
Open Research Online
The Open University’s repository of research publications
and other research outputs

Nurturing the acorn: helping a small software company
onto the CMM ladder
Conference or Workshop Item
How to cite:

Bowers, D.S. (2001). Nurturing the acorn: helping a small software company onto the CMM ladder. In:
Proceedings UKAIS (UK Academy for Information Systems) 2001, 18-20 Apr 2001, Portsmouth, UK.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

NURTURING THE ACORN:
HELPING A SMALL SOFTWARE

COMPANY ONTO THE CMM LADDER
DAVID S. BOWERS

Department of Computing, University of Surrey, Guildford, Surrey GU2 7XH

d.bowers@eim.surrey.ac.uk

+44 (0)1483 879635

fax: +44 (0)1483 8796051

Keywords:

CMM, Software Process Improvement

Stream:

Practice

Topic:

Project Management and Configuration Management?

ABSTRACT

We report on an interaction between a University and a small software
development company within the framework of a Teaching Company
Scheme. By exploiting the peculiar environment offered by a TCS, the
University was able to help the company introduce measures to
improve their software development process. Not only have these
measures moved the company from level 1 to level 2 of the Capability
Maturity Model; they are doubtless also responsible, at least in part, for
the company’s survival. The fundamental features of the environment
which supported this success are discussed, and it is suggested how the
approach might be applied elsewhere, either within or independently of
a funding framework such as TCS.

1. INTRODUCTION

The Capability Maturity Model (CMM) [1] has become well known as a means
of driving Software Process Improvement (SPI). Although derived initially in the
context of large-scale aerospace control software projects, it is equally relevant to a
wide range of software development environments [2]. Most successes reported in
the literature, however, describe the application of CMM in large organisations: see,
for example, [3], [4]. CMM is not a “quick fix”, but all the reports affirm that the
large improvements in software quality justify the cost[5].

In surveys of a wide range of organizations, even the smaller enterprises that
respond are hardly “small” in any absolute sense; in [6] it is noted that, “25% [of the
organizations] had fewer than 54 software engineers”. That same study noted
common criticisms of CMM, including that, “CMM-based SPI will be
counterproductive, will cause the organization to neglect important non-CMM issues,
and will cause the organization to become rigid and bureacratic, making it more
difficult to find creative solutions to technical problems.” A related criticism cited is
that, “CMM-based SPI causes organizations to become risk-averse.” The authors
note that, “there is some limited evidence that it may be more difficult to apply the
CMM … in small organizations”.

The last two points are particularly pertinent for VERY small software
companies. Such companies can be built on creative, innovative developments, which
are, by their very nature, high risk. Sometimes, the innovations are the “good ideas”
of an individual, on which the company has developed a niche market. The problem
for such companies can be not, how to progress up the CMM ladder, but rather, how
to get their foot onto the first rung without compromising the balance between
creativity and discipline[7].

We report in this paper a Teaching Company Scheme between the University
and one such (very) small enterprise. During the Scheme, the development section of
the company grew from, essentially, a single programmer with a couple of assistants
to a managed team of some 9 developers. This transformation depended heavily on
the introduction of a number of standard techniques corresponding to level 2 of the
CMM; without these techniques, the survival of the company – let alone its growth –
might have been rather uncertain.

As presented, our experiences constitute a single longitudinal case study which
revealed deficiencies in the software processes of the company [8], and suggested
appropriate intervention to meet the long-term goals of the company [9]. Participant
observation [10] was combined with consultancy to gain understanding of the
development environment [11]. Using an interpretivist approach, we have been able
both to draw specific conclusions concerning the need for, and methods for
introduction of, techniques to support the repeatability criteria of CMM, and also to
abstract some facets of the teaching company environment which may prove valuable
in other organisations. [12].

Thus, the most important message of this paper is that the framework of a
Teaching Company Scheme provides an excellent mechanism for software process
improvement. This approach could even be generalized to situations where grant
support is not available.

This project was first reported, somewhat superficially, in [13].

2. THE PROBLEM

Background

When the company approached the University, they were about to launch a
second major software product. Both products had been developed by a talented
programmer, their principal developer. There were two other developers in the
“team”, but both were assistants to the principal developer rather than independent
team members. Management of the development process was one of several
responsibilities of the Product Manager.

It was anticipated that the new product would satisfy an emerging niche market.
The range of facilities required of the product was large, and the company (or, rather,
the Directors) realised that the task was “far too large” for their principal developer
alone. Hence, the initial goals for the Teaching Company Scheme proposal were for
two major areas of the product to be developed by Teaching Company Associates
(TCAs).

The Teaching Company Scheme, as funded, was for two Associates, each of
whom was to investigate and develop, during their two-year appointments, distinct
components of the new product. A tacit requirement was for the development process
within the company to be improved, so that the Associates could, indeed, develop
their components independently of the principal developer. In reality, the most
significant deliverable from the Scheme was the paradigm shift required to allow the
transformation of the development section from a principal developer with assistants
to a coordinated development Team.

It is this paradigm shift, which was associated primarily with the first Associate,
which forms the focus of this paper.

The Starting Point

When the first Associate joined the company, the development process was
dominated by a perceived requirement to synchronise releases with two software
exhibitions, which occurred in the Spring and Autumn. The year was split into two
cycles, each comprising three months of innovation, followed by three months of
preparations for the next release. The latter of these phases was characterised by the
“individual efforts and heroics” attributed to immature (level 1) software
organizations [6]. The inclusion of features in successive releases tended to be
whimsical, rather than planned, and fluid right up until the release was actually
burned onto a CD. Testing was as thorough as possible, but not as disciplined as it
might have been. Further, the process, which depended critically on the principal
developer, was interrupt-driven, with fixing of bugs frequently taking priority over
development. Documentation was limited, and bug fixes could introduce further
bugs.

There seemed to be a complete lack of a formal change control process, and the
selection of which bugs were to be fixed (first) appeared to be determined primarily
by which customer shouted loudest.

The company, including the principal developer, was aware of the problems,
but, like so many in their position, could not see how to address them: they were just
too busy trying to keep their heads above water.

As a corollary, there was “no time” for the new Associate to be familiarised
systematically with the existing product. With little technical documentation, he was
left to explore the raw code, and to seek help – from the principal developer – when

needed, adding to the interruptions for the latter. The Associate was asked to enhance
the product, but his modifications tended to have unexpected side-effects. It was
always “quicker” for the principal developer to sort problems out himself, rather that
“waste” time explaining how it should be done.

The problems will be familiar to anyone who has observed the early growth of a
software team; many such problems are described in Fred Brooks’s classic [14]. The
existence of the problems is no reflection on anyone; they are almost inevitable.
Indeed, the very existence of “Level 1” in CMM implies that they are widespread.
However, for the company to grow – or even survive – it was essential that they
should be overcome.

CMM levels 1 and 2.

Of the five levels of the Capability Maturity Model, only the lowest two are
relevant to this study.

Level 1, the “Initial” level, of the Capability Maturity Model is described
thus[1]:

“The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined, and success depends on individual effort
and heroics.”

and level 2, the “Repeatable” level, as:

“Basic project management processes are established to track cost,
schedule and functionality. The necessary process discipline is in place to repeat
earlier successes on projects with similar applications.”

Each of the 5 CMM levels – except the first – is split into a number of “key
process areas” that indicate the focus required for a company to improve its software
process. For level 2, the key areas are:

Requirements management
Software project planning
Software project tracking and oversight
Software subcontractor management
Software quality assurance
Software configuration management

For an organization to claim to be at level 2 – almost by definition, the lowest
level of maturity in which even a small team can operate successfully – the goals
specified for each of these areas must be achieved.

The company, as described above, was clearly failing to meet any such criteria.
This does not mean that their products were necessarily bad, but, rather, that the
process by which they were developed could have been better. The aim of CMM is to
suggest how to improve the process, so that subsequent developments will be more
effective and require fewer “heroics” than currently. A consequent improvement in
quality should also be observed.

Applying a mechanism such as CMM is not zero-cost. In [15], it is noted that,
“the successful implementation of the CMM guidelines is often not accomplished
without significant organizational change”, and in [16] it is suggested that the
required investment will be forthcoming only if it is justified by the business goals of
the organization. In the case of our example company, survival would seem a fairly
dramatic business goal!

Further, CMM is a framework rather than a strict recipe. It is intended to
benefit the enterprise, rather than be yet another regulatory burden. It is suggested in
[2] that strict adherence to the levels is less important than attaining the benefits
which CMM can bring, using the components of CMM to address perceived
problems.

CMM is not the only framework for software engineering: ISO 9001 is a well-
known alternative. Both share a concern for quality and process management, but
they are not equivalent. The two models have been compared in studies such as [17].
In [18], it is noted that, “although an ISO-9001 compliant organization would not
necessarily satisfy all of the level 2 key process areas, it would satisfy most of the
level 2 goals and many of the level 3 goals.” Given that CMM has 5 levels in all, it
would seem that ISO-9001 may be a minimum, rather than ideal, framework, in
addition to suffering from a “compliance” philosophy rather than one focussed on
benefit.

It should be noted, incidentally, that the company had recently acquired ISO
9000 registration for its sales division, but had decided that the bureaucracy involved
in seeking the corresponding recognition for its development activities was likely to
outweigh any potential benefits.

3. THE APPROACH

A qualitative approach is appropriate where, as in this case, the primary concern
is with processes [10]. Furthermore, where there is a clear need to change the
organisational processes, Action Research is particularly relevant [19], and participant
observation may well be the most effective way to learn just how much needs to be
improved[10], and for developing the appropriate quality strategies [20]. Such an
approach inevitably introduces biases [12, 21], but such effects are more usefully
regarded as beneficial results of critical research [22]. These direct results are
validated by the extent to which they are accepted by the company involved [10].

Data presented in this paper were derived from a combination of formal reports
made by the Teaching Company Associate to the Company, direct observations by the
Author, and discussions between the Associate and the author.

Options and Constraints

To recap the problem, the company was totally dependent on one individual,
who had become interrupt-driven and, hence, less productive. Because bugs were
fixed “on the fly”, side-effects were introduced, and this led inevitably to significant
reworking. As the demands grew, it became less and less feasible to develop the team
which was clearly needed. The company was very much at level 1 of the CMM.
Although the problems had been recognised, the management were unable – because
of those very problems – to do much about them. Such problems are not restricted to
software processes; see, for example, [23]

In a situation such as this, there are basically three possible strategies:
• to impose a “proper” project management framework, and force everyone to

conform;
• to encourage evolution, or
• to persuade the proverbial leopard(s) within the company to change their

spots.

The first could well have resulted in everyone leaving. The last would have
been tantamount to throwing out both baby and bath-water, since the company
depended on the flair and independence of the principal developer, which might have
been destroyed were he to have been persuaded to operate in a more “conventional”
mode. The second strategy, to encourage evolution, is consistent with that proposed
for small companies by the authors of CMM [7], and was the only viable option.

There were also a number of constraints. Foremost amongst these were the
commercial pressures. The company was small, but growing rapidly. To maintain
this performance, it was imperative that external deadlines – the two software
exhibitions each year – be met. The company had to keep ahead of its competition, so
each release had to be innovative. Missing an exhibition might have destroyed the
company. However, by its very nature, software development at level 1 of the CMM
is inherently unpredictable, and makes forward planning extremely difficult.

A second set of constraints concerned personalities. One cannot simply tell a
successful innovator to do things differently. On the other hand, the prospective team
members have to feel satisfied with what they are doing, and not forever subordinate
to the principal developer. Further, they need to be persuaded to work as a team, even
though the principal developer might seem to “get away” with a less disciplined
approach.

Finally, everybody was far too close to the problem – indeed, totally embroiled
in it – to see how to deal with it.

The Teaching Company Scheme Recipe

Teaching Company Schemes (TCS) attract substantial government funding to
promote technology transfer between academia and industry. Within a scheme, one
or more recent graduates are employed on 2-year fixed-term contracts as Teaching
Company Associates (TCAs). During that time, they are employees of the academic
partner – usually a University – but they work in the company, following the
company’s agenda. They are supervised jointly by industrial and academic
supervisors, the latter acting also as a consultant for the project.

The Associate attends several relevant training courses. These address crucial
skills such as working in a team and project management; the skills gained in these
courses were invaluable for this project.

The Associate, being an employee of the University, is in a curious position.
He works in the company, and yet is, to some degree, insulated from it; in this
particular project, this facet of the scheme was probably crucial.

When a scheme is proposed, a project is identified for each Associate. In this
case, the project chosen – a significant addition to the company’s product – could be
achieved only if there were an effective development team; there was no intention to
repeat the “mistake” of having yet another product developed by one individual.

The final ingredient in the recipe is the role of the academic supervisor, which
can vary between different types of scheme. In this case, the role was that of an
external observer who was ready to ask awkward questions. A traditional
consultant’s role may not come easily to academics, but this particular role certainly
does!

How it worked

The Teaching Company Associate (TCA) was asked to develop a major new
facility for the Company’s recently launched product. He started, and did his best.
However, he very soon encountered problems.

First, he faced an extremely steep learning curve. Not only was the existing
product poorly documented – for the usual well-known reasons – but the Associate
was unfamiliar with the language in which the product had been developed. Despite
this, he was expected to produce something tangible within a few months.

When the TCA encountered difficulties, the principal developer could always
solve the problem. In fact, it was always quicker for the developer to do it himself.
The problem was that the developer was always too busy. At about this time, other
members of the development “team” were starting to leave, apparently because they
were experiencing similar problems.

It was at this point that the academic was able to contribute, not to the substance
of the project itself, but to the manner in which it was being pursued. All involved
“knew” that some basic project management techniques were needed, but everyone
was “too busy” to be bothered with them. Furthermore, external suggestions, made
directly by the academic, would probably not have been well received.

By helping the TCA to understand the basic causes of his problems, and then to
discover, for himself, the “standard” techniques which could be brought to bear, some
of these techniques could be introduced from within the team itself.

For example, one of the first problems encountered was tracing bug fixes – had
they been done, by whom, in which release, and so on. Once he had demonstrated
how much time was being wasted by bugs being investigated, and possibly fixed
several times, it was easy to introduce a single point of reporting with a bug trace
database.

A similar problem was coordination of effort. Everybody was always busy, but
it was not always clear with what. Some people had tasks piling up, whilst others
were waiting for colleagues to complete tasks, but with no idea of when completion
was due. A simple task allocation chart, shaded to show progress through tasks, was
readily introduced once the problem had been verbalised.

Similar approaches were taken to problems of poor documentation (leading to
attempts at module specs and even code reviews) and “feature creep”, whereby the
development team were under pressure to include the latest “bright ideas” into an
impending release, rather than consolidating on a set of agreed features; the latter
problem, once recognised, led to some rudimentary product planning.

Not all of the techniques the TCA suggested were adopted. Some techniques
failed – initially. Others were seen as a waste of time. However, what really mattered
was not that all the “correct” techniques had been applied, but, rather, that he was
initiating a culture change. And culture change is (very) difficult.

A Long-Term Relationship

A major strength of a Teaching Company Scheme is that the interaction takes
place over an extended period – typically two years. Unlike “standard” consultancy,
wherein a consultant appears, asks questions, pronounces and then disappears, this
was a long-term partnership. Further, the academic is not working full-time in the
company– he visits about once a week – so he is not drawn into the politics – or the
emotions – of the problems. In essence, the academic is providing a drip-feed of
objective external appraisal.

After several weeks of interaction, the TCA had changed his focus. What
became important was not that he develop the required new facility, but that the team
develop it – a clear example of “egoless programming”[24]. In order for the team to
be able to develop the new facility, it had to function as a team rather than as a set of
individuals. Hence, the mission for the TCA became the introduction of better
working practices – in fact, moving the company towards level 2 of CMM.

Furthermore, to introduce change to the team, the TCA needed to be part of the
team, but protected from being regarded as a troublemaker. Being a University
employee protected him, so that he had the confidence to be persistent.

Potential Pitfalls

This project could easily have gone horribly wrong. If just one “improvement”
championed by the TCA had disrupted development so that a release deadline was
missed, and the whole scheme would have been in jeopardy. Alternatively, the TCA
could have upset his colleagues – or they might just have got tired of being nagged.

The risk of any of these occurrences was minimised because the TCA was so
deeply involved himself in the production and maintenance process; indeed, he had
overcome the learning curve surprisingly quickly, so that he was a respected member
of the department. He was also very persuasive. This is probably the most significant
point: it was often by sheer force of personality that he was able to persuade his
colleagues at least to try different ways of working – a clear example of a participant
observer changing his environment [12].

It was always possible that some of the techniques introduced TCA might be
abandoned when he left the department; indeed, acceptance by the client provides the
primary validation of the approach [10]. Some have, indeed, been given a lower
priority. However, during the project, the company recognised the need to employ a
project manager, to build on the changes first introduce by the TCA.

In retrospect, despite the many opportunities for failure, nearly all seem to have
been avoided, at least thus far. What this needed was sensitivity, on the part of all
concerned, to what the TCA was attempting to achieve, and when that could – or
could not – be allowed to interfere with the development schedule.

4. THE OUTCOMES

Achievements

The company is still in business, and, indeed, the “acorn” has grown into a
healthy, medium-sized oak.

Several “standard” techniques have been introduced for managing the
development and maintenance of the company’s products. These address all the key
areas of CMM level 2, apart from subcontractor management, which was not directly
applicable. Moreover, the team did develop and deliver on time the required new
facility, retaining the company’s position as a market leader. During the period,
turnover increased by more than 50%, largely from sales of the new product.

By the end of the project, the development section of the company had grown
from a principal developer with a couple of “assistants” to a team of 10 developers
plus a manager; that growth has continued subsequently. The team is able now to
work in parallel not only on several features but also on features for more than one
release.

Version releases, although still not without drama, are no longer a last-minute
panic a few days before an exhibition. In part, this is due to the fact that the features
to be included are planned rather than whimsical, and also because the entire team –
since they are all familiar with the whole product – can assist with the integration and
testing stages of a release. With a more organised approach to releases, coupled with
basic quality assurance procedures, the incidence of “bugs” is (relatively) lower – and
there is also a procedure for tracking them.

Finally, the company is no longer losing developers. What is more, the
principal developer is still there, still innovating, and working with the team, rather
than independently of it.

5. CONCLUSIONS

Having seen that the company seems to have achieved (most of) CMM level 2,
we consider now what factors promoted success, and how that success might be
translated to other enterprises.

First, there was determined commitment from the company. Although they had
never articulated their real problem, it was clear that they knew what it was, and were
looking to the programme to address it. Furthermore, they accepted input from an
“unworldly” academic – but possibly because they knew that input was needed.

A second major factor was the willingness of the team to embrace change. Old
habits are always hard to break, and the change from individual to team work is
notoriously difficult. Nevertheless, the team did not just tolerate the TCA’s
suggestions; they actively followed them, even when the benefits were not
immediately obvious.

One of the most important factors was the character of the Associate himself.
The project would probably have had a totally different outcome had, say, an
experienced C++ programmer been appointed rather than someone who not only had
to face the steep learning curve but also both recognised that it should not have been
there and was prepared to do something about it. In his refocused role, the Associate
benefited from his stubborn determination and his ability to interact with all those
involved.

It is possible that the success of the project was due, in part, to the fact that
software process improvement was never stated explicitly as an objective – had it
been, those involved might well have tried too hard. Many companies have allegedly
“adequate” project management procedures that are breached more often than they are
observed.

Finally, the protracted drip-feed of observations from the academic was also
significant. Being both outside the environment of the company and also able to walk
away from it after each visit allows the academic to remain far more objective than
(s)he might were (s)he to be more closely involved with the project or the company.

There should be many opportunities for applying this approach in other
situations. The essential feature is for the introduction of a new team member – a
contractor, perhaps – coupled with long-term external consultancy. Whilst such
arrangements are supported admirably by Teaching Company Schemes, analogues,
such as contractors and consultants, might work equally effectively.

As always, however, the most important factors are for the relationship between
the company and the consultant (academic) to be sufficiently positive, and for the
right person to be appointed as the Associate. As in this case, personality and the
ability to interact with others can count for far more than technical ability alone.

6. REFERENCES

1. Paulk M, Curtis B, Chrissis M and Weber (1993), C, “The Capability Maturity Model”,
IEEE Software, 10(4), pp.18-27.

2. Bamberger J, (1997) “Essence of the Capability Maturity Model”, Computer, 30(6),
pp.112-114.

3. Arthur L, (1997) “Quantum Improvements in Software System Quality”, Communications
of the ACM, 40(6), pp.46-52.

4. Billings C, Clifton J, Kolkhorst B, Lee E and Wingert WB, (1994) “Journey to a Mature
Software Process”, IBM Systems Journal, 33(1), pp.46-61.

5. Fox C and Frakes W, (1997) “The Quality Approach: Is It Delivering?”, Communications
of the ACM, 40(6), pp.25-29.

6. Herbsleb J, Zubrow D, Goldenson D, Hayes W and Paulk M, (1997) “Software Quality
and the Capability Maturity Model”, Comm. ACM, 40(6), pp.30-40.

7. Paulk, M, (Oct 1998) “Using the Software CMM in Small Organizations”, Proc. 8th Int.
Conf. On Software Quality, Portland, Oregon, pp350-361,.

8. Darke, P, Shanks, G and Broadbent, M, (1998) “Successfully completing case study
research: combining rigour, relevance and pragmatism”, Info Systems Journal 8(4),
pp273-289.

9. Lee, A, (1999) “Rigor and Relevance in MIS research: beyond the approach of positivism
alone”, MIS Quarterly, 23(1), pp29-34.

10. Vinten, G, (1994) “Participant Observation: A model for organizational investigation?”,
Journal of Manament Psychology, 9(2), pp30-38.

11. Davenport, T and Markus, M, (1999) “Rigor vs. Relevance Revisited”, MIS Quarterly,
23(1), pp19-23.

12. Walsham, G, (1995) “Interpretive Case Studies in IS Research: Nature and Method”,
European Journal of Information Systems, 4(1), pp74-81.

13. Bowers D, (Nov. 1999) “From Prima Donna Coda to Harmonious Ensemble”, in
“Business Information Technology Management: generative futures”, Proc. 9th Annual
BIT Conference, Manchester.

14. Brooks F, (1975) “The Mythical Man-Month: Essays on Software Engineering”, Addison-
Wesley, Reading, Massachussetts, 195p.

15. McGuire E, (1996) “Factors affecting the quality of software project management: An
empirical study based on the Capability Maturity Model”, Software Quality Journal, 5(4),
pp305-317.

16. Reiblin S and Symons A, (1997) “SPI: ‘I can’t get no satisfaction’ – directing process
improvement to meet business needs”, Software Quality J., 6(2), pp.89-98.

17. Saiedian H and McClanahan L, (1997) “Frameworks for quality software process: SEI
capability maturity model vs. ISO 9000”, Software Quality J., 5(1), pp.1-23.

18. Paulk M, (1993) “Comparing ISO 9001 and the Capability Maturity Model for Software”,
Software Quality Journal, 2(4), pp.245-256.

19. Benbasat, I and Zmud, R, (1999) “Empirical Rsearch in Information Systems: the
Practice of Relevance”, MIS Quarterly, 23(1), pp3-16.

20. Boon, S and Ram, M, (1998) “Implementing Quality in a small firm: an action research
approach”, Personnel Review, 27(1), pp20-39

21. Yin, R, (1994) “Case Study Research – Design and Methods”, Sage, p.80.
22. Klein, H and Myers, M, (1999) “A set of principles for conducting and evaluating

interpretive field studies in Information Systems”, MIS Quarterly, 23(1), pp67-94.
23. Ragsdell, G, (2000) “Engineering a paradigm shift? An holistic approach to

organisational change management”, Journal of Organisational Change Management,
13(2), pp104-120.

24. Weinberg, G, (1971), “The Psychology of Computer Programming”, VNR, p56...

