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Industrial contexts tend to be as much or more concerned about the probability of ignoring an effect when 

its influence on the response is relevant (type II error) than about the probability of considering an effect 

to be active when in fact it is not (type I error). Here, we present a methodology for taking into account 

both types of error by fixing an effect value that is considered large enough to control the probability of 

it going unnoticed. In addition, we propose a plot to visualize the results obtained.  
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1. Introduction 

When carrying out an experimental plan in an industrial environment, if the person in charge of the 

process is asked which of the following errors they would rather commit – 1) considering that a factor 

influences the response when in fact it does not, or 2) ignoring the influence of a factor that actually has 

an effect – they will generally choose the first. While it is indeed true that arriving at the erroneous 

conclusion that factor 𝐴 affects the response – when in fact it does not – can lead to controlling 𝐴 

unnecessarily and even to make an unnecessary investment, the quality of the final product will 

nevertheless not be affected. It is even likely that with the passage of time the experience reveals the 

error. On the other hand, failure to detect that 𝐵 affects a response can cause multiple problems. For 

example, it may lead to an increase in the variability of the response due to a lack of control over 𝐵; or 

additional costs may be incurred when trying to optimize the process while ignoring the influence of 𝐵. 

What is worse, it will be very difficult to detect that 𝐵 has any relevant effect without conducting a new 

study.  

However, when analyzing which effects should be considered active, attention is usually given only to the 

probability of committing the first type of error, which is generally referred to as type I error and is usually 

set at 5%. Meanwhile the probability of the second – the so-called type II error – is ignored and often 

turns out to be much greater than what could be considered reasonable.  
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Undoubtedly, this way of proceeding originates in the usual practices of science, where experimental 

design began and developed as a methodology. For a scientist, saying that 𝐴 affects the response when 

in fact it does not is a clear error, as it makes a false contribution to scientific knowledge. However, 

overlooking that factor 𝐵 indeed does have an influence is not considered a serious error and will probably 

be detected in future investigations. In industrial environments, we continue reasoning in the same way 

– even though, as we have mentioned, the priorities of industry and science are different.  

De León et al.1 make clear the importance of considering the type II error in the analysis of the significance 

of the effects by showing that this probability of error is usually greater than the experimenter suspects. 

In this article we propose a simple methodology to take into account this type II error and to graphically 

show the results of the analysis. 

The following section presents two examples taken from well-known experimental design books, in which 

the usual methods for analyzing the significance of the effects fail to consider factors whose influence is 

borderline. Then, we present a methodology to take into account the probability that an effect with 

relevant influence on the response goes unnoticed. Next, the methodology is illustrated by applying it to 

the examples described at the beginning and finally we explain how to represent the obtained results in 

a clear way so that the most appropriate decisions can be taken.  

2. Situations with factors of borderline influence. Examples 

Based on data published by Prat and Tort-Martorell2, Box et al.3 present a 23 design carried out in a pet 

food factory (p. 194). Several responses are analyzed, but we consider only the amount of product 

obtained (yield). The factors considered are: 

 

Factors 
Levels 

– + 
𝐴: Conditioning temperature 80% of max. Max 

𝐵: Flow 80% of max. Max 

𝐶: Compression zone 2 2.5 

  

Table 1 shows the design matrix together with the results obtained (left) and the values of the effects 

(right).  
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Table 1: Design matrix and effects obtained in the example of Box et al. (2005) 

 

 

 

 

 

 

 

The most usual way to estimate the standard deviation of the effects is through Lenth’s Pseudo Standard 

Error (PSE)4. It is based on the fact that if 𝑋~N(0, σ2), the median of |𝑋| equals 0.6745σ and therefore 

1.5 · median|𝑋| = 1.01σ ≅  σ. Assuming that 𝑒𝑖  (𝑖 = 1, … , 𝑛) are the values of the effects of interest 

and that their estimators 𝑒̂𝑖 are distributed according to a N(𝑒𝑖 , σ𝑒
2), Lenth defines  𝑠0 = 1.5 · median|𝑒̂i| 

and calculates a new median by excluding the estimated effects with |𝑒̂𝑖| > 2.5𝑠0. In doing so, he expects 

to exclude the effects with 𝑒 > 0 and use the others to calculate:  

𝑃𝑆𝐸 = 1.5 ∙ median
|𝑒̂𝑖|<2.5𝑠0

|𝑒̂𝑖| 

An effect is considered significant if its estimator satisfies |𝑒̂| > 𝑡1−𝛼 2⁄ ,,𝜈 · 𝑃𝑆𝐸, with 𝛼 being the level of 

significance and 𝜈 the degrees of freedom in the 𝑡 distribution. In his original article, Lenth proposes using 

𝜈 = 𝑛/3, with 𝑛 being the number of effects considered. Authors such as Loughin5, Ye and Hamada6, and 

Fontdecaba et al.7 have shown that the t-values proposed by Lenth lead to probabilities of type I error (𝛼) 

that are considerably lower than the intended value, with the unwanted result of a higher probability of 

type II error. To achieve a significance level of 𝛼 = 0.05, we will use the values 2.297 and 2.156 proposed 

by Ye and Hamada for designs with 8 and 16 runs, respectively, and from now on we will use 𝑘 to designate 

the 𝑃𝑆𝐸 multipliers to avoid the impression that they always come from a t-Student distribution. 

In this case, 𝑃𝑆𝐸 = 8.25 and effects satisfying |𝑒| > 18.95 should be considered significant. Therefore, 

only the main effect of factor 𝐶 (= 20.5) appears to be significant, although taking a look at Figure 1 

generates doubt that we should rule out the possible influence of factor 𝐵.  

 

 

 

  Effects 

𝐴: 3.5 

𝑩: 13.0 

𝑪: -20.5  

𝐴𝐵: -5.5 

𝐴𝐶: 1.0 

𝐵𝐶: -3.5 

𝐴𝐵𝐶: -6.0 

 

Factors 
𝑦 

 𝐴  𝐵  𝐶 

-1 -1 -1 83 

 1 -1 -1 85 

-1  1 -1 99 

 1  1 -1 102 

-1 -1  1 59 

 1 -1  1 75 

-1  1  1 80 

 1  1  1 73 
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 Figure 1: NPP (left) and Pareto chart (right) representations of the effects in the example by Box et al. (2005) 

 

Regarding designs with 16 runs, Wu and Hamada8 present a 24 design (p. 155) intended to analyze which 

variables affect the thickness of the epitaxial layer on polished silicon wafers. The target value is 14.5 ± 

0.5 μm. This example studies the influence of factors on the mean and on the variability of the response, 

although our focus here is only on the influence on the mean.  

 

 Level 

 – + 

𝐴:  Deposition time low high 

𝐵:  Deposition temperature (°C) 1210 1220 

𝐶:  Nozzle position 2 6 

𝐷:  Susceptor-rotation method continuous oscillating 

  

On the left side of Table 2 is the design matrix together with the responses obtained. On the right we have 

the values of the effects.  
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Table 2: Design matrix and effects obtained in the example of Wu and Hamada (2009) 

 

 

 

 

 

 

 

 
 

 

  
In this case, the value of 𝑃𝑆𝐸 is 0.08625. So we should consider significant effects to be those for 

which  |𝑒| >  0.1860, that is, 𝐴 and 𝐴𝐵 (Figure 2). The main effect of factor 𝐶 appears to be non-

significant but can be considered a borderline case. Indeed, if in a first approximation we calculate a 

confidence interval of 95% for the true value of 𝐶 (-0.013, 0.358), we will observe that – even though it 

includes zero – it reaches 0.35, so it is perfectly reasonable to consider that it can take values like 0.20 or 

0.25. Given that, as said, the target value is 14.5 ± 0.5 μm, it does  not seem prudent to ignore effects that 

represent 20 or 25% of the tolerance interval.  

 

 

  

  

  

  

 

 

Figure 2: NPP (left) and Pareto chart (right) representations of the effects of the Wu and Hamada example8 

  Effects 

𝑨: -0.4900 

𝐵: -0.0775 

𝐶: 0.1725  

𝐷: -0.0775 

𝑨𝑩: 0.3450 

𝐴𝐶: 0.0300 

𝐴𝐷: 0.0500 

𝐵𝐶: 0.0575 

𝐵𝐷: -0.0925 

𝐶𝐷: 0.0075 

𝐴𝐵𝐶: -0.1100 

𝐴𝐵𝐷: 0.0300 

𝐴𝐶𝐷: -0.0250 

𝐵𝐶𝐷: 0.0975 

𝐴𝐵𝐶𝐷: -0.0200 

 

Factors 
𝑦 

 𝐴  𝐵  𝐶  𝐷 

-1 -1 -1 -1 14.59 
 1 -1 -1 -1 13.59 
-1  1 -1 -1 14.24 
 1  1 -1 -1 14.05 
-1 -1  1 -1 14.65 
 1 -1  1 -1 13.94 
-1  1  1 -1 14.40 
 1  1  1 -1 14.14 
-1 -1 -1  1 14.67 
 1 -1 -1  1 13.72 
-1  1 -1  1 13.84 
 1  1 -1  1 13.90 
-1 -1  1  1 14.56 
 1 -1  1  1 13.88 
-1  1  1  1  14.30 
 1  1  1  1 14.11 
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3. Analyzing the effects while taking type II error into account 

Taking into account the type II error is especially important in two situations: when a first analysis shows 

effects whose significance is in doubt because they are close to the critical value, and when there are 

effects that, in spite of being non-significant, have a value that is considered too large to be ignored. In 

these cases, we propose the following procedure: 

  
1. Set a value such that if the effect exceeds it, there will be a low probability of ignoring it.  

  
We believe that, in industrial contexts, identifying this value is a relatively simple exercise, which is 

always worth doing. 

Following De León et al.1, we will call this value 𝑀𝐸𝑆𝐼 (Minimum Effect Size of Interest). The probability 

that it goes unnoticed can be decided in each case; but in the same way that 𝛼 is generally set at 0.05, 

we propose setting the value of this probability at 𝛽 = 0.10, the most usual one.  

  
2. Estimate the standard deviation of the effects.  

  
Once the effects that can be considered significant have been identified, their standard deviation can 

be estimated in different ways: 

a) Using the same value of the PSE already used to analyze the significance of the effects. The main 

advantage of using this estimator is that it is not necessary to calculate anything new. In addition, 

it seems more consistent to use the same estimator for 𝜎𝑒 when considering both type I and type 

II errors. The problem with this approach is that information about which effects are significant 

are not taken into account. 

  

b) Recalculating the PSE only based on effects that are not significant. This method takes advantage 

of all the information available, and is coherent in the sense that estimates 𝜎𝑒 by the same 

procedure for both types of errors. Unfortunately, this option has the disadvantage that the value 

of 𝑘 --that multiplied by the PSE will provide intervals of a given confidence-- is unknown and does 

not have an analytical expression. In what follows, by means of a simple simulation, we show this 

fact for a 8 run design. 

We have generated 7 random numbers (for the 7 effects) from a 𝑁(0,1) distribution. Then, we 

calculate the 𝑃𝑆𝐸 and identify those that appear to be significant, that is, they fall outside the 

range 0 ± 𝑘 · 𝑃𝑆𝐸. This operation is repeated 10,000 times in increments of 0.01 for each value 

of 𝑘 between 0 and 3.  
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Figure 3 represents the proportion of significant effects depending on 𝑘. For example, for 𝑘 = 

2.30, 10000 samples of 7 observations each have been generated. In these samples, a total of 349 

effects would be considered significant, which represents 0.049857 of the total (349/7000), this 

being the value represented in the graph. The values obtained in our simulation coincide with 

those reported in the article by Ye and Hamada6.  

 

Figure 3: Ratio of non-significant effects depending on the k-value used 

  
 

The sudden drop in the ratio of significant effects when 𝑘 = 2/3 is notable, and it results from the 

method of calculating the 𝑃𝑆𝐸. We have seen that 𝑠0 = 1.5 · Me|𝑒̂𝑖| is calculated first, and then 

the median is recalculated but excluding the values at which  |𝑒𝑖| > 2.5𝑠0. If we do not exclude 

any value, which happens frequently, we have 𝑃𝑆𝐸 = 1.5 · Me|𝑒̂𝑖|. If 𝑘 = 2/3, then significant 

effects will be those that have an absolute value greater than  2/3 · 𝑃𝑆𝐸, that is greater than 

Me|𝑒̂𝑖|. Therefore, the median effect lies just outside the border of the interval and is not 

considered significant for values of 𝑘 ≥ 2/3 while it lies just inside for values of 𝑘 < 2/3. In designs 

with 16 runs, the problem is analogous. As the number of runs increases, the magnitude of the 

jump decreases because the effect that is located on the median represents a smaller percentage 

of the total effects.  

Figure 3 also includes the curve obtained using a 𝑡-Student value with 𝜈 = 2.33 df (= 7/3), as 

proposed by Lenth3, and also with 𝜈 = 7, which fits better in the tails – although not satisfactorily.  
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As seen, there is not an analytical expression that allows to easily determine the value of 𝑘 that 

should multiply the 𝑃𝑆𝐸. This value can be obtained by simulation. In Wu and Hamada8, one will 

find values for 𝑚 ≥ 7.  For our purposes, this would imply generating by simulation a table of 𝑘-

values for different number of effects. To the best of our knowledge, this has not been done and 

we believe that a better option is to avoid this complication using method c) explained below. 

c) Estimating the variance of the effects from the values of those that are considered non-significant 

after applying the Lenth method. This method makes vary easy estimating 𝜎𝑒 and has the 

important additional advantage of allowing a simple analytical way to obtain 𝑘 because, as will be 

seen bellow in the 3rd step of the procedure,  it follows a non-central 𝑡-Student  

Estimating 𝜎𝑒 from non-significant effects is a common procedure that, in addition,  Xampeny et 

al.9 show by simulation that  –in general– when there are three or more effects that can be 

considered null the estimate obtained is better than the one provided by Lenth method (no matter 

which 𝑘 is used). Notice that according to the Effect Sparsity Principle in 16 runs designs there will 

very frequently be three or more null effects and this will also quite often be the case in 8 run 

experiments.  

  
3. Determine the Critical Value for Relevance (𝐶𝑉𝑅). Represent it graphically 

  
In what follows we call, as usual, critical value (𝐶𝑉) the one that separates the effects that are 

considered significant from those that are not significant, and that is obtained by fixing a maximum 

value to the probability of committing a type I error. We propose to use, in combination with this 

value, a new one based on regulating through the 𝑀𝐸𝑆𝐼 the risk of committing a type II error, 

we call it the Critical Value for Relevance (𝐶𝑅𝑉).  

 

The 𝐶𝑉𝑅 is calculated as follows: we have 𝑒̂/𝑠𝑒  ~ 𝑡𝜈,,𝑑, with 𝑑 = 𝑒/𝑠𝑒 being an estimate of the the 

noncentrality parameter and 𝜈 the degrees of freedom of the 𝑡-Student distribution (notice that there 

will be as many degrees of freedom as values used, since in this case the mean is known). So 𝑒̂ ~ 𝑡𝜈,,𝑑 ∙

𝑠𝑒   and if  𝑒 = 𝑀𝐸𝑆𝐼, we have 𝑑 = 𝑀𝐸𝑆𝐼/𝑠𝑒  and the 𝐶𝑉𝑅 will be equal to 𝑡𝜈,,𝑑,(𝛽) · 𝑠𝑒,  being  𝑡𝜈,,𝑑,,(𝛽) 

the 𝛽-quantile of 𝑡𝜈,,𝑑 . 

 

4. Analysis of the examples presented 

In the 23 design example3, excluding the significant effect 𝐶 = –20.5 allows us to estimate the standard 

deviation of the effects using the other 6 that we assume to have an average 𝜇 = 0, thus 𝑠𝑒 = 6.58  with 
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6 degrees of freedom. Let us suppose that a 20 unit change in yield is a relevant change (𝑀𝐸𝑆𝐼 = 20) and, 

as we have indicated, we set  𝛽 = 0.1 as the probability that a change of this magnitude will go unnoticed, 

that is, it will be considered non-significant. Then we have 𝑑 =
𝑒

𝑠𝑒
= 3.04  and 𝑡 𝜈=6,,𝑑=3.04,,(0.1) = 1.69 

(Figure 4). The critical value at which the effects should be considered relevant is:  𝛽-𝐶𝑉 = 𝑡0.10,,𝜈,,𝑑 · 𝑠𝑒 =

11.12. Therefore, the possible influence of factor 𝐵 (= 13.0) should also be taken into account.  

  

Figure 4: Noncentral t distribution for determining the critical value with 𝑀𝐸𝑆𝐼 = 20 and 𝑠𝑒 = 6.58 

 

As for the design with 16 runs8, excluding the effects that appear significant in the first analysis allows us 

to obtain 𝑠𝑒 = 0.0787 with 𝜈 = 13 df. If we consider that an influence of 0.25 μm on the thickness 

(equivalent to 25% of the tolerance interval) should not go unnoticed and, further, set the probability of 

this happening at 𝛽 = 0.1 then we have 𝑑 = 3.1766 and 𝑡𝜈=13,,𝑑=3.1766,.(0.1) = 1.85 (Figure 5). Therefore, 

the critical value turns out to be  𝑡𝜈,,𝑑,,(0.1) · 𝑠𝑒 = 0.1455. Then, we should also consider as relevant the 

main effect of factor 𝐶 (= 0.1725).  
  
  

  

Figure 5: Noncentral t distribution for determining the critical value with 𝑀𝐸𝑆𝐼 = 0.25 and 𝑠𝑒 = 0.0787 

  
Another approach could be to calculate the magnitude of an effect that has a 10% probability of going 

unnoticed, doing so by using the critical value obtained with 𝛼 = 0.05. In the first example, the critical 
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value that follows from using 𝛼 = 0.05 is 𝛼-𝐶𝑉 = 18.95, and this value leads to 𝑀𝐸𝑆𝐼 = 29.12. In the 

second example, we had 𝛼-𝐶𝑉 = 0.186, which corresponds to 𝑀𝐸𝑆𝐼 = 0.29. No experimenter would feel 

comfortable with either of these values. Table 3 (left) shows the probabilities (𝛽) of the value in the 

𝑀𝐸𝑆𝐼 column going unnoticed when it is decided based only on a type I error probability of 𝛼 = 0.05, as 

is usually done. On the right side, we have the probability of considering an inert effect to be significant 

when we want a probability of 𝛽 = 0.10 for the 𝑀𝐸𝑆𝐼 values considered.  

Table 3: Critical values when fixing 𝛼 = 0.05 or 𝛽 = 0.10 for the example of Wu and Hamada7 

𝛼 = 0.05   𝛽 = 0.10  
𝑀𝐸𝑆𝐼 Critical value Prob. 𝛽  𝑀𝐸𝑆𝐼 Critical value Prob. 𝛼 

0.15 0.17 0.58  0.15 0.05 0.54 

0.20 0.17 0.35  0.20 0.10 0.23 

0.25 0.17 0.16  0.25 0.15 0,08 

0.30 0.17 0.06  0.30 0.19 0.03 

0.35 0.17 0.02  0.35 0.24 0.01 

  

5. Presentation of the results 

The critical values can be calculated easily with the help of a statistical software package that allows using 

the noncentral 𝑡-Student distribution. Here, we have used R. These values can be represented in a clear 

and visual way by including two vertical lines (one for each critical value) in the Pareto chart of the effects, 

rather than the usual practice of having only one line. The meaning of each line is clarified by including 

the conditions for which it was calculated.  

Figure 6 and Figure 7 represent the Pareto charts with the lines indicated for the examples that we have 

been analyzing. Effects beyond the upper critical value must be considered significant, and those that do 

not reach the lower value do not seem necessary to consider. Those found between the two could be 

considered borderline, and in each case the experimenter should decide on the most appropriate option.  
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Figure 6: Example of Box et al.2. Pareto chart with the lines corresponding to the critical values for each type of 

error  

  

Figure 7: Example of Wu and Hamada7. Pareto chart with the lines corresponding to the critical values for each 
type of error 

  
  
 
It can also happen that the effects to be considered are the same regardless of which critical value is 

considered. For example, in Box et al.3 (p. 199), an example is presented where the significant effects 

stand out very clearly over those that are not. It is a 24 design, and the results (in the standard order of 

the design matrix) are: 
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The effects are graphically represented in Figure 8. In this case, it is very clear that the effects to be 

considered must be A, D, B and BD. The estimator of 𝜎𝑒 calculated from the non-significant effects is 𝑠𝑒 = 

0.643 with 11 degrees of freedom. Then, considering  𝑀𝐸𝑆𝐼 = 3 we have 𝛿 = 4.67 and 

𝑡𝜈=11,,𝛿=4.67,,(0.1) = 3.188, for which the critical value is 𝑡𝜈,,𝛿,,(0.1) · 𝑠𝑒 = 2.05. Unlike the previous cases, 

the critical value calculated from the probability of committing a type II error is greater than that which 

corresponds to type I, which is equal to 1.62. In any case, as it could not be otherwise, if the results are 

very clear it  makes no difference whether we use one or the other criterion.  

 

 

Figure 8: NPP (left) and Pareto chart (right) representations of the effects in the example of 

Box et al.2, p. 199 

  

Conclusions 

In industrial contexts, ignoring the existence of effects with a relevant influence on the response is an 

error that can have important consequences. Nevertheless, the decision criterion that is commonly used 

ignores the probability of committing this type of error and, instead, focuses only on the avoidance of 

considering relevant effects that do not actually influence the response.  

Setting a Minimum Effect Size of Interest (𝑀𝐸𝑆𝐼) makes it possible to determine – in a simple way – a new 

critical value that also takes into account the probability of committing this type of error. By adding a new 

vertical line in the Pareto chart of the effects, together with the usual line based on a significance level of 

𝛼 = 0.05, we are able to clearly visualize the situation.  
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In addition to having the “didactic” value of not considering a clear boundary between relevant effects 

and those that are not, establishing a zone of borderline effects that must be assessed as to whether or 

not they should be considered relevant.  
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