soil, and snow and ice in a catchment, 

provide examples of some landscape characteristics that give rise to, or provide mechanisms 

for, higher transport of sediment to the fluvial environment. 

 

7.5.2 Optical properties control specific turbidity 
Turbidity was determined in this study by a nephelometric method where light attenuation 

is proportional to scattering measured at 90° (± 30º) to the light source; based on EPA 

Method 180.1 (Sadar, 1998). Nephelometric turbidity is known for its vulnerability to 

interferences from particulate organic matter (POM) and CDOM as organic composition 

alters light attenuation processes in water (e.g., Foster et al., 1992; Gippel, 1995; Ziegler, 

2002; Merten et al., 2014; Bright et al., 2018 (see: Chapter Five)). A strong association 

between the g440 was identified, which is an index of dissolved organic matter in water, to 

turbidity. Absorption g440 represents CDOM that is detectable within the operating range of 

method EPA180.1, so it is possible this is a potential interference on turbidity measurements. 

The increased presence of light absorbing material, like the components that comprise 

CDOM (e.g., fatty acids, amino acids, carbohydrates, and hydrocarbons) have been 

previously identified as causing a negative bias in turbidity by reducing the light scattering 

effect (see: Davies-Colley & Vant, 1987; Gippel, 1995; Hope et al., 1994; Omar & Matjafri, 

2009). The mechanisms behind this are unknown and warrant further investigation but could 

be related to changes in refractive index through chemisorption of CDOM onto particle 

surfaces, creating organic coatings, or to electrostatic changes that may aid particle 

dispersion.   

 

 



 131  

7.5.3 Lithological attrition effect particle size and specific turbidity 
The attrition of river sediment produces distinct PSDs by persistent abrasion and 

fragmentation (Attal & Lavé, 2009), and as a result there is a notable effect on the observed 

K, and associated slope coefficient (b) of SS–turbidity relationships. This effect is commonly 

reported in studies focused on turbidimeter sensitivity where the fine fraction of suspended 

sediment has a more notable effect on turbidity measurements due to the intense light 

attenuation effect of fine particulate materials (e.g., Foster et al., 1992; Gippel, 1995; Lewis, 

1996; Sadar, 1999; Wass & Leeks, 1999; Holliday et al., 2003; Omar & Matjafri, 2009; 

Merten et al., 2014; Bright et al., 2020b (see: Chapter Four)). The observation that K 

increases as the portion of clay (as % wt of PSD) increases, and the decreasing linear trend 

with sand (as % wt of PSD), is consistent with the general principles of light scattering. The 

nephelometric turbidity method is based on the principle that suspended particles produce 

regular side scatter at 90° (± 30°) to the incident light source, that gives a predictable 

turbidity response for spherical particles, but not for plate shaped clay-sized particles (Sadar, 

1998; Kitchener et al., 2017). So, when suspended sediment contains a higher portion of 

platy clay-sized material, there is an increase in specific turbidity.  

 

Since K is the inverse of the SS–turbidity slope coefficient, SS–turbidity ratings respond to 

particle size. For New Zealand rivers the slope coefficient of SS–turbidity ratings 

approximate 2 (see: Hicks et al., 2004). However, as reported here slope coefficients range 

from 1.4 – 2.4 (Table 7.6) across seven lithology classes and provides a framework for 

interpreting SS–turbidity relationships based on catchment lithology (e.g., Wass & Leeks, 

1999). The attrition of different lithology types differs due to rock properties including; 

initial grain size distribution, clast shape and cleavage planes, tendency for abrasion, and 

texture (Nibourel et al., 2015). Attrition rates for the Southern Alps of New Zealand show 

that yields of sand and silt differ between schist, greywacke, and nephrite lithologies (Cox 

& Nibourel, 2015). For example, schist produces more sand, whereas greywacke produces 

very little sand and the PSD comprises almost entirely silt. Applying a generalised PSD for 

the NRWQN has shown that SS–turbidity ratings with steeper slopes likely represent the 

dominance of sand- and silt- derived turbidity (e.g., Weak Volcaniclastic and Westland 

Schist). Lower slopes (~ 1) (e.g., silt and sandstone, greywacke and argillite) suggest the 

dominance of finer material that has the effect of reducing the slope coefficient. The general 

effect in relation to light attenuation is that particulate material that is < 6 µm attenuates light 

up to 7.5 times more than the > 6 µm fraction (e.g., Gippel, 1995; Lewis, 1996; Davies-
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Colley & Smith, 2001; Holliday et al., 2003), which gives a higher K response, but inversely 

a lower slope coefficient. Although PSDs were not measured directly for all locations, it 

appears that the nature of lithological attrition is an important driver of K and may be a 

valuable index explaining changes in SS–turbidity ratings, particularly in locations 

undergoing land use transformation.  It is possible that K may be useful for identifying a 

change in suspended sediment particle sizes that could be connected to specific landscape 

characteristics. Evidently further work is warranted to explore the usefulness and 

appropriateness of K for environmental monitoring purposes, or in situations where existing 

turbidity and SS records need to be reconciled for the effect of particle size following 

landscape changes. 

 

 

Table 7.6 Dominant lithologies of New Zealand defined by Hicks et al. (2004) and the 
cumulative particle size distribution data as % weights, and percentage of fine particulate 
material (FPM) with median specific turbidity (K) and the slope coefficient (Beta - b) of the 
SS–turbidity relationships. 

 Sand 
(%wt) 

Silt 
(%wt) 

Clay 
(%wt)  

% FPM 
(< 63 µm) K b 

North Island 1       
Greywacke & Argillite 25 35 40 50 1.0 1.6 
Siltstone & Sandstone 18 38 44 51 0.8 1.4 
South Island 1       
Fiordland Gneiss 55 20 25 33 0.6 1.8 
Axial Greywacke & Argillite 38 35 27 33 0.9 1.5 
Foothills Greywacke & Argillite 20 41 39 48 0.9 1.7 
Westland Schists 45 32 23 30 0.6 2.4 
Common1       
Loess 30 42 29 33 0.6 1.5 
Strong Volcaniclastic 55 22 23 29 0.8 1.7 
Weak Volcaniclastic 81 5 15 13 0.6 2.4 
1 Particle size distributions based on lithology as determined from Hicks et al. (2004). 

 

 

Landscapes are mosaics of varying land use types, topography, and lithology, and therefore 

increases in sediment concentration that generally occur as the result of landscape 

disturbance, or in response to natural perturbations from rainfall events or slope-failure, can 

occur at different locations within catchments. For example, if catchments are prone to 

different sources of suspended material, whether that is from slope failure, or introducing a 

component of land use disturbance (e.g., pastoral intensification, or plantation forestry), it 

may change the size of material available for sediment transport (Navratil et al., 2011; 

Landers & Strum, 2013). The implication is, that if transformations in land use predispose a 
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catchment to release finer-grade material, there may be an increase in turbidity that is 

disproportionate to the increase in suspended sediment mass, because fine grain particles 

produce proportionately more turbidity, per mass, than sand particles when using 

nephelometric turbidity. From an environmental monitoring perspective, this means that if 

a nephelometric turbidity regulatory threshold is specified, it may be exceeded more quickly 

by the release of fine silt and clay sized particles than by disturbance that produces coarser, 

sand grade material (Owens et al., 2005). The counter is that fine grained material is 

potentially more environmentally detrimental to receiving environments, where fine grained 

material builds up in riverbeds and acts to clog interstitial space, and reduce vadose zone 

exchange, and be potentially harmful to aquatic species (Wood & Armitage, 1997; Owens 

et al., 2005; Brunke & Gonser, 1997). Careful consideration to different sediment sources is 

therefore required when applying different rating curves for SS–turbidity, especially if the 

monitoring effort is to try to understand landscape disturbance and SS response from 

turbidity records. 

 

7.6 Conclusions 
Specific turbidity differs across the NRWQN of New Zealand and is influenced by the 

underlying lithological composition and how that controls rock disaggregation and 

propensity for attrition to certain material size classes. Lithological type and optically 

distinct variables that directly control light attenuation, and landscape characteristics (e.g., 

soil type, erosivity, topography) that enable availability and transport of sediment and 

organic material, are the main processes that affect specific turbidity. As such, these factors 

contribute to different SS–turbidity relationships. Shown here is that K, that normalises 

turbidity for the mass concentration of sediment, is a useful metric for exploring underlying 

differences in material composition, when combined with data related to particle size and 

organic composition. While other indices, such as light beam attenuation that is based on 

visual clarity (m), have been shown to be a more successful at estimating concentrations of 

riverine particulate material, these approaches are not yet  widely used tools in 

environmental monitoring. Therefore, it is proposed that in the interim, specific turbidity 

could be a useful metric for classifying the effects of organic composition and particle size 

of riverine suspended materials where existing records of SS and turbidity are available. 

Additionally, the influence of CDOM on turbidity measurements remains problematic and 
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further work is needed to understand how CDOM interacts with particulate material. It is 

suggested that the use of turbidity as a surrogate for determining suspended sediment 

concentration must consider the effects of particle size and organic interferences, and 

therefore propose greater use of specific turbidity as a metric for delineating the influence 

of composition and PSD changes on the appropriate measurement of suspended sediment.  
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8 Synthesis 
 

8.1 Research Summary 
Optically distinct components of riverine suspended material restrict use of turbidity in all 

suspended sediment monitoring situations. The conditions in which these restrictions apply 

are not well understood. Therefore using turbidity in suspended sediment monitoring to 

understand land use disturbance and natural processes requires careful consideration of the 

monitoring methods used. This thesis shows that sediment is only one component of the 

material eroded and transported in riverine systems when landscape transformations and 

perturbations occur, and provides context for the catchment characteristics that give variable 

particulate compositions with a variety of properties, and noisy turbidity responses. The 

research outputs of this thesis have shown that the suspended load can be a complex mixture 

of inorganic mineral suspended sediment and biogenic particulate organic matter (POM) that 

are controlled by intrinsic and extrinsic catchment characteristics. Typically, it is the 

inorganic sediment portion that is of most interest and quantified using surrogates like 

turbidity, and the organic influence on the clarity of river waters and turbidity is largely 

ignored. The present study shows that organic and inorganic materials are optically distinct 

and behave differently with nephelometric turbidimeters, and therefore this has implications 

for the wide use of turbidity in suspended sediment monitoring and research. As such, 

effective measurement of riverine sediment flux with simple surrogates like turbidity is 

deeply problematic and requires careful consideration of its application and use.  

 

Overall this thesis has established that: 

• Biological fouling from POM and coloured dissolved organic matter (CDOM), and 

variation in particle size of suspended particulate material cause turbidity to be a 

poor surrogate for the suspended sediment concertation (SSC); 

• POM can be a significant component of suspended load, and is particularly acute 

under baseflow; 

• The proportion of POM relative to the total suspended material (i.e., POM%) is 

controlled by a variety of extrinsic and intrinsic catchment characteristics that 

predispose landscapes to the erosion of organic rich material; 
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• Organic carbon comprises approximately half of the POM transported as part of the 

suspended load, and therefore particulate organic carbon (POC) is linked to the 

catchment denudation processes that control POM export; 

• The organic composition (POM and CDOM), and particle size distribution of 

suspended material, under both event and base flow conditions, control light 

attenuation and turbidity in river waters. This has impacts on the nephelometric 

determination of turbidity making use of turbidity as a surrogate for SSC 

problematic; 

• Specific turbidity (that is turbidity normalised for mass concentration of 

particulates) is a useful indicator for the detection of organic composition (POM and 

CDOM), and particle size that explain variation in turbidity response at base flow 

and event flow; 

• Specific turbidity trends show that POM and particle size are temporally and 

spatially variable, and therefore the common assumption that suspended sediment 

do not change in their particle properties or composition over time, or due to soil 

erosion mitigations, is not valid; and 

• Suspended sediment-turbidity ratings are fraught in locations with high proportions 

of POM or significant proportions of ultra-fine particulate material. In some 

catchments with specific characteristics, POM or ultra-fine particulate material 

dominates the turbidity response. 

 

These findings broadly contribute to understanding under three themes, that are discussed in 

more detail below. 

 

1. Particulate Organic Material can be a Significant Component of Total Suspended 
Material 

Organic matter flux on a regional scale has not been studied in depth in New Zealand, and 

contributes to a distinctly Southern Hemisphere perspective, and the flux yields are broadly 

consistent with global observations (e.g., Wu et al., 2007; Zhang et al., 2009; Madej, 2015). 

Regional perspectives of regional POM fluxes are limited, and this thesis has linked POM 

to POC yields by calculating a van Bemmelen conversion factor of 1.3 for riverine carbon 

for southern New Zealand. Typically, this conversion factor is estimated as being a value of 

2, ranging 1.4 – 2.5 (Pribyl, 2010), but these ratios are largely derived for soils (Ahn & Jones, 
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2013); and may not be representative of the multiple carbon sources that comprise of POM 

in fluvial systems. The van Bemmelen factor calculated here is a value at the lower end of 

the generalised range, and signifies that baseline fluvial POM flux determined from fluvial 

POM likely derives a van Bemmelen factor <1.5, and may be a consequence of both 

allochthonous and autochthonous carbon sources that are present in fluvial POM, and that 

different ratios exist between terrestrially-derived soils and other carbon-sources. Or, that 

the traditional range of van Bemmelen does not adequately represent raw or recent soils that 

may be produced in alpine regions in New Zealand. For example, Ahn and Johnes (2013) 

and Périé and Ouimet (2007) show considerable differences in van Bemmelen factors exist 

between different soil types. 

 

Significant is the general implication of high organic matter on the poor statistical fit 

between SSC and turbidity. The thesis has shown that this effect is most apparent in the 

presence of POM and variable particulate size distributions. The contribution of this thesis 

is the linkage between poor suspended sediment-turbidity ratings being most acute in the 

presence of CDOM that gives waters a characteristic yellow hue. The significance of POM 

on suspended sediment monitoring has not been accounted for at this scale, or across a range 

of diverse landscapes, as evident in southern New Zealand. POM concentration is also 

associated with lithology and transport competence that is controlled by event hydrology, 

and therefore, behaves like suspended sediment due to its concomitant transport. However, 

the proportion of POM (i.e., POM%) at base flow responds to both intrinsic and extrinsic 

catchment characteristics and is affected by the availability of organic material and 

mechanisms for transport including vegetation cover, topography, and hydrology. This 

thesis contributes to better understanding of the variability, patterns, and controls on riverine 

organic matter fluxes and yield in a distinctly Southern Hemisphere example, that is largely 

absent from existing research. POM% has acted as an indicator for identifying the relevance 

of these transport mechanisms and may have value as a metric to infer landscape controls on 

riverine fluxes of organic matter. Focus on baseflow levels is an uncommon approach, as 

event flow export is typically considered more relevant due to the large volume of particulate 

material exported during higher flows, however, the data shows that organic and inorganic 

material at lower flows are relevant to annual loads, and across southern New Zealand it is 

evident that baseline riverine organic matter and suspended sediment is spatially organised 

and connected to broader hillslope processes. 
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2. Turbidity is Sensitive to Composition and Particle Size Distribution 

The turbidimeter comparison studies presented as part of this thesis further consolidate the 

burgeoning research into this issue. The approach used in this thesis differs, however, given 

the use of natural suspended sediments collected from alpine and organic rich rivers in spate, 

rather than relying on synthetic or deposited samples (e.g., Gippel, 1995; Merten et al., 2014) 

and has observed the behaviour of variable particle sizes and organic compositions over 

event flow. The thesis shows the effect of optically distinct components of naturally derived 

suspended particulate material that controls light attenuation and gives variable turbidity 

responses. Specific turbidity is a measure of sensitivity (e.g., Gippel, 1995; Merten et al., 

2014) although its application across sediment research is not widely used. This thesis, 

however, has identified the use of specific turbidity as a means of understanding where and 

when turbidity is most sensitive, and is a novel contribution to turbidity science focused on 

light attenuation processes. Given the broad use of turbidity in research and suspended 

sediment monitoring, specific turbidity has a place alongside suspended sediment 

monitoring with turbidity to better understand variability in composition and particle size, 

that despite common assumptions, are rarely stable. Like observed across southern New 

Zealand, the same effect of composition and particle size was observed across New 

Zealand’s National River Water Quality Network. Therefore, the implications are broadly 

relevant across large spatial scales, and highlights the relevancy of catchment specific light 

attenuation responses across a national record of turbidity when used in suspended sediment 

monitoring. Therefore the thesis provides information pertinent to evaluating the 

applicability of comparing turbidity records over time, or between catchments, that is 

commonly done without thought for the factors that control variable light attenuation 

responses. 

  

3. Implications for Use of Turbidity as Surrogate for Sediment Monitoring 
The implication of variability in turbidity response to composition and particle size is that 

nephelometric turbidity methods do not necessarily produce consistent predictive 

relationships between turbidity and SSC. Observed noise in relationships is common, 

although the effect is not quantified. Organic composition of suspended riverine material 

can be highly variable, and particle size variations are in part responsible for observed noise 

in suspended sediment-turbidity relationships. The missed opportunity is that specific 

turbidity is the inverse of the slope coefficient of suspended sediment-turbidity relationships, 

and therefore changes in specific turbidity represent variability of suspended sediment-
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turbidity relationships, that are driven by compositional and particle size variations. This 

validates that for mixed composition samples, or where significant portions of ultra-fine 

material (<6µm) are part of the particle size distribution, turbidity cannot be reliably used as 

a predictor for inorganic sediment concentration. This poses an interesting question in 

relation to use of turbidity for suspended sediment monitoring, that traverses the five 

research papers included in this thesis by examining the individual components, and their 

combined effect. The outputs from this thesis culminates in Chapter Seven that applies the 

learnings from this thesis to the National River Water Quality Network. This fills the 

identified gap in the existing literature and connects POM and suspended sediment to one 

another by using POM% as an indicator for the catchment denudation processes that 

determine composition (and therefore particle size), and the effect this has on light 

attenuation and suspended sediment-turbidity relationships. 

 

Statistical analysis of the landscape controls that affect specific turbidity showed that for 

New Zealand the lithology type, and therefore attrition rates, and optically distinct variables 

that control light attenuation, along with landscape characteristics (e.g., soil type, erosivity, 

topography) affect specific turbidity. Therefore, extrinsic and intrinsic catchment 

characteristics define the composition and particle size distribution of riverine suspended 

material, and this is bespoke to individual catchments. These factors contribute to different 

suspended sediment-turbidity relationships, as shown across New Zealand, there is 

significant variation in the slope coefficient that is assumed to approximate 2 (Hicks et al., 

2011), however, these assumptions miss the key drivers that lead to variable suspended 

sediment-turbidity responses. So that for the same value of turbidity in two different 

catchments the estimated SSC based on suspended sediment-turbidity could be over- or 

under- predicted based on the optical properties of the suspended material present. National 

records of suspended sediment-turbidity provide a framework for estimating the likely 

properties of the material suspended in rivers measured by nephelometric turbidity, and 

offers an opportunity to apply this to existing SSC-turbidity records and calibrate for the 

effects of particle size, organic matter or water colour . Furthermore, specific turbidity may 

be an effective indicator that represents the integration of the processes that control source 

availability and transport competence. Researchers and environmental managers should 

therefore consider the following questions when evaluating use of turbidity and validity of 

exiting suspended sediment-turbidity records: 
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• Can suspended sediment be derived from turbidity at a particular site, and can noise 

in existing suspended sediment-turbidity relationships be explained by higher 

portions of organic matter or fine particulate material? 

• Are there certain landscape characteristics within a catchment that predispose the 

suspended flux to higher proportions of organic matter, or show a preference for the 

attrition of certain particle size fractions? 

• Do existing suspended sediment-turbidity relationships vary in time and space, 

within and between catchments, and is this indicative of variable light attenuation 

responses to organic matter or particle size? 

 

Despite these identified limitations, turbidity can be a successful metric for monitoring 

suspended sediment in certain landscapes, for example where organic matter is an 

insignificant component of the suspended material flux (e.g., alpine or glacial environments) 

(e.g., Mager et al., 2018) or where landscape characteristics produce homogenous suspended 

materials (e.g., small, single land cover catchments) (e.g. Gippel, 1995). The difficulty is 

that these conditions rarely exist (e.g., Landers & Strum, 2013), and the conditions under 

which turbidity is a suitable surrogate for monitoring suspended sediment are catchment 

(and potentially temporally) specific (Gippel, 1989; Lewis et al., 2007).  Turbidity is a poor 

surrogate in catchments where sources of sediment are switched on and off (Duvert et al., 

2010; Navratil et al., 2012), or where organic material is intermittently cycled through the 

riverine system (Ittekkot & Arain, 1996; Robertson et al., 1999), because the light 

attenuation and optical response of rivers is variable. Therefore turbidity is inconsistent, and 

this introduces the observed noise in suspended sediment-turbidity relationships, and 

explains why in some catchments a suspended sediment-turbidity rating may be very 

difficult to calibrate.  
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8.2 Future Work 
Despite the recent surge in understanding the implications of sediment on freshwater 

ecosystems at a broader integrated catchment management perspective, there remains a 

paucity in understanding the independent controls that influence the mix of mineral and 

organic material fluxed through rivers. Further research should be directed to assessing the 

properties of riverine suspended material across a range of landscapes. The present study 

has begun to address this, although there remains substantial scope for further work. For 

example, if specific turbidity or other normalised metrics should be applied to existing and 

future turbidity and SSC records so that the suitability of turbidity for determining SSC can 

be assessed before ratings are developed.  

Specifically, further research should be directed to: 

• Source discrimination of sediment and organic matter in mixed land use catchments, 

especially in impacted versus indigenous catchments as method tests for various 

source tracing techniques. Initial studies have shown promise of these techniques 

(Gibbs, 2008; Vale et al., 2016; Upadhayay et al., 2018), but it is needed more 

expansively across varying landscape types to understand the source and timing of 

sediment and organic matter release to the fluvial environment, and the landscape 

characteristics that control these processes; 

• Increase the collection of particle size data of suspended sediment so that sediment 

properties can be better understood in relation to the light attenuation effect and 

turbidity response, and be used to assess suitability of turbidity method; 

• Further evaluation of the implications of particle size and suspended material 

composition on other turbidity methods, and water clarity surrogate technologies; 

and 

• Strategic investment is needed at a national level if turbidity is unsuitable for 

continued use in some landscapes, the assessment of other indices, such as measures 

of visual clarity, for monitoring SSC is required. 

 

One aspect of this future direction (source tracing) was considered for inclusion in this thesis. 

Analytical work contributing to a source tracing experiment has been completed but is not 

included in the final document due to a delay in the delivery of the analytical data within the 

PhD timeframe. The source tracing experiment was started in 2018 and focused in the Taieri 

Catchment of Otago, and has used a relatively new sediment source tracing technique that 
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uses environmental biotracers (Compound Specific Stable Isotopes (CSSI)) to link sediment 

samples collected from stream flow or depositional areas with sources from outside the 

fluvial environment (see: Gibbs, 2008). As the technique uses the isotopic signature of the 

fatty acids within soil and sediment samples that are bespoke to vegetation type, the 

technique that is primarily used to source discriminate sediment, also discriminates the 

organic matter component. Sample collection selected the major land covers in the Taieri 

catchment (pasture, tussock grassland, low productivity grassland, and exotic forest) across 

a range of topographies, so that the sources of sediment and organic matter can be identified. 

The project also quantified the geochemical signature of soils and sediments as tracers for 

the inorganic sediment component and follow the approach described by Vale et al. (2016), 

and compare this to the source discrimination of the CSSI method. The objective of this 

thesis is to add value to the existing understanding of intrinsic landscape characteristics that 

preference higher proportions of organic matter or inorganic sediment, and test method 

suitability to this application. Few studies have been completed in New Zealand (Gibbs, 

2008; Vale et al., 2016) but it is needed more expansively across the country to understand 

the presence and significance of riverine organic matter in comparison to mineral sediment, 

and the implications for optical water quality, carbon flux, and relevance of soil erosion 

control programmes. 

 

The present study, along with Hicks et al. (2004), and Hicks et al. (2019) are the primary 

sources of particle size data that are relevant to New Zealand riverine suspended sediments, 

and there is a substantial shortfall in available data to resolve the complexities of turbidity 

response to particle size factors. A surge in further work based in New Zealand is occurring 

(e.g., Dymond et al., 2019; Hicks & Haddadchi, 2019; Horton et al., 2019; Smith et al., 

2019). Hicks et al. (2019) has shown use of the Sequoia LISST-SL2 with laser diffraction 

technology (see: Section Two; Table 2.1) that measures particle size distribution in-situ 

when cable-suspended in stream flow (Hicks et al., 2019; Mikkelsen & Agrawal, 2019). 

Although successful at collecting depth and flow integrating SSC with particle size data, it 

is expensive and does not yet offer continuous monitoring opportunities. Thus, further work 

in understanding the particle size distribution factors are forthcoming, and will substantially 

improve the dearth of particle size related information in New Zealand.  
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Continued work examining the optical water quality parameters that were collected as part 

of the New Zealand National River Water Quality is also under development. The national 

record provides a 30 year record of visual clarity that has previously been examined by 

Davies-Colley et al. (2014) for use as a surrogate in suspended sediment monitoring. Similar 

to specific turbidity that normalises turbidity to the mass concentration of particulates, the 

specific beam attenuation coefficient (i.e., the optical cross-section of particulates) 

normalises light attenuation estimated from visual clarity for mass concentration of 

particulates. As such, the beam attenuation coefficient is a potentially useful metric for 

assessing the parameters that control light attenuation in river waters, and is arguably a better 

metric for monitoring changes in visual water clarity and the impacts of suspended sediment 

on ecosystems. Preliminary analysis of the specific beam attenuation coefficient suggest that 

landscape controls are relevant, like for specific turbidity, and therefore this warrants further 

investigation for suitability of use in suspended sediment monitoring across different 

landscapes. 

 

8.3 Turbidity and Environmental Monitoring in 
New Zealand 

Substantial change to New Zealand’s strategic framework for freshwater management has 

occurred since implementation of the Resource Management Act in 1991. Although is it 

recognised that this is a dynamic space, and standardised methods for environmental 

monitoring has improved the consistency of environmental data collection. As part of the 

National Environment Monitoring Standards (NEMS) workflow, a standard for the 

measurement of turbidity has been developed, with a further standard for determining the 

suspended sediment underway. However, along with the present study, other research in 

New Zealand has identified the non-comparability of turbidity methods due to the different 

response of different sensors (i.e., those operating to EPA 180.1 and ISO 7027) (Jeff Watson, 

personal communication, November 2019), and even between sensors of the same method 

(Hughes et al., 2019). This raises the question as to whether the current technology available 

is appropriate, particularly in New Zealand where the landscape is a mosaic of land uses and 

landscape typologies (e.g., volcanic, alpine, coastal floodplains, rolling hill country).   
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Pertinent to the continued use of turbidity, as suggested within the NEMS, will be 

maintaining the common use of technology (Jeff Watson, personal communication 

November, 2019), which could be costly and take time to implement, therefore continued 

use of current turbidity monitoring is inevitable for at least the short term. Despite this 

however, inconsistent turbidity response even when using the same sensor technology 

suggest that comparability of turbidity is unlikely, and procedures for maintaining 

consistency between sensors is paramount (Jeff Watson, personal communication 

November, 2019). Therefore, investigation into the validity of other indices, such as visual 

clarity, is highly important but should also consider the spatial and temporal trends that have 

been identified in the current study. 

 

As highlighted several times within this thesis, the continued use of turbidity is pragmatic, 

but problematic. Scientists, researchers, and environmental managers alike must consider 

whether continued use of turbidity is appropriate given the limitations outlined in this thesis. 

Particularly as a regulatory tool, turbidity cannot be fairly or reasonably used as a standalone 

threshold due to the over- or under- prediction of SSC that can occur for the same values of 

turbidity, depending on the properties of the suspended material. So that, for a value of 5 

NTU, which is a common threshold in New Zealand regional water plans, based on a 

suspended sediment-turbidity relationships with a slope coefficient of 2, the equivalent 

concentration of suspended sediment would be 10 mg L-1, however, a suspended sediment-

turbidity slope coefficient of 1.3 (as observed in organic rich catchments, or where fine 

suspended sediment dominant) a concentration of 6.2 mg L-1 would be derived (Figure 8.1). 

Even under such a simple example it is clearly evident that the effects of land use disturbance 

would be unequally evaluated between the two examples. The issue this poses to use of 

turbidity as a regulatory threshold for sediment flux and landscape disturbance is that it 

might unduly burden landholders in some locations, relative to others. This uncertainty is a 

significant issue that must be addressed through careful selection of turbidity methods or 

must at least be justified for use in certain catchments. 

 

 



 145  

 
Figure 8.1 Synthetic suspended sediment concentration (SSC) and turbidity for two different 
possible relationships, where the estimation of SSC from the same value of turbidity is 
different. 

 

 

As discussed in Chapters Three to Seven, consideration of the composition and particle size 

of suspended particulate materials, and the sources within diverse catchments must be taken 

into account when deriving suspended sediment from turbidity. The implications can be 

troublesome for suspended sediment-turbidity relationships and are particularly acute to 

regulatory frameworks where limits on suspended sediment are imposed through thresholds 

of turbidity, such as those imposed in Australia and New Zealand. By comparison, other 

countries set their limits on suspended sediment and turbidity is a secondary measure, for 

example the European Union, Canada, and United States of America (Table 8.1) (Collins et 

al., 2011; Grove et al., 2015). These regulatory frameworks focus attention on suspended 

sediment, since that is the variable of harm to aquatic form and function, although suggest 

use of turbidity as a means of making assessments (e.g., Canada, United States of America) 

or recommend a threshold of turbidity for implementing assessments (e.g., European Union). 

However, as described above, a single value of turbidity, as mandated in Australia and New 

Zealand, does not necessary equate to an exact suspended sediment concentration that is 

comparable across locations, or may not have direct relevance to the environmental values 

the thresholds are designed to protect (Grove et al., 2015). These existing targets are subject 

to the inherent problems associated with suspended sediment monitoring, namely the use of 

imperfect surrogates like turbidity, that when applied over diverse environments mean water 

quality recommendations are more like benchmarks rather than regulatory thresholds 

(Collins et al., 2011). For example, of the New Zealand rivers that were included in the 
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National River Water Quality Network 22% had median turbidity values that exceeded the 

regulatory 5 NTU threshold (see: Chapter Seven). These catchments included a mixture of 

South Island alpine catchments with paraglacial landforms, and catchments across both the 

North Island and South Island with large areas of pastoral agriculture and pockets of other 

significant land uses, like plantation forestry. Therefore, it is not appropriate to enshrine a 

single threshold into regulation that is appropriate for all these landscapes that may produce 

distinct suspensions of suspended material reflective of catchment characteristics other than 

those produced by anthropogenic disturbance. 

 

In light of these turbidity method limitations, investment in alternatives is warranted, 

although other indices will require substantial validation before abandoning use of turbidity, 

however, little discussion of visual clarity indices is evident in these regulatory frameworks 

(Table 8.1). Visual clarity, while included in Australian and New Zealand frameworks, and 

measured as part of the New Zealand National River Water Quality Network, has received 

substantially less recognition for suitability in suspended sediment monitoring, despite its 

wide use in other disciplines. The use of visual clarity is hampered by the development of 

continuous measurement technologies, rather the method requires discrete point 

measurements to be collected in the field using a Secchi or black disk (Davies-Colley et al., 

2014; West et al., 2013; West & Scott, 2016). Despite this, some refer to visual clarity as 

the preferred metric over turbidity, as visual clarity, unlike turbidity, has more environmental 

relevance as it is calibrated to a proper scientific quantity, i.e., visual range measured in 

metres (Smith et al., 1997; Smith & Davies-Colley, 2001; West & Scott, 2016). Despite this, 

turbidity as a relative index of water cloudiness continues to be expansively used for 

continuous measurement applications, often by default. In the short term (until alternatives 

are available) a balance must be found between the spatially extensive collection of 

continuous turbidity for estimating suspended sediment, and the need for exact 

quantification of suspended sediment and its composition. The future development of New 

Zealand’s regulatory framework should develop a limit set on suspended sediment where 

this is the variable of interest, and follow international protocols like that of the European 

Union. In this way standardised techniques (i.e., the turbidity NEMS) for the measurement 

of turbidity can only be used as a measure of suspended sediment when an existing 

suspended sediment-turbidity relationship has been established, and validated. It is these 

decisions, and the intended use for comparability, or environmental consequence that should 

drive the use of any surrogates in suspended sediment research and monitoring.   
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Table 8.1 Summary of regulatory frameworks for Canada, United States of America, 
European Union, and Australia and New Zealand, with general descriptions of relevant 
thresholds and monitoring criteria for suspended sediment and turbidity, and where relevant 
visual clarity. (Adopted from: Bilotta and Brazier (2008) and Collins et al. (2011). 
 
 General Threshold Limits 
Authority Policy Country Suspended 

Sediment 
Turbidity Visual Clarity 

Canadian Council of 
Ministers of the 
Environment 
(CCME) 

Canadian 
Environmental 
Quality Guidelines 
for protection of 
Freshwater 
Aquatic Life 

Canada Low flow, 
high flow, and 
short lived 
concentration 
change limits 
set. 
General limit 
25 mg L-1. 

Turbidity as 
measure for 
change from 
baseline levels1 

applied to actual 
and potential 
spawning sites. 
Thresholds range 5 
– 8  NTU. 

 

United States 
Environmental 
Protection Agency 

National 
Recommended 
Water Quality 
Criteria US EPA 
2007 
 
Ecoregional 
Criteria 
Solids Suspended 
and Turbidity 

United 
States of 
America 

Suspended 
solids should 
not reduce 
depth for 
photosynthetic 
activity. 

Turbidity use in 
aesthetic quality 
assessments. 
Turbidity to set 
limit on suspended 
particulate matter 

Thresholds range 5 
– 50 NTU.2 

 

European Union 
Freshwater Fisheries 
Directive 

Freshwater 
Fisheries Directive 
(78/659/EEC) and 
(2004/44/EC); 
Quality of Water 
Intended for 
Human 
Consumption 
(98/83/EC); Water 
Framework 
Directive 
(2000/60/EC) 

European 
Union 

Concentrations 
should not 
exceed 25 mg 
L-1 in waters 
suitable for 
salmonid and 
cyprinid fish 
populations. 

Maintain levels <4 
NTU for drinking 
water.3 
Marine and 
freshwater 
application to 
assessing effects 
of sediment, and 
application to 
other water quality 
parameters.4 

 

Australian and New 
Zealand 
Environment and 
Conservation 
Council (ANZECC) 
 
Agriculture and 
Resource Manage 
Council of Australia 
and New Zealand 

Australia and New 
Zealand 
Guidelines for 
Fresh and Marine 
Water Quality 
(ANZECC 2000) 

Australia 
and New 
Zealand 

Suspended 
sediment limits 
based on 
turbidity for 
different 
regions. 

Turbidity limits 
applied to lowland 
rivers, freshwater 
lakes and 
reservoirs. 
Thresholds range 
2-50NTU 
depending on 
region. 

Visual clarity 
monitored by 
Secchi disc, 
and not be 
reduced by 
more than 20%. 
Swim-ability 
defined by 
1.6m horizonal 
visual range.5 

1CCME (2002). Canadian Water Quality Guidelines for the Protection of Aquatic Life – Total Particulate Matter 
2 EPA (2002). EPA Ecoregional Criteria 
3 WHO (2017). Drinking Water Parameter Cooperation Project. 
4 Water Framework Direction (2015). Water Resources, England and Wales, 2015 No 1623. 
5ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters – National Water Quality Management Strategy. 
Australian and New Zealand Environment and Conservation Council: Canberra, Australia. 
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9 Conclusion 
The transfer of sediment from the terrestrial surface to the fluvial system is an important 

component of sediment routing systems, however, the mechanisms that effect inorganic 

sediment delivery also influence organic matter delivery. This thesis has addressed: 1) how 

much particulate material under base flow is conveyed through rivers in southern New 

Zealand, and the relative importance of organic matter flux; 2) how different landscape units 

contribute to the particulate load; and 3) how the use of turbidity as a surrogate for suspended 

sediment is affected by differences in particulate composition, size and optical properties. 

 

Organic matter is transported concomitantly with suspended sediment, and allochthonous 

organic matter sources delivered from outside the fluvial environment are a small, but 

important component of all suspended load in New Zealand rivers. By quantifying the 

particulate organic matter flux, this thesis also has been able to report conservative estimates 

of organic carbon yields for southern New Zealand, which has not been previously 

quantified. Riverine organic matter has different optical properties to inorganic sediment, 

and as such its presence in water affects turbidity, and the assessment of the role of organic 

matter provides a novel contribution to existing research showing that suspended sediment, 

POM and turbidity and intimately connected.  

 

Additionally, this thesis has critically reflected on the use of turbidity as an environmental 

indicator as mandated in New Zealand regulatory thresholds. It is the composition (POM 

and CDOM) and particle size factors (proportion of clay, silt and sand) that complicate the 

use of surrogates like turbidity, particularly when the purpose of turbidity data collection is 

to derive records of suspended sediment. Therefore, although turbidity is a pragmatic tool, 

its use is problematic, being particularly flawed in certain landscapes. Discontinuing use of 

turbidity is unlikely an option given the that turbidity is imbedded is existing monitoring 

frameworks, however, metrics like POM% and specific turbidity may be useful tools for 

diagnosing the appropriate conditions for turbidity use as a suspended sediment surrogate. 

The use of these metrics should be used more widely for classifying the effects of organic 

composition and particle size on riverine suspended materials, and be used to evaluate 

whether turbidity is suitable and validate existing records. 
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These overarching themes of the role of particulate organic matter, sediment characteristics, 

and turbidity were the focus of this thesis, and resolved by considering six research 

questions, which are: 

 

RQ1: Is POM an important component of stream suspended load, and does it affect 

suspended sediment-turbidity relationships? 

Particulate organic matter can be a substantial component of stream suspended load 

(Chapters Three and Four).  Chapters Five, Six, and Seven show that particulate 

organic matter and coloured dissolved organic matter have different light attenuation 

responses to inorganic suspended sediment. This introduces noise in suspended 

sediment-turbidity relationships. 

 

RQ2: How much POM is transported by southern New Zealand rivers, and what is the 

association of this POM to suspended sediment and carbon flux? 

Suspended sediment composition across southern New Zealand is non-homogenous, 

primarily due to organic composition where particulate organic matter can be a 

significant component of the suspended material fluxed through rivers: <10%, or much 

higher at 50 – 80%  (Chapters Four). POM contributes a significant proportion of organic 

carbon to oceanic sequestration. 

 

RQ3: How much POC is discharged through rivers in Southern New Zealand and what is 

the POC yield for 84 southern New Zealand catchments? 

The riverine organic flux exports 0.04 – 0.4 t km-2 a-1 of particulate organic carbon 

into Fouveaux Strait, and between 0.4 – 2.7 t km-2 a-1 into the South East Pacific 

Ocean (Chapter Four). This particulate organic carbon comprises around 23% of the 

organic matter exported to the southern oceans. 

 

RQ4: What extrinsic and intrinsic catchment characteristics control POM concentration and 

POM proportions? 

Intrinsic (within catchment) and extrinsic (external to catchment) variables inherently 

affect particulate organic matter by enabling and conditioning slopes for the erosion of 

particulate organic matter with sediment.  Intrinsic variables, such as discharge and flow 

characteristics, landcover, and lithology affect the concentration and proportion of 

particulate organic matter of the total suspended particulate materials (Chapter Four). 
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RQ5: What effect do organic composition and particle size have on turbidity measurements 

derived from different nephelometric methods (EPA 180.1 and ISO 7027)? 

Chapters Five, Six, and Seven show that that different nephelometric turbidity 

methods produce inconsistent responses. This is due to variability in composition 

and particle size that affect the light source of nephelometric turbidimeters. 

Particulate organic matter causes an unpredictable scattering effect, and coloured 

dissolved organic matter can absorb light within the visual light spectrum. Particle 

size controls the shape and density of inorganic suspended sediment, and controls 

refractive and scattering principles. Therefore, variation in composition (POM and 

CDOM) and particle size factors (proportion of clay, silt and sand) give different 

turbidity values. 

 

RQ6: What influence do catchment characteristics have on suspended sediment–turbidity 

ratings across New Zealand? 

Turbidity (recorded as unit NTU) across the New Zealand National River Water 

Quality Network is suspectable to variations in particle size and composition of 

suspended particulates (Chapter Seven). This has a notable effect on SSC-turbidity 

relationships and has limitations for the comparability, and relevancy, of suspended 

sediment data derived from turbidity in New Zealand. Extrinsic and intrinsic 

catchment characteristics define the composition and particle size distribution of 

riverine suspended material across New Zealand, and therefore suspended sediment-

turbidity ratings are bespoke to individual catchments. 

 

Turbidity is a pragmatic, but problematic surrogate for suspended sediment monitoring, 

especially where particulate organic matter, coloured dissolved organic matter, or the 

lithology of a catchment preferentially erodes to ultra-fine suspensions of clay and silt. These 

factors make turbidity an unsuitable surrogate for suspended sediment concentration in many 

landscape units across New Zealand.  
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11.1 Research Outputs During PhD 
 

Conference Presentations and Posters as Lead Author: 
2019 The effect of fine particulates and particle size on nephelometric turbidity. Oral presentation 

New Zealand Hydrological Society conference in Rotorua. 
2018 Particulate organic matter, suspended sediment and turbidity in Otago, New Zealand tussock 

grasslands. Poster at European Geosciences Union General Assembly conference in Vienna, 
Austria. 

2018 Particle facilitated transport of metals in Southland and Otago, New Zealand. Poster at 
Integrated Hydrosystem Modelling conference, Tübingen, Germany. 

2017 Organic matter, suspended sediment and turbidity in Otago Tussock Grasslands. Oral 
presentation at New Zealand Hydrological Society conference in Napier. 

2017  Turbidity’s sensitivity to organic matter. Oral presentation at New Zealand Hydrological 
Society conference in Napier. 

2017 Particulate organic matter and its influence on predicting suspended sediment concentrations 
when derived from nephelometric turbidity. Oral presentation at International Society for 
River Science conference in Hamilton. 

2017 Stream Flow Particulates and Turbidity: Shedding light on Organic Matter and Suspended 
Sediment. Oral presentation part of the Department of Geography, University of Otago 
seminar series. 

2016 Why do suspended-sediment turbidity relationships fail? Oral presentation at New Zealand 
Hydrological Society Conference in Queenstown.  

 
Workshops: 
2018 New Zealand Hydrological Society Technical Workshop “Discover the real dirt in 

hydrology”, held in Palmerston North. 
Oral Presentation: Turbidity – More than just Sediment 

2017 New Zealand Hydrological Society Technical Workshop “Are you making a difference in 
field hydrology?”, held in Dunedin. 

2017 Horizons Regional Council workshop with Environmental Science Team and NEMS 
Steering Group Members. 

 Oral Presentations:  
1.Suspended Sediment Turbidity Relationships  
2.Stream Flow Particulates and Turbidity, the Impact of Particulate Organic Matter 

 
Publications and Reports: 
Bright, C.E., & Mager, S.M. (2020). A national-scale study of spatial variability in the relationship 

between turbidity and suspended sediment concentration. River Research and Application, 
1-11. DOI: 10.1002/rra.3679. 

Bright, C.E., Mager, S.M., & Horton, S.L. (2020). Response of nephelometric turbidity to 
hydrodynamic particle size of suspended fine sediments. International Journal of Sediment 
Research, 35, 444-454. DOI: 10.1016/j.ijsrc.2020.03.006. 

Bright, C.E., Mager, S.M., & Horton, S.L. (2020). Catchment-scale influence on riverine organic 
matter in southern New Zealand. Geomorphology, 353. 
DOI:10.1016/j.geomorph.2019.107010 

Mager, S.M., Bright, C.E., and Horton, S.L. (2018). Glendhu Forestry Water Quality Monitoring 
Project: Summary Report. 

Bright C.E., Mager, S.M. and Horton, S.L. (2018). Predicting suspended sediment concentration 
from nephelometric turbidity in organic-rich waters. River Research and Applications, 
2018, 1 –9. DOI 10.1002/rra.3305. 
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Bright C. E., Mager S.M. (2017). Research and sampling strategy for evaluating the effectiveness of 
sediment erosion mitigation options for plantation forestry in the Marlborough Sounds. 
Prepared for Marlborough District Council. Envirolink Report 1736-MDLC128 

Bright, C.E. and Mager, S.M. (2016). Contribution of particulate organic matter to riverine 
suspended material in the Glendhu Experimental Catchments, Otago, New Zealand. 
Journal of Hydrology (NZ), 55, 2, 89 – 105. 
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11.2 Research Papers 
 

1. Contribution of particulate organic matter to river 
suspended material in the Glendhu Experiment Catchment, 
Otago, New Zealand. 

 

Reference 
Bright, C. E., & Mager, S. M. (2016). Contribution of particulate organic matter to riverine 
suspended material in the Glendhu Experimental Catchments, Otago, New Zealand. Journal 
of Hydrology (NZ), 55, 89–105.  
 
Submitted December 2016, published in early 2017. 
 
Funding Sources 
This work was supported by the New Zealand Hydrological Society Project Fund (awarded 
to Christina Bright, first author), and general research funding by the University of Otago. 
 
Author Contributions 
Lead author, experimental design and analytical work (CEB); collection field samples and 
laboratory analysis (CEB); editorial drafting and editing (CEB, SMM). Supervision of 
project (SMM). 
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2. Catchment-scale influence on riverine organic matter in 
southern New Zealand. 

 

Reference 
Bright, C.E., Mager, S.M., & Horton, S.L. (2020). Catchment-scale influence on riverine 
organic matter in southern New Zealand. Geomorphology, 353. 
DOI:10.1016/j.geomorph.2019.107010. 
 
Submitted in December 2019, re-writes submitted December 2019, accepted for publication 
December 2019. Available online 17 December 2019. 
 
Funding Sources 
The New Zealand Hydrological Society Project Fund (to CEB) provided funding for this 
work and was supplemented by research funds made available by the University of Otago 
(to CEB and SMM). 
 
Author Contribution 
Lead author, project design and implementation (CEB), field data collection and laboratory 
analysis (CEB, SMM, SLH), data analysis and interpretation (CEB), editorial drafting and 
editing (CEB, SMM), valuable review and editing inputs from (SLH). 
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3. Predicting suspended sediment concentration from 
nephelometric turbidity in organic-rich waters. 

 

Reference 
Bright, C.E., Mager, S.M., & Horton, S.L. (2018). Predicting suspended sediment 
concentration from nephelometric turbidity in organic-rich waters. River Research 
Applications, 2018, 1–9. DOI:10.1002/rra.3305. 
 
Submitted November 2017, published May 2018. 
 
Funding Sources 
The New Zealand Hydrological Society Project Fund (to CEB) provided funding for this 
work and was supplemented by research funds made available by the University of Otago 
(to CEB and SMM). 
 
Author Contribution 
Lead author, project design and implementation (CEB), field data collection and laboratory 
analysis (CEB, SMM, SLH), data analysis and interpretation (CEB), editorial drafting and 
editing (CEB, SMM, SLH). Supervision of project (SMM). 
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4. Response of nephelometric turbidity to hydrodynamic 
particle size of fine sediments. 

 

Reference 
Bright, C.E., Mager, S.M., & Horton, S.L. (2020). Response of nephelometric turbidity to 
hydrodynamic particle size of suspended fine sediments. International Journal of Sediment 
Research, 35, 444-454. DOI: 10.1016/j.ijsrc.2020.03.006. 
 
Submitted in July 2018, re-writes submitted November 2019, accepted 10 March 2020 and 
available online 18 March 2020. 
 
Funding Sources 
This work was supported by the New Zealand Hydrological Society Project Fund (awarded 
to Christina Bright), and general research funding by the University of Otago. 
 
Author Contributions 
Lead author, experimental design and analytical work (CEB); collection of field samples and 
particle size analysis (SLH, SMM, CEB); editorial drafting and editing (CEB, SMM, SLH). 
Supervision of project (SMM). 
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5. A national-scale study of spatial variability in the 
relationship between turbidity and suspended sediment 
concentration.  

 

Reference 
Bright, C.E., & Mager, S.M. (2020). A national-scale study of spatial variability in the 
relationship between turbidity and suspended sediment concentration. River Research and 
Application, 1-11. DOI: 10.1002/rra.3679. 
 
Submitted in December 2019, accepted 10 June 2020. 
 
Funding Sources 
This work was supported by the New Zealand Hydrological Society Project Fund (awarded 
to Christina Bright), and general research funding by the University of Otago. 
 
Data statement 
Underlying data for this study was provided by NIWA Taihoro Nukurangi, sourced from 
New Zealand’s National River Water Quality Network (NRWQN). 
 
Author Contributions 
Lead author and experimental design (CEB); statistical analysis (CEB, SMM), editorial 
drafting and editing (CEB, SMM). Supervision of project (SMM). 
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11.3 Raw Data  
1. Southern New Zealand POM  

 

Southern New Zealand Turbidity, SSC, POM and carbon data (period 2012 - 2018) 
                          
Key for water quality parameters 
NTU - Turbidity (as NTU) 
FNU - Turbidity (as NFU) 
POM - Particulate organic matter (mg L-1) 
SSC - Suspended sediment concentration (mg L-1) 
POM% - Percentage of POM of TSM 
TOC - Total organic carbon (mg L-1) 
DOC - Dissolved organic carbon (mg L-1) 
POC % of TOC - Percentage of TOC that is POC  (derived POC=TOC-DOC) 
DOC Yield - Dissolved organic carbon yield (t/km2/y) 
POC Yield - Particulate organic carbon yield (t/km2/y) 
SSY - Suspended sediment yield (t/km2/y) 
                          

River NTU FNU POM SSC TSM 
POM  

% TOC DOC 

POC  
% of  
TOC 

DOC  
Yield 

POC  
Yield SSY 

Acton     1.6 7.1 8.7 18.0 2.9 2.1 41.8 8.3 4.8 28.5 
Ahuriri 2.3 3.8 2.6 6.3 17.2 45.8 2.7 1.4 75.5 3.5 4.7 15.4 
Ahuriri-
Upper 485.0   3.5 425.4   1.0 3.0 1.3 87.8 1.8 3.6 

580.
8 

Aparima     0.9 5.1 5.9 14.5 4.3 3.9 1.3 2.6 0.0 3.4 
Aparima 
Upper 
(West)     0.5 2.1 2.5 18.0 2.5 2.3 15.8 1.9 0.3 1.8 
Arrow 6.5 17.9 3.4 9.7 26.4 11.7 4.9 3.2 53.5 1.5 1.2 7.3 
Bannock 
Burn 0.9 0.8 0.4   0.4 100.0       0.0 0.1 0.0 
Birch-hill 1.4 2.9 1.1 5.7   52.2 1.8 1.3 45.5 2.0 1.3 6.7 
Buckler 
Burn 23.3 33.6 2.9 69.3 72.2 4.1       0.0 4.3 

131.
7 

Bush 7.5   2.0 7.5   20.3 2.0 1.1 74.1 2.3 4.4 18.1 
Camerons 2.0   2.0 6.6   21.4 2.7 1.7 57.1 5.6 4.8 18.2 
Cardrona 2.3 4.4 2.2 8.5 8.8 18.8 4.5 3.5 36.6 1.1 0.5 2.6 

Clutha 6.4 13.3 0.6 3.9 4.5 14.3 2.5 2.2 13.8 16.8 2.7 30.4 

Dart 174.0 675.0 4.4 227.0 1193.0 1.9 4.5 2.3 73.6 17.0 30.9 
405
4.5 

Deep 
Stream 1.3 1.6 1.2 3.0 2.3 40.6 5.8 5.2 18.0 3.5 0.9 3.5 
Deeps 4.6 6.5 2.7 17.0 19.7 13.7 3.6 2.2 58.6 1.3 1.2 9.8 

Dobson 4.5 6.5 1.1 12.9 12.8 10.6 1.6 1.1 59.7 1.9 1.7 24.0 
Eglinton     0.5 4.4 4.9 10.2 2.0 1.8 18.6 4.0 0.9 9.8 
Flagstaff 2.5 3.1 1.1 2.5 3.4 30.6 2.9 2.4 33.0 0.8 0.4 1.9 
Fraser 1.3 1.6 0.9 0.9 1.8 50.9 4.5 4.0 10.2 2.6 0.3 0.6 

Glendhu 
(GH1) 0.7 1.1 0.6 0.6 0.9 67.0 3.8 3.5 17.8 1.2 0.2 0.4 

Glendhu 
(GH2) 1.0 1.3 0.9 0.7 1.0 74.3 3.1 2.7 14.4 1.4 0.3 0.6 
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River NTU FNU POM SSC TSM 
POM 

% TOC DOC 

POC 
% of 
TOC 

DOC 
Yield 

POC 
Yield SSY 

Glendhu 
Waipori 0.8 1.7 0.6   0.7 88.5       0.0 0.3 0.0 
Godley 6.8 7.3 1.0 13.1 14.1 7.0 1.3 0.8 58.9 3.0 3.0 51.3 
Greenston
e 1.1 2.5 1.3 5.0   19.8 2.3 1.7 43.5 5.3 2.9 14.5 
Hakataram
ea 0.7 0.9 0.8 3.9 4.7 17.3 1.7 1.3 1.7 0.3 0.0 0.9 
Hawea 3.7 4.8 0.2 3.2 3.4 5.7 6.3 6.2 2.4 21.3 0.5 11.1 

Hooker 46.7 75.8 2.6 47.9 125.8 3.1 2.3 1.1 84.7 6.4 11.7 
385.

3 

Hopkins 121.0   58.4 513.0   10.4 30.5 1.3   3.0 106.0 
121
1.9 

Houndburn 3.6 3.9 2.2 3.9 6.1 37.4 9.4 8.3 18.1 2.0 0.3 1.0 
Hunter 3.8   2.7 7.0   27.7 2.7 1.4 75.0 2.5 3.7 12.4 
Jollie 2.2 1.4 1.0 9.4 3.4 8.0 1.0 0.5 64.6 1.2 1.0 21.2 

Kawarau 13.3 20.4 1.6 76.8 78.3 2.0 2.4 1.6 19.6 5.9 1.7 
281.

9 
Kyeburn 3.4 4.9 0.8 11.0 11.0 8.2 3.0 2.6 23.7 0.9 0.8 36.7 
Last Creek 0.8 0.9 0.5 1.1 1.3 44.0 2.6 2.4 25.2 1.2 0.3 1.3 
Lee 
Stream 4.8 6.8 2.6 5.7 8.4 30.0 8.5 7.2 20.0 1.8 1.0 5.9 
Lindis 3.5 4.4 0.4 5.9 6.3 5.8 5.6 5.4 5.0 0.0 0.0 0.0 

Low Burn 0.8 0.9 0.7 0.1 0.9 83.3       0.0 0.1 0.0 
Lug Creek 0.6 0.8 0.7 1.0 1.6 43.4 1.9 1.5 27.4 0.7 0.3 0.7 
Macaulay 3.8 4.1 1.3 5.8 4.9 22.3 1.7 1.1 57.4 1.6 2.4 9.1 
Maerawhe
nua 3.3 4.9 1.8 4.6 6.5 28.5 3.1 2.2 14.4 0.8 0.2 1.7 
Makarewa     1.6 4.6 6.2 26.0 8.4 7.6 14.7 3.2 0.5 1.9 

Makarora 
(Upper) 1.9 8.8 0.9 4.1 12.5 31.5 2.0 1.6 34.6 11.4 8.1 41.6 
Manuheriki
a 2.7 4.2 0.9 9.1 10.0 8.9 3.4 3.0 15.8 0.7 0.1 2.1 
Mararoa     0.8 2.0 2.8 27.4 1.7 1.3 7.6 1.7 0.2 2.6 

Mataura 62.2 79.1 3.9 71.9 75.8 5.2 6.6 4.6 7.4 4.1 0.4 64.5 

Mataura-
Upper     1.5 25.7 27.1 5.5 2.9 2.2 18.7 3.7 0.9 42.1 
Mataura 
Upper 
(East)     0.6 5.7 6.3 9.2 3.5 3.2 10.4 3.1 0.4 5.6 
Mataura 
Upper 
(West)     0.8 2.5 3.2 24.3 1.6 1.2 25.6 0.6 0.2 1.2 

Matukituki 4.2   2.6 17.4   8.0 3.6 2.3 55.6 15.7 14.4 
244.

1 

Matukituki-
Upper 8.7 13.8 0.6 10.3   8.7 2.4 2.1 19.2 9.3 2.0 43.7 
Omarama 1.4 3.0 1.6 6.7 8.4 19.7 2.2 1.4 37.4 0.4 0.2 2.0 
Oreti     1.4 5.2 6.6 21.8 4.5 3.8 24.5 1.3 0.4 1.7 
Oreti-
Upper     2.5 2.3 4.8 52.9 2.2 0.9 27.9 1.3 0.9 3.4 
Otautau     9.5 30.5 40.0 23.7 11.8 7.1 3.1 3.2 0.2 13.8 
Otematua 0.5 0.8 0.6 1.8 2.4 24.8 1.6 1.3 36.3 0.6 0.3 0.8 

Pigburn 1.3 2.0 0.8 3.8 4.4 18.2 3.5 3.2 20.7 0.9 0.2 1.1 
Pomohaka 9.3 12.3 0.9 10.6 11.5 8.2 4.8 4.3 20.2 1.8 0.4 4.5 

Rees 23.0 73.0 3.1 65.0 1285.0 2.9 3.6 2.1 60.2 5.8 15.2 
133
0.7 

Roaring 
Meg 2.8 4.2 1.1 5.7 6.8 15.8        0.4 2.5 

Routeburn 3.1 7.7 1.4 4.1 11.6 24.6 2.0 1.3 53.5 5.5 4.9 54.5 
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River NTU FNU POM SSC TSM 
POM 

% TOC DOC 

POC 
% of 
TOC 

DOC 
Yield 

POC 
Yield SSY 

Shotover 27.4 45.0 2.5 68.0 171.0 2.8 3.8 2.5 51.5 4.5 7.6 
532.

3 
Silver 
Stream 0.8 0.9 0.6 2.4 1.8 36.5 5.1 4.8 9.2 1.5 0.2 1.6 

Simpson 2.6 4.0 1.8 6.0 7.8 28.0       0.0 2.1 9.0 

Six Mile 
Creek 0.7 0.8 0.5 4.0 0.8 54.8 1.7 1.5 38.0 0.7 0.4 1.7 
Sowburn 0.5 0.7 0.5 1.0 0.9 46.4 1.6 1.4 35.6 0.9 0.3 1.0 

Taieri @ 
Henley 6.9 8.7 1.7 9.0 10.7 16.1       0.0 0.6 5.8 

Taieri @ 
Hyde 7.6 10.2 1.3 13.7 11.6 16.1 3.9 3.2 39.1 1.3 0.6 12.5 

Taieri @ 
Middlemar
ch 8.5 9.5 1.6 9.5 10.8 12.4 4.5 3.8 28.7 1.5 0.7 10.4 

Taieri @ 
Outram 5.8 11.6 2.0 12.2 13.8 18.6 6.0 5.0 20.8 1.7 1.6 19.3 

Taieri @ 
Titoriti 5.9 8.0 1.6 7.3 8.7 13.5 3.7 2.9 33.7 1.3 1.0 24.1 

Taieri @ 
Waipiata 2.7 3.2 1.2 3.5 4.4 27.6 4.4 3.8 20.3 1.1 0.4 1.5 

Tasman 40.0 45.9 1.4 49.0 62.6 2.1 2.1 1.4 43.5 19.7 54.8 
332
9.6 

Tasman-
Upper 88.8 60.8 3.4 96.1 36.6 2.8 2.7 1.0 96.9 5.9 11.9 

534.
4 

Temple 2.4 3.3 0.7 4.0   28.1 1.5 1.2 35.9 1.9 1.3 11.5 
Tevoit 2.0 2.6 1.4 3.2 4.6 29.7 6.4 5.7 5.2 1.6 0.1 0.9 
Twizel 2.0 2.5 0.7 3.1 3.8 19.4 1.1 0.7 48.8 0.5 0.4 2.2 
Upukerora     0.8 4.6 5.4 14.5 3.1 2.7 19.4 4.7 1.0 7.9 

Waiau     0.7 1.0 1.7 42.0 2.6 2.3 1.0 16.2 0.2 6.7 
Waiau-
Upper     0.9 3.9 4.7 18.0 1.9 1.5 18.2 6.4 1.5 16.5 

Waikaia     0.7 4.3 4.9 13.5 3.9 3.6 12.7 2.6 0.4 3.1 
Waipori 
Falls 1.8 2.2 1.3 1.9 2.6 39.6 3.7 3.1 31.6 1.4 0.6 1.1 

Waitaki 0.7 1.3 1.5 3.6 5.0 28.9 2.0 1.3 6.7 4.1 0.4 11.2 
Whetherbu
rn 2.7 3.1 1.2 2.8 3.9 32.3 9.1 8.5 14.8 2.1 0.3 0.9 

  



 188  

  



 189  

2. New Zealand National River Water Quality Network 
 

New Zealand National River Water Quality Data (period 2011 - 2015) 
Source: NIWA Taihoro Nukurangi               
                        
Key for water quality parameters                 
VC - Visual Clarity (m)                   
NTU - Turbidity (as NTU)                   
g340 - Absorbance coefficient at 340nm ( /m)             
g440 - Absorbance coefficient at 440nm ( /m)             
Spec. NTU - Specific turbidity calculated NTU/SSC, for turbidity as NTU     
TSS - Total suspended solids (mg L-1)               
VSS - Volatile suspended solids (mg L-1)             
VSS% - Percentage of VSS of TSS               
SSC - Suspended sediment concentration (mg L-1)           
SS Yield - Suspended sediment yield (t/km2/y) (Discharge weighted)     
                        
Median 2011 - 2015 

Site Place 
VC 
(m) NTU g340 g440 Spec. NTU TSS VSS 

VSS 
% SSC SSY 

AK1 
Hoteo @ 
Gubbs 1.3 7.3 16.2 3.0 1.6 7.7 0.9 11.4 6.9 7.6 

AK2 
Rangitopuni 
@ Walkers 1.0 6.9 24.3 4.5 2.1 3.0 1.0 31.4 2.1 10.1 

AX1 
Clutha @ 
Luggate Br. 5.3 0.8 0.4 0.1 0.6 1.9 0.2 10.6 1.6 8.4 

AX2 
Kawarau @ 
Chards 1.4 3.3 0.5 0.1 0.2 11.1 0.4 3.2 10.9 78.8 

AX3 
Shotover @ 
Bowens Peak 0.5 8.7 1.1 0.3 0.2 56.6 1.1 1.9 52.0 145.1 

AX4 
Clutha @ 
Millers Flat 1.9 2.5 1.1 0.3 0.6 7.7 0.3 3.7 7.4 14.6 

CH1 
Hurunui @ 
Mandamus 1.5 2.3 1.6 0.4 0.8 3.0 0.2 6.4 2.8 30.9 

CH2 
Hurunui @ 
SH1 Br. 1.0 4.4 1.7 0.3 0.6 4.6 0.2 5.0 4.3 71.8 

CH3 
Waimakariri @ 
Gorge 0.5 9.1 0.9 0.2 0.7 8.2 0.2 2.7 7.7 93.3 

CH4 

Waimakariri 
above old HW 
Br. 0.3 19.0 0.9 0.3 0.6 26.1 0.8 3.1 25.6 146.2 

DN1 Taieri @ Tiroiti 0.8 6.1 11.4 2.1 0.6 7.5 0.8 11.2 6.7 9.7 

DN10 
Monowai 
below Gates 7.1 0.6 2.8 0.5 1.5 0.6 0.3 49.1 0.3 0.8 
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Site Place 
VC 
(m) NTU g340 g440 Spec. NTU TSS VSS 

VSS 
% SSC SSY 

DN2 
Sutton @ 
SH87 2.7 1.6 12.3 2.3 1.5 1.7 0.6 37.0 1.0 0.5 

DN3 
Taieri @ 
Outram 1.3 4.1 12.0 2.3 0.7 5.0 0.7 14.9 4.2 9.6 

DN4 
Clutha @ 
Balclutha 1.5 3.7 2.1 0.4 0.5 11.7 0.6 4.8 11.3 42.3 

DN5 

Mataura @ 
Seaward 
Down 1.0 6.3 5.8 1.1 0.7 11.0 1.2 10.5 9.9 15.3 

DN6 
Mataura @ 
Parawa 2.3 2.1 1.8 0.4 0.7 2.9 0.3 9.4 2.6 5.9 

DN7 
Oreti @ 
Lumsden 3.5 1.4 3.1 0.5 1.1 1.2 0.2 14.5 0.8 1.7 

DN8 

Oreti @ 
Riverton HW 
Br. 1.3 3.5 3.7 0.6 0.9 4.5 0.3 6.2 4.3 27.3 

DN9 
Waiau @ 
Tuatapere 1.7 2.5 4.7 0.9 0.6 2.2 0.4 18.3 1.7 79.2 

GS1 
Waipoa @ 
Kanakanaia 0.1 76.8 4.4 0.8 0.6 349.0   0.0 335.0 3659.8 

GS2 
Waikohu @ 
No. 1 Br. 1.5 3.7 5.8 1.1 0.6 9.0 1.4 15.6 8.0 478.5 

GS3 
Motu @ 
Waitangirua 1.2 4.5 5.9 1.1 0.6 12.1 1.7 14.0 10.4 30.3 

GS4 
Motu @ 
Houpoto 1.3 4.1 2.1 0.4 0.7 76.4 2.6 3.4 73.7 291.2 

GY1 
Buller @ Te 
Kuha 1.4 2.5 5.2 1.1 0.3 15.1 1.1 7.2 14.0 147.3 

GY2 
Grey @ 
Dobson 1.9 1.8 7.7 1.5 0.6 3.2 0.4 12.2 2.9 151.2 

GY3 
Grey @ 
Waipuna 3.4 1.1 6.1 1.2 0.8 1.8 0.2 11.4 1.6 32.4 

GY4 
Haast @ 
Roaring Billy 2.6 1.5 0.6 0.1 0.6 2.8 0.1 3.2 2.7 105.0 

HM1 
Waipa @ 
Otewa 2.0 2.2 5.2 1.0 0.5 5.2 1.2 22.5 4.0 97.6 

HM2 
Waipa @ 
Whatawhata 0.6 10.3 9.0 1.7 0.6 20.2 3.2 15.6 17.5 30.8 

HM3 

Waikato @ 
Hamilton 
Traffic Br. 1.5 2.3 3.3 0.7 0.6 7.8 1.6 20.4 5.9 4.2 

HM4 
Waikato @ 
Rangiriri 0.7 7.0 5.5 1.1 0.6 12.6 2.5 19.5 10.3 16.2 

HM5 
Waihou @ Te 
Aroha 0.9 4.9 4.6 0.9 0.4 14.2 2.2 15.3 12.0 26.9 
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Site Place 
VC 
(m) NTU g340 g440 Spec. NTU TSS VSS 

VSS 
% SSC SSY 

HM6 
Ohinemuri @ 
Karangahake 2.9 1.3 3.6 0.8 0.9 1.6 0.5 29.4 1.2 2.3 

HV1 
Makaroro @ 
Burnt Br. 3.0 1.5 1.0 0.2 1.0 1.2 0.1 10.8 1.1 90.5 

HV2 
Tukituki @ 
Red Br. 2.4 1.9 2.6 0.5 1.0 4.7 0.4 9.1 4.3 55.7 

HV3 
Ngaruroro @ 
Chesterhope 1.2 3.4 1.4 0.3 0.7 8.0 0.3 4.1 7.7 20.5 

HV4 
Ngaruroro @ 
Kuripapango 5.8 1.0 1.0 0.2 0.8 1.3 0.2 13.4 1.3 1.9 

HV5 
Mohaka @ 
Raupunga 1.0 4.6 2.8 0.6 0.6 34.1 1.2 3.4 33.0 54.5 

HV6 
Mohaka @ 
Glenfalls 3.1 1.3 1.8 0.4 0.5 5.2 0.4 7.9 4.8 5.6 

NN1 
Motueka @ 
Woodstock 4.2 1.2 3.6 0.7 0.6 1.0 0.6 57.0 0.7 70.2 

NN2 
Motueka @ 
Gorge 9.9 0.5 1.1 0.2 1.0 0.3 0.1 42.9 0.3 2.4 

NN3 
Wairau @ Dip 
Flat 3.1 1.5 0.7 0.2 1.0 1.7 0.1 6.6 1.6 11.7 

NN4 
Wairau @ 
Tuamarina 2.6 1.6 0.9 0.2 0.9 3.5 0.3 7.1 3.3 15.8 

NN5 
Buller @ 
Longford 3.3 1.1 2.5 0.5 0.8 1.4 0.3 20.6 1.2 14.1 

RO1 
Tarawera @ 
Lake outlet 5.3 0.6 0.6 0.1 1.3 0.7 0.6 75.3 0.3 0.5 

RO2 
Tarawera @ 
Awakaponga 1.0 3.8 5.4 1.0 0.2 29.4 3.2 11.0 26.4 22.0 

RO3 
Rangitaiki @ 
Murapara 2.2 1.4 1.7 0.4 0.2 13.2 1.8 13.9 11.4 6.3 

RO4 
Whirinaki @ 
Galatea 2.2 1.7 3.2 0.7 0.4 22.0 2.5 11.1 16.4 40.3 

RO5 
Rangitaiki @ 
Te Teko 1.8 2.0 2.6 0.5 0.4 10.9 1.0 9.4 9.9 10.1 

RO6 
Waikato @ 
Reids Farm 8.2 0.4 0.5 0.1 0.6 0.6 0.2 37.5 0.4 0.4 

TK1 

Opihi @ 
GRASSY 
BANKS 5.2 1.1 2.3 0.4 0.7 1.1 0.1 11.7 1.0 0.2 
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Site Place 
VC 
(m) NTU g340 g440 Spec. NTU TSS VSS 

VSS 
% SSC SSY 

TK2 
Opihi @ 
Rockwood 3.9 1.0 2.8 0.5 0.8 1.2 0.2 13.7 1.0 0.3 

TK3 
Opuha @ 
Skipton Br. 2.2 2.4 3.8 0.7 1.2 1.3 0.4 28.0 0.9 0.7 

TK4 
Waitaki @ 
Kurow 3.7 1.6 0.7 0.2 1.6 6.6 0.2 3.6 6.4 17.4 

TK5 
Hakatakamea 
above MH Br. 6.7 0.7 2.2 0.4 1.2 0.4 0.1 27.3 0.3 0.1 

TK6 
Waitaki @ 
SH1 Br. 1.3 5.0 0.7 0.2 1.0 7.9 0.3 4.2 7.5 53.2 

TU1 
Whanganui @ 
Te Maire 1.0 4.2 5.8 1.1 0.6 6.3 0.7 11.7 5.5 28.3 

TU2 
Tongariro @ 
Turangi 3.8 1.1 1.0 0.2 0.5 1.5 0.3 21.3 1.2 362.8 

WA1 
Waitara @ 
Bertrand Rd 0.5 9.8 9.0 1.8 0.6 8.3 1.5 17.8 7.1 496.5 

WA2 
Manganui @ 
SH3 3.8 1.2 3.0 0.6 1.4 0.9 0.3 33.3 0.7 6.9 

WA3 
Waingongoro 
@ SH45 1.3 3.7 6.1 1.2 0.7 9.4 3.3 34.6 6.1 15.0 

WA4 
Whanganui @ 
Paetawa 0.4 19.8 9.1 1.7 0.7 31.7 2.1 6.5 29.6 217.6 

WA5 
Rangitikei @ 
Mangaweka 1.3 3.6 3.0 0.5 0.8 6.8 0.5 7.8 6.3 35.5 

WA6 
Rangitikei @ 
Kakariki 0.6 10.1 3.4 0.6 0.6 19.9 1.1 5.3 18.9 59.9 

WA7 
Manawatu @ 
Weber Rd 1.3 3.8 5.7 1.0 0.9 4.5 0.5 11.1 4.0 143.7 

WA8 
Manawatu @ 
Teachers Coll. 0.9 5.8 5.6 1.1 0.6 11.0 0.8 7.5 10.0 194.6 

WA9 
Manawatu @ 
Opiki Br. 0.7 7.9 6.0 1.1 0.5 16.0 1.9 12.1 15.0 76.2 

WH1 
Waipapa @ 
Forest Ranger 3.4 1.5 5.3 1.1 1.9 0.8 0.1 16.9 0.7 0.7 

WH2 
Waitangi @ 
Wakelins 1.6 3.3 9.7 1.8 1.1 6.2 0.8 13.0 5.4 4.6 

WH3 
Mangakahia 
@ Titoki Br. 1.2 5.5 7.4 1.4 0.9 10.5 1.2 11.2 9.3 13.7 

WH4 
Wairu @ 
Purua 0.7 9.6 15.1 2.8 1.4 9.8 1.4 13.8 6.9 9.3 
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Site Place 
VC 
(m) NTU g340 g440 Spec. NTU TSS VSS 

VSS 
% SSC SSY 

WN1 
Hutt @ 
Boulcott 2.1 1.9 6.5 1.3 0.9 1.9 0.4 22.2 1.5 15.7 

WN2 
Hutt @ 
Kaitoke 7.0 0.7 4.1 0.8 1.0 0.7 0.2 26.5 0.4 19.9 

WN3 
Ruamahanga 
@ Waihenga 1.5 3.5 4.3 0.8 0.8 3.4 0.3 7.6 3.2 27.8 

WN4 
Ruamahanga 
@ Wardells 2.1 2.6 4.5 0.8 0.9 5.3 0.3 5.7 5.1 37.2 

WN5 
Ruramahanga 
@ SH2 6.5 0.8 2.8 0.5 1.1 1.0 0.1 13.0 0.9 432.4 

 


