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Abstract

We perform an ensemble of N-body simulations with 20483 particles for 101 flat wCDM cosmological models
sampled based on a maximin distance sliced Latin hypercube design. By using the halo catalogs extracted at
multiple redshifts in the range of z=[0,1.48], we develop DARK EMULATOR, which enables fast and accurate
computations of the halo mass function, halo–matter cross-correlation, and halo autocorrelation as a function of
halo masses, redshift, separations, and cosmological models based on principal component analysis and Gaussian
process regression for the large-dimensional input and output data vector. We assess the performance of the
emulator using a validation set of N-body simulations that are not used in training the emulator. We show that, for
typical halos hosting CMASS galaxies in the Sloan Digital Sky Survey, the emulator predicts the halo–matter
cross-correlation, relevant for galaxy–galaxy weak lensing, with an accuracy better than 2% and the halo
autocorrelation, relevant for galaxy clustering correlation, with an accuracy better than 4%. We give several
demonstrations of the emulator. It can be used to study properties of halo mass density profiles such as the
concentration–mass relation and splashback radius for different cosmologies. The emulator outputs can be
combined with an analytical prescription of halo–galaxy connection, such as the halo occupation distribution at the
equation level, instead of using the mock catalogs to make accurate predictions of galaxy clustering statistics, such
as galaxy–galaxy weak lensing and the projected correlation function for any model within the wCDM
cosmologies, in a few CPU seconds.

Key words: large-scale structure of universe – methods: numerical – methods: statistical

1. Introduction

Cosmic large-scale structures are promising avenues to
fundamental questions in cosmology. Various wide-area
imaging or spectroscopic surveys of galaxies are ongoing and
being planned, aimed at addressing the nature of dark matter
and dark energy in the universe. These include the Subaru
Hyper Suprime-Cam (HSC) Survey9 (Aihara et al. 2018), Dark
Energy Survey,10 Kilo-Degree Survey,11 Subaru Prime Focus
Spectrograph (PFS; Takada et al. 2014), Dark Energy
Spectroscopic Instrument (DESI),12 Large Synoptic Survey
Telescope (LSST),13 ESA satellite mission Euclid,14 and
NASA satellite mission WFIRST.15 However, one of the most
serious systematic effects in galaxy survey–based cosmology
lies in the galaxy bias that generally states an inevitable
uncertainty in the relation between distributions of dark matter
and large-scale structure tracers (Kaiser 1984; see also

Desjacques et al. 2018, for a recent review). Since physical
processes involved in galaxy formation and evolution are still
impossible to solve from first principles, it is of critical
importance to explore a practical route to extracting cosmolo-
gical information from observables of galaxy surveys, yet
being least affected by the galaxy bias uncertainty, in order to
attain the full potential of ongoing and future galaxy surveys.
The growth of cosmic structures is driven mainly by the

spatial inhomogeneities of dark matter, which are easier to
describe analytically on large scales (Bernardeau et al. 2002) or
via N-body numerical simulations down to small scales
(Miyoshi & Kihara 1975; Davis et al. 1985) than the variety
of astrophysical processes where baryons play a major role in
order to form galaxies (e.g., Vogelsberger et al. 2014). In
practice, however, we can observe only the projected or three-
dimensional distribution of galaxies from galaxy surveys from
which we have to infer the dark matter distribution. This is not
an easy task and a major challenge that all wide-area galaxy
surveys must confront. Nevertheless, there is a theory-
motivated working hypothesis that we can employ to make a
connection between galaxies and the dark matter distribution.
Galaxies or galaxy clusters are believed to form inside dark
matter halos, which are self-gravitative systems and correspond
to the peaks of the primordial mass density field (Kaiser 1984).
The distribution of halos with respect to the dark matter
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distribution, referred to as halo bias, and its dependence on the
halo mass and cosmological models can be predicted in the
cold dark matter (CDM)–dominated structure formation
scenario using analytical models (Bardeen et al. 1986; Mo &
White 1996; Sheth & Tormen 1999; Sheth et al. 2001) and/or
N-body simulations (Tinker et al. 2010). Here it is known that
the large-scale bias of halos, and therefore galaxies, should
approach a constant value, known as “linear bias,” for the
adiabatic initial Gaussian conditions of structure formation due
to the equivalence principle of gravity (e.g., Desjacques et al.
2018; see Dalal et al. 2008, for a counterexample, such as the
primordial non-Gaussian initial condition). On small scales, the
halo bias becomes scale-dependent and varies with cosmolo-
gical models in a complex way due to nonlinearities of
structure formation (McDonald 2006; McDonald & Roy 2009;
Taruya et al. 2010; Sato & Matsubara 2011; Baldauf et al.
2012; Nishizawa et al. 2013). These distinct behaviors of halo
bias over different scales have to be kept in mind in order not to
have any bias in cosmological parameter inference.

Observationally, there are promising probes of galaxy
surveys that help to link galaxies to the dark matter distribution
or halos, at least in a statistical manner. Galaxy–galaxy or
cluster–galaxy lensing, which can be measured by stacking
shapes of background galaxies around the foreground tracers,
allows us to probe the “average” projected matter (mostly dark
matter) distribution around the tracers (e.g., Brainerd et al.
1996; dell’Antonio & Tyson 1996; Fischer et al. 2000; Sheldon
et al. 2009). The large-scale galaxy–galaxy lensing signal gives
a direct estimate of the linear bias of the galaxies (e.g.,
Hoekstra et al. 2001; Sheldon et al. 2004). However, the weak-
lensing signal is generally noisy. Although the small-scale
lensing signal has a higher signal-to-noise ratio (S/N), it probes
the dark matter distribution inside the same halo, which is
generally difficult to predict accurately. Nevertheless, the
integrated lensing signal within the projected aperture of the
virial radius can be used to infer the average halo mass of
galaxies in a sample (e.g., Mandelbaum et al. 2006), which can
in turn be used to infer the linear bias at large scales with the
help of a theoretical model. The autocorrelation function of
galaxies’ positions in the large-scale structure is another
powerful probe of cosmology (e.g., Peebles 1980). It can be
measured from a wide-area spectroscopic sample and is
relatively easy to measure, i.e., with high S/Ns. If only the
large-scale correlation signals are used and the linear bias is
a priori assumed, the cosmological information can be
extracted from the shape information (e.g., Tegmark et al.
2004). However, the small-scale correlations, which carry even
higher S/Ns, cannot be interpreted easily, and the correlations
of galaxies in the same halo, the so-called one-halo term, add a
significant contribution to the measured signal, which compli-
cates the cosmological analysis.

Although each observable alone has its own pros and cons,
combining different clustering observables enables us to
perform a robust cosmological analysis, e.g., obtain tighter
constraints on cosmological parameters, yet simultaneously
calibrate systematic errors such as the bias uncertainty that are
otherwise difficult to calibrate with each observable alone (e.g.,
Oguri & Takada 2011; Yoo & Seljak 2012; Schaan et al.
2017, for similar discussion). Implementation of joint-probes
cosmology to actual data can be found in various works
(Seljak et al. 2005; Hikage et al. 2013; Mandelbaum et al.
2013; Reid et al. 2014; More et al. 2015b; Abbott et al. 2018;

Joudaki et al. 2018). Such analyses can be done by combining
wide-area imaging and spectroscopic surveys over the same
region of the sky; for instance, this is the case for the Subaru
HSC and PFS surveys.
Hence, the purpose of this paper is to develop software to

make accurate model predictions for clustering observables in
preparation for high-precision cosmology achievable from
ongoing and future wide-area galaxy surveys. Motivated by the
fact that dark matter halos are building blocks of the large-scale
structure and the places hosting galaxies, we build an
“emulator,” dubbed DARK EMULATOR, that allows fast,
accurate computations of “halo” clustering quantities—halo
mass function (HMF), halo–matter cross-correlation function,
and halo autocorrelation function—as a function of halo mass,
separation, redshift, and cosmological models. To develop the
emulator, we use a large number of N-body simulation
realizations and their halo catalogs at multiple output redshifts
for different cosmological models that cover a sufficiently
broad range of models within flat-geometry, time-varying dark
energy and CDM cosmologies (hereafter wCDM). These halo
clustering quantities include all of the relevant physics, such as
the linear halo bias, nonlinear bias, and halo exclusion effect.
Since we use a limited number of N-body simulation
realizations for sparsely sampled cosmological models in six-
dimensional cosmological parameter space, we carefully
propagate statistical uncertainties in halo clustering quantities
to the model predictions (emulator outputs) by using principal
component analysis (PCA) and Gaussian process regression
(GPR) in a high-dimensional space of input and output data
vectors.
The concept of our study is somewhat similar to emulators

developed in previous studies that interpolate various quantities
measured from simulations over the cosmological parameter
space (Heitmann et al. 2006, 2010, 2016; Habib et al. 2007;
Schneider et al. 2008; Lawrence et al. 2010, 2017; Agarwal
et al. 2012, 2014; Petri et al. 2015; DeRose et al. 2019; Euclid
Collaboration et al. 2019; Garrison et al. 2018; Liu &
Madhavacheril 2019; McClintock et al. 2019; Wibking et al.
2019; Zhai et al. 2019). However, our study is quite different
from these works in the sense that we do not make a one-to-one
mapping between the input cosmological parameters to the
final statistical quantities with the emulation process. We focus
more on developing a machinery consisting of several building
blocks, each of which works as a separate emulator, and
combining them in an analytical manner to work together.
Specifically, we focus on halo clustering statistics and do not
employ any specific prescription to connect halos to galaxies,
such as the halo occupation distribution (HOD; Zheng et al.
2005). Hence, to obtain predictions of galaxy clustering
quantities that can be compared with the measurements, a user
needs to adopt a prescription to model the galaxy–halo
connection, especially the one-halo term contributions arising
from galaxies in the same halo, and then combine the outputs
of DARK EMULATOR to compute the desired statistical
quantities. As a working example, we show how to analytically
combine the outputs of DARK EMULATOR and the other small-
scale physics prescriptions, such as the HOD model and the
distribution of satellite galaxies inside a halo, at the equation
level (e.g., Fourier transform and numerical integration) to
compute clustering quantities of galaxies, such as galaxy–
galaxy weak lensing and projected galaxy correlation function,
for galaxies in a hypothetical sample. In this sense, our
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approach might be regarded as a numerical simulation version
of the halo model approach (Ma & Fry 2000; Peacock &
Smith 2000; Seljak 2000; Scoccimarro et al. 2001; Valageas &
Nishimichi 2011; also see Cooray & Sheth 2002, for a review).
Thus, our emulator gives the flexibility that users can decide
how to use the emulator outputs for their desired purpose. This
study is the initial work of the DARK QUEST campaign project,
and the final goal is to use the Dark Quest products to achieve
accurate and robust cosmological analysis with wide-area
galaxy surveys. Therefore, the requirements we impose for
DARK EMULATOR give sufficiently accurate predictions for
desired observables and are sufficiently fast to allow cosmo-
logical parameter inferences, such as a Markov chain Monte
Carlo analysis, in a high-dimensional parameter space, e.g., six-
dimensional cosmological parameters plus various nuisance
parameter, including HOD parameters. We demonstrate how
well we achieve these requirements.

The structure of the paper is as follows. We start with a brief
review of the halo approach to the galaxy clustering and the
relevant observables in Section 2. In Section 3, we summarize
the details of the simulation setups, including the parameter
sampling scheme, initial conditions, time evolution, and post-
processing. We then discuss the details of each module that
constitutes our emulator in Section 4 including the cross-
validation tests. We focus on typical halos that host CMASS
galaxies observed by the Sloan Digital Sky Survey (SDSS) at
z∼0.5 in this section. We demonstrate how these modules can
be combined to make predictions of various halo and galaxy
statistics in Section 5. We summarize in Section 6 with
comments on the actual situations where our codes can be
applied. Convergence studies, our treatment of the massive
neutrinos, the mass and redshift dependence of our modules,
and an example HOD prescription implemented in the current
version of the emulator are shown in appendices. Readers who
are interested only in the final accuracies of DARK EMULATOR
may go directly to Appendix F for the results of our validation
study.

2. Halo Cosmology

Before going into the details of our method to construct
DARK EMULATOR, we first describe the concept of our
approach. In particular, we describe why we focus on statistical
quantities of halos and how we can connect the halo statistics to
observables for galaxies and galaxy clusters that can be used to
extract cosmological information.

2.1. Galaxy Observables

Our final goal is to make predictions for clustering
observables that are available from wide-area galaxy surveys.
For example, the galaxy–galaxy weak-lensing signal is
measured by cross-correlating the positions of foreground
galaxies with the shapes of background galaxies and probes the
average excess mass density profile around the lensing
galaxies, ΔΣg(R). This signal reflects the three-dimensional
galaxy-mass cross-correlation function, ξgm(x), projected along
the line-of-sight direction,

DS = S < - SR R R , 1g g g( ) ¯ ( ) ( ) ( )

where

òr x p pS = +
-¥

¥
R R d , 2g m0 gm

2 2( ) ¯ ( ) ( )

òS < = SR
R

y ydy
2

. 3
R

g 2 0
g¯ ( ) ( ) ( )

Here we denote by π and R separations in the line-of-sight and
transverse directions, respectively, and rm0¯ is the present-day
mean matter density. The use of rm0¯ is due to the fact that we
define the surface mass density in the comoving coordinates
rather than the physical coordinates. Similarly, the projected
galaxy autocorrelation function is related to the three-dimen-
sional galaxy autocorrelation function, ξgg(r), via

ò x p p= +
p

w R R d2 4gg
0

gg
2 2

max

( ) ( ) ( )

for the projection width p p- ,max max[ ].
The simplest linear deterministic bias model, which connects

the matter density field δm and the galaxy number density field
δg as δg=bgδm, leads to

x x x x= =b b, , 5gm g mm gg g
2

mm ( )

with a free parameter bg, which is completely degenerate with
the normalization of the linear matter power spectrum, σ8.
Having both the lensing and clustering signals, one can break
this degeneracy and infer the underlying matter correlation
function ξmm(x) by combining the two correlation functions:

x
x

x
=x

x

x
. 6mm

gm
2

gg

( )
[ ( )]

( )
( )

In reality, however, both nonlinear corrections and stochasticity
can alter this relation. To quantify this, we introduce the cross-
correlation coefficient (Tegmark & Peebles 1998) defined by

x

x x
ºr x

x

x x
. 7gm

gm

gg mm

( )
( )

( ) ( )
( )

The departure of rgm from unity characterizes the degree to
which the linear deterministic relation is violated.

2.2. Halo Model Approach to Galaxy Bias

Dark matter halos are basic building blocks of large-scale
structure and the sites harboring the formation of galaxies and
galaxy clusters. Since the physical processes involved in galaxy
formation are still difficult to resolve or simulate from first
principles, dark matter halos could give us a practical route to
connect the theory and observations of galaxy surveys. Hence,
in this paper, we develop an emulator that primarily predicts
statistical quantities of halos as a function of halo mass,
redshift, clustering separation scale, and cosmological para-
meters (model). This halo model allows us to compute galaxy
clustering statistics, e.g., by using an HOD prescription.
The HMF dn/dM is defined as the comoving number density

of halos in the mass range [M, M+ dM] and at redshift z for a
given cosmological model denoted by its parameters p:

p
dn

dM
M z dM, , . 8( ) ( )

This is the first important quantity that we are going to calibrate
with simulations. We will build a module enabling the fast
computation.
Two-point clustering properties of halos are characterized

by the autocorrelation functions of two halo samples and the
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cross-correlation functions of halos and matter, which we
denote as

x px M M z; , , , 9hh 1 2( ) ( )

and

x px M z; , , , 10hm( ) ( )

respectively. Here we explicitly denote that the two halo
samples in the halo–halo correlation function can have different
masses, M1 and M2. We will omit the arguments z and p below
for notational simplicity.

Figure 1 shows examples of the quantities of our main
interest, halo statistical quantities predicted by DARK EMU-
LATOR, that we develop in this paper. The figure shows the
HMFs, halo–matter cross-correlation functions, and halo–halo
autocorrelation functions with a varying density parameter Ωm

but fixing other parameters to their fiducial values. In doing so,
we keep the spatial flatness, overall normalization σ8, and
baryon fraction, and the change in Ωm is compensated for by
the density of dark energy Ωde, as well as the Hubble parameter
H0. We show in the left panel the prediction at three different
redshifts, while in the middle and right panels, we consider
three halo masses at z=0.5. Each of these quantities can be
computed very quickly by the emulator in ∼100ms on a
typical modern laptop computer.

Once these statistical quantities of halos are given, we can
compute galaxy observables, such as those shown in
Equations (1) and (4), based on an empirical HOD model for
the mean number of galaxies within a halo with mass M,
á ñN M( ) . We here employ the functional form originally
proposed by Zheng et al. (2005) and then slightly generalized
by More et al. (2015b). The explicit formulae, as well as the
derivation of the resultant galaxy statistics, can be found in
Appendix G.

On large scales, the galaxy statistics are computed as the
weighted average of the corresponding halo statistics. Speci-
fically, using the HOD that gives the average number of
galaxies in halos of mass M, á ñN M( ) , we can compute

òx x= á ñx
n

dM
dn

dM
M N M x M

1
; 11gm

g
hm( )

¯
( ) ( ) ( ) ( )

for the cross and
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for the autocorrelation functions, where the mean galaxy
number density, ng¯ , is given by

ò= á ñn dM
dn

dM
N M . 13g¯ ( ) ( )

We now introduce the mass-dependent halo bias functions

x x=x M b x M x; ; , 14hm hm mm( ) ( ) ( ) ( )

x x=x M M b x M M x; , ; , 15hh 1 2 hh
2

1 2 mm( ) ( ) ( ) ( )( )

for the cross- and autocorrelation functions, respectively. The
galaxy correlation functions, Equations (11) and (12), can be
rewritten as

x x=x b x x , 16gm g
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mm( ) ( ) ( ) ( )

x x=x b x x , 17gg g
auto 2

mm( ) [ ( )] ( ) ( )

where the corresponding galaxy bias functions are computed as

ò
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2
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Now the cross-correlation coefficient for galaxy and matter
fields, Equation (7), reads

=r x
b x

b x
. 20gm

g
cross

g
auto( )

( )
( )

( )

The condition rgm=1 is trivially satisfied when the halo
autobias function is written as a product of the two cross-bias

Figure 1. Demonstration of our halo modules in DARK EMULATOR to predict halo-related statistical quantities as a function of cosmological parameters. We show
how the HMF (left panel), halo–matter cross-correlation function (middle), and halo autocorrelation function (right) vary with Ωm for a flat-geometry cosmology but
with σ8 and other cosmological parameters being kept fixed to their fiducial values. The three sets of lines in the left panel show the mass functions at redshifts z=0,
0.5, and 1, and the three sets in the middle and right panels show the correlation functions for halos at three masses as indicated in the figure legend at redshift z=0.5.
Throughout this paper, we use the spherical overdensity (SO) mass, M200, for the halo mass definition, where the mean mass overdensity within the halo boundary is
200 times rm0¯ .
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functions,

=b r M M b r M b r M; , ; ; , 21hh
2

1 2 hm 1 hm 2( ) ( ) ( ) ( )( )

for any halo mass M1 and M2. This relation would hold at
sufficiently large separations.16

On mildly nonlinear scales, one should take into account a
violation of Equation (21). In particular, understanding the
scale-dependent function rgm(x), and thus bhm(x; M) and
b x M M; ,hh

2
1 2( )( ) , is crucial to recovering the underlying matter

correlation function out of galaxy observables. On strongly
nonlinear scales, the one-halo term, namely, clustering
contribution due to pairs of galaxy–galaxy or galaxy–matter
within the same halo, dominates the signal over the two-halo
term discussed so far. Especially, the galaxy–galaxy lensing
signal defined in Equation (1) in this regime gives information
on the average mass of halos in which lensing galaxies reside.
For a simplistic scenario where HOD is a delta function at mass
M, this halo mass information tells us how the bias function
should behave on large scales, breaking the degeneracy
between bias and the underlying clustering signal. In more
realistic settings, the small-scale information inferred from the
galaxy–galaxy lensing helps to determine the HOD parameters,
and we can perform a quasi-bias-free analysis using the large-
scale clustering signal.

None of these analyses can be realized unless we have good
control of the model predictions for the halo clustering signals,
including their dependence on mass and cosmological para-
meters. Therefore, the three quantities, dn/dM, ξhh, and ξhm, are
our central interest in this paper (see Figure 1 for example plots
of these quantities varying Ωm). Our emulator models these
quantities at the core and predicts the galaxy statistics by
combining them with an HOD prescription in an analytical
manner. In doing so, we pay attention to the evaluation speed
of the statistics such that it is feasible to perform a Markov
chain Monte Carlo analysis of parameter inference in a high-

dimensional parameter space, e.g., a space including cosmo-
logical parameters, as well as HOD parameters.
Two-dimensional projected clustering statistics can also be

computed analytically based on the three-dimensional cluster-
ing signals predicted by our emulator. Alternatively, one might
be tempted to project the matter particles, halos, or mock
galaxies in a simulation box along a single chosen axis or
direction and then measure the correlation signals in two
dimensions to model the projected signals directly. One could
further increase statistics by combining the results from
multiple projection directions. In contrast to this conventional
approach, we would like to emphasize that our procedure,
which first measures the correlation functions in three
dimensions and then performs projection by numerical
integration along the line of sight, is more advantageous in
the sense that we automatically access the information in all of
the possible two-dimensional maps obtained by projection
along all of the possible different directions. We also note that
in our approach, the projection width can be chosen as desired
once the full three-dimensional information is available. Since
redshift-space distortion can impact the projected statistics
when the width is small, we implement a simple model to
account for this effect in the module that computes wgg.

3. Simulation Ensemble

We summarize here the basic features of the DARK QUEST
simulation suite. All of the simulations presented in this paper
are listed in Table 1. More detailed explanations on each of the
simulation suites will be given in the subsequent subsections.
We also describe details of post-processing analyses.

3.1. Simulation Design

One of the key elements for an efficient emulator is the
sampling scheme of the models in a high-dimensional input
parameter space. It should be designed such that the hypervolume
of interest is sampled as homogeneously as possible. Indeed, Latin
hypercube designs (LHDs) have been employed in previous
studies to show a good performance to construct the training data
for emulators (e.g., Heitmann et al. 2009). An LHD is a design
achieved by first selecting a hyper-rectangle, then dividing it into a

Table 1
Summary of Our Simulation Suites

Class Npart Lbox Cosmology IC Nreal Purpose

HR 20483 1000 Fiducial Random 28 Assessment of variance (HMF, HMCCF)
20 models in slice1 Fixeda 1 Test of ICs
100 models in slices1–5 Random 1 Emulator (HMF, HMCCF; slices 1–4 for training, slice 5 for validation)

LR 20483 2000 Fiducial Random 14 Assessment of variance (HACF, PROP)
100 models in slices1–5 Random 1 Emulator (HACF, PROP; slices 1–4 for training, slice 5 for validation)

(slice 5 also for validation of HMF)

test 2563 250 Fiducial Fixedb,c 1 Convergence study (same resolution as LR)
5123 Fiducial Fixedb,c 1 Convergence study (same resolution as HR)
10243 Fiducial Fixedb 1 Convergence study
20483 Fiducial Fixedb 1 Convergence study

Notes. We show the number of particles (Npart), comoving box size (Lbox in h−1 Mpc), cosmological model, random number seeds used in initial conditions (IC),
number of realizations per model or parameter set (Nreal), and purpose of the simulations; calibration of either the HMF, halo–matter cross-correlation function
(HMCCF), halo autocorrelation function (HACF), halo propagator (PROP), or other testing purposes, such as the IC of simulations.
a Initial phases taken to be the same as one of the fiducial HR realization.
b Exactly the same initial phases are employed for the six test simulations.
c Initial conditions based on the Zel’dovich approximation are generated in addition to 2LPT. Also, five initial redshifts + =z1 15, 30, 60, 120in , and 240 are tested.

16 In Fourier space, however, a residual contribution is known to persist even
on the large-scale limit, and this behaves as a non-Poissonian shot-noise term,
k0 (Seljak et al. 2009; Hamaus et al. 2010; Baldauf et al. 2013). Hence, it would
not contribute significantly in configuration space.
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regular lattice and selecting only one sample in every lattice
interval when projected into any one dimension.

The LHDs are one of the useful techniques employed in the
literature of experimental design (see Garud & Karimi 2017 for
a recent review). Imposing certain conditions, an LHD can
have desirable space-filling and projection properties. Because
of these, they are often employed in black-box experiments,
where the dependence of the outcome on input variables is
completely unknown. While our situation is slightly different
(i.e., the relation between inputs and outputs can be
approximately modeled using fitting formulae in cosmology),
LHDs have been a standard tool for the development of
emulators in cosmological settings. In many cases of
cosmology, one wishes to emulate a considerably large number
of outputs. An experimental design highly optimized to one
output can sometimes give a significantly inferior performance
on other outputs. An LHD is expected to give, albeit
nonoptimal, a reasonable set of samples for all the outputs
similarly to black-box experiments.

We here employ a variant of LHD, called maximin distance
“sliced” LHD (SLHD), developed in Ba et al. (2015). This is a
technique to realize a hierarchy of maximin distance (i.e., the
minimum distance between different sampling points is
maximized) LHDs: the whole samples are located to construct
an LHD, and they are classified into subgroups called “slices”
with the same number of samples, each of which independently
satisfies the conditions for an LHD. In practice, a good space-
filling property (i.e., a near-maximin design) is ensured by
minimizing the following quantity:
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sample in the tth slice with M=N/m members; the quantity
x xd ,i j( )( ) ( ) is the distance between two samples, x(i) and x(j);

and we use the standard Euclidean distance, -x xi j 2∣ ∣( ) ( ) , for
simplicity. This is equivalent to putting a uniform prior when
the input parameter space is sampled. Here the minimization of
fall or ft at the limit of  ¥r is equivalent to the
maximization of the minimum distance among the design
points, as the name “maximin” suggests. An optimal SLHD is
achieved by minimizing the mixture of ftot and ft with the
former upweights according to the ratio of the number of
sampling points in the whole and subsamples (i.e.,
Equation (22)). We use the parameter r=15, which is the
default value in the SLHD code.

This method allows a rather flexible design of samples,
unlike standard single-slice LHDs, for which splitting the

samples into a training and a validation set can ruin the
desirable space-filling or projection properties before splitting.
For instance, the training and validation sets are chosen from
different slices in our case, both covering the parameter space
homogeneously, and the sample points in the two sets are
guaranteed to be reasonably far (i.e., no sample in the training
set is very close to any sample in the validation set). This is
crucial for a stringent validation test because the accuracy of
emulation can be more objectively tested by such validation
samples. We sample N=100 cosmological models in total
with m=5 slices, each of which is composed of M=20
samples in an n=six-dimensional parameter space. We
consider the wCDM cosmology in the parameter range of
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where w º W hb b
2 and w º W hc c

2 are the physical density
parameters of baryons and CDM, where =h H0

- -100 km s Mpc1 1( ) is the Hubble parameter, W º -1de

w w w+ + n hb c
2( ) is the dark energy density parameter

assuming a flat geometry of the universe, As and ns are the
amplitude and tilt of the primordial curvature power spectrum
normalized at 0.05 Mpc−1, and w is the equation-of-state
parameter of dark energy. As for the neutrino density
w º Wn nh2, we fix to 0.00064, corresponding to 0.06 eV for
the total mass of the three mass eigenstates (see Appendix D
for our approximate treatment of massive neutrinos). When
computing the distance in Equations (23) and (24), we
linearly rescale the range of the six cosmological parameters
in Equation (25) to [0,1). Our 100 samples are shown in
Figure 2, where the samples from the same slice are depicted
by the same color.
The parameter range above is centered at the best-fit

cosmological parameters to the Planck cosmic microwave
background (CMB) data (Planck Collaboration et al. 2016):
w w W =A n w, , , ln 10 , , 0.02225, 0.1198, 0.6844b c de

10
s s( ( ) ) ( ,

-3.094, 0.9645, 1). The fiducial Planck cosmology gives, as
derived parameters, Ωm=0.3156 (the present-day matter
density parameter) and σ8=0.831 (the rms linear mass
density fluctuations within a top-hat sphere of radius
8 h−1 Mpc). We should note that the range of each cosmolo-
gical parameter covered by our SLHD is sufficiently broad such
that the simulations can cover a range of cosmological models
that ongoing large-scale structure surveys can probe. The
parameter range shown in Equation (25) corresponds to a
change of ±5% for wb and ns, ±10% for ωc, and ±20% for
Ωde, Aln 1010

s( ), and w from their central values, which are
much larger than the constraints by Planck Collaboration et al.
(2016). As most of the large-scale structure probes are sensitive
to a combination of σ8 and Ωm, we show in the top right panel
of Figure 2 the range of SLHD models in this projected
parameter space. Note that the current-generation galaxy
surveys have put constraints on the combination of σ8 and
Ωm at a precision of its 95% CL region comparable with or
smaller than the supported range of our emulator. However, if
the best-fit model inferred from the galaxy survey is away from
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the fiducial Planck cosmology, the posterior region might be
outside the supported region (e.g., see Hikage et al. 2019, for
an example). In such cases, one needs to supply an alternative
model or perform additional simulations so that the support
range of our emulator can cover the range inferred from the
actual data. Or, one could use an empirical approach to
extrapolate the prediction outside the support range by using
the halo model or other analytical method. This is beyond
the scope of this paper and will be explored, if needed, in a
separate paper.

3.2. Box Size and Resolution

The simulations presented here are performed with 20483

particles in comoving cubes with a side length of either 1 h−1

Gpc (hereafter high-resolution runs (HR)) or 2 h−1 Gpc (low-
resolution runs (LR)). The mass of the simulation particle in
HR (LR) simulations is 1.020×1010 (8.158×1010) h−1 Me
for the fiducial Planck cosmological model and varies with the
value of Wm for different cosmological models. We perform
one LR and HR simulation at every 100 SLHD sampling points.
In addition, we have performed 28 (14) random realizations for

Figure 2. SLHD sampling scheme with five slices in the six-dimensional cosmological parameter space within the flat wCDM framework around the fiducial Planck
cosmology (stars). The samples from the same slice are shown by the circles in the same color. In addition to the six varied parameters in the wCDM model, we show
the projection of samples to the two-dimensional planes of the derived parameters Ωm and σ8 in the top right panel.
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the fiducial Planck cosmology under the HR (LR) setting. The
total volume of 28 or -h112 Gpc1 3( ) for the HR or LR runs at
the fiducial Planck cosmology is sufficiently large compared to
the SDSS volume, which is~ -h4 Gpc1 3( ) , corresponding to the
comoving volume up to z∼0.6 over the solid angle of about
10,000 deg2. In the following, we refer to each SLHD slice
simply as “slice,” e.g., “slice 1.”We will use the 20 simulations
in slice 5 for a cross-validation of the emulator and only the 80
simulations in slices 1–4 for the training. In addition, we run
simulations with a smaller box size, -h250 Mpc1 for the
fiducial Planck cosmology, with several different numbers of
particles, 2563, 5123, 10243, and 20483, to assess a numerical
convergence of our results. Note that the spatial resolution
of the simulations with 5123 or 2563 particles in these small
boxes is equivalent to that of the main HR or LR simulation,
respectively.

As we will show later, the mass resolution of our HR
simulations is sufficient to accurately estimate the HMF and
halo–matter cross-correlation function in each halo mass bin
down to the minimum mass of ∼1012 h−1 Me, smaller than a
typical host halo mass of CMASS or LOW-Z galaxies (e.g., see
Figure 4 in More et al. 2015b), where the LOW-Z galaxies
roughly correspond to the SDSS luminous red galaxies (LRGs)
in their figure. These simulations have already been used in
Murata et al. (2018) to calibrate the mass–richness relation of
the redMaPPer clusters by comparing the model predictions of
stacked lensing and abundance with their measurements. In
addition, the splashback features of halo edges traced by
subhalos in the density and velocity space were investigated by
Okumura et al. (2018b) using these simulations.

On the other hand, the LR simulations are mainly used to
calibrate the halo–halo autocorrelation function, which is
noisier than the halo–matter cross-correlation due to the larger
shot noise, and thus the precise calibration requires bigger-box
simulations. These simulations allow us to investigate large-
scale phenomena: the alignment between the orientation of
massive clusters and the large-scale structure surrounding them
were studied in Okumura et al. (2018a) and Osato et al. (2018)
using these simulations. We will show below in more detail
how different statistical quantities are evaluated from these HR
and LR simulations.

3.3. Initial Conditions

We generate initial conditions of individual N-body simula-
tions using the second-order Lagrangian perturbation theory
(2LPT; Scoccimarro 1998; Crocce et al. 2006) implemented by
Nishimichi et al. (2009) and then parallelized in Valageas &
Nishimichi (2011). We use the linear matter power spectrum
computed by CAMB (Lewis et al. 2000) and generate Gaussian
random fields from this spectrum. We compute displacements
and velocities by 2LPT for each particle located on the regular
lattice. The initial redshift is determined such that the rms
displacement (at the linear order) is 25% of the mean
interparticle distance in one dimension, and this depends on
the box size and cosmological parameters. For the fiducial
cosmological model, this condition roughly corresponds to
z=59 and 29 for the HR and LR runs, respectively. In
Appendix B, we study how the results vary with the initial
redshift, as well as how the results are altered if the Zel’dovich
approximation (Zel’dovich 1970) is used instead of 2LPT to set
up the initial conditions.

When we generate initial conditions for different cosmolo-
gical models, we can adopt two ways regarding the randomness
of the realization. The first possibility is to use the same
random seed for different models as that for the fiducial Planck
cosmology. This might be advantageous in the sense that the
simulated large-scale structure shares the same randomness;
thus, one can estimate how each Fourier mode grows in a
different way depending on cosmological models by reducing
the sample variance, i.e., the dependence of structure growth on
cosmological models. Motivated by this, we perform a set of 20
simulations with a fixed random number seed for the HR
simulations in slice1. This random number seed is the same as
one of the 28 realizations of the fiducial Planck model.
However, a fixed random number seed across different
cosmological models is not guaranteed to give a converged
result in the final emulator in the sense that every simulation is
affected by the same sample variance error that never goes
away by sampling many cosmological models. By selecting a
different random seed for each simulation, we hope that the
sample variance will be reduced in the final results, to which
the error in all of the simulations propagates in a Bayesian
manner. We thus adopt varied random number seeds for the
rest of our simulations. We will see in Appendix C how the
emulation results can change against these difference choices of
the initial seeds. The results shown in what follows are all
based on the varied seed simulations, except for Appendix C.

3.4. Time Integration

Once we generate a random realization following the method
described in the previous subsection, we simulate the
distribution of particles using the parallel tree particle-mesh
(PM) code GADGET2 (Springel 2005). We set the softening
length to 5% of the mean interparticle distance in one
dimension. We employ the number of fast Fourier transform
(FFT) meshes that is two times larger than the number of
particles in one dimension. Other configuration parameters
were previously calibrated (e.g., Nishimichi et al. 2009;
Valageas & Nishimichi 2011; Takahashi et al. 2012). The
relevant parameters are ERRTOLINTACCURACY=0.05 for the
time-integral accuracy, MAXSIZETIMESTEP=0.03 for the
time-stepping criterion, MAXRMSDISPLACEMENTFAC=0.25
for an additional limiter for the PM time step based on the rms
particle displacement, and ERRTOLTHETA=0.5 and ERR-
TOLFORCEACC=0.001 for the tree opening criterion that
controls the force accuracy. In the references above, the
convergence of the matter power spectrum was intensively
tested to confirm that the accuracy is better than the 1% level.
Using N-body simulations with these carefully tuned para-
meters, Takahashi et al. (2012) provided revised parameters for
the halofit formula (Smith et al. 2003). As will be shown
below, the convergence of clustering signals of halos will be
better once we adopt the number density-matching scheme for
simulations with different spatial resolution. We thus believe
that the parameters chosen to give a good accuracy on the
matter power spectrum are already adequate for a calibration of
halo clustering quantities without further modification.
We store outputs of each N-body realization in 21 redshift

bins in the range 0�z�1.48, equally stepped by the linear
growth rate for the fiducial Planck model. They are 1.48, 1.35,
1.23, 1.12, 1.03, 0.932, 0.846, 0.765, 0.689, 0.617, 0.549,
0.484, 0.422, 0.363, 0.306, 0.251, 0.198, 0.147, 0.097, 0.048,
and zero. We use the same redshifts to dump snapshots for
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other cosmological models. Since the time evolution of the
statistics relevant for our purpose is slow and monotonic, these
21 snapshots are sufficient to be interpolated to make a
prediction at an arbitrary redshift in between.

3.5. Halo Catalogs

Since the aim of this paper is to accurately characterize halo
clustering quantities, the identification of halos in each N-body
simulation output is of crucial importance. There have already
been comparison studies of different halo finders (e.g., Knebe
et al. 2011). While halo properties appear to be relatively
robust, the ability of finding substructures can differ signifi-
cantly depending on which algorithm is to be used, especially
near the center of halos (Pujol et al. 2014). We thus simply
select probable host halos in which galaxies of interest reside
and discard subhalos from our primary halo catalog when
building an emulator of halo clustering quantities.

As our default choice to identify dark matter halos in each
simulation output, we employ ROCKSTAR (Behroozi et al.
2013), which identifies dark matter halos and subhalos without
distinction based on the clustering of N-body particles in phase
space. We supplementarily use SUBFIND (Springel et al. 2001)
to study the dependence of the halo statistics on the finder
(see Appendix E). Throughout this paper, we adopt ºM

p r=M R4 3 200200m 200m
3

m0( ) ( ¯ ) for the halo mass definition,
where R200m is the spherical halo boundary radius within which
the mean mass density is 200 times rm0¯ . Again note that rm0¯ in
the above equation is due to our use of the comoving
coordinate, and therefore R200m is in the comoving length unit.
We follow the default setting of the ROCKSTAR finder and
define the center of each halo from the center-of-mass location
of a subset of member particles in the inner part of the halo,
which is selected to minimize the uncertainty caused by the
Poisson noise and the positional dispersion of individual
particles, which is larger at the outskirts. Our definition of halo
mass includes all of the N-body particles within the boundary
R200m around the halo center (i.e., including particles even if
they are not gravitationally bound by the halo). The halo mass
defined in this way is more relevant for weak-lensing
observables, which measure the total enclosed mass within a
given aperture.

After we identify halo candidates by either ROCKSTAR or
SUBFIND, we determine whether they are central or satellite
halos. When the separation of two different halos (between
their centers) is closer than R200m of the more massive one, we
mark the less massive one as a satellite halo. We keep halos
with mass above -h M1012 1

 in the final halo catalog. The
dependences of the halo clustering on the halo finder, mass
definition, and central/satellite split criterion are presented in
Appendix E.

3.6. Hybrid Fourier-direct Method to Measure the Correlation
Signal

After simulations are done and halos are identified, we
measure the clustering quantities. While correlation functions
can be accurately estimated by direct pair counting, such a
method can be computationally expensive due to its  N 2( )
scaling to the number of particles N. Here we develop a hybrid
method that combines the direct pair-counting method with a
grid-based method that makes use of FFT. The former is used
to measure the clustering signal on small scales, and the latter is

on large scales. The FFT method suffers from inaccuracy near
the grid spacing but is robust for scales much larger than the
grid size.
We measure the auto- and cross-correlation functions for

halo–halo, halo–matter, and matter–matter pairs. We employ
10243 FFT grids for the large-scale signal and use the direct
pair-counting method at scales below 5 or 10 h−1 Mpc for the
HR or LR runs that have 1 or 2h−1 Gpc for the box size,
respectively. These switching scales roughly correspond to five
times the FFT grid spacing, which is chosen so that the FFT
method provides good accuracy at scales greater than the
switching scale.
Figure 3 shows an example of our measurements of the

halo–matter correlation function for a halo sample with mass
larger than 1013 h−1 Me at z=0. For this exercise, we take one
HR simulation for the fiducial Planck cosmology and measure
the correlation function with direct pair counting up to 10 h−1

Mpc as a reference. Compared to this measurement, we show
the result of the FFT-based method (dashed line). Two features
can be found from the ratio. First, the FFT-based method starts
to deviate from the reference rather quickly as the separation is
decreased below ∼2 h−1 Mpc. This scale corresponds to about
twice the grid size and thus simply reflects the resolution limit
of FFT. Second, a noisy feature can be observed on
intermediate scales up to x∼8 h−1 Mpc. This is due to the
discrete sampling of the pair separations (we can take only an
integer vector in units of the grid spacing), together with the
subtlety in the choice of the bin center, which we take as the
geometric mean of the bin edges for simplicity. Note that this
pattern appears to be almost the same for different random
realizations and halo samples, supporting our interpretation
above. To avoid the large error due to the first effect, we
conservatively choose the switching scale to be 5 h−1 Mpc,
indicated by the vertical dotted line. Furthermore, the stitched
result is smoothed with a cubic spline function (see the next
section for details) to reduce the second effect on intermediate
scales while keeping the time-consuming pair-counting part to
only a limited range of pair separations. Our default result that
we will use in the emulator building is shown by the solid
curve.
In our initial implementation, we accelerate the pair-counting

method by first sorting both particles and halos into a coarse
grid with 2003 cells. We count pairs only in the same or

Figure 3. Accuracy of our hybrid Fourier-direct method. We plot with the
dashed line the ratio of the halo–matter cross-correlation function measured
with the FFT-based method to that from direct pair counting, which should give
the most accurate result. Compared to the reference result based on direct pair
counting, the FFT-based method shows overestimation at small pair separation.
Also, it shows a noisy pattern at intermediate separations. Our final method,
which combines the FFT with direct pair counting at x=5 h−1 Mpc (vertical
dotted line) and smoothed by a cubic spline (see later discussion), is shown by
the solid line. While a small residual can be seen near the switching scale of
5 h−1 Mpc, the overall behavior is within our target accuracy.
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adjacent cells from which pairs can be closer than the matching
scale. The code is then updated to employ a more sophisticated
sort-tile-recursive (STR) R-tree scheme for more efficient
spatial indexing (Mitsuhashi et al. 2016). Note that these
different versions give identical results, and the difference lies
only in the speed to perform the exact pair counting. Even with
the help of these methods, the measurement of the matter–
matter autocorrelation function is computationally expensive,
so we cannot measure it from all the snapshots for all the
models with 20483 particles. For this, we randomly select only
1/64 of the simulation particles in the measurement. This
random selection increases the Poisson noise to the measured
signal, but the typical error caused by this is not important over
the scales of interest, roughly larger than 0.1 h−1 Mpc. While
the main product of our emulator is the halo clustering
quantities, we also provide the matter autocorrelation function
for comparison, which can be used to estimate the effective
bias function of halos or galaxies under consideration.

In the FFT-based measurement, we use the cloud-in-cells
scheme (Hockney & Eastwood 1981) to assign matter particles
or halos to each grid density estimate and then perform the
FFT. We compute the product, d dk k1, 2,* , of two fields (where 1
and 2 denote halos and/or matter) at each wavenumber vector
k and then Fourier transform it back to the configuration space.
We take an average of the field product in each spherical shell
to estimate the correlation function at the radial bin.

4. Emulation

DARK EMULATOR is constructed based on the DARK QUEST
simulation suite and the analysis pipeline that was explained in
the previous section. In this section, we discuss how we
construct different modules, each of which predicts a statistical
quantity of halos, and combine them to form DARK
EMULATOR.

4.1. Overall Design

The final goal of our work is to build an N-body simulation–
calibrated emulator that provides an accurate prediction of
galaxy clustering quantities as a function of cosmological
parameters and parameters needed to connect halos and
galaxies for a given cosmological model. There are various
ways to do this. One way is to adopt an a priori parametric
prescription to connect halos and galaxies such as HOD, make
mock catalogs of galaxies in each N-body simulation realiza-
tion based on the assumed prescription, measure galaxy
clustering quantities from the mocks, and build an emulator
of galaxy quantities from the tabulated database with the model
parameters in the prescription treated as the input variables in
addition to the cosmological parameters. This approach was,
for example, employed in Kwan et al. (2015; see also Zhai
et al. 2019). However, an emulator built based on such a
method may produce inaccurate results with uncertainties
associated with galaxy–halo connection. For instance, there is
no guarantee that a restricted HOD functional form assumed in
the emulator can accurately describe the clustering properties
for a sample of galaxies in a given survey. In addition, the
radial profile of the satellite galaxies in a given host halo
has not yet been well constrained. Furthermore, some of the
central galaxies might be off-center from the true center.
Therefore, variations in galaxy clustering properties cannot be

incorporated in an emulator that employs the restricted model
of the halo–galaxy connection. Put another way, in this
approach, it is very difficult to modify or change an emulator
after its construction to include these variations and add
flexibilities in the model predictions.
For this reason, we employ an alternative approach in this

paper. The core function of our emulator is to predict several
basic halo clustering quantities that are given as a function of
cosmological parameters, halo mass, separation scale, and
redshift. We will combine the “modules” analytically at the
equation level, instead of using the mock catalogs, by
employing a halo–galaxy connection prescription (e.g., HOD)
to compute predictions of galaxy clustering quantities. The
design of our emulator is illustrated in Figure 4. It is composed
of three groups of modules, surrounded in the figure by
rounded rectangular boxes, each of which has a number of
functionalities as denoted by the text. The first group are
LINEAR MODULES, which predict the statistical quantities of
the linear matter perturbations (see Appendix A for details).
The second group is the core part and predicts various
statistical properties of dark matter halos (HALO MODULES).
Finally, at the bottom of the figure, we have UTILITY
MODULES, which combine the upper-level modules to
compute observable quantities. The key ingredient in this
group is the prescription to connect halos and galaxies (see the
items in the inset). Another functionality implemented here is
to compute the projected clustering quantities, such as the
galaxy–galaxy weak-lensing correlation function, by directly
projecting the three-dimensional correlation function along the
line-of-sight direction by numerical integration. We also
provide options to include possible baryonic corrections to
the mass profile near the halo center, as well as redshift-space
distortions (these effects will be presented in a separate paper).
Although we assume a specific HOD prescription as a working
example of halo–galaxy connection, a user can change it and
adopt another prescription to have the galaxy clustering
quantities from HALO MODULES. Thus, our method allows a
flexible modification of the halo–galaxy connection without the
need for additional training based on numerical realizations of
mock galaxy catalogs.

4.2. Resolution Study and Matching Scheme

Because of limited numerical resources, such as memory and
executive CPU time, we can run only a finite number of
N-body simulation realizations, where the size of each simulation
is mainly determined by the number of N-body particles. Even for
a fixed number of particles, there is a trade-off between the
resolution and the box size. While the former is responsible for
the minimum length scale and the minimum mass of halos down
to which the simulation results are accurate, the latter defines the
number of Fourier modes available in each simulation and thus
controls the statistical precision. The usual way to cover a wider
dynamic range of predictions is to combine simulations performed
in different box sizes and then stitch their results over separations
or wavenumbers between neighboring box-size simulations.
Indeed, such a method was used in previous works, such as
Lawrence et al. (2010), Valageas & Nishimichi (2011), and
Takahashi et al. (2012), where the main goal was to calibrate the
matter power spectrum. An analytical model based on perturbative
calculation was further combined at the large-scale limit in
Lawrence et al. (2010) to suppress uncertainties due to the large
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sample variance near the wavenumber corresponding to the
box size.

In this subsection, we examine the numerical convergence of
halo quantities using a set of simulations with different
resolutions. We then discuss a strategy to combine the results
of different simulations to predict the clustering signals over
wider ranges of halo masses and length scales.

4.2.1. HMF

In Figure 5, we first examine the HMF for the fiducial
Planck cosmology at three redshifts, z=1.02, 0.549, and 0,
using four N-body simulations with different numerical
resolutions. Note that the simulation with the lowest resolution
among the four, which has 2563 particles, has the same
resolution as our main LR suite, whereas the second from the
worst, with 5123 particles, corresponds to the resolution of the
HR suite. For reference, the HMF in Figure 5 is normalized by
the fitting formula of Tinker et al. (2008), with a mass
definition of 200 times the cosmic mean density. To have a fair
comparison, we integrated the Tinker et al. (2008) HMF
(hereafter Tinker HMF) over the halo masses in each mass bin,
which are used when we measure the HMF from simulations.

We can see that the measured HMF better matches the Tinker
HMF down to lower masses as the simulation resolution
increases. The four simulations agree with each other at the
high-mass end, although the curves are noisy due to the Poisson
noise. Note that these simulations are done in a comoving box
with a side length of 250 h−1 Mpc, which is smaller than our main
simulations of 1 or 2 h−1 Gpc used for the emulator development.
This suggests that our main simulations have much lower Poisson
noise at such high-mass bins. The vertical arrows, from right to
left for higher resolution, denote the halo mass corresponding to
100 N-body particles. The figure indicates that the simulation
HMF at this mass scale is underestimated by about 10%, fairly
independently of redshift. Thus, one needs at least several hundred
particles to estimate the HMF to a percent accuracy.

We here propose a way to empirically correct for a
systematic error in the estimated HMF due to numerical

resolution. Our method is motivated by the method in Warren
et al. (2006), which was developed for halos that are identified
by the friends-of-friends (FoF) method. They proposed that the

Figure 4. Layout of different modules of DARK EMULATOR. The cosmology dependences of the quantities in a square (i.e., “PCA coeffs.”) are modeled by the GP,
and those underlined are physical quantities evaluated in each of the modules. The whole DARK EMULATOR code is made up of three groups of modules (enclosed by
rounded rectangles). The first group of modules, shown at the top of the figure, is for linear theory quantities (LINEAR MODULES). The second group shows the
modules for the abundance and clustering properties of halos (HALO MODULES). These are calibrated with a suite of N-body simulations and the core pieces of DARK
EMULATOR. The modules at the bottom work on the outputs of the HALO MODULES and transform them into observable quantities (UTILITY MODULES). These
mainly connect halos to galaxies using an analytical prescription and project the three-dimensional quantities onto the two-dimensional sky.

Figure 5. Resolution study for the HMF. Here we fix the simulation box size to
250 h−1 Mpc and compare the mass functions measured from simulations with
different mass resolutions. We use simulations of a 1 h−1 Gpc box and 20483

particles (HR simulations) to build an emulator of HMF, which is equivalent, in
terms of the resolution, to the 5123 simulation in this plot. Plotted here is the
ratio of the simulation result to the fitting formula in Tinker et al. (2008) at
z=0. The arrows on the horizontal axis denote halo mass, which corresponds
to 100 particles for the halo mass definition of 200 times the cosmic mean
density. The two horizontal dashed lines denote a ±10% fractional difference
from the Tinker et al. (2008) mass function. The three panels show the ratio at
z=1.02, 0.549, and 0 (top to bottom).
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FoF mass of each halo is calibrated as

= - -M N M1 , 26p
0.6˜ ( ) ( )

where Np=M/mp is the number of member particles, mp is the
N-body particle mass, and M̃ is the corrected mass. Since the
FoF algorithm tends to link physically unbound particles near
the halo boundary when the mass resolution is poor, an FoF
halo mass tends to be overestimated compared to the true mass.
Hence, the FoF-based HMF tends to be overestimated for low
halo masses that are affected by numerical resolution. The
correction factor is applied to each FoF halo in such a way that
the FoF mass is reduced to correct for the overestimation in
HMF. This procedure was further confirmed in Crocce et al.
(2010), where the method was applied to FoF halos in MICE

simulations. On the other hand, our result in Figure 5 displays a
rather opposite trend: our HMF is underestimated in low-
resolution simulations, implying that the mass of each low-
mass halo tends to be underestimated. Since we use the SO
mass, the SO-based HMF is affected by the matter density field
around the halo region, which tends to be underestimated in
low-resolution simulations. This is different from the FoF
finder, and thus the opposite trend is understandable.

We thus use the following equation to correct for the SO
mass:

= + -M N M1 , 27p
0.55˜ ( ) ( )

where Np is the number of particles within R200m in the SO
mass definition. We employ a slightly different power of Np

from Equation (26) to get a better calibration. After this
correction, the HMFs from different resolution simulations

better agree with each other down to the resolution limit
denoted by the vertical arrows, as shown in Figure 6. Below the
mass limit, the SO halo mass becomes overcorrected, yielding
an overestimation in HMF. These trends after the correction
appear to be very similar at different redshifts. While a further
refinement of the empirical function given by Equation (27)
would be possible in principle, we do not use halos with less
than 200 particles when we calibrate HMF. Note that we
employed a slightly conservative threshold of 200 particles, as
compared to the case of 100 particles discussed in Figure 6.
Furthermore, we use only the HR simulations (resolution
equivalent to the one with 5123 particles here) for development
of the HMF emulator. We can determine HMF accurately down
to ∼1012 h−1 Me, and this number varies depending on the
cosmological model, as we will discuss below.

4.2.2. Correlation Functions

Next, we check the clustering correlation functions of halos.
In doing so, we need to consider subsamples of halos divided
by halo discriminators, such as halo mass, and then consider
the clustering correlations as a function of different subsam-
ples. In the left plot of each panel in Figures 7 and 8, we show
the halo–matter cross- and halo–halo autocorrelation functions
for a mass threshold sample of halos with -M h1012 1 or
´ -h M5 1012 1

 measured from the four simulations as in
Figure 5. Here the threshold mass -h M1012 1

 corresponds to
halos with more than 100 member particles for simulations
with more than 5123 particles, whereas it corresponds to halos
with only ∼10 particles for the 2563 simulation. Note that we
did not apply the correction from Equation (27) for halo masses
in these figures. While all of the correlation functions agree
with each other at large separations, the smaller scales clearly
show the effect of numerical resolution; the measurements from
a lower-resolution simulation start to deviate from those from a
higher-resolution simulation on scales smaller than ∼1 h−1

Mpc. The comparison of Figures 7 and 8 reveals that the
deviation is larger for a halo sample of smaller mass threshold.
The inaccuracy is ascribed to several facts. In a lower-
resolution simulation, halo masses around the mass threshold
are not determined accurately on an individual halo basis due to
the lack of numerical resolution, as discussed in Figure 5. Thus,
the halo sample of a given mass threshold becomes different
from that of a higher-resolution simulation. Moreover, the mass
distribution around each halo in a lower-resolution simulation
is simulated less accurately.
In this paper, we employ a slightly different sample of halos

to develop the emulator. Rather than using the mass as the
primary proxy of the different clustering strengths of halos, we
consider mass threshold samples and label each sample in
terms of the number density of halos above the threshold. We
expect two advantages from this conversion. First, the
cosmology dependence of the noise level of various statistics
is weaker compared to the samples labeled by the mass. Indeed,
we know that the mass of the heaviest halos available in each
simulation can be quite different among different cosmological
models and at different redshifts. Second, as is quite obvious
from Figure 5, the masses inferred from simulations are quite
sensitive to the resolution, especially at the low-mass end. To
see this more qualitatively, we show in the right plot of
each panel in Figures 7 and 8 the clustering signals for the
mass threshold samples with a fixed number density in each

Figure 6. Similar to Figure 5, but the plot shows the mass functions when
inaccuracies in individual halo masses due to limited mass resolution are
corrected for according to Equation (27).
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simulation. Here the number density is the same as that of the
mass threshold sample for the highest-resolution simulation
(20483) in the left plot, and the mass thresholds for other
simulations are determined to match the target number density.
Now an agreement between different resolution simulations is
better than in the left panel, reflecting the fact that the number
of halos in the sample is less affected by numerical resolution
compared to the mass threshold sample. Nevertheless, the
lowest-resolution simulation still exhibits a relatively large
deviation for the halo–matter cross-correlation at small scales,
especially for the sample corresponding to -h M1012 1

, because
the matter distribution in high-density regions is less accurately
simulated in such a low-resolution simulation. To avoid this
inaccuracy, we use only the HR simulations to estimate the
halo–matter cross-correlation function for different cosmologi-
cal models.

On the other hand, Figure 8 shows a slightly better
agreement among the four simulations with different resolu-
tions, implying that the halo–halo autocorrelation is relatively
robust against the numerical resolution. Note that larger scatters
in the ratio on small scales ( - h1 Mpc1 ) are due to the halo
exclusion effect, which states that the correlation signal is
sharply suppressed on small scales due to the fact that no halo
pair can exist below R200 radius of the larger one by
construction in our halo sample. Thus, a slight misestimation
of the halo radii due to numerical resolution can lead to a large
error in the correlation signal at a fixed scale around the typical
R200 of the sample. Since our final product is the galaxy
correlation function, and the one-halo term gives a dominant
contribution around these scales, the scatter seen here does not
largely affect the predictions of the galaxy autocorrelation
function, as we will show later. Based on these results, we use
the LR simulations to estimate the autocorrelation functions for
different cosmological models.

In summary, we use the correlation functions of halos
measured for halo samples with different number densities.
When this is combined with the HMF module that gives the
halo number density as a function of mass, one can compute
the halo correlation function for a given mass threshold instead
of the number density. Furthermore, we can compute the

correlation function of halos in an infinitesimally narrow mass
bin by taking the numerical derivative of the correlation
functions for a mass threshold halo sample with respect to the
threshold mass.

4.2.3. Large-scale Limit

The clustering correlation functions of halos measured from
each of the simulations become considerably noisy on very
large scales around the baryon acoustic oscillation (BAO) scale
due to the significant sample variance due to the finite
simulation volume, even for our LR simulations of 2h−1

Gpc size. To overcome this obstacle, we employ a semi-
analytical approach based on the propagator (e.g., Crocce &
Scoccimarro 2006a), which captures most of the expected
linear and nonlinear effects around the BAO scale. We then
stitch the prediction with the direct simulation results to obtain
model predictions over a wide range of scales, as described
below.
Figures 9–11 show the matter auto-, halo–matter cross-, and

halo autocorrelation functions on large scales, respectively. The
solid curves in the upper left panel of each figure depict the
correlation functions measured from each of the 14 LR
realizations for the fiducial Planck cosmology. Clearly, the
realization-to-realization scatter is large. For comparison, the
upper right panels show the linear theory predictions we
computed using the same Gaussian random realizations as in
the initial conditions of each simulation in order to properly
take into account the sample variance effect (see Section 4.3.4
for our method to determine the linear bias parameter from the
halo correlation functions). The scatter among the realizations
seen in the linear predictions is comparable to that of the
corresponding nonlinear counterparts, except for the halo–halo
autocorrelation function with a low number density of

- - -h10 Mpc5 1 3( ) (i.e., the right panels of Figure 11). This
suggests that the primary source of the scatter is indeed the
sample variance in the initial conditions, and the shot noise
adds only a moderate scatter for low-density samples of halos.
Since our varied cosmology simulation suite is, in principle,

performed only once at each model, the large scatters in the
measured correlation function make it difficult to construct an

Figure 7. Resolution study for the halo–matter cross-correlation function using simulations with different mass/spatial resolutions in a small box (250 h−1 Mpc per
side), as in Figure 5. For the module of the halo–matter cross-correlation, we use the HR simulations (1 h−1 Gpc box size and 20483 particles), which are equivalent to
the 5123 simulations in this plot. We show the results for the mass threshold samples in the two left panels, while in the right panels, the halo samples are chosen so as
to have an equal number density above the mass threshold. We show in the bottom panels the ratio to the simulation with 20483 particles as a reference.
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accurate emulator. Unlike the matter power spectrum, we
cannot switch to a parameter-free perturbative calculation on
these large scales because we have to know the halo bias that is
not accurately described by a simple analytical prescription that
often ignores the dependence on scale and cosmology. We
need an appropriate method where the sample variance is
sufficiently reduced and, at the same time, the large-scale bias
of the halos under consideration is properly taken into account.

Another important effect on the BAO scale, in addition to the
large-scale bias, is the damping of the BAO feature. This is
clearly visible from comparison of the upper left and right
panels in Figures 9–11. It is known that this effect is to a large
extent due to the large-scale bulk motion of the cosmic fluid,
which can be accurately modeled by the propagator (Crocce &
Scoccimarro 2006a). In their paper, the propagator for the
matter field is defined by

d
d

¶F
¶

º - ¢
¢

k k G k , 28k

k

a
a

,

lin,
D
3 ( ) ( ) ( )

where Φa can be either the density or the velocity divergence
field of matter. Note here and in what follows that the linear
density field δlin and its power spectrum Plin are always scaled
by the linear growth factor to the same redshift as other
quantities, such as Φa or Ga. The function Ga(k) is called the
(two-point) propagator, which shows a damping form very
close to a Gaussian shape toward high k. This function can be
interpreted to describe how much memory of the initial density
field (δlin) persists in the final (nonlinear) fields (Φa). One can
analytically show that this function is exactly a Gaussian with
its variance equal to the inverse square of the rms displacement
field in the case of the Zel’dovich dynamics for a Gaussian
initial condition.
In most of the resummed perturbation theories, the leading-

order contribution to the mixed power spectrum of two fields δa
and δb is expressed asG k G k P ka b lin( ) ( ) ( ), where the subscripts a
and b can be the density or velocity divergence of matter or any
tracers (e.g., Crocce & Scoccimarro 2006b, 2008; Bernardeau
et al. 2008) and Plin(k) is the linear matter power spectrum. The
IFT of this combination gives a reasonable prescription on the
two-point correlation function around the BAO scale,

x =r G k G k P kiFT , 29a b a b, ,tree lin( ) [ ( ) ( ) ( )] ( )

where we use the subscript “tree” to indicate that this quantity
is the tree-level result (i.e., the leading-order diagrams) of the
resummed perturbation theories. Indeed, Equation (29) with a
simple Gaussian approximation of the propagator can already

Figure 8. Resolution study for the halo–halo autocorrelation function from simulations with different mass/spatial resolutions, as in the previous figure. For the
module that computes the halo–halo correlation, we use simulations of 2 h−1 Gpc box size and 20483 particles (hereafter LR simulations) that are equivalent to the
2563 simulations in this plot.

Figure 9. Matter autocorrelation function around the BAO scale. We show in
the upper left panel the correlation function measured from the 14 LR
simulations for the fiducial Planck cosmology at z=0. The upper right panel
shows the linear correlation function for the Gaussian random realizations that
correspond to the initial conditions used in the simulations of the upper left
panel. The lower left panel shows the results computed by taking the inverse
Fourier transform (IFT) of the product of the propagator and the linear power
spectrum, referred to as G k P kiFT m

2
lin[ ( ) ( )] here, for the same random

realizations (see text for details). Finally, the lower right panel shows the
average of the curves in the other panels over the 14 realizations. The crosses
with error bars show the difference between the full nonlinear curves and the
propagator-based model for the random realizations considered here. The solid
and dashed curves denote analytical calculations for the linear theory and
propagator model, respectively.
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explain the damping of the BAO peak in the matter correlation
function very accurately (e.g., Matsubara 2008). By going into
higher orders, a subpercent-level shift in the BAO peak
location to a smaller separation scale can be realized (Crocce &
Scoccimarro 2008). This will be important in interpreting the
BAO-related distance measurements from actual observations.

We now consider the propagator for halos. One can define
the propagator by simply replacing Φa with the density field of
halos in a given sample. In what follows, we denote this by
Ga(k), where the subscript a is either the matter or the halo
density field. In case of halos, the low-k limit of the function
corresponds to the linear bias factor. A damping behavior at
high k should be similar to that of the matter field, and this
damping is responsible for the smearing of the BAO peak
measured through the clustering of halos. We show the
functions for matter and halos with different number densities
and at different redshifts in Figure 12, and they are measured
from the 14 LR realizations of the fiducial Planck cosmology.
We estimate the function by taking

=G k
P k

P k
, 30a

a,lin

lin
( ) ( )

( )
( )

where P ka,lin ( ) is the cross-power spectrum of tracers “a” and
the linear density field. In this estimator, we use the linear
power spectrum Plin(k) measured from the linear density field
used for the initial condition instead of the theoretical smooth
function, and the sample variance is largely suppressed by
taking this ratio. Indeed, the scatter among the 14 realizations
seen in the figure is rather small, especially for low number
density halo samples compared to the scatter in the corresp-
onding autocorrelation function in Figure 11. The overall trend
of this function looks very simple, as already discussed; it
appears to be a Gaussian-like damping function with a linear
bias factor at the low-k limit that depends on the halo number
density. In addition, we can see that the damping starts at

smaller k at lower redshifts, reflecting the fact that the
information in the initial density field remains more on larger
scales and at higher redshifts.
To summarize, our strategy to describe the large-scale limit

of matter or halo correlation functions is to emulate the
function Ga(k) for both matter and halo fields and substitute it
into Equation (29). Likewise, we take the same combination for
the random fields δlin used in the initial conditions, which we
schematically denote as dGiFT lin

2[( ) ]. We show this model in
the lower left panel of Figures 9–11 for the random realizations
corresponding to the 14 simulations shown in the upper panels.
The curves obtained in this way appear to be very similar to the
direct simulation results in the upper left panels.
Finally, the averages of these curves are shown by the

downward-pointing triangles with error bars in the lower right
panel. They are almost indistinguishable from the circles for
the nonlinear correlation function directly measured from
the nonlinear fields. Indeed, their differences, shown by the
crosses, are consistent with zero. A closer look at the scale
dependence of this residual indicates a small pattern that would
cause a small shift on the BAO peak toward a smaller scale.
It tends to be positive around the inflection point of the
correlation function (at around 90 h−1 Mpc) and negative at
scales smaller than 80 h−1 Mpc. Since in most cases, these
features are within the error bars, which correspond to the
scatter among realizations, we simply ignore this small residual
in the following discussion.
We also show the continuous limit of the model,

Equation (29), by the dashed line. This is the expectation
value of the downward-pointing triangles in the limit of an
infinite number of realizations. Our final model for the large-
scale correlation function is this line. With this procedure, we
can reduce the sample variance significantly, since the
prediction is based on the noiseless linear power spectrum
Plin. Our approach works well even in the case of the halo
autocorrelation function for a halo sample with a small number
density (see the upper left panel in the right part of Figure 11);

Figure 10. Similar to Figure 9, but for the halo–matter cross-correlation functions. Here we show the results for halo samples with number densities of 10−3 and
- - -h10 Mpc5 1 3( ) in the left and right panel, respectively.
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the unaccounted shot-noise effect only adds a random scatter,
and no systematic trend can be seen in the residual. We will
explain how we switch from the direct measurement of the
correlation functions to the prescription based on the
propagator explained here in Section 5.1.1.

4.3. Implementation Detail and Performance

We have so far described the building blocks of our DARK
EMULATORS. Below, we describe how to model their
cosmological dependences.

Our basic strategy for emulator development is as follows.
First, we build a data vector for each of the four main halo
functions (HMF, halo–matter cross-correlation, halo–halo
autocorrelation, and propagator), including their dependence
on redshift, separation, and number density, which can be
translated into the halo mass threshold, from simulation
realizations of each cosmological model. Second, we apply
PCA to the data vector, which allows for a huge dimensionality
reduction of the data vector by keeping only a handful of the
most significant principal component (PC) coefficients (see
also Lawrence et al. 2010, for a similar method for the matter
power spectrum). In doing so, we use a public PCA package,
EMPCA(Bailey 2012), which allows us to introduce a
weighting to the input data vector. An advantage of this
weighting method is that we can put a zero weight to missing
data. Third, we apply GPR to the significant PC coefficients for
different cosmological models in order to have a quick GP
interpolation of the model prediction of each of the halo
functions in an arbitrary cosmological model. As for the GPR,
we use a public code, GEORGE(Ambikasaran et al. 2015). We
adopt a stationary kernel function with either EXPSQUARED,
EXP, MATERN32, or MATERN52 and pick one for each PC
coefficient based on the likelihood of explaining the data after
optimization.

In building the emulator, we use multiple realizations for the
fiducial Planck cosmology to estimate errors in the PC
coefficients. Assuming that the errors are independent of

cosmology, we add the errors in square into the diagonal
components of the GP kernel function. Unless otherwise stated,
we use 80 simulations in slices1–4 from either the HR or
the LR suite. The remaining 20 models in slice5, as well as
the fiducial Planck model, are used for a cross-validation of the
emulator outputs.
We describe the details of the actual implementation of

the four main halo modules in the following subsections.
The connection to the galaxy statistics will be explained in the
subsequent section.

4.3.1. HMF

In this section, we describe how to build a module of the
HMF. As shown in Figures 5 and 6, the fitting formula by
Tinker et al. (2008) works very well, at least for the fiducial
cosmology at z=0. The fitting function we use in the
following is a modified version of the earlier model in Press &
Schechter (1974; see also Sheth & Tormen 2002), given by
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where Plin(k; z) is the linear matter power spectrum at redshift z,
and W kR˜ ( ) is the Fourier transform of a top-hat filter of radius
R that is specified by an input halo mass M via =R

prM3 4 m,0
1 3( ¯ ) . Tinker et al. (2008) showed that the HMF

measured in the simulations is well fitted by the above

Figure 11. Similar to Figure 10, but for the halo–halo autocorrelation functions for the two number density–selected samples, as before.
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functional form with time-dependent coefficients:

= + -A z z0.186 1 , 340.14( ) ( ) ( )
= + -a z z1.47 1 , 350.06( ) ( ) ( )
= + a-b z z2.57 1 , 36( ) ( ) ( )

=c z 1.19, 37( ) ( )

a = -
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The overdensity Δ is 200 in our halo mass definition.
The variation in the HMF over our 100 cosmological models

can be found in the left panel of Figure 13 (gray curves). We
employ the HR suite here and choose to show the HMF at
z=0.55 as a typical redshift of the CMASS galaxies. We also

show (red curve) the HMF for the fiducial Planck cosmology
(the mean of 28 realizations). The 100 models are taken from
the five SLHD slices (hereafter slice 1, 2, K, 5), each of which
consists of 20 different cosmological models, as described in
Section 3.1. The variation in the HMF is quite large, and it is
not so obvious whether or not the universal form of
Equation (32) can explain it.
Before constructing an HMF module, we first test the accuracy

of the Tinker HMF against our simulation suite (HR runs).
Figure 14 compares the simulated HMF with the original Tinker
HMF prediction (using the coefficients in Equations (34)–(37)) for
each of 20 cosmological models in slice5 at three redshift bins,
z=0, 0.55, and 1.48. The comparison indicates a larger deviation
of the Tinker formula from the simulation results as redshift
increases. At z=0, the ratio of our HR simulation suite to the

Figure 12. Propagator for the matter and halo density fields (see Equation (28) for the definition of the propagator). We here consider the halo samples with number
densities nh=10−5, 10−4, and - - -h10 Mpc3 1 3( ) and show the results at redshifts z=1.48, 0.55, and 0 in the left, middle, and right panels, respectively. We multiply
the linear growth factor D+(z) to reduce the dynamic range.

Figure 13. Modeling of the HMF. Left panel: variations in HMF at z=0.55, which are measured from each simulation of 100 cosmological models in the HR
simulation suite (each simulation has 1 h−1 Gpc on side). The red curve shows the HMF for the fiducial Planck cosmology. In the upper middle panel, we model the
HMF in each simulation by a functional form of Tinker et al. (2008; Equation (32)), where we estimated the best-fitting parameters of A and a to the simulated HMF
but used the same b and c in Equations (36) and (37). Each gray curve is the ratio of the simulated HMF to the best-fit Tinker HMF for each of 100 cosmological
models. The point and error bar at each mass bin in this and the following panels denote the mean and scatter of the ratios at the mass bin. The shaded region in this
and other plots denotes the statistical uncertainties in the HMF that are estimated from scatters of HMFs in the 28 realizations of Planck cosmology. The horizontal
dotted lines denote ±5% in the fractional difference. In the lower middle panel, to model the redshift and mass dependence of the HMF in each cosmological model,
we performed PCA to the best-fitting Tinker parameters, A and a, at each of 21 output redshifts over the range 0<z<1.48, hence 42 data points in each
cosmological model (see text for details). The plot shows that keeping the six most significant PC coefficients gives almost identical accuracy as compared to the
results after the model fitting (upper panel). The loss of accuracy induced in this procedure is less than 1% in all cases. In the upper right panel, we perform the GPR to
the PC coefficients at 80 sampling points in slices1–4 in six-dimensional cosmological parameter space. The lower right panel is a validation test of the GP
interpolation, i.e., our HMF emulator module, showing how the GP interpolation can reproduce the simulated HMF in each of 20 cosmological models in slice5,
which are not used in the GPR.
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Tinker MF typically shows 5% scatter from the Tinker MF, with
the mean slightly biased from unity (by ∼2%–3%). The overall
slope of the HMF is already very well captured by this formula,
and the error is mostly on the amplitude. At higher redshifts, both
the bias and the scatter grow. At z=1.48, the slope of the ratio
shows a clear mass dependence with a larger bias toward the
massive end. We leave further discussion on the inaccuracy of the
original Tinker HMF formula to Appendix B, where we discuss
that this discrepancy is mainly due to the fact that the Tinker HMF
was calibrated against simulations using initial conditions based
on the Zel’dovich approximation at an initial redshift that is not
high enough.

From this exercise, we decide to update some of the
parameters in the Tinker HMF. We drop the assumption of the
HMF universality and allow the parameters A and a to vary as a
function of cosmological models. For the parameters b and c,
we keep the values given by Equations (36) and (37), where b
determines the slope of the HMF at the low-mass end and c
determines the cutoff at the high-mass end. Our HR suite is
most accurate over the intermediate range of halo masses,
where the overall amplitude and the slope are controlled by the
parameters A and a, respectively. Therefore, we recalibrate
these parameters for each of our simulations.

The upper middle panel of Figure 13 addresses how the
functional form given by Equation (32) can fit the simulated
HMF for each of 100 cosmological models with the updated
parameters. Here we estimate the best-fitting parameters of a
and A that reproduce the simulated HMF. In the fitting, we
consider two sources of errors. For high-mass bins, we consider
statistical uncertainties due to the Poisson noise of the number
counts. We also include a phenomenological penalty term at
the low-mass bins, where the correction (Equation (27)) plays a
significant role. That is, in the model fitting, we include the
following statistical errors in the number counts of halos at
each mass bin:

D
= +

N

N N N

1 1
, 39h

h h p
( )

where Nh is the number of halos at each mass bin, and Np is the
number of N-body member particles, M/mp, at the logarithmic
bin center. Moreover, we do not include any mass bin of halos
that are defined by Np<200. The figure shows that our model
HMF generally gives a very good fit to the simulated HMF for
each of the 100 cosmological models, where the ratio is very
close to unity well within the ±5% accuracy denoted by the
horizontal dotted lines. At the high-mass end, the simulation
data points are dominated by Poisson noise due to a too-small
number of halos per bin. The circle and error bar at each mass
bin are the average and scatter in the ratios of the best-fit HMF
to the simulated HMF for the 100 cosmological models. For
comparison, the red shaded region denotes scatters among the
28 realizations of Planck cosmology, giving an estimate of the
sample variance for a volume of 1(h−1 Gpc)3. The typical
accuracy of the model as indicated by the error bars is ∼1%
(3%) at 1013 (1014) h−1Me.
We then compress the data vector, = ¼d A a A, , , ,0 0 20(

a20), which consists of the fitting parameters A and a at each of 21
redshifts (therefore, 42 data in total) for each cosmological model,
using PCA. Combining all data vectors for 100 cosmological
models, as well as 28 realizations of the fiducial Planck cosmology
(therefore, 128×42=5376 data points in total), we decompose
the data vector for the ith simulation, di, into the PCs as

å a=
=

d e , 40i
j

n

i j j
1

,
HMF HMF ( )

where ej
HMF is the jth eigenvector with 42 components, which is

independent of the cosmology or simulation realization, and
ai j,

HMF is the jth PC coefficient for the ith simulation. After
various checks, we find that keeping the six most significant PC
coefficients for each cosmological model, corresponding to
n=6 in Equation (40), is sufficient to keep the error induced
in this step to a subpercent level. The accuracy level after
applying the PCA method is not degraded to an extent easily
visible by eye when we compare the lower and upper middle
panels of Figure 13. In doing the PCA analysis, we
downweight the components A(z) by a factor of 10 compared
with a(z) to compensate for their different dynamic ranges.
Our next task is to collect the six PC coefficients (ai j,

HMF in
Equation (40)) for different cosmological models and perform
GPR to interpolate each of the six PC coefficients between the
sampled cosmological models, each of which is located at a
particular position in six-dimensional cosmological parameter
space. To do this, we apply the GPR to the PC coefficients for
the 80 cosmological models included in slices1–4 as the
training set, excluding the 20 cosmological models in slice5
(see Section 3.1 for details). Note that we do not include the
fiducial Planck cosmology in this GPR either. The upper right
panel of Figure 13 compares the GPR HMF with the simulated
HMF for each of the 80 cosmological models in the training
set. The GP does not perfectly reproduce the results of PCA at
each of sampled cosmological models because we take into
account the statistical uncertainties of the training data in the
regression. Nevertheless, the plot shows that after applying the
GPR, the rms in the ratios among different cosmological
models are kept below ∼1% (3%) on M 1013 (1014) h−1 Me.
The lower right panel of Figure 13 is the most important plot

that gives an assessment of the performance of the HMF

Figure 14. Comparison of our simulation HMF with the original Tinker fitting
formula (Tinker et al. 2008).
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emulator for an arbitrary cosmological model. The plot
compares the GP-interpolated HMF with the simulated HMF
for each of the 20 cosmological models in slice5 that are not
used in the GPR and serve as a cross-validation sample. The
HMF emulator achieves great accuracy to predict the HMF,
better than a few percent, in the amplitude up to halo masses of
a few times 1014h−1 Me. The performance is degraded for
more massive halos, but the inaccuracy (averaged value
denoted by the circle at each bin) is comparable with the
statistical scatter. The good performance suggests that our GP
method does not suffer from an overfitting to the training set.

While the performance of the emulator can be assessed fairly
precisely for halo masses up to ∼1014 h−1 Me, the scatter
among the models appears to be large for cluster-sized halos.
While the large scatter could be simply due to the inaccuracy of
the emulator, it can be partly due to the large Poisson noise,
which can significantly affect the measurements used as the
reference due to the small number of available cluster-scale
halos in the simulations. As a final check of the accuracy of the
emulator at the high-mass end, we compare the emulator
prediction to the measurement from the LR simulations, which
have bigger volume and are thus less affected by the Poisson
noise.

In Figure 15, we show the ratio of the mass function
measured from these LR simulations to the emulator prediction,
which is trained based on the HR simulation suite. We show
the mean and scatter among the 20 cosmological models in
slice5, with individual cosmology result (gray solid curve).
We apply the correction of the mass based on the number of
member particles (Equation (27)) for the upper set of curves,
while we do not apply this to the lower set of curves. Since the
size of the correction is pretty large for a mass less than several
times 1013 h−1 Me for these sets of simulations, we cannot
derive a clear conclusion for these masses given the empirical
nature of the correction. For more massive halos, the simulation
results after the correction are very close to the emulator
prediction. The scatter among the models is much smaller than
what we can see in Figure 13, suggesting that the large scatter
in the previous figure is indeed mainly due to the large Poisson
noise in the reference simulations. However, a closer look at
Figure 15 reveals that the mean of the ratio among the
cosmological models for cluster-size halos is systematically

above unity by ∼1%–2%. This would be a slight inaccuracy of
the emulator due to the use of the HR simulation suite with a
smaller volume. Since the size of this systematic error is
comparable to those discussed for less massive halos based on
the HR suite, we do not further consider the possibility of
combining the measurements from the LR and HR simulation
suites and instead stick to the emulator build based only on the
HR suite for the HMF.

4.3.2. Halo–Matter Cross-correlation Function

We now discuss the halo–matter cross-correlation function.
We first measure the cross-correlations for 13 mass threshold
halo samples with different number densities at each of 21
redshifts from each simulation run, where we define the halo
samples in 13 logarithmically spaced bins in the range of

= - - - -n h10 , 10 Mpch
8.5 2.5 1 3[ ]( ) (i.e., two bins per decade).

For each measurement, we have 140 separation bins (40
logarithmic bins from 0.01 to 5 h−1 Mpc for the direct pair-
counting method and 100 linear bins from 5 to 500 h−1 Mpc for
the FFT method; see Section 3.6 for details). We thus have
13×21×140=38,220 data points per simulation.
The left panel of Figure 16 shows variations in the halo–

matter cross-correlations for 101 different cosmological models
in the HR simulation suite for the mass threshold halo sample
with a number density of - - -h10 Mpc4 1 3( ) and at z=0.55.
This halo sample is chosen to roughly mimic the number
density and large-scale bias of the CMASS galaxies. The plot
displays rich cosmological dependences over scales ranging
through the one-halo, two-halo terms to BAO scales. We then
reduce the dimensionality of the data vector by first resampling
the separation bins and then applying a PCA. The former is
done using a cubic spline interpolation of the original data
points up to 100 h−1 Mpc, with more data points around the
one- and two-halo transition scale (i.e., around a Mpc scale), as
depicted by the vertical dotted lines in the middle panel of
Figure 16. We take 66 data points after the resampling. This
procedure degrades the accuracy on small scales by no more
than 3% (40 h−1 Mpc). One might notice a small wiggly
feature around 6 h−1 Mpc. This is due to the grid effect of the
FFT method around the switching point to the direct pair-
counting method, as described in Figure 3. Our spline function
tries to remove this spurious feature to some extent by forcing
the curve to be smooth. Since the raw simulation measurements
employed here as the numerator still suffer from this artifact,
the feature is still present in the ratio.
Our data vector still has 13×21×66=18,018 compo-

nents per simulation, which is quite large. We apply PCA to
this data vector. As in the case for HFM, we combine all of the
data vectors from 128 simulations (100 for the varied
cosmological models plus the 28 Planck cosmology simula-
tions), corresponding to 128×18,018=2,306,304 data
points, and parameterize the halo–matter cross-correlation into
its PCs as

åx a=
=

x n z e x n z, , , , , 41i
a

n

i a ahm h
1

,
CCF CCF

h( )∣ ( ) ( )

where x x n z, , ihm h( )∣ is the halo–matter cross-correlation at
separation x for the halo sample with number density nh and at
redshift z in the ith simulation; ea

CCF is the ath PC eigenvectors
given as a function of separation x, nh, and z (cosmology-
independent); and ai a,

CCF is the ath PC coefficient for the ith

Figure 15. Comparison of the emulator prediction against the simulations in
the LR suite. We consider the 20 cosmologies in slice5 at z=0.55 and show
the ratio of the measurements from the LR suite to the emulator predictions.
We show the results both with (upper) and without (lower) the mass correction
(Equation (27)). Similar to Figure 13, we show the mean and scatter among the
models by the error bars, and the individual cosmologies are shown by the gray
solid curves.
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simulation. Thus, the eigenvectors ea
CCF{ } describe depen-

dences of the halo–matter cross-correlation on separation, halo
sample (halo number density), and redshift. The different
eigenvectors, ea

CCF and eb
CCF with ¹a b, are orthogonal to each

other. The PC coefficients ai a,
CCF{ } describe the dependences on

different simulations, i.e., cosmological models. In applying
this PCA, we adopt the weight for each data point by

- -n x x1 exph
2[ ( )] (x is in units of h−1 Mpc), such that the

data points containing the halo sample of higher number
density are upweighted, and the data points at large separation
(x) are relatively upweighted; we empirically find the functional
form of weight that satisfies these conditions. As shown in the
upper right panel of Figure 16, we find that keeping the five
significant PC coefficients reproduces the simulation results
within a 5% accuracy on x30 h−1 Mpc for each of 100
cosmological models, despite the huge dimensionality reduc-
tion (from 18,018 to 5). While we can see a relatively large
deviation from unity at around 1 h−1 Mpc for a few
cosmological models, the rms among the 100 models, as
shown by the error bars, is typically below the 2% level on
small scales up to ∼20 h−1 Mpc and reaches to 5% at ∼40 h−1

Mpc. Since the halo–matter cross-correlation is a smooth
function anyway, the PCA decomposition of the halo–matter
cross-correlations works very well.

However, note that the PCA description cannot well describe
the correlation at very large separations. The scatter of the
curves around unity is consistent with the statistical error of the
simulation data due to a finite number of simulation realizations
or, equivalently, a finite simulation volume, as shown by the
red shaded region, which is estimated from the 28 simulations
at the fiducial Planck cosmology. We will instead use a
different prescription, the propagator method, for the very large
scale to overcome both sample variance in the simulation data
and inaccurate modeling, as we will describe later.

We then perform GPR to model the cosmology dependence
of the PC coefficients for 80 cosmological models in

slices1–4, which is our training set, similar to Figure 13.
Again, note that we do not include the 28 Planck cosmology
realizations for this GPR. The upper right panel of Figure 16
shows that the GPR does not degrade the accuracy compared to
the results after the PCA by more than 1% for the 80
cosmological models. The lower right panel gives a validation
of our emulator; the GP interpolation reproduces equally well
the cross-correlation function for each of 20 validation
cosmological models in slice5, which are not used in the
GPR. The scatter is similar to the statistical error denoted by the
shaded region (the sample variance of 28 Planck cosmology
simulations). Thus, again, our GPR interpolation performs well
without significant overfitting.
In Appendix F, we show the performance of the GP

interpolation for different redshifts, as well as a different
sample of halos that are characterized by the different number
density in each cosmological model.

4.3.3. Halo Autocorrelation Function

We next discuss the halo autocorrelation functions. In this
case, we generally need to consider two mass threshold halo
samples of different number densities, and thus the dimension
of the input data vector is even larger than that for the halo–
matter cross-correlation functions. However, we cannot obtain
a meaningful signal for halo samples with number densities
lower than ~ - - -h10 Mpc6 1 3( ) , unlike the halo–matter cross-
correlation function due to the large Poisson noise. Hence, we
consider here only eight bins with a high number density out of
the 13 bins that we considered for the cross-correlation
function. We thus consider 36 (=8(8+1)/2) combinations for
the two halo samples to form a matrix of autocorrelation
functions at each of 21 redshifts and at each separation bin per
simulation.
The left panel of Figure 17 shows variations in the halo

autocorrelation functions for 101 cosmological models for
the mass threshold halo sample with number density =nh

- - -h10 Mpc4 1 3( ) and at z=0.55 that are now computed from
the LR simulation suite. The plot shows rich cosmological

Figure 16. Modeling of halo–matter cross-correlation functions, similar to Figure 13. Here we consider the halo sample at z=0.55 and with a number density
= - - -n h10 Mpch

4 1 3( ) , corresponding to the mass threshold of ´ -M h M2.8 1013 1
 for the Planck cosmology, as an example. In the upper middle panel, we

employ a resampling of separation bins, where the resampling points are denoted by the vertical dashed lines, and then model the cross-correlations by a cubic spline
interpolation. The plot shows the interpolation results compared to the correlations directly measured from 100 simulations (see text for details). The lower middle
panel shows the results when we model the cross-correlations using the PCA analysis for the data vectors, including cross-correlations in separation bins, halo sample
bins, and 21 redshift bins (18,018 data points). Here we show the results obtained by using the five most significant PC coefficients (therefore, a huge dimension
reduction from 18,018 to 5). The right panels show the emulator predictions for the training (upper) and validation (lower) cosmologies that are obtained after applying
the GPR to the PC coefficients for the training simulations at 80 cosmological models. We show (red shaded region) the statistical uncertainties that are estimated from
scatters in the 28 realizations of the fiducial Planck cosmology.
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dependences in the halo autocorrelations over the range of
separation scales.

We then reduce the dimensionality of the data vector by first
resampling the separation bins. We originally have 185 bins for
each of the autocorrelation functions, 40 from the direct pair-
counting method ( < <- -h x h0.1 Mpc 10 Mpc1 1 ) and 145 for
the FFT method (up to -h300 Mpc1 ). Since the autocorrelation
function has a smooth shape at scales below BAO scale, we can
significantly reduce the number of sampling points. As in the
halo–matter cross-correlation case, we use a cubic spline
interpolation to obtain the new data vector, and the vertical
dotted lines in the upper middle panel denote the locations of
new sampling points (21 points in total). The error level after
this procedure is around 3% for the worst cases and 1%–2%
in terms of the rms among the models on scales  x1

- h Mpc 401[ ] . The larger error on smaller scales is due to the
significant halo exclusion effect.

Even after the above resampling of separation bins, we still
have 21×21×36=15,876 data points per simulation. The
next task is to reduce the dimensionality of the data vector using
PCA. As in the case of the halo–matter cross-correlations, we
combine all of the data vectors from 114 simulations (100
cosmological models plus 14 Planck cosmology simulations),
corresponding to 114×21× 21×36=1,809,864 data points,
and parameterize the halo autocorrelation into its PCs as

åx a=
=

x n n z e x n n z; , , , , , , 42i
a

n

i a ahh 1 2
1

,
ACF ACF

1 2( )∣ ( ) ( )

where x x n n z, , , ihh 1 2( )∣ is the halo correlation function at
separation x for the two mass threshold halo samples with
number densities =n nh 1 and n2, respectively, and at redshift z
in the ith simulation; ea

ACF is the ath PC eigenvector given as a
function of separation x, n1, n2, and z; and ai a,

ACF is the ath PC
coefficient for the ith simulation. In applying the PCA, we
adopt the weight, given as n n x1 2

2, that is given as a function of
the two number densities n1 and n2 and the separation x.
However, since we use the LR suite here, there is a case that we
cannot define a sample of halos with the highest number
density, e.g., = - - -n h10 Mpch

2.5 1 3( ) , depending on redshifts
and cosmological models. In such cases, we set the weight for

PCA to zero. After some experiments, we find that keeping the
eight significant PC coefficients well reproduces the simulation
results. To be more quantitative, we can maintain the error level
of a few percent with a slight degradation toward the large
scales ( - h10 Mpc1 ), as shown in the lower middle panel of
Figure 17. Thus, we made a huge dimensionality reduction of
the data points (from ´1.8 106 to 8). The error induced by this
GPR is negligibly small except for very large scales, where we
stitch to the propagator-based prescription, as we will describe
below.
Next, we perform GPR to model the eight PC coefficients for

80 cosmological models: 80 different cosmological models in
slices1–4. The upper right plot of Figure 17 shows that the GP
interpolation reproduces the simulation results for each of 80
cosmological models, which is the training set for the GPR, within
1%–5% rms accuracy, depending on the scale. The lower right
panel gives a validation of our emulator; the GP interpolation
gives 2%–3% rms accuracy on - x h1 Mpc 201[ ] for the 20
cosmological models in slice5, which is the validation set.
It is worth noting that there are differences in the GPR results

between the halo–matter cross- and halo autocorrelations. First,
the small-separation data points have large scatters, which is
not seen in the cross-correlation function. This is due to the fact
that the autocorrelation function is suppressed on these small
scales due to the halo exclusion effect. We eventually expect a
zero-crossing of the autocorrelation function at the scale where
the halo exclusion effect is dominant, and thus the ratio at
the zero-crossing scale becomes large and noisy. Second, the
accuracy of the emulator prediction is worse than that for the
cross-correlation because of the larger noise of autocorrelation
measurements due to the Poisson noise originating from the
discreteness of halos.
In Appendix F, we show the performance and validation for

the halo autocorrelation functions for halo samples of different
number densities and redshifts, as well as the cross-correlations
between two halo samples with different number densities.

4.3.4. Propagator

The final piece of our halo modules is the propagator that
describes the large-scale correlation functions around BAO

Figure 17. Modeling of the halo–halo autocorrelation functions, similar to Figure 16 for the halo–matter cross-correlation functions. As before, we consider halo
samples with = - - -n h10 Mpch

4 1 3( ) at z=0.55. Variations in the function over the 101 cosmological models (left), the accuracy of our modeling procedures
(resampling: upper middle; PCA: lower middle), and the performance after applying the GPR (training set: upper right; validation set: lower right) are shown, with the
red shaded region indicating the scatters among the 14 simulations of the fiducial Planck cosmology.

21

The Astrophysical Journal, 884:29 (47pp), 2019 October 10 Nishimichi et al.



scales. Since the halo–matter cross-correlation function
involves the propagators of halo and matter, we here study
both. We use the LR suite for this purpose, as the damping
behavior of the propagator is known to be mainly due to the
large-scale bulk motion. Since the estimation of the propagator
is done by using the cross-correlation between the halo (or
matter) density field and the linear density field used in setting
up the initial conditions of the simulations (i.e., Equation (30)),
the measured data do not show discreteness noise, unlike what
we see in the halo autocorrelation functions. Therefore, we can
measure it to a reasonably accurate precision for all 13 number
density bins for the mass threshold samples from 10−2.5 to
10−8.5 (h−1 Mpc)−3 used for the halo–matter cross-correlation
functions.

Since the shape of the propagator is roughly a Gaussian with
its width being the rms displacement, as shown in Figure 12,
we parameterize it as

s
= + + -G k g g k g k

k
exp

2
, 43a 0 2

2
4

4 d,lin
2 2

( ) ( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
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where g0 can be interpreted as the linear bias at the large-scale
limit and sd,lin is the linear rms displacement for the matter field
at the redshift under consideration, which is computed by the
linear module. The other coefficients, g2 and g4, are fitting
parameters, introduced to capture a departure from the simple
Gaussian form. In the above, the subscript a on the left-hand
side stands for either m (matter) or h (halo), and the factor g0 is
set to unity for the matter propagator.

We show in Figure 18 our modeling detail of this function
for halo samples with number density - - -h10 Mpc4 1 3( ) at
z=0.55. As before, we show variations in the function for the
101 cosmological models in the left panel, with the red shaded
region showing the mean and scatter of this function for the
fiducial Planck cosmology (the shaded region is also shown in
the other panels, though it is heavily overlapped with other
symbols and thus difficult to see). We can see that the
propagator is always a simple decaying function of wavenum-
ber, with a strong dependence on cosmology in the amplitude
and the typical wavenumber at which the curve is decaying.

We then fit the data using Equation (43) and show the
residual in the upper middle panel. Here and in the other three

panels, we normalize the residual by g0, which is the low-k
limit of this function, to see the importance of the residual
relative to the overall amplitude of the function. While we see a
small wiggly pattern in the residual, the typical amplitude of
this pattern is below a few percent level, which is sufficiently
small for our purpose.
At this point, we have three fitting parameters per halo

sample, and thus 819(=3×13×21) data points per simula-
tion for the halo propagator. As before, we reduce the
dimensionality by applying the PCA. The data points are
approximated by

å a=
=

d en z n z, , , 44i h
a

n

i a a h
PRO

1
,
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where d n z,i h
PRO( ) is the vector formed with the three fitting

parameters for the halo sample with number density nh and at
redshift z in the ith simulation, ea

PRO is the ath PC eigenvector
given as a function of nh and z, and ai a,

PRO is the ath PC
coefficient for the ith simulation. In applying the PCA analysis,
we adopt the weight, simply given as nh. As before, since we
use the LR runs here, there is a case that we cannot define a
sample of halos with the highest number density, e.g.,

= - - -n h10 Mpch
2.5 1 3( ) , depending on redshifts and cosmolo-

gical models. In such cases, we set the weight for PCA to zero.
After some experiments, we find that keeping the four most
significant PC coefficients well reproduces the simulation
results, as shown in the lower middle panel of Figure 18. The
extra error induced by the PCA is below the 1% level.
The remaining task is the same as before: train a GPR using

the 80 cosmological models in slices1–4 and validate the
results using the remaining 20 models in slice5 (as well as the
fiducial Planck cosmology). Although the variance of the
residuals among the models shown in the right panels seems to
be somewhat larger than that in the middle panels, the
prediction of the GP stays within the ±5% band shown by
the horizontal dotted lines. More importantly, the accuracy of
the GP for the validation set is not degraded compared to that
for the training set, implying that there is no problem of
overfitting to the training data.
The validation tests for other halo samples, as well as the

matter propagator at various redshifts, can be found in

Figure 18.Modeling of the halo propagator, similar to Figures 16 and 17 for correlation functions. As before, we consider halo samples with = - - -n h10 Mpch
4 1 3( ) at

z=0.55. Variations in the function over the 101 cosmological models (left), the accuracy of our modeling procedures (model fitting: upper middle; PCA: lower
middle), and the performance after applying the GPR (training set: upper right; validation set: lower right) are shown, with the red shaded region indicating the scatter
among the 14 simulations of the fiducial Planck cosmology.

22

The Astrophysical Journal, 884:29 (47pp), 2019 October 10 Nishimichi et al.



Appendix F. In the current implementation, we model the
matter propagator by exactly following the same procedure for
halos. The only difference is that we have one less free
parameter (g0 should always be unity for matter), and we need
only two PCA components to ensure the accuracy.

5. Usage of the Emulator

We have explained how each of the basic modules are
modeled and tested in the previous section. These correspond
to the HALO MODULES in Figure 4, which predict the statistical
properties of dark matter halos. Now, in this section, we show
several demonstrations of how to use the emulator to predict
properties of dark matter halos. Also, we show how to combine
the predictions to compute the clustering statistics of galaxies
(i.e., usage of the UTILITY MODULES at the bottom of Figure 4).

5.1. Halo Properties

5.1.1. Implementation Detail

One application of our emulator is to make predictions for
halos in the mass range of galaxies to clusters. Since our
modules that compute halo clustering properties directly predict
the signals as a function of the cumulative halo number density,
which is discretely sampled every 0.5 dex, it might not be so
practically useful as it is. To obtain the predictions of halo
correlation functions at a given halo mass, we have to
interpolate over the sampled number densities and convert it
to the halo mass in a given cosmological model. Hence, if one
wants to predict the clustering signals as a function of halo
mass, an inaccuracy in the conversion from the mass to the
number density can be a new source of error.

In Figure 19, we study how the conversion from the
cumulative halo number density to a target halo mass using the
HMF module causes a possible error in the predictions of halo
correlation functions. To do this, we consider the emulator
outputs of halo correlation functions for two mass threshold
samples with =M 10min

13 and -h M1014 1
 for the fiducial

Planck cosmology at z=0.55. Then we use the following
method to propagate a possible error in the halo number density
into an error in predicting the halo correlation functions as a
function of the halo mass. (i) We first use the HMF module to
compute the cumulative number density for the halo mass
thresholds, =M 10min

13 and -h M1014 1
. (ii) We multiply the

number density by a factor of 0.96, 0.98, 1.02, or 1.04, which is
intended to mimic a possible error in the number density
calibration by −4%, −2%, 2%, or 4%, respectively. (iii) We
then obtain the emulator predictions of halo correlation
functions by inserting the shifted values of halo number
density in the emulator. Here a ±4% error in the cumulative
halo number density is considered as a rather pessimistic case
because Figure 13 shows that a typical error in the mass
function is smaller in terms of the rms among the models (∼1%
(3%) at -h M10 1013 14 1( ) ). In addition, the error in the HMF
seen in Figure 13 would be partly canceled when we consider
the error on the cumulative halo number density. The upper
panel shows the ratios of the shifted halo–matter cross-
correlation functions, x xhm ( ), to the fiducial prediction. The
figure shows a constant shift in the two-halo regime, a slightly
larger shift in the one-halo term, and a bump-like feature at
transition scales between the two regimes. These are caused by
changes in the linear bias and mass profile, respectively. The
size of the fractional shift in the cross-correlation function is

smaller than that on the cumulative mass function, with a slight
decreasing trend toward higher masses. In the lower panel, the
autocorrelation function, x xhh ( ), shows a larger shift in the two-
halo regime, reflecting the fact that it scales as bias squared. A
sharp feature can be found where the halo exclusion effect
kicks in. Since the latter part is dominated by the one-halo term
in the case of the galaxy correlation function, the final shift
would be much smaller. Even with the pessimistic case of a 4%
error in the cumulative mass function, the induced shift in the
correlation functions are well within the ±5% band and mostly
within the ±3% level. When we consider a realistic error on the
cumulative mass function (i.e., a few percent or below), the
error on the correlation function arising from this is smaller
than the typical error in the emulator in both cases.
As another example of the applications, we show in

Figure 20 the output of the emulator for the large-scale bias
as a function of the halo number density (symbols). Here the

Figure 19. Impact of a possible error in the conversion between the cumulative
halo number density and the mass threshold on the emulator predictions of halo
correlation functions. As a working example, we here consider the cross-
correlation functions, x xhm ( ), in the upper panel and the halo autocorrelation
functions, x xhh ( ), in the lower panel for the two mass thresholds (1014 and

-h M1013 1
) for the Planck cosmology at z=0.55. Here we first use the HMF

module to compute the cumulative halo number density for the mass threshold;
shift the number density by −4%, −2%, 2%, or 4%; and then input the shifted
number density into the emulator to obtain the shifted predictions of x xhm ( ) and
x rhh ( ), respectively (see text for details). The figure shows the ratio of the
shifted correlation function to the fiducial prediction. The significant features
around -x h1 Mpc1 in x xhh ( ) are due to the halo exclusion effect that would
not be present for the galaxy correlation function.
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large-scale bias is defined as the fitted parameter g0 in
Equation (43), which is the k 0 limit of the propagator
(Equation (28)). The plot shows the result for the fiducial
Planck cosmology and at z=0.55. We interpolate these data
points using the cubic spline function to make a prediction at
any halo number density in the range shown here. Note that we
use the logarithm of the halo number density, instead of the raw
values of the number density, for which our sampling is
uniform.

Once the spline interpolator is ready, we can compute the
halo bias as a function of the halo mass or peak height, if one
prefers, by first using the HMF module to convert the number
density to the minimum halo mass and then taking a finite
difference derivative to have the bias at a specific desired halo
mass scale. For this derivative, we employ ±1% changes in the
mass as the default step size. The dependence of the results on
the step size is much weaker than the typical accuracy of the
emulator, as shown in Figure 21. The result is shown in
Figure 22 as a function of the peak height n d sº Mc , with
d = 1.686c . Now we show the results for different cosmologies
at three different redshifts. We vary Wm, keeping the flatness
and fixing the present-day amplitude of the linear matter power
spectrum, s8, to its fiducial value. We compare the results with
the fitting formula by Tinker et al. (2010), as denoted by the
thin solid line, which is independent of redshift or cosmology.
The fractional differences from Tinker et al. (2010) at the three
redshifts are plotted together in the bottom panel. Our emulator
prediction is overall consistent with the fitting formula, with the
accuracy no worse than 10% over all the ranges examined here.
Such an inaccuracy of Tinker et al. (2010) is also pointed out in
the previous work (e.g., Li et al. 2016). We confirm that the
bias function is rather universal, with little dependence on
cosmology or redshift.

Another interesting feature of the bias is its scale dependence
around the BAO scale. We implement the same spline
interpolation for the fitting parameters g2 and g4 in the
propagator. This allows us to estimate the propagator at any
halo mass. The tree-level calculation, Equation (29), gives us a
prediction of the correlation functions, and we already show
that the BAO scale is well described by this simple model, as
illustrated in Figures 9–11. We show in Figure 23 the square
root of the ratio of the halo and matter correlation functions at
z=0. We normalize it by the linear bias factor g0 such that the
ratio becomes unity when the bias is independent of scale. We
consider four halo samples with different number densities as

written in the figure legend. The result indicates that the BAO
peak structure can be boosted for low number density samples
(i.e., when only massive halos are included in the sample). This
is fully consistent with the expectation by the peak model
(compare our results with Figures 7 and 8 of Desjacques et al.
2010). Also, this feature was previously found in numerical
simulations (e.g., Angulo et al. 2014; Crocce et al. 2015). This
kind of prediction is possible because our model has the
freedom to control the damping of the BAO feature in terms of
the two free parameters, g2 and g4, in the propagator,
Equation (43), in addition to the damping due to the typical
random displacements of matter, sd,lin.
We implement the same cubic spline interpolation for other

quantities, such as x r n; hhm ( ) or x r n n; ,hh 1 2( ), with the latter
using the bivariate cubic spline for two number densities, n1
and n2. We do not find any sizable error originating from this
interpolation, as all of the quantities vary rather smoothly with
(the logarithm of) the halo number density. Analogously, the
redshift dependence is interpolated with the cubic spline
function. As is clear from Figure 22, the dependence of bias on
redshift is weak, and thus the same interpolation scheme works
fine. The situation is similar for the other interpolated
quantities. We show in Figures 24 and 25 our interpolation
of the halo–matter cross- or halo autocorrelation function over
the number density and redshift. We first construct a data

Figure 20. Halo bias as a function of the halo number density for the fiducial
cosmological model at z=0.55. The symbols are the direct output of our
emulator, and the solid curve is its interpolation using the cubic spline.

Figure 21. Stability of the finite difference evaluation of the correlation
functions at a given halo mass. We show the fractional change in the halo–
matter cross- (upper) and halo auto- (lower) correlation function. We employ
the default step size of ±1% in mass as the reference for this figure. Notice the
rather narrow range of the vertical axis.

24

The Astrophysical Journal, 884:29 (47pp), 2019 October 10 Nishimichi et al.



matrix at the locations, as depicted by the dots, based on the GP
and PCA methods, and then we perform a cubic spline
interpolation for each dimension.

While the halo–matter cross-correlation function and the
propagator are very well determined down to a quite low halo
number density, - - -h10 Mpc8.5 1 3( ) —corresponding to very
massive halos, thanks to the fact that they are given by the
cross-correlation with the matter field—the halo autocorrelation
function instead suffers from severe Poisson noise, especially at
such a high-mass end. We thus switch to a simple scaling,
x x=r n n g n g n r n n; , ; ,hh 1 2 0 1 0 min hh min 2( ) [ ( ) ( )] ( ), when the
number density n1 is below the minimum number density

= - - -n h10 Mpcmin
5.75 1 3( ) . In the above, the bias factor, g ni0 ( ),

is computed again in the module that computes the propagator
(i.e., the function plotted in Figure 20). We do the same when
n2 is below the threshold; we simply multiply the ratio of
the large-scale bias one more time. While this might be a
reasonable approximation on large scales, it cannot properly
reproduce the correlation functions around scales where the
halo exclusion effect is not negligible. Nevertheless, our
current implementation does not lead to a severe error for a
sample of galaxies such as the CMASS sample, because the
small-scale correlation function is mainly described by the one-
halo term.
Now we have predictions of xhm, xhh, and the propagator

given as a function of halo number density and redshift within
the ranges relevant for the resolution and output redshifts of our
simulations. We combine all of these predictions to obtain a
well-behaved prediction over a wide range of separations. We
do this by smoothly stitching the two predictions as

x x x= + -x D x x D x x1 , 45ab,full ab,direct ab,tree( ) ( ) ( ) [ ( )] ( ) ( )

where “ab” is either “hm” or “hh,” and we use the damping
function defined as

= -D x
x

x
exp . 46

switch

4

( ) ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

We find that = -x h60 Mpcswitch
1 provides a reasonably good

model for both the auto- and cross-correlation functions over
the range of scales demonstrated in Figure 26.
In summary, the current implementation of our emulator

works in a parameter sampler as follows. When a new
cosmological model is proposed, the code first calls a GP
interpolator to evaluate the coefficients for the PCs for all of the
statistics we consider here. Then, combining these coefficients
with the eigenvectors, it computes the statistics at all of the
redshifts and mass and separation bins to form a data table. One
function call of our high-level interface to set the cosmological
parameters does all the tasks up to here internally. Now, a user
can further call other high-level functions prepared for each
statistics. These functions accept a redshift, a halo mass (either
a threshold mass or a target mass scale), and a set of separations
at which the correlation function should be evaluated. In
this final step, the code finds the values by calling a spline
interpolator over the table created in the previous step. For
users who wish to compute galaxy statistics, a separate module
can be used with additional parameters describing the HOD
model. This module internally calls the functions for the halo
statistics and integrates them over the halo mass with the
product of the mean HOD and the HMF as a weight. We also
prepare functions computing projected statistics, which works
similarly.

5.1.2. Demonstrations

Now we can compute the three main halo statistics—the
HMF, halo–matter cross-correlation function, and halo auto-
correlation function—for an arbitrary cosmological model
that is covered by our sampled cosmological models within
the flat wCDM cosmologies. Using the results, we can obtain
how these halo statistical quantities vary with cosmological
parameters, as demonstrated in Figure 1, which gives their
dependences on Wm.

Figure 22. Halo bias as a function of the peak height for different cosmologies
at various redshifts as shown in the legend. We vary Wm but keep s8 and other
cosmological parameters fixed to their fiducial values. We also show the fitting
formula of Tinker et al. (2010; thin solid line).

Figure 23. Scale dependence of halo bias around the BAO scale (vertical
dotted line). We show the square root of the ratio of the halo and matter
correlation functions, with the latter scaled by the square of the linear bias
factor g0. We show with different lines four mass threshold halo samples
with the number density listed in the figure legend, corresponding, respectively,
to a threshold mass of ´ ´ ´1.58 10 , 3.34 10 , 6.86 1012 12 12, and ´1.36

-h M1013 1
 at z=0.
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We can further predict in detail, for instance, the density
profile of dark matter halos from our emulator. Properties and
cosmological dependences of the mass density profiles around
halos have been extensively studied (e.g., Navarro et al. 1996).
The emulator output of the halo–matter cross-correlation on
small separations can be used to study the mass density profiles
for halos whose masses are in the range supported by the
emulator.17

In Figure 27, we compare the profiles from the emulator
(solid) with the best-fit Navarro–Frenk–White (NFW) profiles
(dashed) for halos of different masses. For the fitting, we
included the data over the range of radii from twice the
softening scale to 80% of R200m. The middle panel shows that
the NFW profile gives a good fit to a fractional accuracy better
than about 5% up to the virial radius (R200m), beyond which the
NFW profile no longer reproduces the simulation results.

Using the NFW fitting results, we can also study how the
concentration parameter varies with halo mass, as well as
cosmological models over different redshifts, where we define
the concentration parameter, c200c, by the ratio of the radius
within which the density is 200 times the critical density to the
scale radius determined by the NFW fit. Figure 28 shows c200c
as a function of the peak height, n d s= c M , for cosmologies
with different Wm at three redshifts. Similar to the previous
plots, we keep the spatial flatness and vary the normalization As

such that σ8 is kept unchanged for models with different Ωm.
While the relation seems to be universal at high redshift with
little dependence on Ωm, we can see a clear dependence at
lower redshifts. The increasing trend of c200c as decreasing
redshift, as well as its positive Ωm dependence, can be found in
Diemer & Kravtsov (2015). Further study of the dependence of
the concentration–mass relation on the cosmological para-
meters can be found in Kwan et al. (2013).18 In this way, our
emulator approach automatically incorporates a possible
nonuniversality of the concentration–mass relation. This is
quite different in the standard analytical halo model approach,
where one usually employs a simulation-calibrated scaling
relation for the concentration. We would also like to note that
such a calibration of the concentration is often done for a
specific cosmological model.

Now we focus on the halo mass density profiles at radii
larger than R200m in Figure 27, where NFW no longer gives a
good fit. The figure shows a clear feature of the transition from
the one-halo to the two-halo regime. This feature recently drew
attention as a possible “physical” outer boundary of a halo
associated with the first orbital apocenter of accreted matter
after its infalling, dubbed the “splashback” feature (Diemer &
Kravtsov 2014; also see More et al. 2016, for the first detection
from observational data). This feature has already been studied
with our DARK QUEST simulation suite in Okumura et al.
(2018a, 2018b), with particular attention to the feature in the
velocity statistics around halos.
The feature can be found from the bottom panel of

Figure 27, where we show the logarithmic slope of the mass
density profile. We obtain this by first fitting the emulator
results by the functional form proposed in Diemer & Kravtsov
(2014; hereafter the DK fit), and then we take the derivative.
We do this for the separation range again from twice the
softening scale but to four times the radius R200m to cover both
the one- and two-halo regimes. The best-fit model is shown in
the top panel by the dotted lines (but they are difficult to
distinguish from the solid lines; they are almost on top of each
other), and the ratio of the emulator results is shown in the
middle panel. The accuracy of the fit is similar or better than
the NFW form, and it remains to be a good fit to much larger
scales. Now we can see in the bottom panel that the derivative
based on the DK fit shows a sharp dip with a slope steeper than
the outer NFW slope (i.e., −3), marking the location of the
splashback radius.
Figure 29 shows the splashback radius, Rsp, for various

cosmological models and redshifts, where we define Rsp by the
location of the minimum logarithmic slope of the DK fit. For
clarity, we plot the ratio, R Rsp 200m, as a function of the peak
height. Overall, Rsp is similar to R200m, with a slight decreasing
trend as a function of the peak height. In addition, the ratio is
higher for cosmological models with larger Ωm. These trends
are in qualitative agreement with the fitting formulae in More
et al. (2015a), in which the dependence is encoded in the
redshift-dependent density parameter W zm( ) in addition to the
peak height ν (see also Adhikari et al. 2014)19

Figure 24. Interpolation of the tabulated halo–matter cross-correlation function over the halo number density and redshift. Each panel shows the interpolated result
(color scale) at a fixed separation, as shown in the color bar label, and the dots show the location where the data table is available.

17 Notice that the average spherical density profile of halos is equivalent to the
positional cross-correlation function between halos and matter by definition.
18 We cannot make a direct comparison with their emulator because the
Hubble parameter is automatically determined to match to the CMB constraint
given the other parameters in their code. On the other hand, we here vary Ωde,
keeping the spatial flatness, and h is simultaneously changed to keep ωb and ωc
fixed.

19 Note, however, that it was argued that the majority of the dependence of
R Rsp 200m comes from the accretion rate, and its distribution at different
redshifts and for cosmologies should depend on how to define distinct halos
and their mass accretion histories from N-body simulation outputs in great
detail. This is beyond the scope of this paper.
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5.2. Projected Galaxy Clustering Statistics

We have introduced the emulation of halo clustering statistics
in the previous sections. Since our emulator’s accuracy depends
on the mass of halos, it would be useful to examine the accuracy
for a galaxy sample whose clustering statistics is approximately
given as a weighted sum of those of halos. Here we consider the
following HOD parameters to make a representative galaxy mock
catalog similar to the BOSS CMASS sample (based on a
conservative volume-limited selection): = -M h M10min

13.94 1
,

s = 0.63Mlog , = -M h M101
14.49 1

, α=1.19, and k = 0.60 for
the HOD parameters (see Appendix G for definitions).

Our UTILITY MODULES combine the outputs of HALO
EMULATORS to first make the galaxy clustering signals in three
dimensions and then project them along the line of sight to
obtain the relevant signals based on the FFTLog algorithm
(Hamilton 2000). To test the accuracy of DARK EMULATOR in
predicting galaxy clustering, we also generated the mock
catalogs of galaxies; we populate central and satellite galaxies
into halos taken from the halo catalog in each of 24 HR
realizations of the fiducial Planck cosmology and then measure

the galaxy–galaxy weak lensing and projected correlation
function of galaxies from the mock catalogs. To be more
precise, assuming the plane-parallel approximation, we project
the matter and galaxy distributions along one of the three axes
in each realization and then measure the galaxy–matter cross-
and galaxy autocorrelation functions using the two-dimensional
FFT, respectively. We use, as the prediction of the mock
catalogs, the average of the 72 measurements (24 realiza-
tions × 3 projection directions). Note that the fiducial Planck
cosmology is not used in the GPR; thus, it should serve as a
cross-validation test after the additional ingredients in UTILITY
MODULES.

Figure 25. Similar to Figure 24, but for the halo autocorrelation function. We now fix both separation and redshift in each panel and show the interpolation over the
two number densities, n1 and n2.

Figure 26. Stitching of the large- and small-scale predictions. The direct output
of the PCA-GP modeling is shown by the dashed lines (xdirect), the large-scale
model based on the emulated propagator is shown by the dotted lines (xtree),
and the final prediction is shown by the solid lines (xfull). We show in the upper
panel the halo–matter cross-correlation function and in the lower panel the halo
autocorrelation function, both for the halo number density - -h10 Mpc4 3 3 at
z=0.55. The vertical solid line marks the stitching scale = -x h60 Mpcswitch

1 .

Figure 27. Top: model fit (dashed: NFW; dotted: DK) to the density profile
around halos predicted by the emulator (solid). We stick to the fiducial Planck
cosmology at z=0 and consider various halo masses as shown in the legend.
Middle: ratio of the emulator to the model fit in the top panel. Bottom:
logarithmic derivative of the profile for the analytical fit. The radius R200m for
each sample is indicated by the downward-pointing arrows in the top panel.
The softening length is shown by the upward-pointing arrow in the middle
panel.
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The measurements from the mock catalogs are compared
with the emulator predictions in Figure 30 for the galaxy–
galaxy lensing (left panel) and the projected galaxy correlation
function (right). In the upper panels, we show the emulator
predictions with the solid lines for models with different Wm, as
indicated in the figure legend. For the fiducial Planck
cosmology, the dashed, dotted, and dotted–dashed lines show
the different contributions in the model calculations; the
contributions from central and satellite galaxies are shown for
the galaxy–galaxy lensing, while the one- and two-halo term
contributions are for the projected correlation function of
galaxies. For the galaxy–galaxy lensing profile, we plot rDS m¯
for each of the different Wm models because it becomes the
same dimension as that of wp in the right panel. With this
definition, both DS and wp display a similar dependence on
W ;m increasing Wm leads to a smaller amplitude (we vary Wde
and As, while the other four input cosmological parameters are
fixed, to keep the spatial flatness, as well as the value of s8).

The lower panels explicitly compare the emulator-based
predictions with the mock measurements, showing the ratio for
each galaxy observable for the fiducial Planck cosmology. The
gray shaded region around unity shows the statistical errors
expected for the measurements. In the left panel, we assume,
for the galaxy–galaxy weak-lensing measurement, the Subaru
HSC first-year shape catalog (Mandelbaum et al. 2018) and the
SDSS DR11 CMASS galaxies at redshifts around z 0.484
(Alam et al. 2015) for background galaxy shapes and
foreground lensing galaxies, respectively, where the over-
lapping region of the two data sets is about 140deg2. In the

right panel, we assume the projected correlation function of the
CMASS galaxies for about 8500deg2 (More et al. 2015b).
Each panel shows that the ratio is very close to unity, meaning
a remarkable agreement between the emulator-based prediction
and the mock measurement for each observable. Most
importantly, the emulator-based predictions take just a few
seconds of CPU time. The wiggly features in the ratio,
especially for the projected correlation function, are due to
imperfect accuracy in the numerical calculation, such as the
numerical integration of the emulator outputs over halo masses.
The gray shaded region gives statistical errors at each radial
bin, estimated from the mock catalogs, where we assumed 30
bins over the range of - - h R h0.057 Mpc 71 Mpc1 1

corresponding to D Rlog 0.110  . The dark shaded region
gives an overall requirement on the uncertainty in the model
prediction of each observable. The requirement is estimated
from the inverse of the total S/N integrated over all of the
radial bins. Sine we find S N 25 and 35 for the weak-
lensing and projected correlation function, respectively, the
requirement on the overall factor in the model prediction, i.e.,
m for DS = + DSm1 emulator( ) or = +w m w1p p,emulator( ) , is
m0.04 or0.029, respectively, such that an uncertainty in the
model prediction does not exceed the overall statistical error by
more than 1σ. The figure shows that the accuracy of DARK
EMULATOR safely meets the requirements for the Subaru HSC
and SDSS measurements. We note that, since variations in
cosmological parameters cause a scale-dependent change in
these observables, the requirements for such changes are less
stringent.

5.3. Cross-correlation Coefficient

There remains another interesting and important check. It
would be of great practical use if we could infer the underlying
matter clustering properties from biased fields alone. One can
compute the cross-correlation coefficient between matter and
halo or between two different halo samples from our
emulators.20

First, we show in Figure 31 the cross-correlation coefficient
for halo samples selected by mass at the fiducial Planck
cosmology at z=0.484. The curves are computed by DARK
EMULATOR. We consider five different halo masses from 1013

to ´ -h M1.6 1014 1
. We show in the top panel three

quantities, x xhh ( ), x xhm ( ), and xmm. We then take the ratio
x xx xhm mm( ) ( ) to examine the scale dependence of bias in the
middle panel. Finally, the bottom panel depicts the cross-
correlation coefficient. A similar plot can be found in Figure 32
for galaxies based on the HOD model described in the previous
section. Here we also show the measurements from the mock
galaxies distributed in the simulated halos based on the same
HOD prescription (symbols with error bars). The emulator
predictions are in agreement with the measurements from the
mock galaxies.
The middle panels indicate that the scale dependence of bias is

rather weak on scales larger than several -h Mpc1 for all of the
cases investigated here. On these scales, the cross-correlation

Figure 28. Concentration–peak height relation at various cosmological models
and different redshifts.

Figure 29. Splashback radius divided by R200m.

20 To this end, we need an emulator to compute the matter autocorrelation
function, which is not supported in the current version of DARK EMULATOR
specifically designed for biased tracers. While the optimization for implemen-
tation detail or the final accuracies are not tested as stringently as the other
modules, we have a development version of a module to do this. The figures in
this section are based on this version, but it would be sufficient for
demonstration purposes.
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coefficient is close to unity within ∼10%. Based on the results,
we may extract the underlying matter clustering statistics by
combining the auto- and cross-correlation functions of biased

tracers. This statement would be true as long as we consider a
simple model for the galaxy–halo connection as the HOD model
considered here. Further studies are warranted to fully explore the
potential to reconstruct the underlying matter clustering from real
data for a wider class of galaxy populations.

Figure 30. Example usage of DARK EMULATOR in combination with an HOD model for making model predictions of galaxy clustering observables. Left panel:
excess surface mass density profile from galaxy–galaxy weak lensing (ΔΣ). Right panel: projected correlation function of galaxies (wp). In the upper panels, the solid
lines show how the prediction varies with Wm but keeping other parameters fixed to the fiducial Planck values. The other lines show the different contributions to the
total power as indicated by the figure legend (see text for details). The lower panels compare the emulator-based predictions with the “mock” signals measured from 72
mock realizations of projected maps of CMASS-type galaxies that are generated from the halo catalogs for the fiducial Planck cosmology (see text for details). The
two results, obtained from totally different methods, are in remarkably nice agreement with each other. In the left panel, the gray shaded region shows the
measurement errors expected when combining the Subaru HSC galaxies and the SDSS CMASS galaxies for background and foreground galaxies, respectively, where
the overlapping region is about 140deg2. In the right panel, we assume the measurement expected for the SDSS DR11 CMASS galaxies around z=0.484 covering
about 8500deg2. The dark gray regions around unity give a requirement on the overall uncertainty in the model prediction, which is estimated from the inverse of the
total S/N over - - h R h0.057 Mpc 71 Mpc1 1 : the requirements are about 0.04 and 0.029, corresponding to =S N 25 and 35 for DS and wp, respectively. The
black line shows that the emulator predictions safely meet the requirements over the range of separation bins.

Figure 31. Various halo clustering statistics at z=0.484. In the top panel, the
solid (dashed) lines show the halo auto- (halo–matter cross-) correlation
function for the masses indicated in the figure legend. We also show (dotted
line) the matter correlation function. The middle panel depicts the halo bias
defined by the ratio x xhm mm. The bottom panel shows the square of the cross-
correlation coefficient for the halo samples.

Figure 32. Similar to Figure 31, but for galaxy clustering with the HOD
prescription that is the same as in Figure 30. We also show here the
measurements of the same quantities from the mock galaxies distributed
following the same HOD model (circles with error bars).
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5.4. Summary of the Current Code

Finally, we summarize the functionalities of DARK EMU-
LATOR in this section.

First, the input parameters for the code are listed in Table 2.
The items in the “Cosmology” class are the six cosmological
parameters of the wCDM cosmologies considered in this paper.
In the “Common” class, we have redshift z as a common
parameter for all of the modules. Quantities calculated from
linear theory are evaluated at z=0 and then properly scaled by
the linear growth factor. The third class is “Halo,” relevant for
HALO MODULES. The parameters in this class specify a halo
sample in terms of either a mass range or a specific mass scale
at which the desired halo clustering quantities are evaluated.
The number density and mass threshold can be converted to
each other using the module that computes the HMF. Next, we
have the “HOD” class. The parameters here determine how
many galaxies (centrals and satellites) are populated in the
halos. Finally, we have a set of parameters that model
variations in the locations of the galaxies inside a halo. For
instance, we allow central galaxies to be off from the true halo
center using the two off-centering parameters. The satellite
galaxies are assumed to follow either the NFW profile or the
average halo mass profile, where the latter is equivalent to the
halo mass cross-correlation for halos of each mass range that is
an output of our emulator. In the case of the NFW profile, we
assume the concentration–mass relation calibrated by Diemer
& Kravtsov (2015).

The HOD model, as well as the profile of galaxies, can be
modified easily when needed. This way, we allow the code to

have the flexibility to support various galaxy populations,
possibly beyond the model currently implemented. It has been
suggested that the clustering statistics could depend on a
secondary parameter beyond the halo masses. The so-called
halo assembly bias is not implemented in the current code. We
study the impact of such effects on cosmological analyses in a
separate paper. Our code can also account for the effect of the
residual redshift-space distortions on the projected statistics
with a finite projection width assuming linear theory, as well as
a modification of the mass profile around halos due to baryonic
effects in a parametric manner. Again, these effects are studied
in full detail in a separate paper.
Finally, the outputs of the emulator are summarized in

Table 3. The first set of outputs is the three linear quantities
based on LINEAR MODULES. The primary outputs of the
emulator are the abundance and clustering of halos and matter.
These include the abundance of halos in a given mass range,
halo–matter cross-correlation function, halo autocorrelation
function, and propagators of matter and halo. These quantities
are then combined and projected based on analytical calcula-
tions to eventually have the items in the “Derived” class.
The connection between halos and galaxies as specified in the
UTILITY MODULES (i.e., HOD and profile) is reflected to the
final galaxy statistics.

6. Summary

In this paper, we have performed an N-body simulation
ensemble, dubbed DARK QUEST, and developed an emulator
enabling a fast computation of halo clustering quantities from

Table 2
Summary of Model Parameters

Class Parameter Prior Range Definition

Cosmology W hb
2 [0.0211375,0.0233625] Physical baryon density parameter

W hcdm
2 [0.10782,0.13178] Physical CDM density parameter

Wde [0.54752,0.82128] DE density parameter
Aln 1010

s( ) [2.4752,3.7128] Amplitude of primordial power spectrum
ns 0.916275, 1.012725[ ] Spectral tilt of primordial power spectrum
w [−1.2,−0.8] Equation-of-state parameter of DE

Common z 0, 1.47619[ ] Redshift

Halo M or Mth
a 10 , 1012 16[ ] Halo massb in -h M1[ ]

M′ or ¢Mth 10 , 1012 16[ ] Halo mass of the second halo for the halo–halo power spectrum
n - -10 , 108.5 2.5[ ]c Halo number densityc in - -h Mpc1 3[( ) ]
n′ - -10 , 108.5 2.5[ ] Number density of the second halo for the halo–halo power spectrum

HODd Seven-parameter model (default) s a k aM M M, , , , , ,Mmin log inc inc 1{ }

Profilee NFW model (default) c M z f R, , ,off off{ ( ) }

Notes.
a The halo–matter and halo–halo power spectra can be output for a sample of halos with a given number density n, at a given mass M, or with masses greater than a
given mass threshold Mth (see text).
b The emulator employs M200m for halo mass definition.
c A warning message can be output if the input number density is too high for an input set of cosmology parameters and redshift, i.e., if the input number density is
outside the support of the emulator.
d We employ the HOD given by seven parameters as a default prescription for halo and galaxy connection. A user can replace this module with another prescription if
needed.
e We assume that the distribution of satellite galaxies in their host halo follows a normalized NFW model, where the halo mass and concentration follow the fitting
formula in Diemer & Kravtsov (2015), for our default model. Another option is to distribute satellite galaxies following the matter distribution around a halo as
predicted by the halo–matter cross-correlation function. We also include a possibility that a fraction foff of central galaxies is offset from the true halo center and
assume that the normalized distribution, with respect to the true center, is a Gaussian with width radius Roff . A user can replace this module if needed.

30

The Astrophysical Journal, 884:29 (47pp), 2019 October 10 Nishimichi et al.



the simulation outputs, named DARK EMULATOR. The main
features of our products are as follows.

1. We employed 20483 particles in either 1 or 2 Gpc h–1

comoving boxes, covering 100 six-parameter wCDM
cosmological models sampled via the SLHD around a
fiducial ΛCDM cosmology. The mass density fields and
catalogs of halos with -M h M10200

12 1
 (slightly

depending on cosmological models) were extracted at
21 redshifts in the range of z=[0,1.48]. The parameter
space covers a sufficiently broad range of parameters that
are consistent with the existing cosmology data sets.

2. We used the DARK QUEST data sets to build DARK
EMULATOR. It models the HMF, halo–matter cross-
correlation, and halo autocorrelation based on the GPR
after significant dimension reduction via the PCA. The
predicted halo clustering properties are easily combined
assuming a model for the halo–galaxy connection, such
as an HOD prescription, to compute the galaxy statistics.

3. We carefully validated the accuracy of the DARK
EMULATOR predictions (outputs) using validation sam-
ples of N-body simulations for cosmological models that
are not used in the emulator development. The validation
samples are also located following the LHD and are
maximin design by themselves, in combination with the
training samples. Thus, they allow us to test the accuracy
at distant points from the nearest training data and, at the
same time, uniformly cover the whole domain of the
parameter space.

4. We achieved 1%–2% accuracy for the HMF (the rms
error over the 20 models), except for the massive end
( -M h M1014 1

), where the Poisson error is significant
in both the training and the validation sets. The accuracy
for the halo–matter cross-correlation function for a halo
sample with number density - - -h10 Mpc4 1 3( ) , which
resembles the typical host halos of LRGs or CMASS-like
galaxies, was shown to be ~2% over the comoving
separation < <- -h x h0.1 Mpc 30 Mpc1 1 (again in terms
of the rms error). The halo–halo autocorrelation function

for the same halo sample has a slightly larger error,
∼3%–4%, reflecting the shot-noise error. The accuracy
gets worse at -x h1 Mpc1 , where the halo exclusion
effect is significant and thus does not contribute much to
galaxy clustering signals. In all cases, the biggest
discrepancy between the prediction and the validation
set is not worse than 5% over the ranges of halo masses
and separations.

5. The accuracy of the emulator depends on the halo mass
and slightly on the redshift. This can be checked in
Appendix F. We find overall that the validation accuracy
scales consistently with the sample variance error
estimated from the multiple random realizations prepared
for the fiducial cosmology. Thus, further significant
improvement of the accuracy would be possible only by
using more simulations (with a larger box size in
addition), while further refinement of the implementation
detail would not at this moment.

6. We introduced a special treatment based on the propagator to
large-scale clustering signals where the large sample variance
prevents us from an accurate modeling or validation test.
The propagator encodes the large-scale bias, as well as the
damping of the BAO feature, and it can be measured
accurately, as the sample variance mostly cancels in its
estimator. A module that emulates the propagator is also
trained and validated to ensure the accuracy of the
predictions of the correlation functions on large separations.

7. We demonstrated that the DARK EMULATOR outputs can
be used to study detailed properties of the mass density
profiles around halos, such as the concentration–mass
relation and the splashback feature. The emulator can
predict their dependence on redshift, halo mass, and
cosmological models.

8. We also demonstrated that the emulator outputs can be
used to predict, as an example, the projected galaxy
correlation function and the galaxy–galaxy weak-lensing
profile when combined with a prescription of the halo–
galaxy connection, such as an HOD model. In doing this,
we can easily incorporate variants of small-scale effects
such as the off-centering of galaxies with respect to the halo
center, the incompleteness selection of galaxies, and the
distribution of satellite galaxies in their host halo based on a
Fourier space implementation. The DARK EMULATOR
modules extensively use the FFTLog algorithm that enables
a fast computation of converting the three-dimensional
correlation functions to the projected correlation functions.

9. The evaluation time for the halo and galaxy statistics is
typically of order ∼100 ms and a few seconds, respec-
tively, on a standard laptop computer available today.
The latter is slower because it usually involves integrals
over the halo masses.

10. The cross-correlation coefficients between halos and
matter are shown to be quite close to unity on large
scales. This remains the same for galaxies populated into
halos based on the HOD description.

The current implementation and accuracy are likely sufficient
for ongoing wide-area galaxy surveys such as the Subaru HSC
survey (see Figure 30 for its validation). It is still not clear
how the cosmological information can be extracted from the
cosmological dependences of halo clustering quantities that are
measured from such a galaxy survey, even after marginalizing

Table 3
Summary of the Emulator Output

Class Output Definition

Linear s M z,2 ( ) Linear mass variance
s zd ( ) rms linear displacement in one dimension
P k z,lin ( ) Linear matter power spectrum

Primary n M M z, ;min max( ) Number density of halos in the mass
range M M,min max[ )

x x M z; ,hm ( ) 3D halo–matter cross-correlation for halos

x ¢x M M z; , ,hh ( ) 3D halo autocorrelation for halos of masses M
and M′

G k z;m ( ) Propagator for the matter density field
G k M z; ,h ( ) Propagator for the halo density field specified

by mass M

Derived S R M z; ,hm( ) Surface mass density profile of halos of M
DS R M z; ,hm( ) Excess surface mass density profile around

halos of M
DS R z;gg( ) Excess surface mass density profile around

galaxies
w R z;gg ( ) Projected correlation function of galaxies
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over nuisance parameters that model the small-scale clustering in
the one-halo term. To address this, one has to use realistic mock
catalogs that resemble the actual galaxy survey; measure
clustering observables of interest from the mock catalogs,
including all realistic small-scale effects; and make a hypothetical
parameter inference from the comparison of the emulator
predictions with the mock measurements, including margin-
alization of the nuisance parameters (see Hand et al. 2017, for a
similar discussion). This kind of study can assess the power and
usefulness of DARK EMULATOR for precision cosmology and
gives a validation of the parameter inference method–cosmology
challenges. This is our ongoing project and will be presented in
the future (Miyatake et al. in preparation). Our implementation to
incorporate the residual redshift-space distortion, as well as the
baryonic effects, into the mass profile around halos will also be
presented and tested in that paper.

However, the current emulator would not meet the accuracy
required for future surveys such as LSST, Euclid, and WFIRST.
As already mentioned above, a naive and straightforward way
is to accumulate more simulation data and reduce the statistical
uncertainties on the training data. Since the current implemen-
tation of DARK EMULATOR includes several approximate
treatments, the systematic error from them can be a problem
with the improved statistical error. These include the following.

1. The sample variance error on the measured statistical
signals is assumed to be diagonal (i.e., no off-diagonal
covariance) and independent of cosmological models.

2. The PCA coefficients are modeled by GPR one by one,
ignoring the correlation between them.

3. The metric in the cosmological parameter space is
assumed to be stationary (i.e., independent of the location
in the space).

4. The functional forms assumed in the HMF and the
propagator might be insufficient for ultimate precision.

5. Although the damping of the BAO peak is already
included, a possible “shift” of the BAO scale due to
nonlinearity is ignored.

6. Extra dependence of the halo clustering properties other
than the mass dependence, i.e., halo assembly bias, is not
considered at all.

7. The current emulator supports halos with mass
- h M1012 1

. This should be improved to model, e.g.,
emission line galaxies that form in less massive halos.

8. The suite of N-body simulations and halo catalogs can
also be used to study the intrinsic alignment (IA) of halo
shapes and their dependences on cosmological models,
halo mass, and redshifts. The IA is not only one of the
major systematic errors in high-precision weak-lensing
measurements but can also be a new cosmological probe
as it arises from large-scale structures. This is our future
project and will be presented elsewhere.

Nevertheless, we are optimistic for such a challenge. As we
stressed, we designed DARK EMULATOR to cover a sufficiently
broad range of cosmological models within wCDM cosmolo-
gies, which are much broader than the models favored by the
Planck CMB measurements, because we want to keep a broader
range of applications of DARK EMULATOR to problems that
users might want to study. If the range of cosmological
parameters is narrowed down, and if specific requirements for
given clustering observables for a future survey under
consideration are given, some of the approximations, such as

the cosmology-independent modeling of the statistical error or
the stationary metric, would be even more appropriate. We can
also design a new set of N-body simulations to run in the new
narrower parameter space and then construct an emulator that
can meet the requirements. We believe that the methods and
techniques developed in this paper would be useful to explore
such an N-body simulation suite and then develop a sufficiently
accurate emulator enabling one to predict the clustering
observables that one wants to use for precision cosmology.
The current version of DARK EMULATOR will be made public in
the near future.
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Appendix A
Linear Modules

While the linear theory predictions of cosmological structure
formation can be obtained accurately and quickly using public
Boltzmann codes such as CMBFAST(Seljak & Zaldarriaga
1996), CAMB(Lewis et al. 2000), and CLASS(Blas et al. 2011;
Lesgourgues 2011), the computation time is still nonnegligible,
e.g., for parameter inference using Markov chain Monte Carlo
in a high-dimensional parameter space. Within HALO MOD-
ULES, we need to evaluate the linear power spectrum P klin ( ),
the mass variance sM , and the rms displacement sd for the input
set of cosmological parameters, halo mass, and redshift. In
particular, the latter two involve an integral over wavenumber.
To speed up the computations, we developed an emulator
module that allows for a quick computation of these quantities
based on PCA and GPR methods, as we did in HALO
MODULES.21

We first sample 400 sets of cosmological parameters, each of
which is taken within the range of parameters given by
Equation (25), using the SLHD scheme. In this case, we
generate 10 slices with 40 samples each. We use the CLASS
code to compute the relevant linear theory quantities for each
model, although we have used CAMB for the initial conditions
of our N-body simulations. While it is known that the results of
CAMB and CLASS can differ slightly depending on their

21 See Fendt & Wandelt (2007a, 2007b) for a similar attempt to speed up the
calculation of linear power spectra.
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accuracy parameters, the difference is typically at a subpercent
level, which is much below our target accuracy here. We use
the 360 cosmological models in nine slices as the training data
and test the accuracy of the emulator using the remaining 40
models in the last slice as a validation sample. We reduce the
dimensionality of the data vector for P klin ( ) and sM by keeping
only the most significant PCs. We originally sample P klin ( )
(sM) by 200 points over wavenumber (401 points over mass)
and keep only 13 (4) PCs. Since sd is a single number, we use it
as it is. Finally, the coefficients of the PC eigenvectors (or sd)
are modeled by GPR.

The accuracy of our model is assessed by cross-validation
and shown in Figure 33. The accuracy is always better than 1%,
with P klin ( ) generating the biggest error of ∼0.3%–0.4%. The
accuracy for the other two quantities is even better, typically at
the 0.01% level. The bigger error on P klin ( ) is attributed to the
characteristic features of the BAOs. This is contrasted with
the rather smooth and monotonic dependence of sM on M. The
current implementation of the LINEAR MODULES enables us to
evaluate all of these quantities in a few milliseconds for an
input cosmological model, which is a negligible time in the
whole calculation of DARK EMULATOR.

Appendix B
Initial Conditions of N-body Simulations

B.1. Optimal Initial Redshift

In this appendix, we discuss how the choice of redshift used
to set the initial conditions of N-body simulation affects the
results of late-time clustering. While a higher initial redshift is
preferable to reduce the transient effect arising from the fact
that the initial conditions do not follow the growing solution
precisely at higher orders (Crocce & Scoccimarro 2006b), the
regular lattice pre-initial configuration can excite spurious
modes (e.g., Marcos et al. 2006; Joyce & Marcos 2007;
Garrison et al. 2016) if the starting redshift is very high. The
latter effect can be understood via “particle linear theory”
(Marcos et al. 2006): the growing solution of particles close to
the lattice configuration is different from the fluid growing
solution in a direction-dependent manner. The net effect after
averaging over the direction is to slow down the growing

modes compared to what the fluid linear theory predicts, and
this becomes more important toward larger wavenumbers.
While a numerical method to correct for this effect was recently
proposed by Garrison et al. (2016), we here adopt a simpler
approach. Since both the effects suppress the structure growth,
we choose an initial redshift so that the N-body simulation
produces the highest power spectrum at late times.
We first focus on the evolution of the matter density contrast

at early epochs. We generate particle distributions from an
identical random realization of the linear density field at
different initial redshifts ( + =z1 15in , 30, 60, 120, and 240)
using either the Zel’dovich approximation or the 2LPT. We
implement this numerical experiment using N-body simulations
in a cubic volume with a side length of = -L h250 Mpc1

employing two different resolutions, one with 5123 and the
other with 2563 particles, corresponding to the resolution of HR
and LR runs, respectively. We run N-body simulations
assuming the different initial conditions and then measure the
matter power spectrum at later epochs. In doing this, we store
the snapshots of N-body simulations at different epochs starting
from z=49.75 corresponding to the linear growth factor

=+D 0.025 down to z=0 at every interval of D =+D 0.025
(40 snapshots in total).
Figure 34 shows the ratio of the measured power spectra to

the prediction by a Eulerian perturbation theory that is
computed on a grid basis assuming the same random
realization of the simulation up to the two-loop order using
FFT (GRIDSPT in Taruya et al. 2018). Note that in the
computation, we have included odd-order contributions to the
power spectrum, which should vanish in the ensemble average
sense but are present in a finite volume (or a given realization)
where we have a limited number of Fourier modes. We show
the evolution as a function of the linear growth factor +D z( )
normalized to unity at present. Each line starts at the initial
growth rate corresponding to the initial redshift denoted in the
legend. The figure shows two overall trends. First, for some
results, the growth in the power spectrum is sharply suppressed
compared to the perturbation theory prediction soon after the
initial redshift, even if the perturbation theory should be
accurate at very early epochs, especially at small wavenumbers.
The higher the initial redshift with which we start the
simulation, the greater suppression the growth has. The figure
also shows that the effect is more important at higher
wavenumbers (note the different plotting ranges in different
panels): it is only at an ∼0.2% level at = -k h0.03 Mpc 1, and
it reaches to ∼1% at = -k h0.53 Mpc 1 for the simulation with
5123 particles (left panel). Comparing the left and right panels
shows that the sudden drop in the power is about twice as large
for the case with 2563 particles than that with 5123. The same
trend can be seen for both the 2LPT and the Zel’dovich
Approximation (ZA) initial conditions; thus, this effect is not
associated with the accuracy of the Lagrangian perturbation
theory that is used to set up the initial displacement field.
Furthermore, although we do not show it here, the suppression
in the power persists even if we choose more stringent
parameters to control the accuracy of the N-body simulations
(in both the force computation and time stepping). All of these
features indicate that this effect is ascribed to the particle
discreteness effect.
Second, Figure 34 shows that the ratio gradually decreases

with time after the first sharp decrease, meaning that the
structure grows slowly compared to the perturbation theory

Figure 33. Cross-validation study of the LINEAR MODULES. We show the
fractional residual in percent, comparing the emulator prediction to the direct
evaluation by CLASS for each of the 40 validation cosmological models in an
SLHD slice by gray lines or circles in each panel (upper left: P klin ( ); lower left:
sM ; right: sd). In each panel, we also show (error bars) the scatters among the
40 models (1σ level).
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(i.e., the slope of the ratio is negative). While the slope is
almost zero for = -k h0.03 Mpc 1, it becomes increasingly
negative toward larger wavenumbers. The apparent slow
growth of the power spectrum in the simulations is at least
partly due to a breakdown of the perturbation theory at later
epochs, at -k h0.1 Mpc ;1 that is, the perturbation theory
overpredicts the power spectrum amplitudes at such high k
values. More important is the difference in the slope of the
curves for simulations with different zin. It can be seen that the
dependence is subtle for 2LPT and quite significant for ZA. In
general, the slope is steeper for a smaller zin. This is the
transient effect due to the fact that we truncate the perturbative
calculation for the displacement field at a finite order.

Now the question is how these systematic effects due to the
initial conditions affect the outputs of N-body simulations at the
late epochs, z1.5, in which we are most interested. To
explicitly study this, Figure 35 shows the power spectrum at
z=0 measured from the simulations at various wavenumbers
as a function of + z1 in (left panel). For simplicity, we show
only the results using the 2LPT initial conditions here.
Importantly, the figure shows that the systematic effects that
we find at the early-time evolution persist even at late times.
For the simulations with 5123 particles (upward-pointing
triangles), the power spectrum has the greatest amplitudes at
all wavenumbers when the initial redshift =z 59in is
employed. The peak redshift is shifted toward lower redshift
for the simulations with 2563 particles (downward-pointing

triangles). This peak structure is a result of the competition of
the two systematic effects that we have discussed above. The
suppressed power for the higher zin than the peak redshift is due
to the particle discreteness effect, while the inaccuracy for the
lower zin is due to the insufficient nonlinear evolution in
simulations. Since the former effect should scale as the typical
initial displacement of particles from the regular lattice in units
of the lattice interval, we plot in the right panel the same power
spectrum as a function of s Dzd in part( ) , where sd is the rms of
the initial particle displacements and Dpart is the mean
interparticle distance. The peak locations in the power spectrum
amplitude for the two resolutions are almost identical when
plotted as a function of this combination. To be more
quantitative, the peak location appears when the rms displace-
ment is about 20%–30% of the interparticle separation. We
thus simply adopt a zin that gives s D =z 0.25d in part( ) for the
main simulations, HR and LR, presented in this paper; these
correspond to =z 59in and 29, respectively. Note that these
conclusions hold for neighboring cosmological models around
the fiducial Planck model, but zin could vary significantly
depending on cosmological modes.

B.2. Impact on Halo Statistics

Figure 36 shows how the HMF measured from simulations
at late times varies with initial redshifts. The HMF does not
largely vary with different initial redshifts as long as the 2LPT

Figure 34. Time evolution of the matter power spectra in N-body simulations relative to the perturbation theory predictions (see text for details), where we use the
simulations with 5123 or 2563 in a cubic volume with a side length of -h250 Mpc1 in the left or right panel, respectively. Note that the simulations have the same
resolution as those of the HR (LR) runs. We plot the ratio as a function of the linear growth rate that is normalized to unity at present. Different types of lines
correspond to different initial redshifts of the simulations, as denoted in the legend. In each panel, we show the results of 2LPT and ZA initial conditions in the left and
right columns, respectively, which are used to set up the initial displacements of N-body particles.
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instead of ZA is used to set up the initial conditions. Similarly,
Figures 37 and 38 show how the halo–matter cross- and halo–
halo autocorrelation functions vary when using simulations
with different initial redshifts. Here we consider halo samples
with a number density of - - -h10 Mpc3 1 3( ) instead of the

fiducial value of - - -h10 Mpc4 1 3( ) (i.e., including less massive
halos compared to the fiducial analysis) to investigate the case
where the systematic effects would be more important. The
figures show that the results are well converged for a range of
redshifts if the 2LPT initial conditions are used.

Figure 35. Dependences of the matter power spectrum amplitudes at z=0 on the initial redshift of the simulation for different wavenumbers. The left plot shows the
results as a function of the initial redshift of the simulation, whereas the right plot shows the results as a function of s Dd part, where sd is the rms of the initial particle
displacements at the initial redshift and Dpart is the mean interparticle distance. Even for the same initial random seeds, the power spectrum amplitudes vary for
different initial redshifts, and the amplitude peaks at a particular initial redshift (see text for details).
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Figure 36. Dependence of the HMF on the initial redshift. For our fiducial setting, we adopt =z 59in for the HR simulation (equivalent to 5123 particles for a box of
250 -h Mpc1 ) and use 2LPT to set up the initial displacements. The panels in the left column show the results for 2LPT and different initial redshifts relative to the
fiducial result, while those in the right column are the results for the ZA initial conditions and different initial redshifts (but with the same resolution). The line styles
indicate the initial redshift, as shown in the legend.

Figure 37. Similar to Figure 36, but for the halo–matter cross-correlation functions. Here we consider a sample of halos with a number density of - - -h10 Mpc3 1 3( ) .
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Appendix C
Random versus Fixed Phase Simulations

For the Gaussian random initial conditions, the amplitude
d klin,∣ ∣ and the phase qk of the initial condition, when expressed
as d d= qek k

i
lin, lin, k∣ ∣ , follow the Rayleigh or uniform probability

distributions, respectively, for each k mode, where the width of
the Rayleigh distribution is set by the initial power spectrum. A
random number seed is often used to generate d klin,∣ ∣ and qk for
each k mode, i.e., the initial density field in an N-body
simulation for a given cosmological model.

When studying dependences of nonlinear structure formation
on cosmological models with N-body simulations, there is a
choice of whether or not one keeps the same random seeds to
set up the initial conditions for different cosmological models.
A possible advantage of using the common random seeds is to
reduce the sample variance contamination when comparing the
clustering quantities between different cosmological models.
We expect the advantage for neighboring cosmological models
around a specific target model. However, for two models that
are sufficiently far from each other, nonlinear evolution via
complex mode coupling could produce significantly different
results so that the naively expected variance “cancellation” is
ruined. Thus, there is no guarantee that using the same random
seeds leads to converged estimations of statistical quantities
from a limited number of simulation realizations.

To test whether a development of the emulator benefits from
the fixed-seed simulations, we compare the GPR results
obtained from two sets of 20 simulations performed on slice1;
one set contains 20 simulations using the same fixed seed,
while the other set is from 20 simulations with varied random

seeds. To do this, we use the HR runs and compare the results
for the halo–matter cross-correlation function. For simplicity,
we do not repeat the hyperparameter optimization for this

Figure 38. Similar to Figure 36, but for the halo autocorrelation functions. Here we consider a sample of halos with - - -h10 Mpc3 1 3( ) in computation of the
autocorrelation functions.

Figure 39. Comparison of the accuracy of the emulators built by using the 20
different cosmology simulations with fixed or varied random seeds in slice1.
Here we show the fractional difference of the emulator prediction for the halo–
matter cross-correlation relative to the direct measurement from each of 20
cosmological models in slice5, which is a validation sample that is not used in
building the emulator considered here.
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purpose and reuse the one optimized for our whole sample. In
Figure 39, we show a cross-validation test for the GP models
with the two sets (the fixed and varied seeds; upper and middle
panels, respectively) at the other 20 models in slice5. The ratio
of the GP models to the simulations in slice5 is generally very
close to unity. The two panels look quite similar. We also show
in the lower panel the ratio of the two GP models. The
difference is mostly below the 1% level, except at very large
scales (~ -h70 Mpc1 ). Note that we use a different prescription
to calibrate the clustering statistics on large scales (see
Section 4.2.3).

From this exercise, we conclude that the difference in the
choice of the random number seeds does not largely affect the
accuracy of our emulator. For simplicity and to be more
conservative, we employ the method using different random
number seeds for each of the cosmological models for our main
results (development of the emulator).

Appendix D
Effect of Massive Neutrinos

Massive neutrinos can impact the growth of cosmological
fluctuations; thus, the large-scale structure observables may
provide us with a unique opportunity to constrain the sum of
the three mass eigenstates(Bond et al. 1980). While a proper
treatment of massive neutrinos, including their impact on
nonlinear structure formation, would be important for such
cosmological tests (e.g., Saito et al. 2008), we here restrict
ourselves to a cosmological model with neutrinos of small
mass scales as implied from oscillation experiments, å =nm
0.06 eV, and treat them only at the level of the linear transfer
function. More precisely, we compute the transfer function
of the total matter fluctuations, including massive neutrinos at
z=0 using CAMB(Lewis et al. 2000), and multiply it with the
linear growth factor to scale back to the initial redshift. When
we compute the linear growth factor, we ignore the scale-
dependent growth due to the massive neutrinos and assume the
wCDM model with the neutrino density included in the matter
content throughout this paper. After generating the initial
particle distribution based on this scaled transfer function, we
consistently ignore massive neutrinos (and radiation/massless
neutrinos) and eventually solve the time evolution of the
particle distribution down to z=0 in an N-body simulation.

We give a validation of our treatment using the linear theory.
Figure 40 shows the ratio of the matter power spectrum
calculated by two methods. The numerator is the one computed
by the linear Boltzmann solver CAMB at the redshift indicated
by the figure legend. On the other hand, the denominator is the
one computed similarly by CAMB but at z=0 and then scaled
to the redshift of interest by multiplying the square of the linear
growth factor computed without massive neutrinos. This latter
one is effectively the underlying linear power spectrum for our
simulations. The ratio is by definition unity at z=0 and grows
with increasing the redshift, reaching an ∼3% deviation at
z∼30. Our target redshifts are rather low, z1.5, and the
deviation stays well below the 1% level. While nonlinearity
can, in principle, bring the sizable difference at earlier epochs
to later epochs through mode coupling, it would be a higher-
order effect, as the difference is at most at a few percent level
from the beginning.

Appendix E
Dependence on the Halo Finder

The main target of this paper is to present the statistics of
central halos after removing substructures. However, the
definition of central halos is rather ambiguous. We here
examine two things: first, the dependence on the criterion to
separate substructures, and second, the algorithm to identify a
list of possible central-halo candidates. As discussed in the
main text, we remove a halo if it is within the radius R200m of a
bigger halo in our default setting. In addition, we discard a halo
as a fake central halo if the exact spherical mass within R200m is
larger than that determined by ROCKSTAR by 30%. This
fraction is a parameter that can alter the properties of the central
halos remaining after these screening procedures. We also
examine the SUBFIND algorithm (Springel et al. 2001) in
addition to ROCKSTAR employed in the main text.
We first examine in Figure 41 the HMF after removal of

substructures. In the upper panel, we show the HMF obtained
by ROCKSTAR, while the lower panel shows that by SUBFIND
at z=0. In both cases, we use the test simulation with 5123

particles in -h250 Mpc1( ) and divide the results with the
reference result based on ROCKSTAR with the maximum
allowed mass increase of 30%. The upper panel shows that the
parameter can change the mass function more severely near
the low-mass end. The change can reach the ∼5% level in the
worst case with a fraction of 10%. When this fraction is larger,
the change is only moderate, ∼3% maximum at the low-mass
end. The same exercise is presented for SUBFIND in the lower
panel. Here the mass increase is based on the change of
the mass from the bound mass determined by SUBFIND. Note
that the reference mass function in the denominator is still
the one with the ROCKSTAR finder. Interestingly, we can match
the SUBFIND mass function with ROCKSTAR by adjusting the
parameter. A maximum mass increase of ∼70%–80% with

Figure 40. Fractional ratio of the linear matter power spectra, where the effect
of massive neutrinos with 0.06 eV is included by an approximated method (see
text for details), relative to the spectra directly computed with CAMB at
different redshifts.
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SUBFIND gives an almost identical result to that of ROCKSTAR
with the default parameter.

We perform similar tests for the correlation functions in
Figures 42 and 43 for the halo–matter cross- and halo–halo
autocorrelation functions in the upper panels for the two
finders. The most significant effect on the cross-correlation
function appears at~ -h1 Mpc1 , near the halo boundary. This is
natural because our parameter controls the exclusion of
substructures near the outskirts of a halo. Another notable
thing is the innermost part (i.e., -x h0.05 Mpc1 ) for the

SUBFIND finder. This is because of a different algorithm
employed to define the halo center (the center of mass of
particles in the core region versus the most bound particle).
However, we do not pay much attention here because the scale
is close to the softening length ( -h0.024 Mpc1 ) and the main
target of the emulator is on a somewhat larger scale
( - h0.1 Mpc1 ). In the case of the autocorrelation function,
the parameter can alter the overall bias factor. This acts, in a
sense, as an assembly bias effect, as the halo population,
especially the recent merger history, is altered by changing the

Figure 41. Dependence of the HMF on the maximum allowed mass increase by including particles not dynamically associated with the halo of interest and on the halo
finder (upper: ROCKSTAR; lower: SUBFIND). We normalize the mass function by that for the reference catalog based on the ROCKSTAR finder with the fraction
parameter 0.3. We also show (error bars) the Poisson noise level for the reference halo catalog.

Figure 42. Dependence of the halo–matter cross-correlation function on the maximum allowed mass increase by including particles not dynamically associated with
the halo of interest and on the halo finder (left: ROCKSTAR; right: SUBFIND). We normalize the mass function by that for the reference catalog based on the
ROCKSTAR finder with the fraction parameter 0.3.
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criterion to regard a structure at the outskirts of a halo as a
substructure or not.

An important message here is again that the correlation
functions from the SUBHALO groups can be matched to those
from ROCKSTAR by adjusting the parameter that separates a
subgroup from the central halo. In other words, the dependence
of the result to the halo-finding algorithm is subdominant and
can be absorbed by a parameter that defines the central halos.
While one has to bear in mind the possible dependence of the
correlation functions on the precise definition of the central
halos, we speculate that such a dependence would also be
absorbed by HOD parameters when galaxy clustering is
considered. A structure discarded as a substructure in one
algorithm but treated as a central halo in another might be
accounted for by populating a satellite galaxy there. We
postpone further explicit tests of this point to a future
investigation.

Finally, we examine the dependence of the cross- and
autocorrelation functions on the outer boundary of the central
halos that defines substructures. We consider R200c, R500c, and
R2500c, in addition to the default choice of R200m. Here the
numbers in the subscript before “c” indicate that the interior
density is that number times the critical density. We show in
the lower panels of Figures 42 and 43 the results normalized by
the default setting. One can see trends similar to the one when
we vary the parameter that controls the maximum allowed mass
increase, but with a smaller variation. The typical change is

within the target accuracy of this study (i.e., a few percent),
except the case with a rather extreme choice of R2500c.
From the analyses presented in this appendix, we conclude

that the clustering properties of halos predicted by HALO
MODULES are robust against halo-finding algorithms, but the
parameter that determines the central/satellite separation can
affect the results.

Appendix F
Dependence of the Performance on Redshift and Halo

Number Density

We have focused on how the emulator performs against
simulations at z=0.55 and for halos with a number density

- - -h10 Mpc4 1 3( ) in the main text. We summarize our findings at
different redshifts and for different halo samples in this appendix.
We first show a cross-validation study of the HMF in

Figure 44. Each panel corresponds to the lower right panel of
Figure 13, where the accuracy of the emulator is tested for the
20 cosmologies in slice5, which are not used in the GPR. We
can confirm that the scatter among the thin solid lines (i.e.,
different cosmologies) scales similarly to the width of the red
shaded regions (the scatter of the HMF for the different
realizations of the fiducial Planck cosmology). Thus, we
conclude that the modeling is reasonably accurate given the
uncertainties in the simulation data.
Next, we show in Figure 45 a similar cross-validation study for

the halo–matter cross-correlation function at various number

Figure 43. Same as Figure 42 but for the halo autocorrelation function.
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densities (rows) and different redshifts (columns). The overall
trend is that the accuracy is degraded as decreasing the number
density reflecting the bigger uncertainties in the simulation data
due to a larger noise. On the other hand, no clear dependence on
redshift is found.

The halo–halo correlation function is tested in Figure 46. This
time, the upper three rows are for the autocorrelation function of

the same halo samples, and the remaining three rows are for two
halo samples with different number densities, as indicated in the
figure legend. A similar trend, a bigger scatter for low-density
samples, can be found. Finally, the propagators are shown in
Figure 47. These plots are a practical guide to the accuracy of
the current code depending on the halo number densities (or
halo masses) in actual use.

Figure 44. Redshift dependence of the cross-validation test for the HMF.
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Figure 45. Redshift and number density dependence of the cross-validation test for the halo–matter cross-correlation function.
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Figure 46. Redshift and number density dependence of the cross-validation test for the halo autocorrelation function.
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Figure 47. Halo mass and redshift dependence of the performance of the propagator module. We also show the matter propagator in the top row.
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Appendix G
HOD Model

As we stressed in the main text, one can insert one’s own
module into DARK EMULATOR to model how halos are related
to galaxies under consideration. Here, as a working example,
we show an HOD model (Jing et al. 1998; Peacock &
Smith 2000; Seljak 2000; Scoccimarro et al. 2001; Zheng et al.
2005) to predict the abundance, clustering, and lensing signal
of galaxies. In particular, we employ the model in More et al.
(2015b). A module based on this HOD prescription is provided
in DARK EMULATOR as a default package.

We adopt the HOD model with an explicit split of the halo
occupation into central and satellite galaxies,

á ñ = á ñ + á ñN N N , 47M M Mc s ( )

where the average á ñ... M is taken for halos with mass M. The
mean HOD for the central galaxies is given by

s
á ñ = +
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N f M

M M1

2
1 erf
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, 48M
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c inc

min
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( ) ( )
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where xerf( ) is the error function and Mmin and s Mlog are model
parameters. The function f Minc ( ) accounts for a potential
incompleteness of the central galaxies that models a possibility
that a central galaxy in some halos can be missed due to an
imperfect selection effect or galaxies under consideration do
not necessarily occupy halos at the center even for sufficiently
massive halos (e.g., Masaki et al. 2013). We assume a log-
linear functional form given by

a= + -f M M Mmax 0, min 1, 1 log log ,

49
inc inc inc( ) [ [ ( )]]

( )

where ainc and Minc are model parameters. The mean HOD for
the satellite galaxies is given by

l
k
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where κ, M1, and α are model parameters, and we have defined
the notation l kº - aM M M Ms min 1( ) [( ) ] for convenience in
the following discussion. We assume that the distribution of
central galaxies, Nc, follows the Bernoulli distribution (i.e., can
take only zero or 1) with mean á ñN Mc . On the other hand, we
populate satellite galaxies to a halo only when a central galaxy
exists. The conditional distribution of Ns in a halo with mass M
that has a central galaxy is given by the Poisson distribution
with mean l Ms( ). Our HOD model is fully specified by seven
parameters: s a k aM M M, , , , , ,Mmin log inc inc 1{ }.

Once the HOD model is specified, the mean number density
of galaxies in a sample is computed as

ò= á ñ + á ñn dM
dn

dM
N N . 51M Mg c s¯ [ ] ( )

Here the HMF dn dM is given by DARK EMULATOR for a
given cosmological model.

Now we consider the galaxy–galaxy weak lensing that
measures the excess surface mass density profile around
lensing galaxies. The galaxy–galaxy weak-lensing profile for
lens galaxies at redshift zl can be expressed in terms of the

galaxy–matter power spectrum (e.g., Murata et al. 2018) as

òr
p

DS =
¥

R z
kdk

P k z J kR;
2

; , 52l lm
0

gm 2( ) ¯ ( ) ( ) ( )

where rm¯ is the present-day mean matter density and J x2 ( ) is
the second-order Bessel function. Under the HOD model
described above, we further make some assumptions on the
location of central and satellite galaxies within the host halo.
First, we allow some fraction ( foff) of the central galaxies to be
located off of the true halo center following a Gaussian
distribution with width Roff. In this case, this off-centering
effect can be expressed in terms of a kernel in Fourier space
(Oguri & Takada 2011; Hikage et al. 2013):

º - + - k M f R f f kR; , , 1 exp
1

2
.
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We then introduce a function u k M;s˜ ( ) for the normalized
radial profile of satellite galaxies, again in Fourier space. For
this, we assume an NFW profile, which is specified by a given
model of the halo matter–concentration relation, denoted as
c M z,( ), for halos of a given mass. We adopt the fitting formula
in Diemer & Kravtsov (2015) to compute c M z,( ) for a given
cosmological model, and c M z,( ) is not a free parameter in our
default setting. Alternatively, we provide an option to distribute
satellite galaxies following the mass distribution given by

xµ + x1 hm ( ), which can be computed by one of our HALO

MODULES. With these assumptions, the galaxy–matter cross-
power spectrum is given as

ò= á ñ

+ á ñ

P k
n

dM
dn

dM
N k M f R

N u k M P k M

1
; , ,

; ; . 54
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In Equations (52) and (54), dn dM and P k M;hm ( ) are given by
DARK EMULATOR, and the radial profiles of off-centering
central galaxies and satellite galaxies are modeled by the
parameters c M z f R, , ,off off{ ( ) }. Thus, one can compute the
galaxy–galaxy weak-lensing profile from DARK EMULATOR

for a given cosmological model, e.g., once nine parameters for
connecting halos to galaxies are specified: seven parameters for
HOD plus two profile parameters.
Next we consider the projected correlation function of

galaxies, w Rgg( ), which is defined in terms of the three-
dimensional correlation function as

ò p x p= +
p

w R z d R z; 2 ; . 55gg
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2 2
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where j x0 ( ) is the zeroth-order spherical Bessel function and
P kgg( ) is the galaxy autopower spectrum. Using the above
model ingredients, we can express the galaxy autopower
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spectrum as
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Note that in deriving the equation above, we have used the
relations

l
á ñ = á ñ

á - ñ = á ñ
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N N N M
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which follow from our assumptions on the distribution of Nc

and Ns described above. Once again, the projected correlation
function of galaxies can be computed for the same set of model
parameters as those of the galaxy–galaxy weak-lensing profile
(i.e., nine parameters for the halo–galaxy connection).
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