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Many studies have shown that the global fish catch can only be sustained with effective regulation that restrains overfishing. However, the
persistence of weak or ineffective regulation in many parts of the world, coupled with changing technologies and additional stressors like
climate change, renders the future of global catches uncertain. Here, we use a spatially resolved, bio-economic size-spectrum model to shed
light on the interactive impacts of three globally important drivers over multidecadal timescales: imperfect regulation, technology-driven
catchability increase, and climate change. We implement regulation as the adjustment of fishing towards a target level with some degree of
effectiveness and project a range of possible trajectories for global fisheries. We find that if technological progress continues apace, increas-
ingly effective regulation is required to prevent overfishing, akin to a Red Queen race. Climate change reduces the possible upper bound for
global catches, but its economic impacts can be offset by strong regulation. Ominously, technological progress under weak regulation masks a
progressive erosion of fish biomass by boosting profits and generating a temporary stabilization of global catches. Our study illustrates the
large degree to which the long-term outlook of global fisheries can be improved by continually strengthening fisheries regulation, despite the
negative impacts of climate change.
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Introduction
The world’s annual marine fish catches have stagnated since the

1990s, after more than a century of astonishing growth (FAO,

2018; Watson and Tidd, 2018). The subsequent significant de-

cline in the global catch rate, indicated by data reconstructions,

has occurred despite a continued rise of the effective fishing

effort (Pauly and Zeller, 2016; Rousseau et al., 2019). Syntheses

have suggested that for the world’s assessed fish stocks, the me-

dian fishery is unsustainably fished (Costello et al., 2016), and

data to assess biomass and catch trends are lacking for at least

half of the global catch (Hilborn et al., 2020). Together, these

observations raise concerns for the future trajectory of global

catches.

The future of global catches, which determines the sustained

provision of nutrition and source of income for millions of peo-

ple worldwide (Teh and Sumaila, 2013; Golden et al., 2016), now

depends on multiple interacting forces at play within human soci-

eties, including fisheries regulation and governance, technological

and economic progress, and the capacity to mitigate climate

change (Worm and Branch, 2012; Costello et al., 2016; Galbraith

et al., 2017; Österblom et al., 2017; Gaines et al., 2018; Free et al.,

2019; Lotze et al., 2019). The complexity of these interacting
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factors and their multidecadal time horizons call for an improved

mechanistic and quantitative understanding of the drivers that

determine long-term outcomes for global fisheries.

The understanding of large and complex socio-ecological sys-

tems, such as the global fishery, agricultural, or climate system,

has recently been greatly advanced through the development of

process-based numerical models. For fisheries, global ecosystem

models that allow long-term projections under both climatic and

socio-economic change are providing new insights (Lotze et al.,

2019) and have the potential to evaluate the outcomes of multiple

interacting drivers on marine fisheries (Dueri et al., 2016;

Galbraith et al., 2017). While the coarse spatial resolution of these

global approaches gives them limited accuracy for any given fish-

ing region, they make it possible to perform mechanistically

founded long-term projections that help us understand what the

future of global fisheries might hold.

Arguably, the main cause for the detrimental overdevelopment

of many fisheries (Hilborn et al., 2005; Branch et al. 2006), and

the key reason why fisheries need to be effectively regulated (Smith

and Sissenwine, 2001), is the problem of open access (OA)

(Gordon, 1954; Hardin, 1968). The OA problem can be effectively

overcome through a great variety of regulatory systems, as has

been demonstrated in diverse fisheries, from indigenous to indus-

trial, throughout history (Ostrom, 1990; Berkes et al., 2000; Caddy

and Cochrane, 2001; Hilborn et al., 2005). Today, regulation meas-

ures are improving the status (i.e. increasing the fish biomass and

lowering the fishing mortality rate) of the majority of the scientifi-

cally assessed fish stocks worldwide (Hilborn et al., 2020), moving

beyond the earlier, more regionally limited examples of manage-

ment successes in places like Alaska, Australia or New Zealand

(Hilborn et al., 2005). This development encourages optimism

about the recovery of global fisheries (Duarte et al., 2020).

However, despite this progress, substantial challenges for fish-

eries management still lie ahead. The scientifically assessed fish

stocks make up only about 50% of the global reported fish

catches, or 40% when considering global catch reconstructions

(Pauly and Zeller, 2016; FAO, 2018; Hilborn et al., 2020). The

remaining unassessed stocks are believed to be in substantially

worse states than the assessed stocks, with low biomass and high

exploitation rates (Costello et al., 2012; Hilborn et al., 2020).

Supporting this notion, global assessments of management effec-

tiveness indicate that inefficient regulation is widespread (Mora

et al., 2009; Pitcher et al., 2009; Coll et al., 2013), with lax limits

and an inability to enforce compliance with the limits both being

key challenges (Bundy et al., 2017; Melnychuk et al., 2017; Ye and

Gutiérrez, 2017). This overall inefficiency in keeping fishing pres-

sure at sustainable levels makes it important to investigate the

long-term implications of imperfect regulation.

Technological progress, or creep, in catch efficiency (Eigaard

et al., 2014; Palomares and Pauly, 2019), has played a tremen-

dously important role in the history of fisheries (Squires and

Vestergaard, 2013b) but may also pose a major future sustainabil-

ity challenge. The great increase in global catches seen over the in-

dustrialization of fisheries in the 20th century, and the associated

nutritional and economic gains, would not have been possible

without development of better fishing gears, vessels, navigation

systems and fish-finding methods (Finley, 2016). Recent model-

ling work suggests that technology-driven catchability increases

explain the first-order historical development of global catch

(Galbraith et al., 2017). However, while being a large potential

source of increased efficiency, technological creep exacerbates

overfishing in poorly regulated fisheries by allowing fishers to ob-

tain profits at progressively lower fish abundance, and shifts the

fish biomass at the theoretical OA equilibrium to lower and lower

levels (Smith and Krutilla, 1982; Whitmarsh, 1990; Squires and

Vestergaard, 2013a, 2015). Thus, if the productivity limits of eco-

systems are exceeded, technology-driven catchability increase

transitions from a source of increasing catches into a cause for

catch decline.

At the same time, the impact of climate change on marine eco-

systems is intensifying. In addition to the conspicuous species

range shifts and ecosystem restructuring (Perry et al., 2005;

Poloczanska et al., 2013), climate change appears to be decreasing

the overall ecosystem productivity and thus the global fisheries

potential (Lotze et al., 2019; Free et al., 2019). Climate change

effects are likely to include a net decrease in marine net primary

production (NPP) due to increased stratification (Bopp et al.,

2013; Kwiatkowski et al., 2019) while warmer waters will acceler-

ate the metabolic rates of marine ectotherms, resulting in more

rapid dissipation of energy and therefore a smaller biomass of up-

per trophic-level organisms (Carozza et al., 2019; Heneghan et al.,

2019). Given that climate change is acting on ecosystems that

have already been heavily overfished in many regions, it has re-

cently been suggested that the future effects of climate change can

be mitigated by improving fisheries regulation (Galbraith et al.,

2017; Gaines et al., 2018).

Many recent analyses have highlighted the potential benefits of

reducing human pressures on marine ecosystems (e.g. Blanchard

et al., 2014; Dueri et al., 2016; Fulton et al., 2019), but few global

studies have assessed the dynamics of fisheries regulation in combi-

nation with other human drivers of change. Studies performing

long-term global projections based on available stock assessments

(Costello et al., 2016; Gaines et al., 2018) are well-grounded in

observations where assessments have been made but do not in-

clude energetic constraints at the ecosystem level or physiological

representations of temperature response. Moreover, although real-

istic long-term simulations should include technological progress

(Galbraith et al., 2017; Palomares and Pauly, 2019), this has gener-

ally been lacking in previous global projections (Costello et al.,

2016; Gaines et al., 2018). Thus, there is a need for complementary

investigations of how imperfect regulation and continuous techno-

logical progress affect long-term global fisheries dynamics.

Here, we perform the first whole-ecosystem simulations of

global fisheries that simultaneously include a variable effective-

ness of fisheries regulation, the possibility of future technological

progress, and the bio-energetic impacts of climate change. We de-

scribe a new generalized regulation component for the dynamical,

spatially resolved BiOeconomic mArine Trophic Size-spectrum

model, BOATS (Carozza et al., 2016, 2017) that reflects the ten-

sion between the individual profit motivations and a common,

socially defined fishing target. We use the model to evaluate the

theoretical importance of fisheries regulation and its effectiveness

in the face of technological and climatic change and compare the

results with observed global catches, with the aim to better under-

stand the mechanisms that will determine long-term sustainabil-

ity in the global fishery.

Existing model
BOATS is a global, ecosystem-scale model of fish size distribu-

tions, coupled with an economic model of profit-driven fishing

activity. As inputs, the model uses global time-varying grids of

sea surface temperature (SST) and NPP at 1� spatial resolution,
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and three economic forcings (the cost of fishing per unit effort c,

the ex-vessel price of fish p, and the catchability parameter q),

each of which can be spatio-temporally varying or constant (see

Model simulations for forcing specifications). The reader is re-

ferred to Carozza et al. (2016, 2017) for a thorough description of

the original model, which we briefly summarize in the

Supplementary Material. The version of the model used here dif-

fers only in its inclusion of the new regulation component.

New fisheries regulation component
Main features of regulation
To model the regulation of capture fisheries on a global scale and

over long time periods, we must boil the process of regulation down

to the most significant features that are common through time and

across fisheries types. Fisheries regulation can be seen as a manifesta-

tion of collective action, “the action taken by a group (either directly

or on its behalf through an organization) in pursuit of members’ per-

ceived shared interests” (Marshall, 1998), to overcome the OA prob-

lem (Gordon 1954; Hardin, 1968). In a renewable resource system,

the shared interest is often to maintain the extraction rate at an opti-

mal level given the group’s values and interests, which could be to

maximize food production for a society, or to maximize profit for a

fishing collective. Achieving the desired optimum generally requires

creating rules and enforcement mechanisms that incentivize (through

rewards and/or punishments) individual behaviour in line with the

shared interest (Oliver, 2013).

In many aspects, modern fisheries regulation systems can be

considered fundamentally similar to the traditional ones

(Lertzman, 2009) and often apply similar regulation practices

(Gadgil and Berkes, 1991). The same universal components of

regulation can be identified in subsistence, small-scale, and indus-

trial fisheries: target setting, rule design, and enforcement

(Table 1). The target may be based on different knowledge systems

(e.g. scientific vs. traditional knowledge), and enforcement meth-

ods range from traditions and religious beliefs (Johannes, 1978;

Gadgil and Berkes, 1991; Berkes et al., 2000) to fines and criminal

sanctions (Caddy, 1999; Caddy and Cochrane, 2001; Cacaud et al.,

2003) depending on the context. However, the basic types of rules

tend to be similar across fisheries: generally, they control access to

the fishery, protect vulnerable life stages, and limit the allowed

catch (Johannes 1978; Acheson, 1997; Gullestad et al., 2017).

Thus, despite great diversity, the regulation measures applied

in fisheries have a universal aim to align fisher behaviour to

maintain a broadly desired state of the fish resource. At the same

time, the degree to which regulations succeed varies widely

(Melnychuk et al., 2017). We use these fundamental features to

create a generalized model of regulated fisheries.

Mathematical representation
Our generalized regulation model contains two key elements: (i)

societal determination of a fishing target and (ii) adjustment of

fishing effort towards the target by societal enforcement mecha-

nisms. Undesired behavioural responses to regulations, which ren-

der management ineffective, is a pervasive problem in fisheries

(Fulton et al., 2011), which we represent explicitly with a societal

enforcement strength parameter, S. Since the individual incentive

to overfish under OA is the essence of the regulation challenge, we

define S as the extent to which OA is eliminated. Fisheries are then

modelled on a simple continuum between pure OA behaviour and

behaviour perfectly in line with the shared societal interest.

The new component is implemented by modifying equation

(Supplementary S2) so that the fishing effort exerted on a fish

size group k, Ek (W m�2), evolves over time as

dEk

dt
¼ Ke

revenuek � costk

Ek

e�S þ 1� e�Sð Þ Ks Etarg;k � Ekð Þ;

(1)

where Etarg,k (W m�2) is the societal target for fishing effort, S

(dimensionless) is the societal enforcement strength (S� 0), Ke is

the fleet dynamics parameter (W2 m�2 $�1), and Ks (m2 s�1) is

the regulation response parameter. Simplified, revenuek ¼
pkqkEkBk, where pk is the ex-vessel price of fish, qk is the catchabil-

ity parameter and Bk is the selectable biomass of size group k,

while costk ¼ ckEk, where ck is the cost of fishing per unit effort

(see Supplementary Material for details). The first term in (1),

weighted by the exponential function e�S, thus represents the in-

fluence of individual, immediate profit incentives in a population

of fishers. The second term, weighted by 1 � e�S, represents the

influence of regulation; it will be negative if Ek > Etarg,k and posi-

tive if Ek < Etarg,k.

In real-world fisheries, defining a target in terms of effort (in-

put regulation) rather than catch (output regulation) means that

Etarg,k must be adjusted to account for technological progress in

catchability, known as technological creep (Walters and Martell,

2004). This problem is addressed in the model by calculating the

nominal effort target Etarg,k every year depending on a fishing

mortality target for fish group k, Ftarg,k (s�1), and the current

catchability, qk, according to

Etarg;k tð Þ ¼ Ftarg;k

qk tð Þ ; (2)

so that Etarg,k varies inversely with qk to maintain a constant fish-

ing mortality. Thus, although nominal effort is the regulated

Table 1. Examples of universal components of regulation systems in three diverse fisheries.

Fishery Type Basis for target Rules Enforcement Source

Maine lobster Small-scale Fisher experience
and interests

Limited access, seasonal and spatial
closures, protection of vulnerable
life stages

Social sanctions,
moral obligations

Acheson
(1997)

Norwegian
fisheries

Large-scale Scientific model Catch limits, limited access, spatial
closures, gear restrictions,
protection of vulnerable life
stages

Fines, criminal
sanctions

Gullestad
et al. (2017)

Oceania island Subsistence Traditional
ecological
knowledge

Limited access, seasonal and spatial
closures, escapement, protection
of vulnerable life stages

Taboos, religion Johannes (1978)
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variable in our model, the real target is actually Ftarg,k, which

makes it equally applicable to output targets (e.g. quotas) or well-

designed adaptive input targets (e.g. access, fishing time, or en-

gine size restrictions). In reality, insufficient knowledge and eco-

system variability may prevent accurate estimation of a fishing

target (Mace, 2001), and strong trade-offs between objectives may

result in biologically unsustainable targets (Pascoe et al., 2017).

The impact of such uncertainty in target setting could be explored

in our model framework, but we do not model this aspect of im-

perfect regulation here (as explained in Regulation target).

The diverse mechanisms by which regulation is enacted (e.g.

those listed in Table 1) cannot feasibly be explicitly modelled at

the global scale. Thus, we treat regulation systems implicitly,

meaning that we consider only the extent to which OA is elimi-

nated and not the mechanisms by which this is achieved (whether

it is through quotas, seasonal closures, or licensing). The fact that

some structures are more effective than others (e.g. Hilborn et al.,

2005; Ostrom, 2009; Fulton et al., 2011) is captured by variations

in S, which could reflect the effect of diverse enforcement mecha-

nisms, like local, governmental, satellite, or divine surveillance, or

social, monetary, or religious sanctions, that promote compliance

(Table 1). We do not treat these factors implicitly because they

are unimportant or uninteresting, but rather as a useful simplifi-

cation to generate tractable global models of regulation.

Behavioural change is often hindered by structural and psycho-

logical barriers (Amel et al., 2017). In fisheries, uncertainty and

conflicting values contribute to making regulation reactive rather

than proactive (Rosenberg, 2003). Therefore, we assume that reg-

ulation will not begin before a substantial decline in catch of a

given fish size group occurs at a given location. We define the

time of regulation onset for a size group, tro,k, as the time when

catch declines below a certain fraction, hro, of the observed maxi-

mum historical catch, Hmax,k. We here use hro ¼ 0.75, reflecting a

relatively rapid reaction to declining catch. As long as the fishing

mortality (qkEk) is larger than Ftarg,k, regulation is initiated at

time tro,k. This guarantees that regulation is only initiated after lo-

cal overfishing has occurred:

Initiate regulation if
Hk tð Þ < hroHmax;k

q tð ÞEk tð Þ > Ftarg;k
:

�
(5)

Once initiated, regulation forces the nominal effort towards

Etarg,k. The value of Ks determines the rate of effort change due to

regulations. For example, the abrupt establishment of well-

enforced marine protected areas and fishing moratoria can result

in rapid and substantial effort decreases for individual stocks or

whole ecosystems over short time periods, as would be repre-

sented by a large value of Ks. We here choose a value (Ks ¼ 4�
108) that allows the nominal effort to respond on a timescale of a

few years, so that the model can stabilize at the fishing target

when S is high in our scenarios.

Model simulations
We explore the emergent dynamics of the new global regulation

model through a suite of hindcasts and future scenarios that focus

on the interactions with technological progress and climate

change. Following Galbraith et al. (2017), the simulations are

performed by forcing the model with constant c (1.8 � 10�4

$ kW�1) and constant p (1.1 $ kg�1) for all grid cells and size

groups, reflecting global average values. The possible effects of fu-

ture changes in average fish prices or fishing costs are discussed in

Additional economic drivers. The scenarios for regulation, tech-

nological progress, and climate change are described below and

summarized in Table 2. We also describe a simulation protocol

for comparing the model with observed fisheries in Alaska.

Regulation target
We here use the maximum sustainable yield (MSY) as an illustra-

tive target for regulation. We define the target as FMSY,k (2), the

fishing mortality associated with maximum catch from a long-

term simulation in which catchability increases very slowly,

Table 2. Overview of model forcing variables used in scenarios.

Forcing
variable Meaning Values applied Motivation Domain

Technology q Embodied and
disembodied
fishing technology
and skill

I. 5% increase year�1 1950–2100
II. 5% increase year�1 until 2020,

then stable

I. Exogenous technology adoption,
economic incentives

II. Exogenous technology
stagnation, no incentives in
fisheries

Equal for all grid cells
and fish size
groups

Regulation Ftarg Fishing mortality
target for
regulation

I. FMSY

II. 0.3 � FMSY

I. Maximized food production,
SDG 13

II. Precautionary target

Specific for each cell
and fish size group

S Regulation
strength

I. S ¼ 0
II. S ¼ 3
III. S ¼ 10

I. Open access fishing
II. Weak regulation
III. Strong regulation

Equal for all grid cells
and fish size
groups

Climate NPP Net primary
production, upper
75 m

I. Time varying (1950–2100)
according to IPSL RCP 8.5

II. Stabilizing at 2015–2020
levels according to IPSL

I. Upper range of projected climate
change impact

II. Comparison scenario with no
further climate change

Specific for each grid
cell

SST Average sea surface
temperature,
upper 75 m

I. Time varying (1950–2100)
according to IPSL RCP 8.5

II. Stabilizing at 2015–2020 levels
according to IPSL

I. Upper range of projected
climate change impact

II. Comparison scenario with no
further climate change

Specific for each grid
cell

Regulation and technology in fishery projections 2521

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/7-8/2518/5905013 by U
AB 03 H

um
anities Lib user on 14 April 2021



approximating steady state (see Galbraith et al., 2017).

Experiments were run using the FMSY,k at each simulation year

for each fish size group, corresponding to the respective tempera-

ture and NPP conditions given by the Institute Pierre Simon

Laplace (IPSL) Earth System Model. Since there are no explicit

interactions between the three size groups (only within each of

the three size spectra), the MSY represents a size group maximum

in an idealized ecosystem where small, medium, and large fish

occupy independent niches. We emphasize that, although our

main simulations use an MSY target for illustration, a more pre-

cautionary target than MSY is generally recommended given real-

world uncertainties (Mace, 2001; UN General Assembly, 2015).

Societal enforcement strength scenarios
S represents the strength with which the effort dynamics of a pure

OA fishery are opposed. While this definition is theoretically

useful, S lacks a directly measurable counterpart. For illustration,

we use three values to represent no regulation (S¼ 0, OA), weak

regulation (S¼ 3), and strong regulation (S¼ 10). To better in-

terpret the meaning of these S values, we also compare the mod-

el’s performance with some well-regulated stocks (see Model

comparison with observed Alaskan fisheries). Although it should

be feasible to use global proxies to estimate the variations in en-

forcement strength between jurisdictions and over time, such as

the World Governance Index or estimates of fisheries manage-

ment effectiveness (Mora et al., 2009; Pitcher et al., 2009;

Melnychuk et al., 2017), these qualitative estimates are not di-

rectly translatable to numerical values of S. Thus, as a simple first

step, we here simulate global catches under spatially and tempo-

rally constant S.

Technology scenarios
Technological improvements that increase catch efficiency can be

modelled by increasing the catchability parameter, q (1 and

Supplementary S1), reflecting both embodied and disembodied

aspects of technology (Pauly and Palomares, 2010; Squires and

Vestergaard, 2013b). Empirical studies have estimated an average

rate of increase of 2–8% year�1 in diverse fisheries and time peri-

ods (Wilberg et al., 2009; Pauly and Palomares, 2010; Squires and

Vestergaard, 2013b; Eigaard et al., 2014; Palomares and Pauly,

2019). Most of these estimates consider only a subset of techno-

logical aspects and therefore would be expected to underestimate

the overall rate of catchability increase (Scherrer and Galbraith,

2020). Consistent with this expectation, the rate of q increase in

BOATS that best reproduces the observed global catches is a rela-

tively high value of 5% year�1 (see Galbraith et al., 2017 for

model sensitivity to different rates).

Technological progress often undergoes local hiatuses, and its

future rate will undoubtedly vary, but the underlying mechanisms

are difficult to untangle, making predictions highly uncertain

(Nagy et al., 2013). We therefore choose two simple model

scenarios that bracket the likely range: one with a continued

constant catchability growth rate of 5% year�1 throughout the

21st century and the other stagnating, with catchability increasing

only until the year 2020 value after which it is held constant. We

impose the change in catchability homogenously across all grid

cells.

Climate change scenarios
To investigate global fisheries dynamics under climate change, we

used gridded monthly NPP and SST output from the IPSL Earth

System Model as input for BOATS. We use Representative

Concentration Pathway (RCP) 8.5 for the upper-range baseline

scenario with no climate mitigation and provide a comparison

simulation where the average present day (2015–2020) green-

house gas levels are kept constant into the future. These two ide-

alized scenarios span a wide range of possible futures in a way

that is consistent with the scenarios for technology. Separate sim-

ulations were performed using monthly climatological fields of

empirical NPP and SST [as in Carozza et al. (2016)], and are used

in Different global catch trajectories.

Model comparison with observed Alaskan fisheries
To provide a real-world example, we compare the model output

to stock assessments in Alaskan fisheries, which have a long his-

tory of effective regulation (Hilborn and Ovando, 2014), mainly

through strict quota systems (Worm et al., 2009). Technological

progress (for example improvements in fish finding, navigation

and processing) has undoubtedly raised the catchability of the

Alaskan fleet during the past decades. Yet, a survey of all the stocks

in the “US Alaska” region in the RAM legacy database (version 4.4)

shows that the average biomass weighted fishing mortality (F) has

been maintained near 30% of the fishing mortality corresponding

to MSY (FMSY) since the late 1980s (Figure 1), testament to the

high degree of regulation effectiveness.

We applied a similar precautionary target of 30% of FMSY, as-

sumed a 5% year�1 catchability increase with the RCP 8.5 climate

scenario, and tested multiple values for S (¼3, 5, 10) to investi-

gate which level of enforcement strength would best recreate the

historical trends in Alaskan stocks. The RAM legacy data show

that about 80% of the total catch during 1980–2014 was from fish

Figure 1. Modelled and empirical fisheries reference points in a well
managed fishery. Lines show stock assessments (blue) and
corresponding modelled fish populations in BOATS under different
regulation effectiveness (grey) in US Alaska. If S � 10, the F is
maintained at 30% of FMSY over the historical period like in
observations. For lower, constant S, technological creep in the model
makes F diverge from the target level. Shaded areas show uncertainty
ranges: 1 SD among stock assessments, and model ensemble members.
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stocks with an asymptotic size corresponding to that of the large

fish size group modelled here (<8.5 kg or 90 cm; Carozza et al.,

2016; Pauly and Zeller, 2016; FishBase, 2020), while vessel track-

ing indicates that fishing mainly takes place in highly productive

waters surrounding Alaska (Kroodsma et al., 2018). We therefore

show BOATS results for the large fish group, averaged over all

grid cells of the Bering Sea and Gulf of Alaska large marine eco-

systems that have higher NPP than the regional average.

Results
Comparison with observed Alaskan fisheries
Figure 1 compares the simulated BOATS historical trajectories of

fishing mortality in the US Alaskan fisheries with different levels

of S with the historical fishing mortality obtained from stock

assessments. The modelled trajectory of F/FMSY for this subset of

fish populations in BOATS coincided with the observations when

S approached 10 (Figure 1). We therefore take a value of S¼ 10

as representing highly effective, yet achievable, regulation.

Range of possible future catches
Figure 2 compares historical global catch estimates to the range

of model ensemble trajectories, including technological progress,

two levels of regulation, and two climate projections (Table 2).

The empirical estimates suggest that global catches have either de-

clined (Pauly and Zeller, 2016) or reached a plateau (Watson and

Tidd, 2018) over the past decades (Figure 2). Neither of the esti-

mates are consistent with the short peak and rapid global catch

decline that the model simulates under global OA, but the esti-

mate by Pauly and Zeller (2016) is clearly inconsistent with the

stable plateau of globally strong regulation.

In contrast to the agreement between the two simulated histor-

ical regulation trajectories, the future regulation scenarios diverge

dramatically if technological progress continues apace. Under

globally strong enforcement (S¼ 10, solid blue line), the catch

plateaus at 150 6 50 Mt wB year�1 by year 2050 under climate

change scenario RCP 8.5, with potential for an 8% increase in

catches if the climate was stabilized. On the other end of the spec-

trum, pure OA fishing (S¼ 0) with climate change results in a

60% catch decrease by the middle of the century relative to the

peak catch in the early 2000s, a loss of about 90 Mt year�1 com-

pared to the strongly regulated case.

Global outcomes of variable regulation strength
Figure 3 shows global trajectories of four key fisheries variables

under three different regulation strengths and continued techno-

logical progress. The catch projections in Figure 3a carry on from

those shown in Figure 2, with the addition of a scenario with

weak regulation (S¼ 3). For the latter, global catches remain high

and close to the strong regulation case until mid-century but then

decline to 50 6 20 Mt year�1 in 2100 (Figure 3a). This result is

qualitatively robust to the choice of regulation target; a long-term

catch decline under weak regulation also occurs when the target

is 30% of FMSY,k ðSupplementary Figure S1).

Regulation places a limit on the nominal fishing effort, reduc-

ing it relative to OA by about 30% in 2020 and by 35–70% in

2100 depending on the scenario (Figure 3b). If the fishery is

unregulated, the simulated effort continues to increase after the

catch peak despite stagnating catches, as is the case in effort

reconstructions (Rousseau et al., 2019). The reduction in effort

achieved by regulation greatly improves the projected global

profit (Figure 3c), with the strongly regulated fishery yielding a

continuously increasing profit over time thanks to the

technology-driven increase in catch efficiency. Under weak regu-

lation, profit remains high in the short term and is continually

positive throughout the rest of the century.

Figure 2. Simulated and empirical global catch (1950–2050). Two
end-member scenarios with continued technological progress and
either open access (S ¼ 0, light grey) or strong regulation (S ¼ 10,
blue) are compared with historical catch data (1950–2014) from the
SAUP (dark grey) and Watson and Tidd (black; 2018). Solid and dashed
blue lines show results with (RCP 8.5) and without future climate
change effects (no CC), respectively. Shaded areas show uncertainty
ranges (1 SD among model ensemble members) of simulated catches.
With technological progress of 5% year-1, regulation plays a larger role
than climate, indicated by the grey and blue arrows, respectively.

Figure 3. Simulated fisheries trajectories under continued
technological progress. Aggregated global (a) catch, (b) effort, (c)
profit (in year 2000 US$), and (d) biomass under no (S¼ 0, dark
grey), weak (S¼ 3, red), or strong (S¼ 10, blue) regulation. Weak
regulation prolongs the period of high catch and profit and slows
down biomass loss, but to achieve perpetual sustainability, open
access must be strongly offset (S> 10). The dashed blue line shows
the development without future climate change. Triangles mark the
start of divergence between the weak and strong regulation
scenarios.

Regulation and technology in fishery projections 2523

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/7-8/2518/5905013 by U
AB 03 H

um
anities Lib user on 14 April 2021

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa109#supplementary-data


While weak regulation significantly increases profits compared

to the corresponding OA scenarios, it does relatively little to miti-

gate the loss of fish biomass (Figure 3d). Although S¼ 3 slows the

decline in global biomass in the near future, biomass diverges

from the strong regulation scenarios early in the 21st century

(marked by the empty triangle in Figure 3d). In the long term,

weak regulation fails to fulfil conservation objectives; by simula-

tion year 2100, the global biomass has been fished down to <3%

of the pristine biomass (5 6 2 Gt), and profit also dwindles.

Under strong regulation, the global biomass initially stabilizes at

about 30% of the pristine biomass, the model estimate of biomass

associated with global average MSY (BMSY). However, in the final

decades, biomass begins to decline even under S¼ 10 (Figure 3d).

Abrupt technological stagnation
The importance of regulation strength is greatly diminished in

the scenarios where catchability abruptly stops increasing at the

year 2020 level (Figure 4). In this case, the largest gains that can

be achieved through stronger regulation are about 30% more

catch than OA by end-of-century if climate change continues,

with roughly twice as much global fish biomass, and the differ-

ence between strong and weak regulation is small (Figure 4a and

d). Moreover, without technologically driven improvements in

catch efficiency, the decreasing catch per unit effort under climate

change results in a long-term decrease in global profits. In con-

trast, a stabilizing climate in this case leads to completely stabiliz-

ing biomass, catch, and profit, which means that these three

factors are considerably higher than under scenarios with climate

change by the end of the century.

Discussion
Different global catch trajectories
We find that under continued technological progress, different

levels of regulation strength generate qualitatively different global

catch curves with very different implications. In the absence of

regulation (Figure 5a), the global catch curve increases, peaks,

and declines, reflecting the sum of catch trajectories in individual

regions throughout the world (grey lines). Under weak regula-

tion, the global catch passes through a temporary plateau

(Figure 5b), as regulation slows down the post-peak catch decline

in each region, until technological progress overcomes the socie-

tal enforcement strength. If strong regulation pushes all regional

catches to approach their local MSY targets (Figure 5c), rebuild-

ing efforts and new exploitations lead to a global increase prior to

stabilization at the global MSY (which in this illustration is unaf-

fected by climate change).

A “Red Queen race” in regulated fisheries
Our simulations illustrate a persistent challenge that arises under

imperfect regulation. Increasing catchability ultimately leads to

higher instantaneous individual profit, strengthening the profit

incentive even as stocks are depleted and yields fall. From (1), it

can be inferred that if S is constant, this applies regardless of the

exact rate of technological progress. Thus, although the time

Figure 4. Simulated fisheries trajectories under stabilizing
technology. Aggregated global (a) catch, (b) effort, (c) profit (in year
2000 US$), and (d) biomass under no (S¼ 0, dark grey), weak (S¼ 3,
red), or strong (S¼ 10, blue) regulation. The importance of
regulation strength is greatly diminished if technology stabilizes and
the race between catchability and regulation strength ceases. Still,
regulated fisheries yield substantially higher benefits. The dashed
blue line shows the development without future climate change.

Figure 5. Illustration of the impact of regulation strength. Three types of global catch curves (thick red line) arise under different regulation
strengths and continued catchability increase (5% year�1). Grey lines show underlying catches in each of the world’s large marine ecosystems,
and shade of grey indicates the timing of the catch peak. In contrast with the unregulated case, S ¼ 0 (a), weaker regulation, S ¼ 1.2 (b) results
in a temporary global catch plateau, while strong regulation, S ¼ 10 (c) results in growing and stabilizing global catches. Illustrations are
representative of a stable climate.
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horizon depends on S and q, long-term sustainability eventually

depends on a race between improving catchability and improving

regulation—in line with the arguments of Whitmarsh (1990). We

call this the “Red Queen race” of fisheries regulation, analogous

to the ecological Red Queen hypothesis that organisms must con-

tinuously evolve to keep up with the evolution of competitors

and predators. This Red Queen race occurs even though we here

assume that the effort target is perfectly adjusted for technological

creep [by continuously adjusting the nominal effort target

according to (2)], a correction that can be very difficult to make

input-regulated fisheries (Branch et al., 2006; Eigaard et al.,

2014).

The role of technological creep is here shown using a model in

which regulation reduces OA behaviour in favour of a societal

target, but similar dynamics should arise under alternative for-

malizations of fisheries regulation. In models of compliance, reg-

ulation can be represented as additional costs of fishing, either

monetary (fines/taxes) or non-monetary (social/moral) (see

Sutinen and Kuperan, 1999; Nøstbakken, 2008). Adding regula-

tory costs in the original effort equation (Supplementary

S2) would also give rise to a Red Queen race; as increasing q

increases potential revenues, the costs (i.e. fines, taxes, or fear of

sanctions) would have to increase continuously at a rate that

counteracts catchability increases, if catches are to be sustainable.

The realized impact of the Red Queen race will depend on the

rate of continued technological progress, as illustrated by the two

contrasting scenarios (Figures 3 and 4). Predicting how future

technology will progress is difficult, but fisheries technologies

generally originate from exogenous fields (e.g. echo location, po-

sitioning systems, material development, robotics, ocean model-

ling, or artificial intelligence), while also responding to economic

incentives (Hilborn et al., 2005; Squires and Vestergaard, 2013b).

This suggests that continued technological progress in fisheries is

likely as long as the overall global rate of technological progress

does not stagnate. We underline, however, that the future tech-

nology scenarios used here are exploratory, intended to help illus-

trate mechanisms.

Hidden losses
Our simulations show that, under weak regulation, technological

progress helps to maintain a relatively high global profit and

extends the period of relatively stable catches, hiding a steadily

declining biomass (Figure 6). These hidden losses are in line with

theoretical work on economic optimality under technological

progress in fisheries (Squires and Vestergaard, 2015). Because

catch and profit are easier to measure than biomass, technological

progress could thus give a false sense of security, especially by cre-

ating a temporary plateau in total catches (Figure 5c). These hid-

den losses would be expected to render fish conservation

particularly difficult and would become more severe if ex-vessel

prices increase in future (rather than staying constant as in our

simulations).

Additional economic drivers
The effects of many additional economic factors and develop-

ments, not explicitly included in our scenarios, can be discerned

from the effort equation (1). For example, the FAO projects that

the global demand for fish will rise faster than the supply in the

upcoming decade due to the growth of both the human popula-

tion and their incomes, and the expected slowdown of

aquaculture growth (which also requires feed from capture fisher-

ies; FAO, 2018). If such a development was to drive up real ex-

vessel prices of wild-caught fish, profitability would be increased,

enhancing the profit incentive and weakening the effect of regula-

tion, all else being equal (as shown under OA conditions in

Galbraith et al., 2017). Thus, rising prices would have a dynamical

impact similar to that of technological progress. Similarly, subsi-

dies that reduce the cost of fishing, or encourage technology up-

take (Sumaila et al., 2016), would also exacerbate biomass

depletion and catch losses. Conversely, higher cost per unit effort,

e.g. due to rising oil prices in response to carbon pricing, would

abate the profit incentive, making a given strength of regulation

more effective. However, explicitly modelling price dynamics

would be a possible avenue for future work.

Real-world variability in regulation
Since this study focused on mechanistic understanding and since

variability in regulation effectiveness is difficult to quantify glob-

ally, S was held spatially homogeneous and constant in our sce-

narios. In reality, regulation effectiveness varies between regions,

countries, or even individual fish stocks, as it depends on com-

plex interactions between socio-economic and ecological factors

(Hilborn et al., 2005; Ostrom 2009; Fulton et al. 2011). Different

management solutions, tailored to the local context, are therefore

required to achieve effective regulation for different target species,

fishing techniques, and socio-economic circumstances (Duarte

et al., 2020). Although all these nuances are unfeasible to include

into a global model, some general patterns of regulation effective-

ness are suggested by global studies. Generally, developed and

high-latitude regions have higher regulation effectiveness, likely

due to their higher capacity to assess fish stocks and enforce regu-

lations (Ye and Gutiérrez, 2017; Melnychuk et al. 2017; Hilborn

et al., 2020). To provide more detailed projections, future work

could find ways to translate such knowledge into regionally vary-

ing values for S.

Figure 6. Hidden losses under weak regulation. The percent change
in ensemble average global profit, catch, and biomass is shown for
2050 and 2100 relative to year 2020, for the simulation with weak
regulation (S¼ 3), continued technological progress, and climate
change. In year 2050, weak regulations uphold relatively high profit
and stable catch, masking a substantial biomass decline that
ultimately leads to a large decline of catch and profit by 2100.
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Potential future benefits from the global fishery
The results from our global, whole-ecosystem modelling ap-

proach strongly corroborate stock-assessment-based estimates in

predicting large benefits of strong regulation and fishery rebuild-

ing (Worm et al., 2009; Costello et al., 2016). The analysis by

Costello et al. (2016) projected biomass, catch, and profit to be

about 0.8 Gt, 70 Mt year�1, and 50 B$ year�1, respectively, in

2050 for a subset of global stocks under a perfectly implemented

global MSY strategy. Our mean estimates in 2050 under S¼ 10

and no future climate change are consistently about twofold for

all three measures (1.7 Gt, 160 Mt year�1, and 120 B$ year�1;

Figure 3). The higher values arise because BOATS is designed to

simulate all global catch, including an estimate of unreported

catches (Pauly and Zeller, 2016), as well as possible future expan-

sions in targeted fish, such as a greater exploitation of small fish

in the deep sea (Carozza et al., 2017). Given the fact that our ap-

proach models the flow of energy through the whole ecosystem,

while that of Costello et al. (2016) uses logistic growth models for

individual fish stocks, we find the remarkably strong agreement

of the relative impacts on biomass, catch, and profit arrived at by

the two approaches to be very encouraging. The finding that

strong regulation can more than offset climate-driven productiv-

ity declines is also in line with perfectly regulated simulations

with the same model (Galbraith et al., 2017) as well as with a

thermal-niche-based approach (Gaines et al., 2018).

The model suggests that the maximum possible global catch is

larger than the observed historical maximum. If effort was

strongly regulated to achieve MSY and if the climate was stabi-

lized, simulated catches and profits continue to increase towards

180 6 40 Mt year�1 and 170 6 50 B$ year�1 throughout the 21st

century. However, in line with previous work, unmitigated cli-

mate change decreases the MSY by almost 30% by 2100 (the dif-

ference between the blue dashed and solid lines in Figure 4a).

Thus, the sustainable future catch may yield somewhat less fish

than at the historical peak, though it could be far more profitable.

Furthermore, the results imply that a gradual catch decline fol-

lowing global peak [as found by Pauly and Zeller (2016)] is con-

sistent with globally weak fisheries regulation, potentially

exacerbated by climate change effects.

Finally, we underline that mesopelagic fish are not well repre-

sented by our model since they have not been targeted by fisheries

and therefore were not included in the model tuning (Carozza

et al., 2017). If the mesopelagic fish biomass is as large as recently

suggested (Proud et al., 2019), and if future technological prog-

ress enables efficient catch methods, they may support large addi-

tional catches beyond those estimated here. This would however

not alter our results for currently exploited species, and mesope-

lagic fisheries would also be subject to the Red Queen race of

regulation.

Conclusion
Fisheries regulation includes a diverse array of collective actions

that counteract detrimental OA fishing, all of which define a fish-

ing target and implement practices to achieve it. We have de-

scribed a new, simple mathematical formulation to represent

these universal features in a global bio-economic model, and used

it to explore how variable regulation effectiveness, technological

progress, and climate change may shape the future of global

fisheries.

Our model scenarios suggest that, under continued technologi-

cal progress, weak fisheries regulation results in hidden biomass

losses and fails to ensure long-term sustainability due to what we

term the “Red Queen race” of fisheries regulation. Rising demand

for fish would further exacerbate this race. As a result, regulation

effectiveness must be continually improved to sustain the global

fishery. Optimally, under strong regulation and technological

progress, simulated global catches, biomass, and profit approach

180 6 40 Mt year�1, 1.7 6 0.7 Gt, and 170 6 50 B$ year�1, respec-

tively. Unmitigated climate change is likely to decrease the maxi-

mum catch potential (MSY) and fish biomass, but global catches

can largely be maintained at present levels throughout the 21st

century if regulations are effective and technological progress

continues.

The dynamics that arise in our regulated fisheries model out-

line key long-term challenges for global fisheries. We find that

global fisheries regulations must continue to be strengthened as

long as catchability in the fishery continues to increase. This rein-

forces the great importance of initiatives that strengthen regula-

tions, from the revitalization of traditional community-based

management (Johannes 2002; Ostrom, 2009), improved leader-

ship and community cohesion (Gutiérrez et al., 2011), and imple-

mentation of catch share systems (Costello et al., 2008), to

technologically aided monitoring, control, and surveillance

(Caddy, 1999; McCauley et al., 2016; Bradley et al., 2019). The de-

gree to which technological improvements can empower regula-

tion may play a critical role in determining the outcome of the

Red Queen race of fisheries regulation. If successful, such regula-

tory advances might prevent a dramatic decline in global biomass

and catches over the 21st century and ensure an indefinite supply

of wild-caught fish to support human nutrition and well-being.
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