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A B S T R A C T   

The identification of oscillatory neural markers of Parkinson’s disease (PD) can contribute not only to the un
derstanding of functional mechanisms of the disorder, but may also serve in adaptive deep brain stimulation 
(DBS) systems. These systems seek online adaptation of stimulation parameters in closed-loop as a function of 
neural markers, aiming at improving treatment’s efficacy and reducing side effects. 

Typically, the identification of PD neural markers is based on group-level studies. Due to the heterogeneity of 
symptoms across patients, however, such group-level neural markers, like the beta band power of the sub
thalamic nucleus, are not present in every patient or not informative about every patient’s motor state. Instead, 
individual neural markers may be preferable for providing a personalized solution for the adaptation of sti
mulation parameters. 

Fortunately, data-driven bottom-up approaches based on machine learning may be utilized. These approaches 
have been developed and applied successfully in the field of brain-computer interfaces with the goal of providing 
individuals with means of communication and control. 

In our contribution, we present results obtained with a novel supervised data-driven identification of neural 
markers of hand motor performance based on a supervised machine learning model. Data of 16 experimental 
sessions obtained from seven PD patients undergoing DBS therapy show that the supervised patient-specific 
neural markers provide improved decoding accuracy of hand motor performance, compared to group-level 
neural markers reported in the literature. We observed that the individual markers are sensitive to DBS therapy 
and thus, may represent controllable variables in an adaptive DBS system.   

1. Introduction 

Deep brain stimulation (DBS) has developed into a standard therapy 
for treating refractory stages of Parkinson’s disease (PD). The large 
number of DBS systems routinely implanted nowadays are relatively 
simple from a technical perspective: they uninterruptedly deliver high- 
frequency stimulation pulse trains 24 h a day. Stimulation is applied to 
the target area—e.g., the subthalamic nucleus (STN), or the internal 
globus pallidus—without taking into account the current motor state of 
the patient, sleep-/wake-cycles, or other contextual information. 
Changes to the stimulation parameters—such as pulse width, 

amplitude, frequency, or the choice of electrode contacts—can be made 
only by a trained expert. This limits the number of adjustment sessions 
to a few per year. While this fitting strategy may be sufficient for 
adapting the system to long-term variations of PD-induced changes in 
the patient’s state—which take place over months and years—it is not 
sufficient to react upon varying daily conditions or changes in even 
smaller temporal scales (Carron et al., 2013; Little et al., 2013). Fur
thermore, it has been shown that patients undergoing such continuous 
DBS therapy are prone to motor and neuropsychiatric side effects (Witt 
et al., 2012; Little et al., 2016; Castrioto et al., 2014). 

Adaptive DBS systems provide alternatives to continuous DBS 
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therapy by allowing online adaptation of stimulation parameters as a 
function of motor state surrogates. An adaptive system seeks to identify 
pathological states in real time and to adjust the stimulation strategy 
accordingly, in order to improve treatment and ameliorate DBS-induced 
side effects (Khobragade et al., 2015; Little et al., 2013; Little et al., 
2016; Tinkhauser et al., 2017; Priori et al., 2013). The motor state is 
accessible via external sensors which measure, for example, muscle 
tone or tremor (Herron et al., 2016; Graupe et al., 2010). Alternatively, 
surrogates of the motor state may be provided by neural markers (NMs) 
(Carron et al., 2013; Priori et al., 2013; Beudel and Brown, 2016). It has 
been proposed to extract NMs from local field potentials (LFPs) of 
subthalamic target structures like the STN (Little et al., 2013; Priori 
et al., 2013; Whitmer et al., 2012). The majority of these NMs are 
bandpower features derived from oscillatory processes in the beta-band 
([12 30] Hz), showing a significant correlation with common PD 
motor symptoms, such as bradykinesia and rigidity (Kühn et al., 2009; 
Kühn et al., 2008; Blumenfeld and Brontë-Stewart, Dec. 2015; Whitmer 
et al., 2012; Neumann et al., 2017). 

Due to the strong functional coupling of cortical structures with 
subcortical ganglia, the former may also provide NMs (Deniau et al., 
2010). In addition to providing information about broader brain areas, 
cortical signals are further away from the stimulation contacts and thus, 
are less affected by DBS-induced artifacts (Neumann et al., 2019). In 
this regard, several electrocorticography studies have found that alpha-, 
beta-, and gamma-band oscillations may serve as NMs (Swann et al., 
2018; Kondylis et al., 2016). Likewise, non-invasive recordings may 
provide similar information, as reported using magnetoencephalo
graphic (Airaksinen et al., 2012; Cao et al., 2017) and electro
encephalographic (EEG) signals (Soikkeli et al., 1991; Weiss et al., 
2015). In this regard, studies have found a negative correlation between 
beta-band and alpha-band power with respect to clinical scores 
(Melgari et al., 2014; He et al., 2017), such as the unified PD rating 
scale (UPDRS) (Ramaker et al., Sept. 2002; Goetz et al., 2008), whereas 
other studies have reported a positive correlation between theta-band 
power and Hoehn & Yahr stage (Goetz et al., 2004; He et al., 2017). 
Furthermore, effects of levodopa and DBS upon theta-, alpha-, beta-, 
and mu-band activity have also been observed (Brown and Marsden, 
1999; Melgari et al., 2014; Jech et al., 2006; Whitmer et al., 2012). The 
cortical and subcortical NMs reported in the above studies stem from 
group-level analyses, which largely make use of physiologically moti
vated hypotheses of the underlying PD mechanisms. Such group-level 
NMs may have limited use in adaptive DBS systems because of the in
trinsic heterogeneity of PD and its sub-classes (van Rooden et al., 2010; 
van Rooden et al., 2011), which indicates that one-NM-fits-all may not 
exist. 

In contrast, we suggest to utilize a bottom-up approach pursuing 
personalized NMs based on brain signals of an individual. A similar 
approach to achieve this has been recently proposed by Yao and col
leagues (Yao et al., 2020), where a machine learning model was used to 
decode Parkinsonian tremor from STN-LFP signals. For high dimen
sional signals, as those typically measured from the cortex by means of 
EEG, the machine learning methods can be borrowed from the field of 
brain-computer interfaces. Such algorithms are capable of decoding 
intentions from brain signals for the purpose of controlling assistive 
devices or communication (Blankertz et al., 2011; Tangermann et al., 
2012) and monitoring ongoing brain states, e.g, for forecasting hand 
motor performance (Meinel et al., 2016). As suggested in the outlook 
papers by Neumann and colleagues (Neumann et al., 2019 and Hell and 
colleagues Hell et al., 2019), an adaptive system based on NMs ex
tracted via machine learning methods, offer a highly personalized 
treatment that could significantly improve the therapy. While such 
adaptive DBS systems can not be expected to generalize well across 
patients, an adaptive DBS treatment should not entail any dis
advantages for the individual patient, and is compatible with standard 
clinical practices that pursue individual adaptation of stimulation 
parameters according to the individual semiology of the patients 

(Wagle Shukla et al., 2017, 2017.). 
In this regard, we present a novel approach for a supervised, ma

chine learning based identification of cortical NMs for hand motor 
performance in PD patients, and offer general guidelines for the utili
zation of this approach in a prospective adaptive DBS system. Even 
though our contribution is focused on the identification of NMs, it is 
framed around the characterization of the interactions between the 
three main phenomena relevant to an adaptive system, i.e., the motor 
state, its NMs, and the DBS-induced effects upon such NMs. Each of 
these interactions is individually addressed in three separate tasks: 

Task T1 – Extraction of DBS-induced changes of hand motor perfor
mance: We determine the multidimensional behavioral characteristics 
of hand movement, as captured during the execution of a fine-motor 
control task termed the copy-draw test (Castaño-Candamil et al., 2019). 
Additionally, task T1 provides a motor score that condensates such 
information in a single uni-dimensional variable. 

Task T2 – Decoding of motor performance from brain signals: The 
identification of NMs in itself is based on machine learning methods 
designed to extract neural sources contained in EEG recordings, which 
maximally correlate with the copy-draw test performance identified in 
task T1. 

Task T3 – Decoding of DBS condition from brain signals: This auxiliary 
task makes sure that NMs identified in T2 not only correlate with motor 
performance but are also controllable by DBS—a prerequisite for using 
those NMs to control an adaptive DBS system. This is achieved by 
identifying those NMs from task T2 which contain discriminative in
formation about the DBS condition. 

2. Methods 

2.1. The copy-draw test – a fast hand motor assessment tool 

In a recent study Castaño-Candamil et al. (2019), we have presented 
the copy-draw test, inspired by Prichard et al. (2014). It allows fast 
extraction of features related to complex and continuous hand and arm 
movements. The experimental setup of our study is sketched in Fig. 1. 
At the beginning of a copy-draw trial, a trace composed of pseudo-letters 
is displayed on screen. The patient’s task is to copy-draw the trace 
trajectory “as fast and as accurately as possible” within a predefined time 
limit. 

We extracted two categories of features from every trace drawn: 
directed and undirected features. For each category, kinematic and 
precision features were computed: The kinematic features describe the 
average velocity, acceleration, and jerk per trial. The precision feature 
is obtained as a point-wise Euclidean distance between the trace drawn 
and the template trace. The difference between directed and undirected 
features is that for the former, each point of the trace is put into one of 
eight 45° bins according to the instantaneous direction in the drawing 
plane. In total, four undirected features and 32 directed features char
acterize each trial. 

A scalar motor performance score for the e-th trial, z e( ) , should 
now be obtained from the concatenation of all features described above. 
We assume that the highest variability of performance in the copy-draw 
test is induced by switching between DBS-on and DBS-off. Then, a di
mensionality reducing projection can be determined by linear dis
criminant analysis (LDA), as =z e em w( ) ( ) · b, where em( ) 36 is a 
vector containing the movement features for the e-th trial. Using in
formation about the DBS condition as 0/1 class labels, projection vector 
wb

36 is obtained by the shrinkage-regularized linear discriminant 
analysis as described in Blankertz et al. (2011). The task T1, i.e., the 
extraction of motor performance under DBS-on/-off, is realized by this 
projection. 

2.2. Data-driven identification of controllable neural markers 

EEG can contain oscillatory NMs hidden by noise and overlapping 
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confounds. In the following, we describe a machine learning framework 
typically used in brain-computer interfaces, which allows to recover 
such oscillatory NMs on a single trial basis. 

Let ×eX( ) N Nc t be the EEG data segmented into a window of in
terest e, corresponding to the e-th trial of the copy-draw test, recorded at 
Nt time samples with Nc sensors. The power of an underlying narrow- 
band neural source, acting as motor performance surrogate, can be 
recovered as =e eX w( ) var( ( ) ), where w Nc is a so-called spatial 
filter. To obtain w, consider the optimization problem 

w C wargmax ( )a
w (1)  

=w C ws. t. 1b (2) 

where matrices ×Ca b
N N

, c c define some desired properties of the 
underlying subspace spanned by w . It can be shown that a solution to 
this optimization problem can be obtained by solving the generalized 
eigenvalue problem: 

=C w C w,a b (3) 

where is the corresponding eigenvalue. 
In order to solve tasks T2 and T3, we select matrices Ca and Cb, such 

that we obtain the properties aimed at by the source power co-mod
ulation (SPoC) and the common spatial patterns (CSP) algorithms, as 
detailed in the following. 

2.2.1. Spatial filters for task T2 
The algorithm SPoC (Dähne et al., 2014) implements a supervised 

regression approach aimed at estimating a spatial filter w that max
imizes the correlation between e( )—in a narrow frequency band—and 
the one-dimensional motor performance score z e( ), obtained using task 
T1. This is achieved by defining C Ca z, i.e., the z-weighted sample 
covariance matrix, and C Cb , i.e., sample covariance matrix. Using 
data of all the Ne copy-draw test trials available in a single session, both 
matrices are determined as = z e e eC X X( ) ( ) ( )z e

Ne and 
= e eC X X( ) ( )e

Ne , respectively. The decoding performance obtained 
in task T2 is evaluated with the Pearson correlation coefficient . 

2.2.2. Spatial filters for T3 
The CSP (Ramoser et al., 2000) algorithm is an established su

pervised method for classification. It seeks a one or multiple spatial 
filters w that extract sources which maximize the contrast in e( )

between DBS-on and DBS-off trials. This can be achieved by defining 
C C Ca on off and +C C Cb on off , where Con and Coff are the sample 
covariance matrices of the respective EEG signals. Decoding perfor
mance for T3 is evaluated using classification accuracy. 

2.2.3. Interpretation of a spatial filter for tasks T2 and T3 
One of the main advantages provided by CSP and SPoC is their 

spatial interpretability. However, as pointed out by Haufe et al. (2014), 
a spatial filter w should not be interpreted directly. Instead, the cor
responding spatial pattern should be used. The pattern a Nc corre
sponding to w can be computed as =a Cw w Cw( ) 1. 

3. Experimental setup 

3.1. Patients 

The study was approved by the local ethics committee at the 
University Medical Center Freiburg and was conducted according to the 
Declaration of Helsinki. All patients provided written informed consent 
prior to participation. 

Seven PD patients (S1, …, S7) were bilaterally implanted in the STN 
with directional DBS electrodes (Vercise Cartesia™, Boston Scientific). 
Implantation trajectory and target location were planned using in
formation from pre-operative computer tomography and magnetic re
sonance imaging and based on intraoperative microelectrode record
ings. The dorsolateral motor area of the STN was targeted and the leads 
were placed such that the dead space between the segmented electrodes 
of the implanted lead was located at the optimal intraoperative sti
mulation site. Typically, this resulted in a further contact (ring) above 
the STN in the field of Forel. The lead locations were intraoperatively 
checked with lateral x-rays and post-operatively using helical computer 
tomography and fusion back to the planning data (using magnetic re
sonance imaging). 

The DBS leads were kept externalized during three days following 
the implantation surgery. On day four, leads were internalized and the 
pulse generator was implanted. In addition to a short familiarization 
session with the copy-draw test, each patient participated in five EEG 
experimental sessions: one pre-session executed a day before lead im
plantation, three sub-acute sessions ( + + +S 1, 2, 3) on the three days fol
lowing lead implantation, and one subchronic session (Sc) during the 
first inpatient control visit approximately four weeks after implantation 

Fig. 1. Left: Illustrative EEG layout used in sessions + +S2
2, 3. The EEG electrodes avoided incision sites used for DBS electrode implantation. In sessions Sc , a full EEG 

layout was used. Right: The experimental setup and design of the copy-draw test, as composed by (a) single trial trace consisting of three (b) trace atoms, (c) get-ready 
box, and (d) starting point of the trace. 
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surgery. Throughout the text, we use the notation Sa
b to denote session b 

executed with patient a. For example, +S5
3 indicates the session executed 

with patient 5, three days after lead implantation. A description of the 
all available sessions can be found in Table 1. 

3.2. DBS parameters 

The stimulation amplitude was adjusted for each patient in
dividually to a level of 0.5 mA below side-effects onset but maximally at 
6.5 mA. The electric field possessed an omnidirectional bipolar pattern, 
with the top unsegmented and adjacent segmented electrodes used as 
anode and cathode, respectively. During the sessions in the acute phase, 
DBS was performed unilaterally due to hardware limitations. During 
the subchronic phase, bilateral stimulation was possible but we opted 
for unilateral stimulation for the sake of consistency with the acute 
sessions. Patients were not explicitly informed about the DBS condition, 
however, a blinding probably was not obtained. The reason for this is 
that transient paresthesias were reported by most patients every time 
the DBS condition changed. As a limitation of the study, it is important 
to point out that also the experimenters were not blinded to the DBS 
condition. 

3.3. Time structure of the copy-draw test 

A copy-draw session is constituted by a series of blocks, with each 
block comprising 12 copy-draw trials (see Section 2.1). Self-timed pauses 
between trials and a longer break after each block were offered. Within 
a block, DBS was either on or off and alternated between blocks. In each 
session, at least ten copy-draw blocks were executed. Depending on the 
fatigue level reported by the patient, additional blocks could be per
formed. The trial duration was adjusted for each patient in the range 
between 6s and 9s, see Table 1. For further details about preprocessing 
of the behavioral data, please refer to Castaño-Candamil et al. (2019). 

3.4. Electroencephalographic signals 

3.4.1. Acquisition 
EEG signals were recorded from passive Ag/AgCl electrodes 

(EasyCap GmbH, Germany) placed according to the extended 10–20 
system. Impedance was kept below 20k . All channels were referenced 

against the nose. The EEG signals were registered by BrainAmp DC 
amplifiers (Brain Products GmbH, Germany) at a sampling rate of 
2kHz, with an analog lowpass filter of 250 Hz applied before digitiza
tion. 

For sessions + +S 2, 3, patient-specific fronto-central-parietal areas of 
the scalp were unreachable for EEG recording due to the surgical 
wounds. Consequently, EEG signals were recorded from a number of 
electrodes that varied from patient to patient. An example of a resulting 
EEG channel layout is depicted in Fig. 1. Fig. 2 gives a general overview 
of the following data processing pipeline. 

3.4.2. Preprocessing 
Raw EEG signals were downsampled at 200 Hz and then segmented 

into epochs relative to the trial start ( =t 0 s, determined by the patient 
touching the starting point of the trace, see Fig. 1). The epoch length is 
defined from =t 0 s until the end of each trial. Obtained trials were 
further segmented into non-overlapping 1s sub-epochs, where the ones 
exceeding a peak-to-peak amplitude of 80 µV in the [1 30] Hz band 
were marked as artifacts for later rejection. These thresholds are cap
able of detecting biological artifacts, such as eye movements and eye 
blinks, typically found in EEG recordings. Finally, independent com
ponent analysis (ICA) was carried out in the [1 30] Hz band on the 
non-artifactual sub-epochs. Then, the EEG data was projected onto the 
ICA space after components representing eye and muscle artifacts had 
been removed manually. All data analysis shown was performed with 
the MNE-Python package (Gramfort et al., 2013). 

The sole purpose of the sub-epoching is to facilitate the identifica
tion and rejection of short time segments that might be contaminated 

Table 1 
Description of patients and copy-draw sessions analyzed. Unless indicated otherwise, DBS was performed with a pulse width of 60 μs and frequency of 130 Hz. The 
STN contralateral to the dominant hand was stimulated during DBS-on, unless bilateral stimulation was applied, which is indicated. Medication intake times are 
provided relative to the experiment start. Scores of unified PD rating scale part III were obtained—unless indicated otherwise—in medication off state and several 
days prior to the implantation surgery. Tremor (T), bradykinesia (B), and rigor (R) scores obtained under DBS-on are given relative to this DBS-off baseline, ranging 
from 0 (no improvement), to +3 (complete symptom suppression), according to the average of following hand motor items of the unified PD rating scale part III: 3 
(rigor); 4, 5 and 6 (bradykinesia); 15 and 16 (tremor). n/a marks unavailable information. Please refer to the main text for an explanation of the session codes.              

Patient Session Age Sex Medication DBS parameters Trial  
duration 

N trials Preimplantation  
UPDRS-Part III 

T B R  

S1 +2 55 M normal acting l-Dopa at +26 min  
and fast acting l-Dopa at +43 min 

3 mA 7.5s 144 25 (med-on) 0 +2 +2 

c fast acting l-Dopa at +15 min 2.4 mA, bi 216 n/a 
S2 +2 54 F medication off 6 mA 6s 144 18 +2 +2 +2 

c 168 +3 0 +2 
S3 c 56 M medication off 6 mA 7.5s 120 41 n/a 
S4 +2   retarded l-Dopa at −150 min 6.5 mA 6s 168 23 0 0 +1  

+3 44 M retarded l-Dopa at −330 min 5 mA  168  0 0 +1  
c   normal acting l-Dopa combined with 

COMT-Inhibitor (Entacapone) at −210 min 
3.5 mA, 30 μs  156  0 +1 +2 

S5 +2   retarded l-Dopa at −300 min 6.5 mA 6s 144 33 0 +1 +1  
+3 69 M retarded l-Dopa at −210 min 6.5 mA  144  +1 +1 +2  
c   normal acting l-Dopa −660 min 6.0 mA  192  0 +1 +1 

S6 +2 63 M retarded l-Dopa at −330 min 3 mA 9s 144 35 +1 +2 0 
c medication off 3.5 mA 192 0 +2 +1 

S7 +2   n/a 4.5 mA 9s 168 34 0 0 +2  
+3 55 M retarded l-Dopa at −330 min 5 mA 6s 168  n/a  
c   normal acting l-Dopa −660 min 3.5 mA 7.5s 192  0 +2 +2 

Fig. 2. Processing pipeline of the EEG data. The lower row represent that main 
pipeline, the upper row is performed for identifying biological artifactual 
epochs and ICA components (by visual inspection), which are removed from the 
data in the main pipeline. 
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by biological artifacts. To derive NMs, however, data of several non- 
contaminated sub-epochs acquired in the same trial were aggregated. 
Using this aggregated data, the covariance matrices necessary for SPoC 
and CSP were estimated. 

3.4.3. Frequency filtering for decoding of motor performance (task T2) and 
DBS condition (task T3) 

As SPoC and CSP require narrow-band signals, we performed a 
random search over the hyperparameters central frequency fc and fre
quency width fw, for each session individually. For each frequency 
band, preprocessed data were filtered using a 5-th order butterworth 
filter. During the random search, a total of 600 configurations were 
tested per session, with fc varying in the range [4 30] Hz and fw in 
[2 5] Hz. The frequency filtered data is then used to compute the 
spatial filters w, according to the methods shown in the previous sec
tion. 

For each hyperparameter configuration, the decoding accuracy was 
determined using cross-validation. For each cross-validation fold, two 
blocks of the copy-draw test were as validation set and the remaining 
blocks formed the training set. The reported score corresponds to the 
average across all possible block permutations. The NMs discussed in 
the next session correspond to configurations performing significantly 
above chance level. The latter was obtained by cross-validation, using a 
bootstrapping procedure with 200 label shuffles and a significance level 
of <p 0.05. 

4. Results 

In Sections 4.1 and 4.2 we present the results for the extraction of 
motor performance (task T1), the decoding of motor performance (task 
T2), and for the decoding of the DBS condition (task T3). In Section 4.3, 
we relate the obtained motor decoding accuracy to the contrast of 
motor performance induced by the stimulation. Later in Section 4.4, we 
provide introspection about the obtained NMs by analyzing their cor
responding spatial, temporal, and spectral features. Finally, Section 4.5 
compares our data-driven NMs against group-level NMs. 

4.1. Task 1: Extraction of hand motor performance labels 

Fig. 3 provides the area under the ROC curve (AUC) to describe the 
performances obtained in task T1. The figure also shows the distribu
tion of motor scores z separately per session. We observed a separability 
between DBS conditions above chance level for all of the sessions. This 
demonstrates that DBS on/off has induced a modulation of the hand 
motor performance, that the copy-draw test is sensitive to capture this 
modulation, and that a linear classification model is capable to project 
this modulation to a meaningful scalar value. 

4.2. Task 2 and Task 3: Decoding of motor performance and of the DBS 
condition from EEG signals 

For all 16 sessions, Fig. 4 shows the accuracy achieved for the de
coding of motor performance (task T2) and the DBS condition (task T3) 
across different hyperparameters fc and fw. The chance levels are given 
by solid lines in corresponding colors. By different circle sizes in Fig. 4 
we indicate the robustness of a central frequency fc to provide statis
tically significant NMs under varying band widths fw. Specifically, this 
robustness is provided by the percentage of components achieving an 
statistically significant decoding performance. 

Defining bins robust as where at least 40% of the components 
showed significant decoding accuracy, we can also observe that almost 
all sessions showing robust frequency bands for the decoding of motor 
performance also allowed to decode the DBS condition above chance 

level using the same frequency bands. 
Finally, to determine if the NMs identified are able to detect changes 

of motor state while DBS is either on or off only (a minimum pre
requisite in any aDBS pipeline), we analyze the decoding performance 
for task T2 according to the homogeneity of the stimulation condition in 
the test sets during the crossvalidation procedure. Specifically, we ca
tegorize each test set according to the stimulation conditions contained 
in it: only DBS-on, only DBS-off, or mixed. Fig. 5 shows the distribution 
of performances according to this categorization criterion. 

It can be seen that for two sessions, namely +S6
2 and S c

6 , the decoding 
performance in mixed test folds is superior than that of folds with 
homogeneous stimulation condition. This observation calls for caution 
on the interpretation of these two sessions, since it might indicate that 
the high Pearson correlation achieved could be given by the discrete 
step-wise increase of motor performance due to changes in the stimu
lation. In some other cases, for example S c

1 and +S2
2, DBS-off folds de

livered a low decoding performance. This suggests that the corre
sponding NMs would only be suitable for decoding hand motor 
performance during DBS-on. A reversed case is observed for sessions S c

3
and +S5

2, where NMs provided an improved decoding accuracy under 
DBS-off, compared to DBS-on folds. 

4.3. Low performance variation explains low decoding accuracy 

As observed in the previous section, not only the informative fre
quency bands varied largely between sessions, but also the maximum 
decoding accuracy obtained. To examine this closer, Fig. 6 shows the 
relationship between the motor performance separability induced by 
DBS-on/-off—quantified as the AUC obtained during the extraction of 
motor performance in task T1—and the maximum accuracy obtained 
for the decoding of motor performance via SPoC in task T2. The linear 
relation in this scatter plot suggests that it is necessary to have DBS- 
induced contrast of motor performance in the first place, in other to 
obtain NMs for task T2. 

4.4. Spatio-temporal signatures of informative neural sources 

Unfortunately the incomplete EEG layouts used in sessions + +S 2, 3

impede an interpretation of spatial patterns obtained from these ses
sions, regardless of the subspace decoding method (SPoC or CSP). 
Components obtained for sessions Sc, however, are based on the full 
EEG layout. We performed a qualitative analysis of those NMs which 
were obtained for the random search in tasks T2 and T3 and which were 
statistically significant. Their spatial patterns are shown in Fig. 7. We do 
not consider them to reflect stimulation artefacts of the DBS, as they 
lack the specific spatial (and frequency) characteristics of stimulation 
artifacts explained in the Appendix A. (See Fig. 8.). 

For each component we show (1) the spatial pattern a, (2) the 
frequency spectrum of the projected data and (3) the band-power dy
namics (”envelope”) of the component’s source, time-locked to the trial 
start. The latter is computed by the magnitude of the Hilbert transform 
of the spatially and temporally filtered signals. 

We observed that the topological origin of the components varies 
across patients. Specifically, we found centro-parietal components for 
S S,c c

1 3 , and Sc
4 , frontal components for Sc

5 and S c
7 , and an occipital 

component for S c
6 . The topological features of the patterns match the 

expected spectral characteristics thereof, i.e., occipital components 
stemming from alpha-band frequencies (S c

1 and S c
6 ), frontal components 

from the theta-band (Sc
5 and S c

7 ), and central components from the beta- 
band (S c

1 ) which may origin from sensory-motor regions. 
Trial-locked dynamics could also be identified: an event-related 

synchronization of the alpha-band (enhanced by DBS-on) can be ob
served for S c

1 . For the same session, also a DBS-enhanced beta-band 
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Fig. 3. Hand motor performance z extracted in task T1 and the area under the ROC curve (AUC) describing the separability between DBS-on/-off. For all sessions, 
AUC scores are significantly above chance level, tested using a bootstrapping procedure with 200 label shuffles at a significance level of <p 0.05 (uncorrected). 
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event-related desynchronization was found. Similarly, event-related 
desynchronization effects were observed for all the patterns of Sc

4 . End- 
of-trial artifacts are present in S c

3 and Sc
4 , very likely unrelated to any 

neural activity of interest and probably stemming from muscle activity 
or eye movements. However, it is important to mention that only the 
interval between =t s0 and the end of the trial was considered for 

solving tasks T2 and T3 and therefore, these biological artifacts did not 
play any role in the decoding performance reported. 

4.5. Decoding accuracy of individual NMs compared to group-level NMs 

We also investigated if NMs obtained with our supervised approach 

Fig. 4. Per patient and session, accuracies (y-axes) achieved for the decoding of motor performance (green), and of DBS-condition (pink) are provided relative to 
varying central frequencies fc (x-axes). Accuracies for different hyperparameter configurations of fc and fw have been grouped into 2 Hz bins and averaged. Circle size 
represents the percentage of evaluations for a given 2 Hz bin which achieve an accuracy above chance level. Chance level is indicated by solid lines. 
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are capable of providing more information about hand motor perfor
mance than group-level NMs can provide using a fixed frequency band, 
extracted under an unsupervised framework. The latter were estimated 
using the spatio-spectral decomposition algorithm (Haufe et al., 2014; 
Nikulin et al., 2011). This algorithm delivers a spatial filter that en
hances the signal to noise ratio of the pre-defined frequency band 
compared to neighboring bands, disregarding motor labels z. 

Fig. 9 provides three scatter plots. They compare the decoding ac
curacy between the best spatio-spectral decomposition and best in
dividually determined NMs (our approach) that represent cortical 
sources in the theta ([5 8] Hz), alpha ([8 12] Hz), and beta 

([12 30] Hz) band. 
In at least 12 out of 16 sessions per frequency band analyzed, we 

obtained a statistically significant superior decoding accuracy of motor 
performance by our data-driven, patient-specific NMs. The remaining 
three to four sessions did not show any significant performance dif
ference between patient-specifc NMs and the group-level NMs. 

5. Discussion 

In the following, we will first discuss the observed results in the 
context of tasks T1, T2, and T3 as formulated in the Introduction sec
tion. Then we will discuss the potential impact of the proposed machine 
learning approach upon future adaptive DBS systems. 

5.1. Task 1 – Extraction of motor performance 

Our approach is built around the copy-draw test, which is designed 
to capture hand motor performance in a fast and repeatable way. We 
have shown that a scalar performance score extracted from the copy- 
draw test is modulated by DBS. We also found that DBS-induced con
trast in this score correlates with how well we can decode it from brain 
signals alone. In sessions where DBS induce only a weak behavioral 
contrast, then we can assume that most of the variance observed in 
labels z for these sessions is either caused by external noise sources 
independent of the DBS, or by neural processes not captured by the 
EEG. 

A caveat of our approach is that we disregard the possible presence 
of a washout effect upon the motor features, despite the relatively short 
intervals (approximately every three to five minutes) after which DBS 
was toggled between on and off. From the perspective of the machine 

Fig. 5. Distribution of decoding performance in the regression task (task T2), according to the stimulation condition of the trials in the test folds. In some specific 
cases, there is an apparent difference in performance according to the homogeneity of the stimulation condition in the test set, however, a global trend cannot be 
identified. 

Fig. 6. DBS-induced changes in motor performance (AUC during extraction of 
motor performance) vs. the highest accuracy achieved in the decoding of motor 
performance from EEG signals. 
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Fig. 7. Informative components of neural origin obtained for the decoding of motor performance and of DBS condition. Each panel contains: frequency spectrum of 
the spatially filtered data (top-left); time-locked dynamics of the spatially and frequency-filtered data wrt. to the beginning of the trial (bottom-left); spatial pattern of 
the component (right). Vertical black lines in the bottom-left plot mark the beginning and end of the copy-draw trial. Unless indicated, components shown were found 
informative for both motor performance and DBS condition. For S c

2 , the spatial patterns of components indicated biological artifactual origins and thus, are not 
shown. Note that the polarity of the spatial patterns shown is arbitrary. 
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learning model trained with labels derived from task T1, the washout 
effect can be considered as some form of label noise, as some trials at 
the beginning of DBS-off blocks were executed with a residual effect of 
the previous DBS-on condition. This label noise increases the com
plexity of the learning tasks in T2 and T3 even further, however, it does 
not erode the interpretability and validity of the results obtained. 

Finally, it is important to mention that to this point there is no proof 
that an enhanced performance in the copy-draw test translates into a 
clinically improved movement pattern of the patient, although we think 
this might well be possible. A comparison of our functionally specia
lized hand task with UPDRS-III motor scores has not been performed 
here but shall be addressed in future research. 

Fig. 8. Continued: informative components of neural origin obtained for the decoding of motor performance and DBS condition.  

Fig. 9. Comparison between motor performance decoding using spatio-spectral decomposition of the fixed theta-, alpha-, and beta-bands (x-axis) vs. the overall best 
performing data-driven NMs identified with our approach (y-axis), not limited to any frequency band. Sessions above the dashed line indicate better performance of 
the data-driven NMs. Statistical significance is indicated by filled markers and was determined with Bonferroni corrected Wilcoxon signed-rank test at p-value of 
0.05. 
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5.2. Task 2 – Decoding of motor performance from brain signals 

In 13 out of the 16 sessions analyzed, we were able to identify NMs 
of hand motor performance. In eleven of them, the supervised session- 
specific data-driven NMs achieved a significantly better decoding ac
curacy compared to other NMs extracted with an unsupervised learning 
method from predefined frequency bands, i.e., enhanced beta-, alpha-, 
and theta-band power. This suggest that our data-driven approach 
should be the preferred strategy. 

The NMs identified by SPoC reveal a prominent variability across 
different sessions, even within the same patient. On the one hand, 
variability within a subject might have its cause in the strong non-sta
tionary dynamics elicited by the stun effect, which can last up to several 
months upon motor performance after lead implantation (Chen et al., 
2006; Eusebio and Brown, 2009; Piña-Fuentes et al., 2017). However, 
since research regarding the impact of stun effects upon cortical 
rhythms is missing, its influence upon the NMs cannot be conclusively 
claimed. On the other hand, variability between subjects might be at
tributed to different symptomatological groups across subjects, a 
characteristic intrinsic to PD. 

We also have shown that our approach allows for the decoding of 
motor performance on rather short time scales, e.g., when switching 
between DBS conditions every few tens of seconds. For adaptive DBS 
this is very valuable, since PD-symptoms are characterized by complex 
multi-timescale non-stationary dynamics. The latter are symptom-de
pended, but can govern fluctuations of the motor state in the order of 
seconds—e.g., for tremor and rigor—up to several hours—e.g., for 
bradykinesia (Cooper et al., 2013). 

5.3. Task 3 – Difference in components relevant for decoding of motor 
performance and DBS condition 

Most frequency bands that were found informative to regress the 
motor performance were also informative for the classification of DBS 
condition. A few exceptions only showed components informative so
lely for DBS condition decoding. They may be interpreted as underlying 
neural processes that are affected by DBS, but that do not interact with 
hand motor performance. On the contrary, components informative 
solely for the decoding of hand motor performance may stem from 
neural processes not affected by DBS. 

Having in mind the design of an adaptive system, it is not only 
important to identify neural features correlating with motor perfor
mance, but these neural features must be required also to be susceptible 
to DBS modulation. Otherwise, a NM describing the motor state that 
cannot not be modulated by DBS, which would prevent to build a 
controllable adaptive DBS system. 

5.4. Interpretability of identified NMs 

For the subchronic sessions Sc, we were able to characterize the NMs 
in terms of their spatial patterns. Here, we observed NMs that focussed 
not only over central electrodes—and thus, possibly from processes in 
the sensori-motor cortex—, but also components with a focus on occi
pital, parietal, and temporal areas. The latter suggest, that the decoding 
delivered information about neural processes not directly involved in 
motor execution, but which may modulate motor control, e.g., visual 
perception processes relevant for the hand motor task. 

In two of the Sc sessions, we determined frontal theta-band com
ponents. These NMs may reflect the influence of DBS upon cognitive 
processes via a functional connection between STN and the frontal 
cortex as reported in the literature (Zavala et al., 2014; Frank et al., 
2007; Aiello et al., 2017). This hypothesis is supported by the later
alization of these components wrt. to the stimulated hemisphere. The 

modulation of oscillatory components in the theta-band has been ob
served upon processing negative feedback, realizing errors, or following 
an event which indicates need for increased control (Ishii et al., 1999; 
Cavanagh et al., 2012; Cavanagh and Frank, 2014). Certainly the copy- 
draw test could cause such events. 

During the analysis of decoded NMs, we came across many com
ponents dominated by higher frequent oscillations ( 20 Hz), which 
probably represent muscle activity. This non-neural contributions 
should not automatically be condemned, as they may potentially con
tribute valuable information for designing adaptive systems. 
Specifically, the electromyographic signals of cervical muscles may 
provide short term information about the muscle tone, which could be a 
highly valuable non-neural biomarker for PD. Finally, in the present 
analysis, the scope has been limited to the bandpower of cortical fea
tures. However, other phenomena such as connectivity indices shall 
also be investigated, as these less-explored features have been deemed 
promising (Bočková and Rektor, 2019; Geraedts et al., 2018). 

5.5. Significance and implications for adaptive DBS systems 

A closed-loop adaptive system, implemented as in Fig. 10, can only 
perform well if the controller is provided with information about the 
motor state of an individual patient. To avoid continuous behavioral 
testing, an estimate of the motor state can be provided by NMs. Our 
contribution tackles the problem of NMs individualization. Our results 
suggest that the NMs decoded by machine learning methods could 
contribute more meaningful information to the controller of an adap
tive DBS system about the ongoing motor state than a fixed power 
feature can provide. This proposition is in line with recent findings of 
Tan and colleagues (Tan et al., 2019) in the context of adaptive DBS for 
essential tremor patients. Our NMs obtained with task T2 can be 
exploited to realize adaptive stimulation strategies in the same way as 
fixed power features are used in the existing literature. Thus, they can 
be integrated into control strategies that have already been validated, 
e.g., threshold-based or proportional controllers (Little et al., 2013; 
Rosa et al., 2015). Our NMs could also be deployed in combination with 
more complex control strategies such as coordinated reset (Adamchic 
et al., 2014), phase-specific stimulation (Cagnan et al., 2016), or with 
controllers realized by reinforcement learning models (Kumar et al., 
2016). 

However, several caveats and limitations require further attention 
on the way to a future clinical deployment. First, in our present con
tribution, we focused solely on hand motor performance, and only in a 
hand writing context. This clearly covers a very small range of motor 

Fig. 10. In an adaptive DBS system, motor performance is estimated by a de
coder for neural markers (red) from brain signals. Its output informs a con
troller, which decides on the ongoing stimulation intensity. Using the neural 
marker information, the controller does not require any active polling of motor 
performance—this is done during calibration only (in yellow). 
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and non-motor processes which can be affected by PD. An expanded 
motor and non-motor test battery (possibly adapted to the typical ac
tivities of a patient) could provide a remedy. 

Second, EEG is an impracticable recording modality for a pro
spective chronic adaptive system. We can only speculate, if invasive 
recordings techniques such as electrocorticography signals could pro
vide comparable or better information to drive a controller. 

Third, we observed a high NM variability even within subjects. This 
points at the necessity of a framework that allows for permanent up
dates of NMs to cope with other causes of non-stationarity. 

6. Conclusion 

The use of supervised machine learning methods in combination 
with a fast hand motor test reveals patient-specific bandpower NMs 
hidden in noisy EEG recordings. The components obtained are sensitive 
to DBS, or informative about the level of hand motor control, or com
bine both characteristics. Compared to state-of-the-art NMs derived 
from group-level studies, these data-driven NMs are more informative 
in the sense that motor performance can be decoded with higher ac
curacy. Thus, they provide a preferable surrogate of the patient’s 
(motor) state—even on short time scales—and should be considered for 
the design of individualized adaptive DBS systems. For chronically 
implanted systems, however, it needs to be explored if this information 
can also be accessed using, for example, electrocorticography signals, as 
implanted electrodes are preferred for reasons of usability, compared to 
EEG signals. With our contribution, we ultimately seek to contribute to 
a roadmap towards an individualized data-driven adaptive system 
based on cortical information that goes beyond the exclusive use of LFP 
signals from basal ganglia. 
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Appendix A. Characterization of stimulation artifacts 

In this appendix, we discuss the spatio-spectral characteristics of DBS-induced artifacts upon EEG signals. The left side of Fig. 11 shows a 
stereotypical power spectral density of LFP signals recorded directly from the STN during DBS-on, while the average spectral signature observed in 
the EEG domain are depicted on the right side. Stimulation artifacts are clearly visible at the stimulation frequency of 130 Hz and at its harmonic of 
260 Hz. Furthermore, only in the LFP signals, weaker sub-harmonics are observable at multiples of 43.3 Hz (at one third of the stimulation fre
quency). Please note, that the frequency band considered in our EEG analysis for tasks T2 and T3 (marked by the magenta frequency interval) is 
located well below the bands contaminated by stimulation artifacts. 

Fig. 11. Left: Average power spectral density of stimulation artifacts computed from LFPs of the STN for a representative session ( +S1
2). Right: Corresponding average 

of the stimulation artifacts induced on the EEG channels. 
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Furthermore, the left side of Fig. 12 displays the topological characteristics of the stimulation artifacts in seven patients. The patterns were 
obtained using the CSP algorithm on the [128 132] Hz band, and with the labels DBS-on versus DBS-off to maximize the contrast between these two 
conditions. The time segments used for this CSP analysis were extracted from the same copy-draw test trials utilized for solving tasks T2 and T3. 

It can be observed that the spatial patterns induced by the stimulation artifacts are highly individualized, although sharing strong front-central 
activations in most of the sessions. This topological characterization of the DBS-induced effects allows a qualitative assessment of patterns obtained 
in tasks T2 and T3, and helps to discard any components that might be overfitted to the stimulation artifacts shown here. This supports the 
interpretation of the remaining patterns shown for tasks T2 and T3 as of likely neural origin, see Fig. 7. It is important to mention that the position of 
the stimulation electrodes and the EEG electrodes is fixed. Consequently, the topological characteristics of the stimulation artifacts are the same for 
all stimulation harmonics and sub-harmonics. 

Finally, the right side of Fig. 12 shows the power spectral densities of the aforementioned CSP components of the EEG under DBS-on and DBS-off 
conditions. The contrast between DBS conditions shows that the stimulation does not introduce considerable distortions in the lower frequency bands 
analyzed, with the only exception of session S c

6 . Here an increased power spectral density in bands above 10 Hz can be clearly observed upon 
stimulation. However it is important to point out that the majority of predictive components for S c

6 where extracted from frequency bands below 
10 Hz. Additional evidence to reinforces the interpretation of NMs as of neural origin is that many of the predictive components actually show a 
power decrease in narrow frequency bands under DBS-on: If these predictive components stemmed from a stimulation artifact, one would expect a 
power increase instead.  
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