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a b s t r a c t 

Analyzing data from multiple neuroimaging studies has great potential in terms of increasing statistical power, 

enabling detection of effects of smaller magnitude than would be possible when analyzing each study separately 

and also allowing to systematically investigate between-study differences. Restrictions due to privacy or pro- 

prietary data as well as more practical concerns can make it hard to share neuroimaging datasets, such that 

analyzing all data in a common location might be impractical or impossible. Meta-analytic methods provide a 

way to overcome this issue, by combining aggregated quantities like model parameters or risk ratios. Most meta- 

analytic tools focus on parametric statistical models, and methods for meta-analyzing semi-parametric models 

like generalized additive models have not been well developed. Parametric models are often not appropriate in 

neuroimaging, where for instance age-brain relationships may take forms that are difficult to accurately describe 

using such models. In this paper we introduce meta-GAM, a method for meta-analysis of generalized additive 

models which does not require individual participant data, and hence is suitable for increasing statistical power 

while upholding privacy and other regulatory concerns. We extend previous works by enabling the analysis of 

multiple model terms as well as multivariate smooth functions. In addition, we show how meta-analytic p -values 

can be computed for smooth terms. The proposed methods are shown to perform well in simulation experiments, 

and are demonstrated in a real data analysis on hippocampal volume and self-reported sleep quality data from 

the Lifebrain consortium. We argue that application of meta-GAM is especially beneficial in lifespan neuroscience 

and imaging genetics. The methods are implemented in an accompanying R package metagam , which is also 

demonstrated. 

1. Introduction 

Combining brain imaging data across studies has great potential in 

terms of increasing statistical power, enabling discoveries of effects that 

might not be detectable in any single dataset. Due to regulatory and 

practical concerns, privacy in particular, it may not be possible to an- 

alyze all data in a single place. It may also sometimes be beneficial to 

analyze data from multiple studies in two stages, even when the data 

are available at a single location, e.g., when data do not fit in com- 
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puter memory or runtime is nonlinear in the number of participants 

( Riley et al., 2010 ). 

Meta-analytic techniques offer one way to increase statistical power 

without sharing raw data. By estimating the relationships under study 

separately in each data location, pooled estimates are obtained by com- 

bining the estimates without sharing the underlying data. With some 

exceptions, meta-analytic methods have been developed for combin- 

ing parameters from parametric statistical models or for effect measures 

like relative risks ( Hedges and Olkin, 1985; Sutton and Higgins, 2008 ). 
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Fig. 1. Modeling lifespan trajectories. Example of modeling lifespan hip- 

pocampal volume with longitudinal data using linear mixed models with 

quadratic and cubic terms for age, as well as a generalized additive model. The 

black dots show individual observations and the black lines connect subsequent 

observations from the same individual. The GAMM was fitted with 20 cubic 

regression splines and a random intercept term for each individual, and the op- 

timal smoothing parameter estimated with restricted maximum likelihood. 

However, there are important cases in which it is impractical and sub- 

optimal to enforce a parametric representation of the association under 

investigation, e.g., when an appropriate parametric model to approxi- 

mate the data is not known, or its interpretability is not clear, as with 

high-degree polynomials. Examples include lifetime trajectories of brain 

development ( Fjell et al., 2010 ), air quality measures ( Gasparrini and 

Armstrong, 2010 ), and ecological phenomena ( Borchers et al., 1997; 

Pedersen et al., 2019 ). Generalized additive models (GAMs) ( Hastie and 

Tibshirani, 1986; Wood, 2017 ) are attractive for studying such relation- 

ships, and can easily be extended to longitudinal or other forms of clus- 

tered data via generalized additive mixed models (GAMMs), which, in 

addition to GAMs, can also estimate random effects. 

Fig. 1 illustrates modeling lifespan trajectories of hippocampal vol- 

ume changes using linear mixed models (LMMs) with quadratic and cu- 

bic polynomials for the age term, and a GAMM with a smooth term for 

age. 1 The data were taken from 4364 observations of 2023 healthy par- 

ticipants (age 4–93 years, 1–8 measurements per participant) from the 

Center for Lifespan Changes in Brain and Cognition (LCBC) longitudinal 

studies ( Fjell et al., 2017; Walhovd et al., 2016 ). Detailed sample char- 

acteristics are presented in Supplementary Material I. The quadratic fit 

is not flexible enough to capture the steep increase during adolescence - 

moreover, it estimates the hippocampal volume to increase until the age 

of around 40. The cubic fit captures the volume growth during adoles- 

cence better than the quadratic fit, but fails to capture the decline that 

occurs after the age of around 70. The GAMM fit, on the other hand, is 

flexible enough to both capture the steep increase during adolescence, 

a period of moderate decline during adulthood, and finally a steeper 

decline at older age. 2 

As the methods for meta-analysis of GAMs and GAMMs are identical, 

we will refer to both as GAMs in the rest of this paper, unless distinc- 

tion is necessary. For reasons that we will explain below, in this paper 

we will not discuss meta-analysis of the underlying parametric func- 

tions across GAMs. Rather, we present methods for combining GAM fits 

for neuroimaging data by pointwise meta-analysis of the fitted values. 

Although developed for use in meta-analytic neuroimaging studies, the 

1 The LMMs were fitted using R ( Team, 2019 ) package nlme ( Pinheiro et al., 

2019 ) and the GAMM was fitted using mgcv ( Wood, 2017 ), all with a random 

intercept term. 
2 Fig. 1 and all other figures in this paper were created using ggplot2 

( Wickham, 2016 ). 

methods can of course be applied to other types of data as well. The mod- 

els under study can include any number of terms, including multivariate 

smooth functions. In order to employ these techniques, models should be 

fit separately for each cohort, with basis functions and knot placement 

chosen independently. Related previous works include meta-analysis 

of locally weighted regression fits ( Schwartz and Zanobetti, 2000 ) and 

meta-analytic estimation of nonlinear dose-response relationships using 

individual participant data ( Crippa et al., 2018; Sauerbrei and Royston, 

2011 ). 

The main applications we have in mind are meta-analysis of pub- 

lished results where the effects of interest are represented by functional 

relationships rather than single parameters, and multi-center studies 

in which it is impractical or not possible to analyze all brain imag- 

ing data in a single location. An example of the latter is the Enhanc- 

ing Neuro Imaging Genetics through Meta Analysis project (ENIGMA: 

http://enigma.ini.usc.edu/ ), where meta-analysis of individual site sum- 

mary statistics is the commonly applied strategy (e.g., Dennis et al., 

2018; van Erp et al., 2018 ). The methods developed require that some 

model relating an outcome of interest to a set of explanatory variables 

has been fitted on data from each cohort, and that the model esti- 

mates can be shared across cohorts such that the expected response 

and their standard errors at new values of the explanatory variables can 

be computed. We provide a companion R package named metagam 
( Sørensen et al., 2020 ) containing functions for removing all individual 

participant data from GAMs fitted with the mgcv and gamm4 packages 

( Wood and Scheipl, 2017; Wood, 2017 ), such that the resulting model 

object only contains aggregate measures which can easily be shared. The 

package also contains methods for combining the fits and analyzing the 

results, and will be demonstrated in Section 5.1 . The comprehensive re- 

view of meta-analysis packages in R by Polanin et al. (2017) does not 

mention any existing packages for conducting this type of pointwise 

meta-analysis, so to the best of our knowledge, metagam is the first R 

package to provide this functionality. 

The methods presented in this paper were motivated by a 

project in the Lifebrain consortium ( http://www.lifebrain.uio.no/ ) 

( Walhovd et al., 2018 ). The goal was to study the relationship between 

self-reported sleep and hippocampal volume across six Lifebrain cohorts, 

and GAMMs were a natural model choice due to the expected non-linear 

age-relationships for self-reported sleep parameters and hippocampal 

volume. In this case a safe common data store was in place, but we 

initially hypothesized that it might be easier to have each cohort fit a 

model locally and share the overall result rather than analyzing all data 

in a single place, leading to the development of the methods presented 

here. 

2. Background 

2.1. Meta-analysis of parametric models 

Consider a situation in which M cohorts 𝑚 = 1 , … , 𝑀 each have a 

dataset D m 

with n m 

participants. The response variable of interest is 

denoted y and there are p explanatory variables represented by the vec- 

tor x . If subject i in cohort m has been measured n mi times, the data 

are 𝐷 𝑚 = {( 𝑦 𝑖𝑗 , 𝐱 𝑖𝑗 ) , for 𝑖 = 1 , … , 𝑛 𝑚 , 𝑗 = 1 , … , 𝑛 𝑚𝑖 } . Notably, this includes 

the case of individually varying numbers of assessments and time inter- 

vals between assessments. In practice, some of the explanatory variables 

will be time-varying, while others will be time-invariant. Purely cross- 

sectional data correspond to 𝑛 𝑚𝑖 = 1 for all m and i . 

Our interest concerns statistical inference on data from all studies, in 

the case where data cannot be analyzed jointly. When the relationship 

under study can be represented by a parametric model, well established 

methods exist for obtaining meta-analytic estimates of the model param- 

eters. For example, if an LMM is used for longitudinal data ( Laird and 

Ware, 1982 ), parameter estimates from each study can be combined us- 

ing parametric meta-analysis ( DerSimonian and Laird, 1986; Gasparrini 

et al., 2012 ). The same applies to related approaches based on structural 

http://enigma.ini.usc.edu/
http://www.lifebrain.uio.no/
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Table 1 

Spline coefficients for models described in Section 2.4 . The coefficient 𝛾2 was not possible to 

determine for Barcelona and Whitehall-II. In addition, 𝛾1 for Barcelona and Whitehall-II, 𝛾3 

for Whitehall-II, and 𝛾8 for BASE-II are severe outliers. 

Study 𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 𝛾6 𝛾7 𝛾8 

Barcelona 28142 – 6195 7719 7629 7421 7190 6310 

BASE-II 4694 8374 6274 7919 7770 7213 7297 − 17182 

Betula 9605 8481 8380 8072 7840 7389 6994 7734 

Cam-CAN 8298 8452 8397 8040 7916 7468 7291 6375 

LCBC 8408 8479 8324 7689 7401 7468 7202 5819 

Whitehall-II 1625151 – − 120033 7580 7528 7353 6935 6084 

equation modeling (e.g., Brandmaier et al., 2018; Kievit et al., 2018 ) or 

generalized linear models ( McCullagh and Nelder, 1989 ). 

2.2. Generalized additive models 

In many applications, assuming that the response 3 y is a smooth func- 

tion of the explanatory variables, rather than following a model that is 

linear in its parameters (e.g., polynomial), may lead to better statistical 

fit, cf. Fig. 1 . Generalized additive models (GAMs) ( Hastie and Tibshi- 

rani, 1986 ) take this approach. Letting  𝑠 denote the set of explanatory 

variables used by smooth function f s ( · ), a GAM with S smooth terms 

can be written on the form 

𝑦 = 𝛽0 + 

𝑆 ∑
𝑠 =1 

𝑓 𝑠 
(
 𝑠 

)
+ 𝜖, (1) 

where 𝛽0 denotes the intercept and 𝜖 is a normally distributed resid- 

ual. Constraints necessary for model identification are discussed in 

Appendix A . Each smooth function is a linear combination of K s basis 

functions b ks ( · ) with weights 𝛾ks , 𝑘 = 1 , … , 𝐾 𝑠 , 

𝑓 𝑠 
(
 𝑠 

)
= 

𝐾 𝑠 ∑
𝑘 =1 

𝑏 𝑘𝑠 (  𝑠 ) 𝛾𝑘𝑠 . (2) 

Typically, each basis function is nonzero over a small part of the range of 

its variables, as defined by its knot locations. A linear parametric term 

for x j is given by the special case  𝑠 = { 𝑥 𝑗 } , 𝐾 𝑠 = 1 , 𝑏 1 𝑠 ( 𝑥 𝑗 ) = 𝑥 𝑗 , and 

hence 𝑓 𝑠 (  𝑠 ) = 𝛾1 𝑠 𝑥 𝑗 . Examples are provided in Supplementary Material 

II. 

2.3. Smoothing 

Least squares estimation of model (1) with a large number of basis 

functions for each term typically leads to wiggly estimates which overfit 

the data. Smoothing is thus necessary, and a popular and efficient solu- 

tion involves penalizing the second derivatives of the smooth functions, 

while making sure the number of basis functions is sufficiently large to 

represent a wide range of functional forms ( Wood, 2017 ). In the context 

of meta-analysis, smoothing is performed independently for each study. 

Supplementary Material II presents further details and a visualization of 

the effect of smoothing. 

2.4. Limitations of parametric meta-analysis of generalized additive models 

If each study used identical basis functions, a meta-analytic fit could 

be obtained by treating their weights as linear regression parameters 

( Gasparrini et al., 2012 ). However, as also noted by Crippa et al. (2018) , 

if the range of some variable x j differs between cohorts, enforcing the 

3 For ease of presentation, we assume a continuous outcome with normally 

distributed residuals, corresponding to an identity link function in a generalized 

additive model. The methods developed extend directly to other outcomes (e.g., 

binomial or count) by introducing a linear predictor 𝜂 = 𝛽0 + 
∑𝑆 

𝑠 =1 𝑓 𝑠 (  𝑠 ) with 

link function g ( · ) satisfying 𝑔( 𝑦 ) = 𝜂. 

same knot placement is suboptimal and the model may not even be 

identified. 

As an example, we consider modeling of lifespan trajectories of hip- 

pocampal volumes from six European cohorts. The data are further de- 

scribed in Section 5 . As shown in Fig. 6 (top), these studies have widely 

varying age distributions. We fit GAMs relating baseline age to hip- 

pocampal volume for each cohort, but enforced the same knot location 

for all models, placed at eight equally spaced quantiles of the full data 

sample. Table 1 shows the corresponding spline coefficients. While these 

coefficients are not directly interpretable, outliers for a given sample in- 

dicate that its fit is highly different from the others, and a missing value 

indicates that the fit for the sample was not identified. As can be seen, 

Barcelona and Whitehall-II have missing values (-) for spline coefficient 

𝛾2 . In addition, there are extreme outliers: Barcelona has a severely out- 

lying value for 𝛾1 , BASE-II has an outlying value for 𝛾8 , and Whitehall-II 

has outlying values for 𝛾1 and 𝛾3 . This lack of identification and unsta- 

ble coefficients is caused by using knot locations which, because they 

are forced to be equal across cohorts, are not suitable for the actual age 

distributions. 

3. Pointwise meta-analysis of generalized additive models 

3.1. Estimation of overall fits in pointwise meta-analysis 

We now propose a model for meta-analysis of GAMs. We assume 

that a GAM has been fitted to the data from each cohort m separately, 

and that the vector x represents values of the explanatory variables for 

which a meta-analytic estimate of the regression function is sought. The 

expected response in cohort m is then given by 

�̂� 𝑚 = 𝑓 𝑚 ( 𝐱 ) = 𝛽0 ,𝑚 + 

𝑆 ∑
𝑠 =1 

𝑓 𝑠,𝑚 
(
 𝑠 

)
, 𝑚 = 1 , … , 𝑀. (3) 

Importantly, the basis functions and knot placements for a given smooth 

term 𝑓 𝑠,𝑚 
(
 𝑠 

)
will in general vary across cohorts m . Each model term has 

a corresponding estimated standard deviation �̂�𝑠,𝑚 (  𝑠 ) , and the overall 

fit has estimated standard deviation �̂�𝑚 ( 𝐱) . 
We illustrate our methods by considering meta-analytic estimation of 

each single term separately, but note that inference on any combination 

of smooth terms, including the overall function, is readily obtained with 

the same methods. Some additional details related to identification of 

smooth terms are discussed in Appendix A . For ease of notation, we omit 

the dependency on  𝑠 and x in the rest of this section. For example, f s,m 

means 𝑓 𝑠,𝑚 (  𝑠 ) and 𝜎s,m 

means 𝜎𝑠,𝑚 (  𝑠 ) . 
The meta-analytic estimate of smooth term s is the weighted mean 

𝑓 𝑠 = 

∑𝑀 

𝑚 =1 𝑓 𝑠,𝑚 

(
�̂�2 
𝑠,𝑚 

+ �̂�2 
𝑠 

)−1 

∑𝑀 

𝑚 =1 

(
�̂�2 
𝑠,𝑚 

+ �̂�2 
𝑠 

)−1 (4) 

with standard error 

se 
𝑓 𝑠 

= 

{ 

𝑀 ∑
𝑚 =1 

�̂�2 
𝑠,𝑚 

+ �̂�2 
𝑠 

} −1∕2 

. (5) 
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The term �̂�2 
𝑠 

represents the estimated between-study variance, and 

fixed effects meta-analysis corresponds to the special case �̂�2 
𝑠 
= 

0 . The DerSimonian-Laird estimator for between-sample variance 

( DerSimonian and Laird, 1986 ), 

�̂�2 
𝑠 
= max 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
0 , 

∑𝑀 

𝑚 =1 �̂�
−2 
𝑠,𝑚 

( 

𝑓 𝑠,𝑚 − 

∑𝑀 

𝑚 =1 ̂𝜎
−2 
𝑠,𝑚 𝑓 𝑠,𝑚 ∑𝑀 

𝑚 =1 ̂𝜎
−2 
𝑠,𝑚 

) 

− ( 𝑀 − 1 ) 

∑𝑀 

𝑚 =1 �̂�
−2 
𝑠,𝑚 

− 

∑𝑀 

𝑚 =1 ̂𝜎
−4 
𝑠,𝑚 ∑𝑀 

𝑚 =1 ̂𝜎
−2 
𝑠,𝑚 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, (6) 

is computationally efficient as it does not require iteration, making it 

attractive in pointwise meta-analysis in which a separate estimate is 

required over a large number of grid points. However, iterative methods 

may give more accurate estimates ( Veroniki et al., 2016 ). We refer to, 

e.g. Viechtbauer (2005) and Viechtbauer et al. (2015) for an overview 

of estimators of between-sample variance, all of which can be used with 

the methods presented. 

Eqs. (4) and (5) are the familiar weighted means formulas used in 

meta-analysis, and have been used by Sauerbrei and Royston (2011) in 

a similar setting, focusing on meta-analysis of univariate functions es- 

timated by fractional polynomials. In the fixed effects case, 𝑓 𝑠 is the 

estimated mean conditional on randomly pooling from the populations 

of the observed cohorts alone. Random effects analysis, on the other 

hand, estimates the marginal population effect f s across all potential 

studies. See Viechtbauer (2010 , Section. 2.3) for an excellent discussion 

of the interpretation of fixed vs. random effects meta-analyses. Confi- 

dence bands with level (1 − 𝛼) are readily obtained for either estimates 

as [
𝑓 𝑠 + 𝑧 𝛼∕2 se 𝑓 𝑠 

, 𝑓 𝑠 + 𝑧 1− 𝛼∕2 se 𝑓 𝑠 

]
, (7) 

where z q denotes the q th quantile of the standard normal distribution. 

Pointwise meta-analysis requires software for computing predictions 

and standard errors for the models fitted in each study. In the case 

of GAMs, this requires knowledge of the basis functions along with 

the estimates and covariance matrices of spline weights, quantities 

which are readily available from software for fitting GAMs, like mgcv 
( Wood, 2017 ) or pyGAM ( Servén and Brummitt, 2018 ). Importantly, 

individual participant data are not required for computing such predic- 

tions from already fitted models. 

3.2. Inference for smoothing terms in pointwise meta-analysis 

Tests for statistical significance of smooth terms can be performed 

by combining the p -values from each separate fit using methods 

for meta-analytic combination of p -values as summarized, e.g., in 

Becker (1994) or Loughin (2004) . In particular, let p s,m 

denote the p - 

value obtained in cohort m for the hypothesis 𝐻 0 ,𝑚 ∶ 𝑓 𝑠 (  𝑠 ) = 0 that the 

smooth term s is zero over the whole range of explanatory variables  𝑠 

in cohort m , and let 𝐻 𝐴,𝑚 ∶ 𝑓 𝑠 (  𝑠 ) ≠ 0 denote the alternative hypothesis. 

Such p -values can be computed using the methods in Wood (2012) . The 

meta-analytic null hypothesis then states that all p -values are uniformly 

distributed between 0 and 1, i.e., H 0 : p s,m 

~ U (0, 1), 𝑚 = 1 , … , 𝑀, while 

the meta-analytic alternative hypothesis H A states that all p -values have 

the same unknown non-uniform density which is non-increasing in the 

test statistic ( Birnbaum, 1954 ). A large number of methods exist for com- 

puting the combined p -values. For example, Stouffer’s sum of z method 

( Stouffer et al., 1949 ) uses the Z-score 

𝑍 𝑠 = 

∑𝑀 

𝑚 =1 𝑤 𝑚 Φ−1 (1 − 𝑝 𝑠,𝑚 
)√ ∑𝑀 

𝑚 =1 𝑤 

2 
𝑚 

, (8) 

where Φ is the standard normal distribution and Φ−1 its quan- 

tile function, and 𝑤 𝑚 , 𝑚 = 1 , … , 𝑀 are meta-analytic weights. 

Zaykin (2011) suggests defining the weights as the square root of 

the sample size, 𝑤 𝑚 = 

√
𝑛 𝑚 . The combined p -value is then defined by 

𝑝 𝑠 = 1 − Φ( 𝑍 𝑠 ) . 

4. Simulation studies 

Simulation studies were conducted in order to compare the perfor- 

mance of the pointwise meta-analysis approach presented in Section 3 to 

the ideal mega-analysis ( McArdle and Horn, 1985 ) case, in which all 

data can be analyzed jointly. Section 4.1 reports simulation results com- 

paring estimation of smooth terms, and Section 4.2 reports simulation 

results comparing statistical inference performance. 

4.1. Function estimation 

The first set of simulations compared pointwise meta-analysis to 

mega-analysis in terms of their ability to accurately estimate nonlin- 

ear functional forms and to quantify uncertainty with confidence bands. 

Data were generated from the model 

𝑦 = 𝑓 0 ( 𝑥 0 ) + 𝑓 1 ( 𝑥 1 ) + 𝑓 2 ( 𝑥 2 ) + 𝑓 3 ( 𝑥 3 ) + 𝜖, 

with all explanatory variables independently uniformly distributed in 

[0, 1] and 𝜖 ~ N (0, 𝜎2 ). The functional forms assumed were similar to 

those used by Marra and Wood (2012) , and are shown as dashed black 

lines in Fig. 2 . 

Datasets with 4000 observations of ( x 0 , x 1 , x 2 , x 3 , y ) were indepen- 

dently sampled 1000 times. For each dataset, the following four cases 

were considered: 

• In the mega-analysis case, all 4000 observations were analyzed 

jointly. This served as a gold standard, yielding the model that would 

be fit if all data were available to analyze with a single model. 
• In the equal sample size case, the dataset was split into 5 ”cohorts ”

of 800 observations each. Each cohort was analyzed independently, 

and the meta-analytic fit computed as outlined above. 
• In the unequal sample size case, the dataset was split into 5 ”cohorts ”

with 300, 500, 800, 1,000, and 1400 observations each. 
• In the unequal range and sample size case, a first ”cohort ” was 

created by sampling 300 observations with x 2 < 0.5 from the 

full dataset, the second cohort by sampling 500 observations with 

x 2 ≥ 0.5 from the remaining observations, the third cohort by sam- 

pling 800 observations with x 1 < 0.5 from the remaining observa- 

tions, the fourth cohort by sampling 1000 observations with x 1 ≥ 0.5 

from the remaining observations, and the fifth cohort contained the 

remaining 1400 observations. Hence, this case has the same sample 

sizes as the unequal sample size case, but the ranges of x 1 and x 2 
vary between cohorts. 

In the latter three cases, fixed effects meta-analysis was conducted. 

Univariate smooth terms were estimated using cubic regression splines 

with 20, 10, 30, and 5 basis functions for f 0 ( x 0 ), f 1 ( x 1 ), f 2 ( x 2 ), and 

f 3 ( x 3 ), respectively. Knot placement was determined independently for 

each cohort, based on the quantiles of the explanatory variables. Second 

derivative smoothing was performed using generalized cross-validation, 

and standard error computations for each term included the uncertainty 

about the overall intercept as described in Marra and Wood (2012) . For 

identifiability, the smooth terms were subject to sum-to-zero constraints 

over [0,1], cf. Appendix A . In the case study reported in Section 5 , with 

a GAM regressing hippocampal volume on age and sleep quality, the 

mega-analysis case had an adjusted R squared value 𝑅 

2 
𝑎𝑑𝑗 

= 0 . 37 (cf. Sup- 

plementary Material IV, p. 13). Setting 𝜎 = 1 . 0 in the simulations gave 

𝑅 

2 
𝑎𝑑𝑗 

≈ 0 . 40 , thus close to a realistic noise level in neuroimaging stud- 

ies, while 𝜎 = 1 . 6 corresponds to a high noise case with 𝑅 

2 
𝑎𝑑𝑗 

≈ 0 . 20 . All 

simulations were repeated with each of these noise levels. Computations 

were performed in R version 3.6.2 ( Team, 2019 ) with the package mgcv 
( Wood, 2017 ). 

Figure 2 shows the average fits over all simulations. One can hypoth- 

esize that splitting a dataset into smaller parts and performing smooth- 

ing separately might lead to oversmoothing compared to analyzing all 

data in a single model. Considering Fig. 2 we see that this was the case 

for estimating f 2 ( x 2 ) in the case with 𝜎 = 1 . 0 , in which all meta-analysis 
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Fig. 2. Simulation estimates overlaid on true func- 

tions. Dashed black lines show true functions. The col- 

ored lines show mean fits averaged over 1,000 simula- 

tions as described in Section 4.1 . 

Table 2 

Mean root-mean-square error of fitted terms in the case of equal sample sizes, unequal sample sizes, and 

mega-analysis, with residual standard deviation 𝜎 = 1 . 0 or 𝜎 = 1 . 6 . Standard deviations across simulations 

are shown in parentheses. 

Term 𝜎 Equal sample size Unequal sample size Unequal range and sample size Mega-analysis 

f 0 ( x 0 ) 1.00 0.037 (0.011) 0.037 (0.011) 0.038 (0.012) 0.035 (0.013) 

f 1 ( x 1 ) 1.00 0.037 (0.014) 0.037 (0.014) 0.040 (0.013) 0.031 (0.011) 

f 2 ( x 2 ) 1.00 0.060 (0.011) 0.060 (0.011) 0.062 (0.012) 0.054 (0.010) 

f 3 ( x 3 ) 1.00 0.016 (0.009) 0.017 (0.009) 0.021 (0.010) 0.017 (0.012) 

f 0 ( x 0 ) 1.60 0.054 (0.019) 0.053 (0.019) 0.055 (0.019) 0.052 (0.022) 

f 1 ( x 1 ) 1.60 0.057 (0.020) 0.056 (0.020) 0.055 (0.018) 0.046 (0.020) 

f 2 ( x 2 ) 1.60 0.089 (0.018) 0.089 (0.019) 0.089 (0.019) 0.079 (0.018) 

f 3 ( x 3 ) 1.60 0.027 (0.015) 0.027 (0.015) 0.030 (0.016) 0.029 (0.020) 

Table 3 

Mean coverage of 95 % confidence intervals for fitted terms in the case of equal sample sizes, unequal 

sample sizes, and mega-analysis, with residual standard deviation 𝜎 = 1 . 0 or 𝜎 = 1 . 6 . Standard deviations 

across simulations are shown in parentheses. 

Term 𝜎 Equal sample size Unequal sample size Unequal range and sample size Mega-analysis 

f 0 ( x 0 ) 1.00 0.95 (0.21) 0.95 (0.21) 0.95 (0.23) 0.97 (0.16) 

f 1 ( x 1 ) 1.00 0.89 (0.31) 0.90 (0.30) 0.89 (0.31) 0.97 (0.17) 

f 2 ( x 2 ) 1.00 0.88 (0.32) 0.89 (0.31) 0.87 (0.33) 0.96 (0.20) 

f 3 ( x 3 ) 1.00 0.99 (0.10) 0.99 (0.10) 0.96 (0.19) 0.99 (0.11) 

f 0 ( x 0 ) 1.60 0.96 (0.20) 0.96 (0.19) 0.96 (0.20) 0.98 (0.15) 

f 1 ( x 1 ) 1.60 0.86 (0.34) 0.88 (0.33) 0.91 (0.28) 0.97 (0.17) 

f 2 ( x 2 ) 1.60 0.87 (0.33) 0.87 (0.34) 0.87 (0.34) 0.96 (0.20) 

f 3 ( x 3 ) 1.60 0.99 (0.11) 0.99 (0.11) 0.98 (0.15) 0.98 (0.13) 

cases slightly underestimated the two peaks of the true term. For the 

three other terms, the 𝜎 = 1 . 0 case had very low bias. In the high noise 

case, with 𝜎 = 1 . 6 , oversmoothing can also be seen in the estimates of 

f 1 ( x 1 ). The two meta-analyses with unequal sample size, also had some- 

what too smooth estimates of f 1 ( x 1 ) in the 𝜎 = 1 . 0 case. Overall, how- 

ever, the average fits in the meta-analysis cases were very close to the 

true curves. 

Table 2 shows the root-mean-square error (RMSE) of the fitted terms 

over the range [0, 1]. In both noise settings, the meta-analyses with 

equal and unequal sample size had only slightly higher RMSE than the 

mega-analytic estimates, and there did not seem to be any systematic 

difference between them. The meta-analysis with unequal range and 

sample size had RMSE very close to the two other meta-analytic cases. 

Table 3 shows the average coverage across [0, 1] of 95 % confi- 

dence intervals computed with (7) . The coverage of the confidence in- 

tervals of the mega-analytic estimates were close to 95 %, as expected 

from Marra and Wood (2012) , and always conservative. All three meta- 

analytic cases had very similar coverage, varying between 86 % and 99 

%. In particular for f 1 ( x 1 ) and f 2 ( x 2 ) the confidence intervals were some- 

what too narrow, whereas for f 0 ( x 0 ) and f 3 ( x 3 ) the confidence intervals 

were slightly conservative. 

4.2. Hypothesis testing and power 

A second set of simulation experiments was conducted with the goal 

of comparing the statistical inference performance of meta-analysis to 
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Fig. 3. Lifespan trajectories with group interaction. Functional forms as- 

sumed for lifespan trajectories in Section 4.2 . Subjects are assumed to belong to 

either group 0 or 1, whose mean lifespan trajectories differ as shown by the two 

curves. 

mega-analysis. Two issues are of particular interest in this regard; first, 

whether the distribution of p -values is close to uniform when the null 

hypothesis is true (e.g., Murdoch et al. (2008) ), and second, the power to 

reject a false null hypothesis. A nonlinear functional form approximat- 

ing the lifespan trajectory of cerebellum cortex volume was estimated 

with the LCBC data ( Fjell et al., 2017; Walhovd et al., 2016 ), as shown in 

Fig. 3 . For the power analysis, it was assumed that a dichotomous group 

variable interacted with the lifespan trajectory, leading to slightly higher 

atrophy for members of the baseline group, especially in advanced ages. 

For analysis of the null distribution of p -values, the two groups had iden- 

tical lifespan trajectories. Analyzing this type of smooth interactions is 

relevant, e.g., when investigating the impact of a given genetic variation 

on lifespan trajectories of brain measures ( Walhovd et al., 2019 ). 

Cross-sectional measurements were simulated with age uniformly 

distributed between 4 and 94 years, and group memberships randomly 

allocated to 0 or 1 with equal probabilities. For the mega-analysis, 

all measurements were analyzed in a single GAM, while for the meta- 

analysis, the data were first split into 6 datasets and analyzed separately, 

before a meta-analytic p -value was computed. For reference, the power 

obtained when using a single dataset of size 1/6th of the total dataset 

was also computed. A total of 1000 Monte Carlo samples were analyzed 

for each parameter setting. For the case of a nonzero group interaction, 

statistical power was computed as the fraction of the 1000 random sim- 

ulations in which the group interaction was significant at a 5 % level. In 

the first set of simulations, the total sample size was fixed at 3000 while 

the residual standard deviation varied between 1000 and 15,000. In the 

second set of simulations, the residual standard deviation was fixed at 

3500, and the total sample size varied between 900 and 3000. In all 

cases, ”cohort fits ” were computed by randomly splitting the dataset 

into 6 equally sized parts. The GAMs used to analyze the data in each 

sample were of the form 

𝑦 = 𝛽0 ,𝑚 + 𝑓 1 ,𝑚 
(
𝑥 1 
)
+ 𝑓 2 ,𝑚 

(
𝑥 1 
)
𝑥 2 + 𝛽2 ,𝑚 𝑥 2 + 𝜖, 𝑚 = 1 , … , 𝑀, 

where x 1 is age, x 2 ∈ {0, 1} is an indicator for group membership, 

and 𝜖 is a normally distributed residual. The parameter 𝛽0, m 

represents 

the intercept, 𝛽2, m 

is the offset effect of membership in group 1, the 

smooth term f 1, m 

( x 1 ) represents the age trajectory of subjects in group 

0, and f 2, m 

( x 1 ) represents the difference between the smooth term of 

subjects in group 1 and subjects in group 0. Hence, subjects in group 

1 have age trajectory given by 𝑓 1 ,𝑚 
(
𝑥 1 
)
+ 𝑓 2 ,𝑚 

(
𝑥 1 
)
. GAMs were fitted 

with the gam function in mgcv ( Wood, 2017 ), using cubic regression 

splines to construct the smooth terms and generalized cross-validation 

for smoothing. Knot placement was determined independently for each 

study. The null hypothesis states that there is no difference between 

the lifespan trajectories across groups, and the p -values corresponding 

Fig. 4. P-value distribution under the null hypothesis. Quantile-quantile 

plot of p -values under the null hypothesis as described in Section 4.2 , for the case 

of residual standard deviation equal to 3,500 and total sample size 3,000. Meta- 

analytic p -values were computed using both Stouffer’s and Tippet’s method, as 

shown by the legend. 

to this null hypothesis in each sample were directly obtained from the 

model fit, which uses the methods described in Wood (2012) . For the 

meta-analysis, we compared several different methods for combining p - 

values: Wilkinson’s maximum p ( Wilkinson, 1951 ), Tippet’s minimum p 

( Tippet, 1931 ), the logit- p method ( Becker, 1994 ), Fisher’s sum of logs 

( Fisher, 1925 ), Edgington’s sum of p ( Edgington, 1972 ), and Stouffer’s 

sum of z ( Stouffer et al., 1949 ), using the implementations in the R pack- 

age metap ( Dewey, 2019 ). As all samples in the meta-analysis were 

of equal size, equal meta-analytic weights were used in Stouffer’s sum 

of z (8) . The other methods do not use weights. Tippet’s minimum p 

method gave p -values closest to uniform under the null hypothesis un- 

der most parameter settings, while Stouffer’s sum of z method typically 

gave highest power. The p -values resulting from these two methods are 

hence shown in the results in this section, while complete results for all 

methods can be found in Supplementary Material III. 

Fig. 4 shows quantile-quantile plots of the p -values obtained by meta- 

analysis, mega-analysis, and a fit of a single dataset in the case of no 

actual interaction between the group variable and the lifespan trajecto- 

ries in the case with sample size 3000 and residual standard deviation 

3500. Results for other values of these parameters were similar, and 

are shown in Supplementary Material III. The gray line shows the ideal 

reference line. All methods yielded p -values which deviated to some 

degree from the uniform distribution. Meta-analytic p -values computed 

using Tippet’s minimum p method were close to the p -values obtained 

either in the mega-analysis or in the single data fit. p -values computed 

using Stouffer’s sum of z, on the other hand, were considerably further 

from being uniformly distributed. As Fig. 4 shows, the p -values of the 

mega-analysis were not perfectly uniformly distributed. This is due to 

the approximate nature of the algorithms used to compute p -values in 

GAMMs, which need to take into account the overall uncertainty in the 

smoothing parameter ( Wood, 2017 , Sec. 6.12). 

Fig. 5 (left) shows power curves for varying residual standard errors, 

and Fig. 5 (right) shows power curves over a range of sample sizes. In 

both cases, the mega-analytic approach outperforms the meta-analytic 

approaches. Stouffer’s sum of z method obtained power closest to the 

mega-analysis, while Tippet’s minimum p method had lower power. An- 

alyzing a single dataset, representing 1/6th of the total data, gave much 

lower power than either of the other two approaches. This highlights 

the benefit of pointwise meta-analysis compared to separate analyses 

by each center, when data cannot be shared. 

To summarize, meta-analysis using Stouffer’s sum of z method had 

power fairly close to that of a mega-analysis, at an increased risk of 

falsely rejecting true null hypotheses. On the other hand, meta-analysis 
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Fig. 5. Statistical power to detect interaction. Results of statistical power simulations desribed in Section 4.2 . Left: fixed total sample size 3,000 and varying noise 

level. Right: fixed noise level 𝜎= 3,500 and varying total sample size. Shaded areas around curves show 95 % confidence intervals computed using the R package 

Hmisc ( Harrell, 2019 ). Meta-analytic p -values were computed using both Stouffer’s and Tippet’s method, as shown by the legend. 

using Tippet’s minimum p method had risk of falsely rejecting a true null 

hypothesis close to that of a mega-analysis, at the cost of lower power. 

The other methods for combining p -values were somewhere inbetween 

these extremes, as shown in Supplementary Material III. 

5. Case study 

We will now illustrate the proposed methods on brain imaging data 

from six European cohorts analyzed by Fjell et al. (2019) . The datasets 

contained measurements of sleep quality and hippocampal volume from 

the Berlin Study of Aging-II (BASE-II) ( Bertram et al., 2013; Gerstorf 

et al., 2016 ), the Betula project ( Nilsson et al., 1997 ), the Cambridge 

Centre for Ageing and Neuroscience study (Cam-CAN) ( Taylor et al., 

2017 ), Center for Lifespan Changes in Brain and Cognition longitudi- 

nal (LCBC) studies ( Fjell et al., 2017; Walhovd et al., 2016 ), Whitehall- 

II ( Filippini et al., 2014 ), and University of Barcelona brain studies 

( Abellaneda-Pérez et al., 2019; neiro et al., 2014; Rajaram et al., 2017 ). 

Self-reported sleep and hippocampal volume data from 2843 partici- 

pants (18–90 years) were included. Longitudinal information on hip- 

pocampal volume was available for 1,065 participants, yielding a total 

of 4621 observations. Mean interval from first to last examination was 

3.8 years (range 0.2–11.0 years). Participants were screened to be cogni- 

tively healthy and in general not suffer from conditions known to affect 

brain function, such as dementia, major stroke, multiple sclerosis, etc. 

Exact screening criteria were not identical across subsamples. Detailed 

sample characteristics are presented in the Supplementary Material I. 

In Fjell et al. (2019) , the data were analyzed jointly using GAMMs 

in a mega-analysis, taking into account both the clustering of repeated 

measurements within the same subject, and of subjects within a given 

cohort. However, the methods proposed in this paper enable this type 

of multi-cohort analysis also when the data cannot be shared. In this 

particular example we examine how hippocampal volume is related to 

age and to sleep quality as measured by the global score on the Pitts- 

burgh Sleep Quality Index (PSQI) ( Buysse et al., 1989 ). A low value of 

the PSQI variable indicates good sleep. 

The following model was first fit to data from each study separately: 

𝑦 𝑖𝑗 = 𝛽0 + 𝑓 1 ( 𝑥 𝑖𝑗, 1 ) + 𝑓 2 ( 𝑥 𝑖𝑗, 1 ) 𝑥 𝑖, 2 + 𝛽3 𝑥 𝑖, 3 + 𝑏 𝑖 + 𝜖𝑖𝑗 . (9) 

y ij denotes hippocampal volume of subject i at timepoint j, x ij ,1 is the 

age of subject i at timepoint j, x i ,2 is the global PSQI score, and x i ,3 
is the sex of subject i . 𝑏 𝑖 ∼ 𝑁(0 , 𝜎2 

𝑏 
) is the random intercept of subject 

i and 𝜖ij ~ N (0, 𝜎2 ) is the residual. The main effect of age is repre- 

sented by f 1 ( x 1 ). f 2 ( x 1 ) x 2 is a varying-coefficient term ( Hastie and Tib- 

shirani, 1993 ), in which f 2 ( x 1 ) is a regression coefficient for sleep qual- 

ity which varies smoothly with age. Restricted maximum likelihood was 

used both for smoothing and estimation of random effect terms, and cu- 

bic regression splines were used as basis functions. The range of the age 

variable differed considerably between studies, as shown in the top part 

of Fig. 6 . Hence, both the knot placement and the number of knots used 

to fit f 1 ( x 1 ) and f 2 ( x 1 ) was determined for each cohort separately. The 

simulation procedure described in Wood (2017 , Ch. 5.9) was used to 

ensure that the number of knots was large enough to allow sufficient 

flexibility for the shapes of the smooth terms. The sleep quality scores 

were similarly distributed across cohorts, as shown in the bottom part of 

Fig. 6 . Betula differs somewhat in shape from the others, due to a trans- 

formation that had to be applied to these data ( Fjell et al., 2019 ). Fig. 7 

shows the fits of the term 𝛽0 + 𝑓 1 ( 𝑥 1 ) in (9) relating age to hippocampal 

volume, over the range of ages in each cohort. 

For the meta-analysis, we will focus on the effect of age on hip- 

pocampal volume including the intercept term, 𝛽0 + 𝑓 1 ( 𝑥 1 ) , and the age- 

dependent effect of sleep quality on hippocampal volume, f 2 ( x 1 ). To this 

end, we set up a grid over which to compute the estimates, containing 

the range of ages from 20 to 90 equally spaced by 0.1 year, and the value 

of the sleep quality score set to 𝑥 2 = 1 , such that 𝑓 2 ( 𝑥 1 ) 𝑥 2 = 𝑓 2 ( 𝑥 1 ) , rep- 

resenting the main effect of sleep as a function of age. Random effects 

meta-analysis was used, with between-study variance estimated with 

the DerSimonian-Laird estimator shown in Eq. (6) . 

Fig. 8 shows the meta-analytic fits compared to the full data case. 

The estimated effects of age on hippocampal volume are very similar 

between the two approaches, although the meta-analytic fit lies some- 

what above the mega-analytic fit for ages below 60 and has somewhat 

narrower confidence bands at low ages and wider confidence bands at 

high ages. A possible reason for the narrow confidence bands of the 

meta-analytic estimate of f 1 ( x 1 ) for ages in the range from 30 to 55 

years is that this age range is dominated by LCBC and Cam-CAN ( Fig. 9 ), 

which have very similar estimated functional forms ( Fig. 7 ). As shown in 
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Fig. 6. Empirical distribution of explanatory variables. Raincloud plots 

( Allen et al., 2019 ) showing the distribution of baseline age (top) and global 

PSQI score (bottom) in the data from each study in Section 5 . 

Supplementary Material IV (p. 16), the estimated between-sample vari- 

ance is even identically zero over part of this range. Since the standard 

error of the meta-analytic fit is estimated independently at each age 

(cf. Eq. (5) ), the confidence bands hence become narrow, in contrast 

to the mega-analytic fit, for which the global smoothness assumption 

and the utilization of repeated measurements contribute to confidence 

bands whose width has little variation in the interior of the age range. 

As in Fjell et al. (2019) , there seems to be no effect of global PSQI 

score on hippocampal volume at any age, as can be seen by the confi- 

dence intervals covering zero in both cases ( Fig. 8 , right). In the meta- 

Fig. 7. Age trajectories for each cohort. Estimates of 𝛽0 + 𝑓 1 ( 𝑥 1 ) in (9) , show- 

ing how age predicts hippocampal volume in each cohort. Gray shaded areas 

are 95 % confidence intervals. 

analytic case, the estimated curve has a peak at around 70 years, as 

opposed to the straight line estimated by the full data analysis. How- 

ever, the confidence bands obtained with the two methods are highly 

overlapping. We note that while the mega-analysis estimates a linear 

varying-coefficient term f 2 ( x 1 ), the meta-analytic estimate is nonlinear. 

As shown in Supplementary Material IV, all the individual cohort fits 

except Betula were very close to linearity. However, pointwise meta- 

analytic fits are nonlinear by construction, so even if all individual co- 

hort fits estimated a linear effect, the meta-analytic estimate would in 

general be nonlinear. This can be seen by the fact that 𝑓 𝑠 ( 𝐱) depends 

nonlinearly on the covariates x in Eq. (4) , through the products of the 

estimated smooth terms with the meta-analytic weights. In contrast, 

the mega-analysis shrinks the total estimate towards a linear function 

through the second-derivative penalty. As a result, the mega-analytic 

estimate will be linear when the data do provide sufficient evidence of 

a nonlinear effect. 

In order to quantify how much each study contributes to the meta- 

analytic fit at each value of an explanatory variable, we propose us- 

ing dominance plots, visualizing �̂�2 
𝑠,𝑚 

∕ se 2 
𝑓 𝑠 

for 𝑚 = 1 , … , 𝑀 . Fig. 9 (left) 

shows that LCBC and Cam-CAN are the main contributors to the meta- 

analytic fit for the main effect of age on hippocampal volume for ages 

up to around 50 years, after which the relative influence of the other 

studies starts increasing. Furthermore, the heterogeneity of the models 

fit in each study can be analyzed by computing Cochran’s Q statistic 

( Cochran, 1954 ) over an explanatory variable, thus comparing 𝑓 𝑠,𝑚 for 

𝑚 = 1 , … , 𝑀 independently at each value of the explanatory variable. 

Fig. 9 (right) shows a heterogeneity plot comparing the main effects of 

Fig. 8. Comparison of meta-analytic and mega- 

analytic estimates. Meta-analytic fits obtained as de- 

scribed in Section 5 , compared to the corresponding fit 

obtained with full data. Left: effect of age on hippocam- 

pal volume, including the overall intercept. Right: ef- 

fect of PSQI global score on hippocampal volume as a 

function of age. 
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Fig. 9. Dominance and heterogeneity plots. Domi- 

nance and heterogeneity plots for 𝛽0 + 𝑓 1 ( 𝑥 1 ) in Eq. (9) . 

Left: the relative contribution from each study to the 

meta-analytic fit over age. Right: Cochran’s Q statistic 

for heterogeneity over age. Shaded areas represent 95 

% confidence intervals. 

age in each study, with 95 % confidence intervals represented by the 

shaded gray areas. The confidence interval in the heterogeneity plot 

does not contain zero for ages above 60, indicating that there is evi- 

dence of systematic differences across cohorts in the effect of age on 

hippocampal volume after the age of 60. 

5.1. Pointwise meta-analysis in R with the ’metagam’ package 

This section shows how the meta-analysis described above can be 

conducted in R using the metagam package, which implements the 

methods presented in this paper. Some details are omitted for clarity, 

and are shown in Supplementary Material IV. 

First, the following code fits a GAMM to the data for each study using 

the mgcv package ( Wood, 2017 ). 

The fitted model objects returned by gamm() contain the orig- 

inal data used to fit the model, as well as the responses. The 

strip_rawdata() function from metagam removes all individual 

participant data from each model fit, returning an object containing only 

aggregate quantities that can be shared without any individual data. The 

following lines attach the metagam package and then create an object 

cohort_fit1 , which does not contain any individual-specific data. 

Assuming each cohort has followed the two steps above, the follow- 

ing code gathers the model fits from each of the six cohorts in a list, 

creates a grid over which to predict, and finally uses the metagam() 
function to compute the meta-analytic fits. 

The argument method = ’’DL’’ specifies that random ef- 

fects meta-analysis should be used, with the DerSimonian-Laird es- 

timator ( DerSimonian and Laird, 1986 ). The metafor package 

( Viechtbauer, 2010 ) performs the actual estimation, and all estimators 

available in metafor may be used. By default, predictions from each 

model are computed over the whole supplied grid, thus extrapolating 

the estimates from cohorts whose data cover only a subset of the grid. 

Arguments can be specified in order to compute the predictions from 

each model only within the range of variables used to fit it. In practice, 

this latter option does not have much impact, since the standard errors 

are large outside of the range of the variables used in the fit, and hence 

the corresponding predictions get a very low weight at these points. 

Finally, the dominance and heterogeneity plots shown in Fig. 9 are 

obtained with the commands: 

6. Discussion 

We have proposed and illustrated a flexible way to obtain meta- 

analytic fits of GAMs in neuroimaging studies where individual partici- 

pant data cannot be shared across cohorts. In the simulation studies, the 

meta-analytic procedure showed estimation performance close to that 

obtained in the ideal case, in which all data were analyzed in a single 

model, except that the meta-analytic estimates tended to have somewhat 

too narrow confidence intervals. Furthermore, the simulations showed 

that when testing for an interaction between a smooth function and a 

categorical variable, the distribution of p -values under the null hypothe- 

sis of no interaction, and the power to detect an actual interaction, were 

highly dependent on the chosen method for combining p -values, offer- 

ing a trade-off between power and the probability of making false re- 

jections. The proposed method is particularly useful when the variables 

under study have different ranges across cohorts, such that enforcing 

the same knot placement is suboptimal and might lead to nonidentified 

models. This is the case in many multi-cohort and consortium studies 

using neuroimaging data, where for instance age-range or patient distri- 

bution across a clinical indicator may vary considerably across samples. 

Differing variable ranges and knot placement are also inevitable across 

independent studies using GAMs to estimate some effect of interest in 

different study populations. 

A case study illustrating the use of pointwise meta-analysis was con- 

sidered in Section 5 , in which the effect of sleep quality and age on 

hippocampal volume was estimated for six European cohorts. Due to 

the nonlinear lifespan relationship between age and hippocampal vol- 

ume, GAMMs were preferable to LMMs when analyzing these data. How- 

ever, the highly varying age distributions ( Fig. 6 ) lead to nonidentified 

models when the same knot location was enforced across cohorts (cf. 
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Table 1 ). Meta-analysis of GAMMs by combining spline weights at each 

knot ( Gasparrini et al., 2012 ) could hence not be used. The pointwise 

meta-analysis developed in this paper alleviated these issues, and al- 

lowed computing meta-analytic estimates of both the effect of age on 

hippocampal volume and the age-varying effect of sleep quality on hip- 

pocampal volume. Since the full data were available in a single location 

in this case, the meta-analytic estimates could be directly compared to a 

mega-analysis in which all data were analyzed jointly. The meta-analytic 

estimate of the effect of age on hippocampal volume was very close to 

the mega-analytic estimate ( Fig. 8 , left), although it had slightly nar- 

rower confidence bands for the middle age ranges. The meta-analytic 

estimate of the effect of sleep was also close to the mega-analytic es- 

timate, both being almost zero over the full age range. A notable dif- 

ference in the latter case was that while the mega-analysis estimated 

the effect of sleep to vary linearly with age, the meta-analytic estimate 

was nonlinear, as it will be by construction. An interesting topic for 

further study, which would enable a meta-analytic estimate to be lin- 

ear when the smooth terms from each cohort are close to linear, in- 

volves imposing additional constraints on the meta-analytic fit, by using 

the degrees of freedom of the estimate from each cohort to inform the 

shape of the overall meta-analytic estimate. Dominance and heterogene- 

ity plots ( Fig. 9 ) were also introduced as additional tools for analyzing 

the relative impact of each dataset on the meta-analytic fit, and the het- 

erogeneity of the estimated effects, respectively, both as functions of 

age. 

One particular area of application for meta-GAM is imaging genet- 

ics. The need for very large sample sizes has long been recognized 

( Thompson et al., 2014 ), which imposes challenges due to privacy and 

data protection as well as practical issues regarding transfer, storage 

and processing of large amounts of neuroimaging data. These chal- 

lenges have successfully been overcome in initiatives such as ENIGMA 

( Bearden and Thompson, 2017; Thompson et al., 2017 ) using a meta- 

analytic approach to gene discovery. Classic meta-analytic techniques 

are often inappropriate in situations where genetic effects are studied in 

interaction with other variables, such as age in a lifespan study. To test 

whether effects of genetic variants on a neuroimaging outcome mea- 

sure vary as a function of age, or whether the lifespan trajectories of a 

neuroimaging outcome variable differ as a function of genetic variation 

( Piers, 2018; Walhovd et al., 2019 ), more complex modeling is needed. 

This functionality is provided by meta-GAM. As shown in Fig. 8 , this 

meta-analytic approach yielded superior power to detect effects in such 

situations compared to single studies, although not completely reaching 

the same statistical power as mega-analyses in cases of total sample size 

less than 2000. Other examples of situations where meta-GAM would 

be applicable are when testing whether an effect varies as a function of 

another continuous variable, such as blood pressure, BMI or sleep du- 

ration. In all of these cases, the neuroanatomical outcome variable is 

expected to show a more complex relationship to the predictor variable 

than what can be captured by a parametric model. In these cases, meta- 

analytic GAM will be a powerful strategy to test genetic effects. Thus, 

we believe the present strategy may be a useful tool in neuroimaging 

genetics. 

An alternative to the pointwise meta-analysis approach presented in 

this paper is to treat the fitted smooth functions from each cohort as sam- 

ples from a Gaussian process ( Murphy, 2012 , Ch. 15). A meta-analytic 

fit could then be obtained by using these samples to estimate the param- 

eters of a common smoothing kernel. This approach has been taken by 

Salimi-Khorshidi et al. (2011) for meta-analysis of neuroimaging data. 

Another alternative is using multiple imputation methods to generate 

synthetic data in each cohort with the same distributional properties as 

the original data, which can then be shared and analyzed in a mega- 

analysis ( Little, 1993; Nowok et al., 2016; Rubin, 1993 ). Other possible 

extensions include accommodating potential correlation between the 

pointwise estimates in a given cohort using the robust variance esti- 

mation methods developed by Hedges et al. (2010) , and to model the 

effect of cohort-specific covariates using multivariate meta-regression 

( Berkey et al., 1998 ). The latter may be used to account for systematic 

differences between trajectories across cohorts (cf. Fig. 9 , right), and 

hence reduce potential bias in the meta-analytic estimates ( Hofer and 

Piccinin, 2009 ). Also, deriving meta-analytic weights to use when com- 

bining p -values ( Rosenthal, 1978 ) as in Section 4.2 could potentially 

yield p -values closer to those of the mega-analysis. 

Although we have focused on the case in which data are not available 

in a single location, the proposed methods can also be useful in two-stage 

analysis with GAMs. In two-stage analysis, models are fitted separately 

for each cohort as described here, and then fit using meta-analytic tech- 

niques ( Burke et al., 2016 ). This approach seems to be somewhat less 

efficient than analyzing the data jointly in a one-stage model ( Boedhoe 

et al., 2019; Kontopantelis, 2018 ), but is useful when combining the data 

is impractical due to storage requirements or harmonization challenges 

( Sung et al., 2014 ). Finally, use of meta-GAM as a research synthesis 

method requires estimates and covariance matrices of spline weights as 

well as knot placement and basis functions to be properly reported by 

the studies to be combined in the meta-analysis. The metagam package 

easily allows extraction of such parameters from GAMs, creating model 

objects which can be made publicly available in repositories like the 

Open Science Framework ( Foster and Deardorff, 2017 ), https://osf.io/ . 

7. Conclusion 

Here we propose and demonstrate an approach to meta-analysis of 

neuroimaging results in situations where parametric models might not 

be appropriate, such as is often the case, e.g., in lifespan research. Para- 

metric models might not be able accurately to capture lifespan trajec- 

tories of most neuroanatomical volumes, here as demonstrated for hip- 

pocampus. We show how such data can be analyzed using meta-analysis 

of generalized additive (mixed) models, and demonstrate that this is a 

powerful approach using simulated as well as real multi-cohort longitu- 

dinal data from the Lifebrain consortium. We believe this approach can 

be successfully applied in a range of settings where neuroimaging vari- 

ables are used as outcome, especially within lifespan and neuroimaging 

genetics research, and beyond. 
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Appendix A. Identifiability constraints on smooth terms 

The smooth terms in the GAM (1) are only uniquely determined up 

to some additive constant. In order to compute the model fit, constraints 

have to be imposed on the smooth terms, effectively fixing f s (0) to some 

constant value. The default in the R package mgcv is to let each smooth 

term 𝑓 𝑠 (  𝑠 ) sum to zero over the observed data  𝑠 . This means requiring 

that the smooth term estimated from data in each cohort satisfy ∑
𝐱∈ 𝑠,𝑚 

𝑓 𝑠,𝑚 ( 𝐱 ) = 0 , 𝑚 = 1 , … , 𝑀, (A.1) 

where we let  𝑠,𝑚 denote the actual values of  𝑠 in cohort m . Using this 

approach the smooth term in each cohort has been constrained to sum 

to zero over its own data, and hence the terms are not directly compa- 

rable without correcting for this difference in offset. This is particularly 

important when the values of  𝑠,𝑚 cover different ranges across cohorts, 

as in Fig. 6 . 

One solution is to note that the smooth plus its intercept are com- 

parable across cohorts, since the difference between the constraints is 

captured by the intercept term. To be precise, assume a GAM with a sin- 

gle smooth term f 1 is fit to data in cohorts m 1 and m 2 , where the smooth 

term is constrained according to the data in cohort m 1 , i.e., ∑
𝐱∈ 𝑠,𝑚 1 

𝑓 𝑠,𝑚 ( 𝐱 ) = 0 , 𝑚 = 𝑚 1 , 𝑚 2 . 

This yields estimates 𝛽0 ,𝑚 + 𝑓 𝑠,𝑚 for 𝑚 = 𝑚 1 , 𝑚 2 , and the terms 𝑓 𝑠,𝑚 1 and 

𝑓 𝑠,𝑚 2 
would be directly comparable. Instead constraining 𝑓 𝑠,𝑚 2 over its 

own data would lead to a shift Δ𝛽0 ,𝑚 2 in the intercept estimated in cohort 

m 2 , i.e., ∑
𝐱∈ 𝑠,𝑚 1 

𝑓 𝑠,𝑚 2 
( 𝐱) = Δ𝛽0 ,𝑚 2 + 

∑
𝐱∈ 𝑠,𝑚 2 

𝑓 𝑠,𝑚 2 
( 𝐱) = 0 . 

The estimated intercept in cohort m 2 would now be 𝛽0 ,𝑚 2 = 𝛽0 ,𝑚 2 + 

Δ𝛽0 ,𝑚 2 , where Δ𝛽0 ,𝑚 2 takes into account the difference between the sum- 

to-zero constraint in cohort m 1 and in cohort m 2 . This argument gener- 

alizes to any number of cohorts and smooth terms. Hence, sum-to-zero 

constraints of the form (A.1) for each smooth can be imposed indepen- 

dently in each cohort fit, as long as the estimated intercept 𝛽0 is added 

to each smooth term before combining. This implies replacing 𝑓 𝑠,𝑚 with 

𝛽0 ,𝑚 + 𝑓 𝑠,𝑚 in equation (4) . An important point for interpretation is that 

when using this option, the meta-analytic estimate of 𝛽0 + 𝑓 𝑠 incorpo- 

rates both differences between estimated intercepts and differences be- 

tween estimated smooth terms across cohorts. 

Another way to resolve this issue is by imposing a constraint for 

each smooth term, specifying a point at which it should be exactly zero 

( Wood, 2017 , Ch. 5.4.1). If the same point constraints have been ap- 

plied when fitting the GAM to the data from each cohort, the smooth 

terms are all on the same scale and can be combined meta-analytically 

as described in Section 3 . This approach hence replaces (A.1) by 

𝑓 𝑠,𝑚 
(
 

𝑝𝑐 
𝑠 

)
= 0 , 𝑚 = 1 , … , 𝑀, (A.2) 

for some point  

𝑝𝑐 
𝑠 which is identical across cohorts. An advantage 

of this approach is that it does not require the intercept to be in- 

cluded in the meta-analysis; hence the meta-analytic estimate 𝑓 𝑠 con- 

tains only the smooth term. On the other hand, point constraint may 

lead to wider confidence bands for the smooth terms ( Wood, 2017 , Ch. 

5.4.1). Also, this approach requires that point constraints are specified 

as part of the model to be fit to the data from each cohort. Note that 

the confidence interval for a smooth term subject to point constraint 

(A.2) does not need to have zero width at the constraint point  

𝑝𝑐 
𝑠 . The 

methods for constructing confidence intervals developed by Marra and 

Wood (2012) based on the work by Nychka (1988) , take into account 

the uncertainty about the overall intercept as well as the uncertainty 

about the smooth term, and these typically yield better coverage prop- 

erties than confidence intervals which only model the uncertainty of the 

smooth term. 
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