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ction on survival have captured the attention of researchers
ry Theory (LHT) was formulated. Adults of long-lived
ease survival by reducing their breeding effort or even skip-
on. In this study, we aimed to evaluate the costs of current

survival and whether skipping reproduction increases
in a long-lived seabird. We used capture-mark-recapture
unters) from two populations of Bulwer’s petrel (Bulweria
ing in the Azores and Canary Islands, North Atlantic
multievent model with two different breeding statuses
non-breeders), we calculated probabilities of survival and

etween breeding statuses, evaluating potential differences
Females had lower survival probabilities than males, inde-
ir breeding status. When considering breeding status,
es had lower survival probabilities than non-breeding
ting costs of reproduction on survival. Breeding males had
probabilities than non-breeding males, suggesting that
ur costs of reproduction on survival and that only the high-
es have access to breeding. The highest and the lowest
skipping reproduction were found in breeding males from
in breeding males from the Canary Islands, respectively.
lues were observed in the females from both. This result is
o differences in the external factors affecting both popu-
lly predation pressure and competition. The existence of
s of reproduction on survival in several populations of this
es may have important implications for species population

ry (LHT) postulates that individuals need to carefully trade-
urvival, growth and reproduction to maximize lifetime repro-
–3]. As a result, greater investment in one of these traits may
investment in others. Under different environmental con-
opulations or even groups of individuals within the same
as a given sex, may invest in life-history traits differently,
different life-history trade-offs [4].

eproduction trades off with survivorship by reducing the allo-
es for growth or self-maintenance and, depending on the
ding, rearing and caring of offspring have important
Published by the Royal Society. All rights reserved.



consequences for the physical state of progenitors [5]. In
addition, reproduction reduces the survivorship of individ-
uals by increasing their vulnerability and predation risk
(e.g. when building or attending nests, or when carrying
embryos or eggs [6–8]). In turn, predation can modify indi-
vidual traits such as reproduction in order to reduce
predation risk (e.g. reducing the number of offspring when
predation risk is high [9,10]). Other aspects of social inter-
actions between populations and individuals, such as
competition, can also alter reproduction (e.g. via competition
for food, nesting places or mates [11]) or even increase direct
mortality [12]. All these costs may differ between sexes since,
for example, females typically take on extra energetic costs
with parturition or egg-laying, which may compromise
their own body condition [13]; males are most affected by
intra- and interspecific competition for nest sites than females
[14,15].

According to the LHT, the trade-off between reproduction
and survival differs between short- and long-lived species. To
maximize lifetime reproductive success, short-lived species
show higher fecundity and tend to invest in current repro-
ductive events to a greater extent than long-lived species,
even when this effort may compromise individual survival
and future breeding attempts [1,16]. Contrarily, long-lived
species have low fecundity, deferred maturity and high
adult survival rates [17–19]. Furthermore, progenitors of
long-lived species can reduce their reproductive investment
and even skip the current breeding attempt, favouring self-
maintenance and survival until the next possible breeding
attempt (a phenomenon known as reproductive skipping be-
haviour, intermittent breeding or sabbatical years [20,21]).
However, the extent to which the trade-off between survival
and reproduction differs between sexes in long-lived species,
which experience very different costs associated with
reproduction, has been little studied [22–24].

In this study, we analysed sex-specific costs of reproduc-
tion on survival in a long-lived species, the Bulwer’s petrel
(Bulweria bulwerii), at two breeding colonies from two differ-
ent populations in the Atlantic Ocean. First, as reproduction
may reduce the survivorship of individuals [17], we expected
lower survival probabilities in breeders than in non-breeders.
Second, a priori, we did not expect sex-specific costs of repro-
duction, since in Procellariiformes, females and males share
incubation and chick-rearing duties [25]. Females certainly
incur the costs of egg production and laying, but this is
believed to be counterbalanced by a higher parental invest-
ment of males through longer periods of colony attendance
during the pre-laying period, longer incubation shifts and/
or higher chick provisioning rates [26–28]. Third, in the
event of sex-specific costs of reproduction on survival, we
would expect the sex with the highest survival to show the
highest probability of skipping reproduction, since (i) sabba-
tical years are considered to increase adult survival [29] and
(ii) sex-specific survival could imply a limitation in the avail-
ability of potential mates [30,31]. Finally, since the predator
density and competition for nest sites differs between our
two colonies [32,33], we expected to find different effects on
the trade-off between survival and reproduction between
both. In the colony with higher competition pressure, we
expected a lower survival rate for males due to direct mor-
tality from the competition, since males tend to defend
their nest more than females [34]; in the colony with higher
predation pressure, we expected a high incidence of skipping

behaviour for both sexes as a strategy to reduce predation
risk until the next possible breeding attempt.

2. Material and methods
(a) Species and study colonies
Bulwer’s petrel is a small (ca. 95 g) Procellariiforme whose maxi-
mum recorded longevity is 23 years [35]. In the Atlantic Ocean, it
breeds on small islets and islands throughout all Macaronesian
archipelagos [36]. Like all Procellariiform species, it is socially
monogamous and lays a single egg per breeding attempt, and
incubation and chick-rearing duties are shared by both sexes [25].

Fieldwork was conducted at two different North Atlantic
colonies situated ca. 1370 km apart, namely on Vila Islet (here-
after Vila, Azores Islands; 36°550 N, 25°100 W; ca. 50 breeding
pairs; J. Bried unpublished data; [37]), where interspecific compe-
tition for nesting places with Cory’s shearwaters (Calonectris
borealis) is the main cause of Bulwer’s petrel mortality [12,33],
and on Montaña Clara Islet (hereafter M.Clara, Canary Islands;
29°180 N, 13°320 W; less than 100 breeding pairs [38]), where
the main cause of Bulwer’s petrel mortality is presumably preda-
tion by Eleonora’s falcon (Falco eleonorae), which breeds on the
islet at high densities (77.7 nests km−2 [32,38]).

(b) Capture-mark-recapture sampling strategy
At both colonies, we captured birds in their burrows. Each indi-
vidual was ringed with a unique stainless-steel ring at its first
capture, with every subsequent recapture registered. The dataset
considered 1,450 encounters from the two study colonies: Vila
(n = 261 adults, data from 2007 to 2012 and 2016) and M.Clara
(n = 416, 2010–2018). The reproductive performance of the indi-
viduals was recorded each year during the entire sampling
period on Vila, and for 2015–2018 on M.Clara. Forty-five females
and 46 males on Vila (17.2 and 17.6% of the total number of
adults from Vila, respectively), and 24 females and 46 males on
M.Clara (5.8 and 11.1%, respectively) were molecularly sexed fol-
lowing Fridolfsson & Ellegren (1999) [39]. The sex remained
unknown for the other individuals. Differences in the sex ratios
of sexed individuals are due to different sampling strategies
and fieldwork schedules on the two Islets. Capture-mark-recap-
ture (CMR) data are accessible through a public repository [40].
Total numbers of individuals captured at each colony per breed-
ing status, sex and year (and proportion of each combination of
breeding status and sex, per year), and M-array summaries by
colony and sex are shown in the electronic supplementary
material, S1.

(c) Capture-mark-recapture models and statistical
analyses

We first evaluated whether the general model for single-state
data with only time-dependent parameters (Cormack–Jolly–
Seber [CJS] model) was an acceptable starting point for our data-
set. To do so, we carried out standard Goodness-Of-Fit (GOF)
tests using U-CARE 2.3.4 [41].

Second, to construct our model, we defined five states: breed-
ers and non-breeders, both by sex, and dead birds. After running
preliminary models (not shown), we considered that the unsexed
individuals were a mixture of 50% females and 50% males when
modelling Initial States (IS) probabilities. We modelled survival
(Ф, probability that an individual alive at Year t survives until
Year t + 1) as either constant, conditioned on colony, sex, breed-
ing status (breeders versus non-breeders) or on the breeding
status by sex. In addition, we modelled the probability of Tran-
sitions between Breeding Statuses (TBS), since we were
interested in the proportion of breeding adults that became
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non-breeders (i.e. that performed reproductive skipping behav-
iour). We also checked if differences in TBS occurred between
colonies.

Regarding the detection process, we considered the alternative
events of being or not being detected with capture probability
(p, probability that a Bulwer’s petrel alive and present at the
breeding colony at Year t is captured during Year t). We started
modelling capture probabilities depending on colony and time
to control for the sampling effort and set the years with missing
data for each colony. For those individuals detected, we defined
six possible events related to their reproductive performance/
status and we constructed a multievent model with uncertainty
to define how events relate to each of the five states [42]. For
more details about the model definition see the electronic sup-
plementary material, S2.

CMR models were run using E-SURGE 2.1.4 [43], and model
selection was based on the Akaike Information Criterion cor-
rected for overdispersion and small sample sizes (QAICc [44]).
The model with the lowest QAICc had the best compromise
between bias and variance [45]. In addition, Akaike weights
were calculated as an index of the relative plausibility of each
model [46]. Following Burnham & Anderson [44], and once we
had selected the best model for IS, Ф, TBS and p (table 1 section
A-D), we explored neighbouring models of interest to re-evaluate
early dropped effects (table 1 section E).

3. Results
The overall GOF test for the CJS model was not significant,
making it an acceptable point of reference for further
models (see the electronic supplementary material, S3).

According to the best-supported models (models 9 and
10, table 1), survival probabilities differed for each combi-
nation of breeding status and sex, but not between colonies;
capture probabilities varied among colonies, years and
between breeding statuses. ΔQAICc of these two models
did not allow ruling out either of them. The main difference
between models 9 and 10 was in TBS, identical or different
between colonies, respectively. Model 10 made more sense
from a biological point of view due to the differences between
the two islets in habitat availability for Bulwer’s petrel and

breeders

0

Figure 1. (a) Adult survival probabilities (± 95% CI) of breeding and non-bre
(b) Photo credit: Raül Ramos.
RSBL20200804—10/3/21—18:07–Copy Edited by: Not Mentioned
predation pressure (both lower on Vila than on M.Clara; see
Discussion). Model 10 considered that breeding females
had lower survival probabilities than non-breeding females
(mean ± s.e.: 0.64 ± 0.04 and 0.73 ± 0.07, respectively),
whereas breeding males had higher survival probabilities
than non-breeding males (0.93 ± 0.04 and 0.80 ± 0.04, respect-
ively; figure 1). Thus, breeding females had the lowest
survival rate while breeding males had the highest survival
rate (figure 1). Concerning TBS, breeding individuals were
more likely to breed again the next year than to take a sabba-
tical year. The probability of skipping reproduction the next
year was highest in the breeding males from Vila and
lowest in the breeding males from M.Clara (figure 2; see elec-
tronic supplementary material, S4, for more details). Despite
differences in TBS and in predation pressures between Vila
and M.Clara, the model considering inter-colony differences
in survival was not a competitive model (model 11, table 1).

4. Discussion
Contrary to our expectations, survival probabilities varied in
an opposite manner between breeders and non-breeders
when considering sex, highlighting sex-biased costs of repro-
duction on survival. The lower survival rate observed in
breeding females compared to non-breeding females suggests
that the former incur costs of reproduction in terms of survi-
val. These costs may arise from egg production and laying,
which implies a higher energetic expense than for males.
They have been observed in many other species including
Procellariiformes [13,24]. The higher survival of breeding
males compared to non-breeding males suggests that high-
quality males are more likely to obtain mates, and less
affected by the trade-off between reproduction and survival
than low-quality males. Similar results were found in related
species, including the Monteiro’s storm petrel (Hydrobates
monteiroi), in which breeders (successful or failed, regardless
of sex) had higher survival probabilities than non-breeders
[47]. High-quality males may be older or more experienced,
since individual quality and breeding performance of males

non-breeders

ulwer’s petrels obtained from the best-supported model (model 10, table 1).
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